Insecticides may facilitate the escape of weeds from biological control (#102282)

First submission

Guidance from your Editor

Please submit by 25 Jul 2024 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for guidance.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

- 7 Figure file(s)
- 2 Table file(s)
- 5 Raw data file(s)
- 1 Other file(s)

ř

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty is not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Insecticides may facilitate the escape of weeds from biological control

Elizabeth K Rowen Corresp., 1, 2, Kirsten A Pearsons 1, Richard G Smith 3, Kyle Wickings 4, John F Tooker 1

Corresponding Author: Elizabeth K Rowen Email address: elizabethrowen@gmail.com

Background. Preventative pesticide seed treatments (hereafter preventative pest management or PPM) are common corn and soybean, and often include both fungicides and neonicotinoid insecticides. While PPM is intended to protect crops from soil-borne pathogens and early season insect pests, these seed treatments may have detrimental effects on biological control of weed seeds by insects. **Methods.** Here, in two 3-year cornsoy rotations in Pennsylvania USA, we investigated a PPM approach to insect management compared to an integrated pest management approach (IPM) and a "no (insect) pest management" (NPM) control. This was crossed with a grass cover crop to see if this conservation practice can help recover the ecosystem services affected by chemical pest management practices. We hypothesized that PPM and IPM approaches would release weed seeds from biological control by insects but cover crops would increase biological control. We measured the effect of these treatments on the weed-seed bank, mid-season weed biomass, granivorous insect activity-density, and weed-seed predation. **Results.** We found that, contrary to our hypothesis, planting a cover crop decreased carabid activitydensity without consistent differences in weed-seed predation. Pest management and cover crop treatments also had inconsistent effects on the weed-seed bank and midseason weed biomass, but insecticide use without a cover crop increased the biomass of glyphosate-resistant marestail (Erigeron canadensis L.) at the end of the trial. Our results suggest that reducing insecticide use may be important when combating herbicideresistant weeds. We found planting cover crops and/or avoiding the use of insecticides may combat these problematic weeds.

¹ Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, United States

² Division of Plant and Soil Science, West Virginia University, Morgantown, West Virginia, United States

Department of Natural Resources and Environment, University of New Hampshire, Durham, New Hampshire, United States

 $^{^{4}}$ Department of Entomology, Cornell AgriTech, Cornell University, Geneva, New York, United States

Insecticides may facilitate the escape of weeds from biological control

3 4

Ye

1

2

- 5 Elizabeth K. Rowen^{1,2}, Kirsten A. Pearsons², Richard G. Smith³, Kyle Wickings⁴, John F.
- 6 Tooker²

7

- 8 ¹ Division of Plant and Soil Science, West Virginia University, Morgantown WV, USA
- 9 ² Department of Entomology, The Pennsylvania State University, University Park, PA
- 10 ³ Department of Natural Resources and Environment, University of New Hampshire, NH, USA
- 11 ⁴ Department of Entomology, Cornell University, Cornell AgriTech, Geneva, NY, USA

12

- 13 Corresponding Author:
- 14 Elizabeth Rowen¹
- 15 3133 Agricultural Sciences Building, Morgantown WV, 26508, USA
- 16 Email address: elizabethrowen@gmail.com

17 18

Abstract

- 19 **Background.** Preventative pesticide seed treatments (hereafter preventative pest management or
- 20 PPM) are common corn and soybean, and often include both fungicides and neonicotinoid
- 21 insecticides. While PPM is intended to protect crops from soil-borne pathogens and early season
- 22 insect pests, these seed treatments may have detrimental effects on biological control of weed
- 23 seeds by insects.
- 24 Methods. Here, in two 3-year corn-soy rotations in Pennsylvania USA, we investigated a PPM
- 25 approach to insect management compared to an integrated pest management approach (IPM) and
- a "no (insect) pest management" (NPM) control. This was crossed with a grass cover crop to see
- 27 if this conservation practice can help recover the ecosystem services affected by chemical pest
- 28 management practices. We hypothesized that PPM and IPM approaches would release weed
- 29 seeds from biological control by insects but cover crops would increase biological control. We
- 30 measured the effect of these treatments on the weed-seed bank, mid-season weed biomass.
- 31 granivorous insect activity-density, and weed-seed predation.
- 32 **Results.** We found that, contrary to our hypothesis, planting a cover crop decreased carabid
- activity-density without consistent differences in weed-seed predation. Pest management and
- 34 cover crop treatments also had inconsistent effects on the weed-seed bank and mid-season weed
- 35 biomass, but insecticide use without a cover crop increased the biomass of glyphosate-resistant
- 36 marestail (Erigeron canadensis L.) at the end of the trial. Our results suggest that reducing
- 37 insecticide use may be important when combating herbicide-resistant weeds. We found planting
- 38 cover crops and/or avoiding the use of insecticides may combat these problematic weeds.

39

59

60

61

62 63

64 65

66

67

68

69

70

71 72

73

74

75

76

77

78 79

Introduction

41 In the US, approximately 90% of corn and >50% of soybean seeds are coated with pesticidal seed treatments that typically include a mixture of fungicides and a neonicotinoid insecticide 42 (Douglas & Tooker, 2015). These prophylactic pesticides are meant to protect seeds and young 43 plants from a suite of fungal pathogens and early-season insect pests like seed corn maggot, 44 wireworms, cutworms, white grubs (Douglas & Tooker, 2015). Nearly ubiquitous use of these 45 46 seed treatments can be attributed to the relative ease with which the pesticides can be handled and deployed- the active ingredients have low mammalian toxicity and require no additional 47 48 application equipment, effort, or detailed knowledge of the compounds to be used (Hitaj et al., 2020). And of course, agriculturar companies market their products to growers emphasizing that 49 the pesticides provide a sort of insurance policy against difficult-to-scout early season pests 50 (Hurley & Mitchell, 2017). It is important to recognize, however, that use of these seed 51 treatments may exceed demand, particularly in cooler climates, as many favers do not know 52 that these pesticides are on their seeds (Hitaj et al., 2020), nor may they have options to choose 53 54 the seed treatments that best suit their pest pressure and management needs. In contrast to more northern latitudes, in the Southern United States, where early season pests are abundant and 55 diverse, estimates suggest that pesticide seed treatments provide economic advantages to 56 soybean and corn production (an average increase of \$31-\$50/ha for soy and corn; North et al., 57 58 2016, 2018).

Despite providing advantages in some situations, recent research on seed treatments has cast doubt on their widespread benefits for pest control and yield protection, especially their insecticidal constituents (Labrie et al., 2020; Smith, Baute & Schaafsma, 2020). Meanwhile, other research has revealed that the nitroguanidine neonicotinoids (i.e., clothianidin, thiamethoxam, and imidacloprid) that are coated on seeds are water soluble, and readily leach from fields and enter aquatic systems where they can have significant non-target effects (e.g., 8– 11). While many non-target effects of neonicotinoid-containing seed treatments are external to farms, neonicotinoid insecticides in field soil, prey, and plant tissues can also pose risks to insects providing in-field ecosystem services. Much of the prior work on in-field effects of neonicotinoids has focused on invertebrate predators such as carabid beetles, which are particularly effective at controlling otherwise difficult-to-control pests like slugs, but are sensitive to neonicotinoids applied as seed treatments (Douglas, Rohr & Tooker, 2015; Penn & Dale, 2017; Rowen et al., 2022; Mugala et al., 2023). Neonicotinoid seed treatments have been found to decrease in-field populations of pest-regulating natural enemies (Douglas & Tooker, 2016), with at least one case of relaxed predation resulting in lower crop yield from non-insect pests (Douglas, Rohr & Tooker, 2015).

In addition to being important predators of invertebrate pests, carabids and other epigeal predators such as ants can also be effective weed-seed predators (Baraibar et al., 2009; Sarabi, 2019; Kulkarni et al., 2017). Carabids, for example, can reduce weed biomass as much as 81% following see in (Blubaugh & Kaplan, 2016), but insecticides can interfere with these benefits. For instance, relative to control plots, predation of lambsquarters (*Chenopodium album*

L.) seeds decreased in corn plots that received an application of a pyrethroid insecticide that killed weed-seed predators (DiTommaso et al., 2014). Coupled with the broad-spectrum fungicides used in seed treatments, which can inadvertently protect weed seeds from fungal attack (Mohler et al., 2012; Gomez et al., 2014; Smith et al., 2016), pesticidal seed treatments may indirectly increase abundance of weed seeds in seed banks. Although well-timed herbicide applications can keep most weeds at bay, releasing weed seeds in the soil seed bank from biological control may exacerbate management challenges related to herbicide-resistant weeds. As a result, biological control of weed seeds is an important component of integrated weed management and resistance management that may be disrupted by pesticide use (Harker & O'Donovan, 2013).

An alternative to preventative pest management including seed treatments is integrated pest management (IPM; Stern et al., 1959). In agricultural systems managed with IPM, pesticides are applied only if pest populations exceed economic thresholds. Such pesticide applications are used as last resort after other control methods fail to control pest populations. Consequently, IPM is often less ecologically disruptive compared to insurance- or calendar-based use of pesticides (Stenberg, 2017). However, the primary targets of seed treatments, early-season soil-borne insect pests, can be challenging to manage using IPM because subterranean pests are hard to control through rescue treatments after crops are planted. Therefore, farmers may appear to face a tradeoff: commit to IPM, including avoiding seed treatments, and potentially leave young crop plants vulnerable to damage from unseen insect or fungal pests, or preventatively deploy seed treatments that may be able to control early season pest damage and accept their non-target effects.

A potential solution to this apparent tradeoff is to use conservation-based farming practices to build natural-enemy populations that can decrease the need for pesticides. While use of pesticidal seed treatments is increasing in the US (Douglas & Tooker, 2015; Douglas et al., 2020), adoption of conservation-based agricultural practices is also growing. No-till farming is standard in many parts of the northern Corn Belt of the U.S. and is becoming more common elsewhere (National Agricultural Statistics Service, 2020), while adoption of cover crops, particularly in northeastern and Mid-Atlantic states, is growing because of benefits to weed management and soil quality (Wallander et al., 2021). Winter cover crops that produce significant biomass by spring can out-compete annual weeds that germinate in the weeks prior to planting (Teasdale, 1996). Further, after they are terminated, cover-crop residues on soil surfaces in no-till systems can provide further control of weeds (Schipanski et al., 2014; Daryanto et al., 2018). In addition to these benefits, cover crops can provide overwintering habitat and their decomposing residue supports the detritivores and the brown food web and increases predator populations (Halaj & Wise, 2002). Because weed-seed predators are often omnivorous, cover crops can help stabilize and support their populations (Blubaugh et al., 2016). However, increasing use of neonicotinoid seed treatments may counteract some of the benefits of cover crops, including reducing the potential of weed-seed predators to contribute to biological control of weeds.

121

122

123124

125

126

127

128

129

130

131132

133

134

135

To explore the potentially competing influences of seed-applied pesticides and cover crops on weed management, we conducted a three-year field experiment to address the following questions: 1) How do preventative pest management (PPM), including pesticidal seed treatments. and IPM interact with cover crops to influence communities of weed-seed predators and weedseed predation?, 2) How do PPM, IPM, and cover crops affect the weed-seed bank?, and 3) How do PPM, IPM, and cover crops influence weed composition and weed biomass in the field? We expected that insecticide use via PPM or IPM would reduce the abundance and diversity of weed-seed predators, particularly carabids, resulting in less weed-seed predation. By disrupting weed-seed predation, we expected insecticides would indirectly increase overall abundance of weeds in the weed-seed bank, and possibly decrease the diversity of those weeds, and this effect would be stronger in PPM where fungicides may also decrease fungal biological control of weed seeds. Cover crops, however, may bolster natural enemy communities and their function, resulting in greater predation of weed seeds. Even in the context of standard herbicide use, we expected cover crops to help suppress weed biomass by reducing weed emergence and seed production (Fernando & Shrestha, 2023). Lastly, we expected that all these effects should become more pronounced over time as effects of seed treatments and cover crops accumulate.

136137

138

139140

141

142

143144

145

146

147

148149

150

151152

153

154

155

156157

158159

Materials & Methods

Field Sites

We established our three-year field experiment in two 1.5-ha fields at the Penn State Russell E. Larson Agricultural Research Center (Rocksprings, PA, 40°42'42"N, 77°57'51"W), and identified them as "North" and "South" fields, referring to their location relative to a main road that bisects the research farm. In 2016, the year before the experiment began, five of six blocks in the South field grew soybeans, and one block grew a combination of sunflower mixed with other harvestable forage crops. In the North field, three blocks grew wheat, and three blocks grew soybeans. In spring 2017, we established a factorial field experiment to quantify the interactive effects of pesticide seed treatments and grass cover crops. The experiment was established as a soy-corn-soy rotation on the North field and as a corn-soy-corn rotation on the South field. We divided each field into 12.2 × 33.5 m plots, laid out in a randomized complete block design (RCBD) with six treatments (three levels of pest management x two levels of cover cropping) each replicated six times in each field.

The pest management treatments consisted of a "preventative" pest management treatment ("PPM"), an integrated pest management treatment (IPM), and a control ("no pest management": "NPM"). In the PPM treatment, seeds were treated with a neonicotinoid insecticide and mixture of fungicides prior to planting (15, Table S1). In the IPM treatment, we scouted plots and treated fields if insect pest populations exceeded economic thresholds. During the three-year experiment, the IPM plots received a single insecticide application: an in-furrow application of tefluthrin (Force 3G, 5 kg ha-1 [Syngenta]) at planting in 2018 to control white grubs (Scarabaeidae; mostly Japanese beetles *Popillia japonica* Newman). Thus, in 2017, pest management practices in the IPM and NPM treatments were identical.

- 160 Cover-crop treatments included oats (Avena sativa L.) planted in spring of 2017 and 2019, and
- 161 cereal rye (Secale cereale L.) planted in the fall of 2017. We used spring-established oats when
- planting conditions in fall were not ideal for establishing cereal rye. One to two weeks before
- planting corn or soybeans, we applied herbicides (RoundUp PowerMax or a combination of
- 164 Impact, Accent, Banvil and DegreeExtra; Table S1) to terminate cover crops and manage early-
- season weeds across both fields. The terminated cover crops were not removed. In 2017 and
- 166 2018, we applied herbicides a second time (RoundUp and Accent) at the end of June or early
- 167 July (Table S1; also in 15).

168 Spring weed and cover crop biomass

- We harvested weed and cover-crop biomass two to three weeks before planting (Table 1). We
- 170 collected all above-ground plant biomass from three, randomly spaced 0.25-m² quadrats in each
- plot. Cover-crop biomass was collected and handled separately from weed biomass. We dried all
- biomass samples in a 60°C drying oven for at least 5 days before weighing.

173 Weed-seed bank

- We used direct-germination assays to assess changes to the weed-seed bank in response to our
- treatments. We sampled the germinable weed-seed bank in early May each year (Table 1), before
- terminating weeds and cover crops or planting corn or soy. For each plot, we pooled nine, evenly
- spaced soil samples that were collected using a bulb planter (5cm wide, 10cm depth, Yard
- Butler, San Diego, CA). We sieved (1-cm mesh) and homogenized these pooled samples, then
- transferred them to paper bags to air-dry in a greenhouse for at least five days.
- We subsampled 946 cm³ of air-dried soil from each sample, which we spread across an equal
- amount of soilless potting media (Promix) in standard plastic planting trays (28 x 54 x 6 cm).
- After an initial watering, we watered these trays as needed (2-3x per week) depending on
- ambient temperature and weed emergence. We maintained assays for six months (July to
- January), regularly identifying, counting, then removing seedlings as they emerged. Species that
- were challenging to identify as seedlings were transplanted to pots to continue growing until they
- 186 could be accurately identified.

Weed biomass in August

187

- 188 To understand the influence of our treatments on weed communities, we assessed weed biomass
- in August of each year (Table 1). When assessment could not be completed in a single day, we
- assessed weeds by block. For each plot, we identified and collected all aboveground weed
- biomass from three, randomly spaced 0.25-m² quadrats. In 2017, we harvested plants en-masse
- and brought them into to the lab for identification; for forbs, we identified plants to species,
- whereas we grouped all grasses together. In 2018 and 2019, we identified all forb and grass
- 194 weeds to species in the field and collected each species into separate paper bags. Some plots had
- such small amounts of a particular species that we noted its presence but did not harvest it for
- 196 collection. We dried harvested biomass for at least 5 days at 55°C and weighed each species.

197 Weed-seed predator community

- 198 To understand the influence of our treatments on seed-eating invertebrates, we assessed weed-
- seed-predator communities twice a year, in late June/early July and late August/early September.

- 200 We defined the weed-seed-predator community as granivorous carabid beetles and ants, which we captured using two, evenly spaced pitfall traps per plot. Pitfall traps were constructed from 201 946 mL cups installed flush in the ground so that ground-dwelling insects would pass over them 202 and fall in. We used a 50:50 mix of propylene glycol and water (~60 mL per trap) as a killing 203 204 agent. When traps were in-use, we placed a 20-cm plastic plate (propped ~5 cm above the soil surface using nails) over them to protect traps from rain. We left traps open for 72 hr in June/July 205 and Aug/Sept (Table 2). We returned trapped specimens to the lab, rinsed them with water, and 206 transferred them to ethanol (70%) for storage and identification. When not in-use, we attached 207 tight-fitting lids to the pitfall traps to avoid capturing insects between sampling events. In 2019 208 209 in the South field, vertebrate pests, likely raccoons, destroyed the majority of our traps during both sampling events, so we were unable to jude those 2019 South field data in our analysis. 210 We identified carabid beetles to species using bousquet (Bousquet, 2010) and all other insects to 211 212 order. Here, we report on species that are classified as predominantly weed-seed predators, 213 including ants (Formicidee) and carabid beetles in the genera Anisodactylus, Amara, Harpalus, Notiobia, and Bembidio arochelle, 1990; Lundgren, 2009 Taxa that predominantly feed on 214 insects and other invertebrates are reported and discussed in 13. 215
- 216 Weed-seed predation
- We deployed sentinel seeds to measure weed seed predation by invertebrates in the field. In
- 218 2017, we deployed sentinel seed cards comprising 30 seeds of red-root pigweed (*Amaranthus*
- 219 retroflexus L.) and 20 seeds giant foxtail (Setaria faberi L.) that we glued to a 4 x 9 cm piece of
- 220 60 grit sandpaper(Westerman et al., 2003). Because this method proved delicate and difficult to
- transport, we switched to a different deployment method in 2018 and 2019. In 2018 and 2019,
- each trap comprised double-sided tape (Duck® Brand Indoor Heavy Traffic Carpet Tape)
- 223 attached to the bottom of an inverted dish (5-cm diameter) with 30 pigweed and 20 giant
- foxtail seeds scattered across the surface. We then adhered sifted sand (Quickrete Play Sand)
- across the remaining sticky areas of the tape(Gallandt, 2005; Ward et al., 2011) to prevent
- 226 predators from getting stuck to the dishes. We installed seed cards or seed dishes in fields, with
- each placed inside vertebrate exclusion cages made from hardware cloth (10 cm wide x 8 cm tall,
- 228 with 1-cm mesh with a plastic lid). We deployed three weed-seed cards (2017) or dishes (2018 &
- 229 2019) per plot and left them in place for 48 hr, three times each summer (Table 2). After 48 h in
- 230 the field, we collected seed cards into envelopes (2017) and dishes into plastic bags (2018 &
- 231 2019) and brought them back to the lab to count the remaining number of whole pigweed and
- 232 foxtail seeds.
- 233 Statistical analyses
- 234 In general, we tested the interactions of pest management (PM), presence of a cover crop (CC),
- field (N: North, S: South) and year (2017, 2018, 2019) using generalized linear mixed models
- 236 (GLMMs) with plot, and both directions of blocking as random intercepts using appropriate error
- 237 distributions. For carabid and ant activity density, we included the interaction of month
- 238 (June/July and Aug/Sept) in the model. Similarly, we included an interaction of month with all
- other categorical variables in modeling weed-seed predation (June, July, or August/September).

240 For each model, we calculated estimated marginal means based on the full interaction model and plotted those means with 95% confidence intervals. To determine the relative effects of different 241 factors, we then reduced the interactions in the models until they had the lowest AIC values. We 242 never dropped a term from the model completely (e.g. even if they were not significant, we 243 244 included field or cover crop in the model). We ran all analyses, except weed-seed predation and forb biomass, using a Poisson or a negative binomial error distribution. Weed-seed predation 245 models used a binomial distribution where the fate of each seed was calculated separately, and 246 each seed card/dish, as well as the plot, was included as a random intercept to account for non-247 independence. For forb biomass, we used a zero-inflated gamma error distribution with log link 248 function. We conducted all GLMM analyses using the package 'glmmTMB' (Brooks et al., 2017) 249 in R (v. 4.1.2 (R Core Team, 2018)). We used the package 'emmeans' to calculate estimated 250 marginal means and to conduct pairwise post-hoc tests using a Tukey multiplicity 251 252 adjustment(Lenth, 2019). To examine violations of homogeneity of variance and test the fit of 253 our chosen distributions, we used the package 'DHARMa' (Hartig, 2022).

Results

254255

264

265

266

267

269

270

271

272273

274

275

276

277278

- Weed biomass in May/June
- Weed biomass measured before cover crops were terminated and cash crops were planted
- 257 differed among years and between fields (Field x Year: $\chi^2 = 36$, df = 2, P < 0.0001; Fig. 1). As
- expected, weed biomass was often lower in plots where cover crops were planted (CC: $\chi^2 = 6.0$,
- 259 df = 1, P = 0.01), though the magnitude of difference varied depending on the field (Field x CC:
- 260 $\chi^2 = 4.3$, df = 2, P = 0.04). In the North field in 2017, we observed reductions in weed biomass
- due to cover crops (P = 0.015), and in 2019, we observed reductions in weed biomass due to
- 262 cover crops in both fields (P = 0.002). Pest management treatments had no effect on weed
- 263 biomass before cash crop planting ($\chi^2 = 2.8$, df = 1, P = 0.25).

When including cover-crop biomass, total plant biomass in spring was consistently higher in cover-cropped plots compared to non-cover-cropped plots ($\chi^2 = 29.3$, df = 1, P < 0.0001), although the effect of cover on total biomass depended on the field and year (Field x CC: $\chi^2 = 7.7$, df = 1, P = 0.005; Year x CC: $\chi^2 = 12.0$, df = 2, P = 0.003; Fig. S1).

268 Weed-seed bank

The weed-seed bank was dominated by forbs from the North field and grasses in the South field (Fig. S2). Further, we saw different communities in different blocks in the North and South fields that corresponded strongly with previous field history (between blocks 3 & 4 in the North and block 6 from the other five blocks in the South).

We predicted that weed-seed predators and the fungicide in the pesticidal seed treatment would act on the weed-seed bank to alter the weed community. The forb weed-seed bank varied between fields and among years (Field x Year: $\chi^2 = 28.1$, df = 2, P < 0.0001, Fig. 2A), and pest-management treatment decreased forb abundance (PM: $\chi^2 = 6.4$, df = 2, P = 0.04). We did not detect an interaction between pest management and field or year, but we did observe that the IPM treatment in 2017 and 2018 were lower than the other pest management treatments (Fig.

289

290 291

292

305

- 279 2A). Because the IPM treatment was not implemented until after the weed seed bank was sampled in 2018, this indicates that despite our Latin-square design, the abundance of seeds in 280 the weed-seed bank was significantly different across the different pest-management treatments 281 at the start of the project and was not attributable the treatments we imposed. As there do not 282 appear to be considered in plots year-to-year (ie, plots with high weed abundances in 2017 do not 283 necessarily have high abundances in 2018), we re-analyzed our data without 2017 in the model. 284 When we looked at 2018 and 2019, we found that cover crops, rather than pest management 285 treatment, decreased forb abundance in the weed-seed bank by 20% ($\chi^2 = 5.02$, df = 1, P = 0.025; 286 Fig. 2B). 287
 - For grass seeds, we found that, again, the seed bank varied between fields and among years (Field x Year $\chi^2 = 9.4$, df = 2, P = 0.009, Fig. 3A). We also found that grass weed seed abundance was 25% higher when a cover crop was planted ($\chi^2 = 5.3 \ df = 1$, P = 0.02; Fig. 3B). Unlike the IPM treatment, we implemented the cover crop treatment prior to sampling the weed-seed bank and interpret the outcome of models for 2017.
- Because we expected weed seeds of different species would not be equally susceptible to pathogens, predators, or the suppressive effect of cover crops, we analyzed the effect of pest-
- 295 management treatment and cover crops on species richness in the weed-seed bank. We found
- 296 that species richness varied across fields and years (Field x Year: $\chi^2 = 43.5$, df = 2, P < 0.0001
- 297 Fig. S3A). We again found that species richness varied among pest-management treatments and
- 298 was consistently lower in the IPM treatments compared to the PPM or NPM treatments, due to
- 299 differences in 2017 and 2018, particularly in the North field (PM: $\chi^2 = 10.8$, df = 2, P = 0.005,
- 300 Fig. S3B). Thus, as with abundance of weed seeds, the richness of the weed-seed bank started
- 301 with different communities in the IPM treatments compared to other treatments despite our
- 302 Latin-square design. However, we do not detect strong patterns year to year within plots for the
- 303 weed-seed bank, suggesting that we can trust inferences from 2019 data regardless of the
- 304 patterns in 2017 and 2018 (Fig. S2).

Weed biomass in August

- 306 Because weeds compete with cash crops throughout the growing season, we measured weed
- 307 biomass in August. When we examined the community composition of weeds in August, we saw
- 308 patterns in weed communities depending on year and field. In the North field, the weed
- 309 community was characterized by dandelion (Taraxacum sp.), yellow woodsorrel (Oxalis stricta
- 310 L.), and C. album in 2017, which was gradually replaced by marestail (Erigeron canadensis L.)
- and grasses by 2019. The South field had more grasses than other weeds in 2017 and 2018, and in 2019, dandelion was relatively common compared to grass (Fig. S4)
- Examining the forb community, we found that mid-season forb biomass varied across field and years (Field x Year: $\chi^2 = 15.8$, df = 2, P = 0.003; Fig. S5), but contrary to our
- field and years (Field x Year: $\chi^2 = 15.8$, df = 2, P = 0.003; Fig. S5), but contrary to our hypothesis, did not respond to pest-management treatment ($\chi^2 = 1.3$, df = 2, P = 0.5) nor cover
- 316 crop ($\chi^2 = 1.9$, df = 1, P = 0.17). One weed species E. canadensis, stood out as an increasing
- problem in the North field during the experiment (Fig. 4). In 2017, in the North field, we did not
- 318 collect any *E. canadensis* in our samples. In 2018, we collected an average of 8.3 g *E*.

PeerJ

- canadensis m⁻² (95%CI 4.4–15.7) and by 2019, we found an average of 93.4 g m⁻² (95% CI: 61.4 –142). Glyphosate-resistant *E. canadensis* had been identified at the research site in prior years, and the *E. canadensis* in our trial did not seem to respond to glyphosate application in 2019. In 2019, treatments without a cover crop that used an insecticide (IPM or PPM) had significantly
- higher *E. canadensis* biomass than the other treatments (CC x PM: $\chi^2 = 6.9$, df = 2, P = 0.03, 324 Fig. 4).
- Grasses were an important part of the weed community in the South field in 2017 and 2018, and in the North field in 2019. We analyzed each field year separately because there was almost no grass in the North field in 2018. In 2017, in both the North and South fields, planting a cover crop suppressed biomass of grass weeds into August (North: $\chi^2 = 4.8$, df = 1, P = 0.03;
- South: $\chi^2 = 48.9$, df = 1, P < 0.0001, Fig. 5). In addition, in the South field, we found grass weed
- biomass was higher in the IPM plots, likely due to initial differences in the weed-seed bank (χ^2 =
- 331 9.9, df = 2, P = 0.007). In 2019, we again found that cover crops marginally suppressed grass in
- 332 the North field ($\chi^2 = 3.5$, df = 1, P = 0.06). In the South field in 2018 and 2019, however,
- planting a cover crop increased grass biomass in August (2018: $\chi^2 = 8.7$, df = 1, P = 0.003; 2019:
- 334 $\chi^2 = 3.4$, df = 1, P = 0.07). In 2018, the magnitude of this effect depended on the pest
- management treatment, with the greatest effect in the NPM plots (CC x PM: $\chi^2 = 6.7$, df = 2, P = 6.7).
- 336 0.04).
- 337 Weed-seed predators (ants and herbivorous carabids) in June and September
- 338 Across the experiment, we collected and identified 17 species of granivorous carabids (Fig. S6).
- 339 The weed-seed predator community was dominated by *Harpalus pennsylvanicus* (1,331
- 340 individuals, 81% of all granivorous carabids in both collection periods combined). We collected
- 341 this species throughout the experiment, particularly in August and September (92% of all seed
- 342 predator carabids captured). Early in the season, the carabid community was more even, when
- 343 other Harpalus species (H. affinus, H. erraticus, H. rubripes, and H. faunus), Amara species (A.
- 344 neoscotica and A. aenea) and Anisodactylus species (A. carbonaris, A. rusticus, and A.
- *sanctaecrucis*) were more common. One common granivorous species, *Notiobia sayi*, was only captured in August and September (Fig. S6).
- Activity-density of granivorous carabids was higher in August/September than June ($\chi^2 = 348$ 24, df = 1, P < 0.001), although the strength of this effect depended on the year and field (Season
- 349 x Field x Year: $\chi^2 = 15.01$, df = 2, P = 0.001; Fig. 6A, B). Overall, activity-density of
- 350 granivorous carabids was higher in non-cover cropped plots than those planted with a cover crop
- 351 $(\chi^2 = 9.9, df = 1, P = 0.002; \text{ Fig. 6C, D})$. We detected no effect of insecticide use on granivorous
- 352 carabids ($\chi^2 = 0.4$, df = 1, P = 0.8).
- The other granivorous group we caught in pitfall traps, ants, were affected by neither the
- 354 presence of a cover crop ($\chi^2 = 0.27$, df=1, P = 0.60) nor insecticides ($\chi^2 = 2.2$, df = 1, P = 0.34),
- 355 although ants were more abundant in June than in August/September ($\chi^2 = 117.3$, df = 1, P < 100
- 356 0.001), their abundance varied by year and field as well (Year x Field: $\chi^2 = 104.9$, df = 2, P < 100.001
- 357 0.001, Fig. S7).

366

375

376377

378 379

380

381 382

383 384

385

386

387

388

389 390

391

392

393

394 395

396

397

Weed-seed predation

- 359 To understand the potential of weed-seed predators to control weed seeds, we measured
- 360 predation of two species of weed seeds (pigweed and foxtail) at three time points throughout
- ach season. Total weed-seed predation rate depended on season and year and was affected
- intermittently by the presence of a cover crop and by insecticides (PM x CC x Year x Field x
- Season: $\chi^2 = 38.2$, df = 4, P < 0.0001, Fig. 7). In five of six site-years, weed-seed predation
- increased over the season (Fig. 7). The effect of cover crops and pest management treatment was
- inconsistent among years and seasons and between fields.

Discussion

367 The majority of corn and soybean fields in the U.S. are planted with seeds that have been treated

- 368 with pesticides that typically include one or more fungicides and a neonicotinoid insecticide
- 369 (Douglas & Tooker, 2015; Douglas et al., 2020). Based on previous research (Smith et al., 2016),
- we hypothesized that use of preventative fungicidal and insecticidal seed treatments would
- 371 release weeds from biological control by weed-seed-infecting fungi and insect weed-seed
- 372 predators. Other work suggests that even in an IPM framework, last-resort insecticide
- applications can have significant effects on weed-seed predation (DiTommaso et al., 2014), so

we compared a preventive, seed-treatment-based program (PPM) and an IPM program. The data

that we present here suggest that fungicides and insecticides used as seed treatments or with an

IPM framework may alter weed communities, although effects are small and variable.

First, despite random assignment of treatments, at the start of the experiment the IPM plots had lower weed-seed species richness (Fig. S2). This difference does not appear to have affected forb biomass in August 2017, but it may have affected the grass biomass in August 2017 (Fig. 5). Such differences in the weed-seed bank at the start of the experiment may have obscured differences over time due to our treatments.

The most compelling results of this experiment were related to glyphosate-resistant E. canadensis. The emergence of glyphosate-resistant E. canadensis in the North field in 2019 is unlikely to have resulted solely from differences in initial weed-seed banks. Moreover, at the end of our three-year experiment, the greater increase in biomass of E. canadensis in insecticidetreated plots (both PPM and IPM) without a cover crop is compelling evidence for the importance of biological control of weeds (Fig. 4). Weed management in annual row crops has become increasingly dependent on preventative strategies, like the one we used, herbicideresistant crops and associated herbicides. Prior to the late 1990s, weeds in corn and soybean had to be controlled through tillage and a variety of selective and broad-spectrum herbicides, but since then, commercialization and rapid adoption of transgenic glyphosate-resistant corn and soybean has increased use of glyphosate (a non-selective herbicide) for post- emergence weed control. Predictably, the subsequent near-exclusive reliance on glyphosate as a weed-control strategy has resulted in evolution of weeds that are resistant to this herbicide(Mortensen et al., 2012). Across the major commodity-producing regions of the U.S. and elsewhere where these crops are grown, this problem has now reached epidemic levels, and for many farmers has resulted in higher crop production costs and reduced farm profitability (Asmus, Clay & Ren,

399

400

401 402

403

404

405

406 407

408

409

410 411

412

413

414

415

416

417

418

419 420

421 422

423 424

425 426

427 428

429

430

431

432 433

434

435

436 437 2013; Sosnoskie & Culpepper, 2014; Evans et al., 2016). We found that preventative pest management treatments that include insecticides were associated with higher biomass of glyphosate-resistant *E. canadensis*. This evidence suggests a robust natural-enemy community (i.e., decomposing fungi and granivorous insects) may play a disproportional role in managing herbicide-resistant weeds compared weeds that remain susceptible to chemical control practices.

Because we found similar effects on E. canadensis in both the IPM and PPM treatments, the two treatments that received insecticides, our results suggests that use of insecticides, rather than fungicides, interfered with biological control of weed seeds by insects. Based on our pitfall captures, however, we did not detect an effect of insecticidal seed treatments on weed-seed predator activity-density (Fig. 6, Fig. S6). While we did detect variation in seed predation due to the combination of seed-applied pesticides and a cover crop (Fig. 7), this effect was inconsistent between fields and among years. Other field experiments have found that our dominant seed predator taxa, carabids and ants, can be directly and indirectly affected by neonicotinoid seed treatments (Mullin et al., 2005; Douglas, Rohr & Tooker, 2015; Schläppi et al., 2020). However, because pitfall traps measure activity-density, our "signal-to-noise" ratio may have been too high to detect season-long effects of weed-seed predators on the weed community. Although overall carabid activity-densities tracked with weed-seed predation (greater towards the end of the season), we did not trap frequently enough to capture day-to-day nuances. Carabid foraging, for example, can be influenced by weather, plant cover, and even moonlight, and thus be highly variable over short sampling periods (Niemelä, Spence & Spence, 1992; Blubaugh, Widick & Kaplan, 2017), and different carabid species may forage for different weed species and not have homogeneous responses to weeds and cover crops (Charalabidis et al., 2019; De Heij & Willenborg, 2020; Ali et al., 2022). While we saw similar effects in the IPM and PPM treatments, other results from this same experiment revealed that the fungal community attacking weed seeds was significantly less diverse in plots planted with seed-applied pesticides(Palmer, 2020). This result suggests that the fungicidal portion of seed treatments can alter soil fungal communities, possibly releasing seeds of some weed species from their pathogens (Smith et al., 2016).

We hypothesized that cover crops could ameliorate potential negative effects for weed management of insecticide and fungicide use. We found that cover crops reduced the weed-seed bank for forbs in 2018 and 2019 by 20% (Fig. 2B), but increased grass abundance in the weed seed bank across all years by 25% (Fig. 3B). We have previously reported that for half of the field years, the cover crops decreased biomass of weeds before planting (Rowen et al., 2022). This effect from cover crops on weeds, however, was only detectable early in the season. By August, weed biomass of forbs was equal in plots with and without cover crops, and the effect of cover crops on grasses was inconsistent (Fig. 5).

Unexpectedly, we also found that presence of cover-crop residue consistently decreased activity-density of carabid beetles (largely *Harpalus pensylvanicus*; Fig. 7). This contrasts with previous work that has found positive (O'Neal et al., 2005; Brevault et al., 2007; Ward et al., 2011; Saenz-Romo et al., 2019) or neutral (Carmona & Landis, 1999) effects of cover crops on

carabids. Our data suggest that cover crops, at least at the density we used, negatively affected 438 activity-density of weed-seed predators, both early in the season when weeds are likely to be 439 growing faster in plots without cover crops than plots with cover-crop residue, and later in the 440 season when carabids may not move among plots as easily (Wallin & Ekbom, 1988). Because 441 442 they increase habitat complexity, both cover crop residue, especially in the first half of the growing season, and weed biomass may slow carabid movement and reduce pitfall trap capture 443 (Greenslade, 1964; Boetzl et al., 2018). While cover crops may reduce capture of weed-seed 444 predators in pitfall traps (South field in Fig. 6), we did not detect consistent decreases in weed-445 seed predation in cover-crop plots, indicating that activity of weed-seed predators may be high 446 447 enough in plots both with and without cover crops to provide sufficient weed biological control. We also previously found that carabids and ants both responded positively to plant cover present 448 prior to planting, regardless of whether it was from a planted cover crop or from weeds (Rowen 449 et al., 2022), further emphasizing that vegetation present in fields prior to planting can strongly 450 451 influence beneficial arthropod populations (Schipanski et al., 2014).

Conclusions

Our three-year experiment investigating the impact of preventative and integrated insect pest 453 management on weed communities in corn and soybean fields, and the potential mitigating 454 455 effects of cover crops, provides insights into integrated pest and weed management. Our findings 456 suggest that using an insecticide, either as a preventative seed treatment or in response to pest pressure, may result in small alterations in weed communities. The emergence of glyphosate-457 resistant E. canadensis in insecticide-treated plots underscores the importance of maintaining a 458 robust natural-enemy community for effective weed management and underscores the need for 459 even longer field experiments to detect effects of insecticides on ecosystem processes. 460 461 Surprisingly, cover crops, while reducing the forb weed-seed bank, increased grass weed biomass and grass seed abundance in the weed-seed bank and had unexpected negative impacts 462 on the activity-density of carabid beetles. This highlights the complexity of interactions within 463 464 agroecosystems and emphasizes the need for a holistic approach to weed management that 465 considers the broader ecological implications of pest-control strategies.

466 467

452

Acknowledgements

- We thank Andrew Aschwanden, Hayden Bock, Lewis Hahn, Jennifer Halterman, Kyra Hoerr,
- 469 Julie Golinski, Ken Kim, Sonia Klein, Ken Koepplinger, Roman Nakielny, Garrett Reiter,
- 470 Amanda Seow, Dan Wisniewski for assistance in the field and lab, and Austin Kirt and Corey
- 471 Dillon for farm management.

472 473

References

Ali KA, Mori BA, Prager SM, Willenborg CJ. 2022. Seed choice in ground beetles is driven by surface-derived hydrocarbons. Communications Biology 5:1–12. DOI: 10.1038/s42003-022-03678-1.

- 477 Asmus A, Clay SA, Ren C. 2013. Summary of certified crop advisors' response to a weed 478 resistance survey. Agronomy Journal 105:1160–1166. DOI: 10.2134/agronj2013.0152.
- Baraibar B, Westerman PR, Carrión E, Recasens J. 2009. Effects of tillage and irrigation in cereal fields on weed seed removal by seed predators. Journal of Applied Ecology 46:380–387. DOI: 10.1111/j.1365-2664.2009.01614.x.
- Blubaugh CK, Hagler JR, Machtley SA, Kaplan I. 2016. Cover crops increase foraging activity
 of omnivorous predators in seed patches and facilitate weed biological control.
 Agriculture, Ecosystems & Environment 231:264–270. DOI:

485 10.1016/j.agee.2016.06.045.

- Blubaugh CK, Kaplan I. 2016. Invertebrate seed predators reduce weed emergence following seed rain. Weed Science 64:80–86. DOI: 10.1614/WS-D-15-00111.1.
- Blubaugh CK, Widick IV, Kaplan I. 2017. Does fear beget fear? Risk-mediated habitat selection triggers predator avoidance at lower trophic levels. Oecologia 185:1–11. DOI: 10.1007/s00442-017-3909-1.
- Boetzl FA, Ries E, Schneider G, Krauss J. 2018. It's a matter of design—how pitfall trap design affects trap samples and possible predictions. PeerJ 6:e5078. DOI: 10.7717/peerj.5078.
- Bousquet Y. 2010. Illustrated identification guide to adults and larvae of northeastern North American ground beetles (Coleoptera, Carabidae). Pensoft.
- Brevault T, Bikay S, Maldes JM, Naudin K. 2007. Impact of a no-till with mulch soil
 management strategy on soil macrofauna communities in a cotton cropping system. Soil
 & Tillage Research 97:140–149. DOI: 10.1016/j.still.2007.09.006.
- Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, Skaug HJ,
 Machler M, Bolker BM. 2017. glmmTMB balances speed and flexibility among packages
 for zero-inflated generalized linear mixed modeling. The R journal 9:378–400. DOI:
 10.3929/ethz-b-000240890.
- Carmona D, Landis D. 1999. Influence of refuge habitats and cover crops on seasonal activitydensity of ground beetles (Coleoptera: Carabidae) in field crops. Environmental Entomology 28:1145–1153. DOI: 10.1093/ee/28.6.1145.
- Charalabidis A, Dechaume-Moncharmont F-X, Carbonne B, Bohan DA, Petit S. 2019. Diversity
 of foraging strategies and responses to predator interference in seed-eating carabid
 beetles. Basic and Applied Ecology 36:13–24. DOI: 10.1016/j.baae.2019.02.003.
- Daryanto S, Fu B, Wang L, Jacinthe P-A, Zhao W. 2018. Quantitative synthesis on the
 ecosystem services of cover crops. Earth-Science Reviews 185:357–373. DOI:
 10.1016/j.earscirev.2018.06.013.
- De Heij SE, Willenborg CJ. 2020. Connected carabids: network interactions and their impact on biocontrol by carabid beetles. BioScience 70:490–500. DOI: 10.1093/biosci/biaa039.
- 513 DiTommaso A, Ryan MR, Mohler CL, Brainard DC, Shuler RE, Allee LL, Losey JE. 2014.
- Effect of Cry3Bb Bt corn and tefluthrin on postdispersal weed seed predation. Weed Science 62:619–624. DOI: 10.1614/WS-D-14-00065.1.

- Douglas MR, Rohr JR, Tooker JF. 2015. Neonicotinoid insecticide travels through a soil food chain, disrupting biological control of non-target pests and decreasing soya bean yield.
- Journal of Applied Ecology 52:250–260. DOI: 10.1111/1365-2664.12372.
- Douglas MR, Sponsler DB, Lonsdorf EV, Grozinger CM. 2020. County-level analysis reveals a
 rapidly shifting landscape of insecticide hazard to honey bees (Apis mellifera) on US
 farmland. Scientific Reports 10:797. DOI: 10.1038/s41598-019-57225-w.
- Douglas MR, Tooker JF. 2015. Large-scale deployment of seed treatments has driven rapid
 increase in use of neonicotinoid insecticides and preemptive pest management in U.S.
 field crops. Environmental Science & Technology 49:5088–5097. DOI:
 10.1021/es506141g.
- Douglas MR, Tooker JF. 2016. Meta-analysis reveals that seed-applied neonicotinoids and pyrethroids have similar negative effects on abundance of arthropod natural enemies.

 PeerJ 4:e2776. DOI: 10.7717/peerj.2776.
- Evans JA, Tranel PJ, Hager AG, Schutte B, Wu C, Chatham LA, Davis AS. 2016. Managing the
 evolution of herbicide resistance. Pest Management Science 72:74–80. DOI:
 10.1002/ps.4009.
- Fernando M, Shrestha A. 2023. The potential of cover crops for weed management: A sole tool or component of an integrated weed management system? Plants 12:752. DOI: 10.3390/plants12040752.
- Frame ST, Pearsons KA, Elkin KR, Saporito LS, Preisendanz HE, Karsten HD, Tooker JF. 2021.

 Assessing surface and subsurface transport of neonicotinoid insecticides from no-till crop fields. Journal of Environmental Quality 50:476–484. DOI: 10.1002/jeq2.20185.
- Gallandt ER. 2005. Experimental substrate affects rate of seed removal in assays of invertebrate
 seed predation. Weed Technology 19:481–485.
- Gomez JA, Campos M, Giraldez JV, Guzman G. 2014. BIOSUELO: Using heterogeneous cover
 crops in olive groves for erosion control and enhancement of biodiversity. In: Tellez, FA
 and Rodriguez, AM and Sancho, IM and Robinson, MV and RuizAltisent, M and
 Ballesteros, FR and Hernando, ECC ed. Vii Congreso Iberico De Agroingenieria Y
 Ciencias Horticolas: Innovar Y Producir Para El Futuro. Innovating And Producing For
 The Future. 2041–2045.
- Greenslade PJM. 1964. Pitfall trapping as a method for studying populations of Carabidae (Coleoptera). Journal of Animal Ecology 33:301–310. DOI: 10.2307/2632.
- Halaj J, Wise DH. 2002. Impact of a detrital subsidy on trophic cascades in a terrestrial grazing food web. Ecology 83:3141. DOI: 10.2307/3071849.
- Harker KN, O'Donovan JT. 2013. Recent weed control, weed management, and integrated weed management. Weed Technology 27:1–11. DOI: 10.1614/WT-D-12-00109.1.
- 552 Hartig F. 2022. Package "DHARMa."
- Hitaj C, Smith DJ, Code A, Wechsler S, Esker PD, Douglas MR. 2020. Sowing uncertainty:
- what we do and don't know about the planting of pesticide-treated seed. BioScience 70:390–403. DOI: 10.1093/biosci/biaa019.

- Hladik ML, Kolpin DW. 2015. First national-scale reconnaissance of neonicotinoid insecticides in streams across the USA. Environmental Chemistry 13:12–20. DOI: 10.1071/EN15061.
- Hladik ML, Kolpin DW, Kuivila KM. 2014. Widespread occurrence of neonicotinoid
 insecticides in streams in a high corn and soybean producing region, USA.
 Environmental Pollution 193:189–196. DOI: 10.1016/j.envpol.2014.06.033.
- Hurley T, Mitchell P. 2017. Value of neonicotinoid seed treatments to US soybean farmers. Pest
 Management Science 73:102–112. DOI: 10.1002/ps.4424.
- Kulkarni SS, Dosdall LM, Spence JR, Willenborg CJ. 2017. Field density and distribution of
 weeds are associated with spatial dynamics of omnivorous ground beetles (Coleoptera:
 Carabidae). Agriculture, Ecosystems & Environment 236:134–141. DOI:
 10.1016/j.agee.2016.11.018.
- Labrie G, Gagnon A-È, Vanasse A, Latraverse A, Tremblay G. 2020. Impacts of neonicotinoid seed treatments on soil-dwelling pest populations and agronomic parameters in corn and soybean in Quebec (Canada). PLOS ONE 15:e0229136. DOI: 10.1371/journal.pone.0229136.
- Larochelle A. 1990. The food of Carabid beetles (Coleoptera: Carabidae, Including
 Cicindelinae). Association des Entomologistes du Québec.
- 573 Lenth R. 2019. emmeans: Estimated Marginal Means, aka Least-Squares Means.
- Lundgren JG (ed.). 2009. The seed feeders. In: Relationships of Natural Enemies and Non-Prey
 Foods. Progress in Biological Control. Dordrecht: Springer Netherlands, 143–165. DOI:
 10.1007/978-1-4020-9235-0 9.
- Miles JC, Hua J, Sepulveda MS, Krupke CH, Hoverman JT. 2017. Effects of clothianidin on
 aquatic communities: Evaluating the impacts of lethal and sublethal exposure to
 neonicotinoids. PLOS ONE 12:e0174171. DOI: 10.1371/journal.pone.0174171.
- Mohler CL, Dykeman C, Nelson EB, Ditommaso A. 2012. Reduction in weed seedling
 emergence by pathogens following the incorporation of green crop residue. Weed
 Research 52:467–477. DOI: 10.1111/j.1365-3180.2012.00940.x.
- Mortensen DA, Egan JF, Maxwell BD, Ryan MR, Smith RG. 2012. Navigating a critical
 juncture for sustainable weed management. BioScience 62:75–84. DOI:
 10.1525/bio.2012.62.1.12.
- Mugala T, Brichler K, Clark B, Powell G, Taylor S, Crossley M. 2023. Ground beetles suppress
 slugs in corn and soybean under conservation agriculture. Environmental entomology 52.
 DOI: 10.1093/ee/nvad047.
- Mullin CA, Saunders MC II, Leslie TW, Biddinger DJ, Fleischer SJ. 2005. Toxic and behavioral
 effects to Carabidae of seed treatments used on Cry3Bb1- and Cry1Ab/c-protected corn.
 Environmental Entomology 34:1626–1636. DOI: 10.1603/0046-225X-34.6.1626.
- National Agricultural Statistics Service. 2020. Land use practices from the 2017 Census of Agriculture. United States Department of Agriculture.

- Niemelä J, Spence JR, Spence DH. 1992. Habitat associations and seasonal activity of groundbeetles (Coleoptera, Carabidae) in central Alberta. The Canadian Entomologist 124:521–
- 596 540. DOI: 10.4039/Ent124521-3.
- North JH, Gore J, Catchot AL, Stewart SD, Lorenz GM, Musser FR, Cook DR, Kerns DL,
 Dodds DM. 2016. Value of neonicotinoid insecticide seed treatments in mid-south
 soybean (*Glycine max*) production systems. Journal of Economic Entomology 109:1156–
 1160. DOI: 10.1093/jee/tow035.
- North JH, Gore J, Catchot AL, Stewart SD, Lorenz GM, Musser FR, Cook DR, Kerns DL, Leonard BR, Dodds DM. 2018. Value of neonicotinoid insecticide seed treatments in mid-south corn (*Zea mays*) production systems. Journal of Economic Entomology 111:187–192. DOI: 10.1093/jee/tox278.
- O'Neal M, Zontek E, Szendrei Z, Landis D, Isaacs R. 2005. Ground predator abundance affects prey removal in highbush blueberry (*Vaccinium corymbosum*) fields and can be altered by aisle ground covers. Biocontrol 50:205–222. DOI: 10.1007/s10526-004-0676-9.
- Palmer SA. 2020. Pesticide treated crop seeds and tillage alter seed coat fungal communities on

 Amaranthus retroflexus in a maize-soybean cropping system. Durham, NH: University of

 New Hampshire.
- Penn HJ, Dale AM. 2017. Imidacloprid seed treatments affect individual ant behavior and community structure but not egg predation, pest abundance or soybean yield. Pest Management Science 73:1625–1632. DOI: 10.1002/ps.4499.
- R Core Team. 2018. R: A language and environment for statistical computing.
- Rowen EK, Pearsons KA, Smith RG, Wickings K, Tooker JF. 2022. Early-season plant cover supports more effective pest control than insecticide applications. Ecological Applications 32:e2598. DOI: 10.1002/eap.2598.
- Saenz-Romo MG, Veas-Bernal A, Martinez-Garcia H, Campos-Herrera R, Ibanez-Pascual S,
 Martinez-Villar E, Perez-Moreno I, Santiago Marco-Mancebon V. 2019. Ground cover
 management in a Mediterranean vineyard: Impact on insect abundance and diversity.
 Agriculture Ecosystems & Environment 283: 106571. DOI: 10.1016/j.agee.2019.106571.
- Sarabi V. 2019. Factors that influence the level of weed seed predation: A review. Weed Biology and Management 19:61–74. DOI: 10.1111/wbm.12186.
- Schipanski M, Smith R, Gareau T, Jabbour R, Lewis D, Barbercheck M, Mortensen D, Kaye J.
 2014. Multivariate relationships influencing crop yields during the transition to organic
 management. Agriculture Ecosystems & Environment 189:119–126. DOI:
 10.1016/j.agee.2014.03.037.
- Schläppi D, Kettler N, Straub L, Glauser G, Neumann P. 2020. Long-term effects of
 neonicotinoid insecticides on ants. Communications Biology 3:1–9. DOI:
 10.1038/s42003-020-1066-2.
- Smith RG, Atwood LW, Morris MB, Mortensen DA, Koide RT. 2016. Evidence for indirect effects of pesticide seed treatments on weed seed banks in maize and soybean.

633	Agriculture, Ecosystems & Environment 216:269–273. DOI:
634	10.1016/j.agee.2015.10.008.
635	Smith JL, Baute TS, Schaafsma AW. 2020. Quantifying early-season pest injury and yield
636	protection of insecticide seed treatments in corn and soybean production in Ontario,
637	Canada. Journal of Economic Entomology. 113:2197–2212. DOI: 10.1093/jee/toaa132.
638	Sosnoskie LM, Culpepper AS. 2014. Glyphosate-resistant palmer amaranth (amaranthus palmeri
639) increases herbicide use, tillage, and hand-weeding in Georgia cotton. Weed Science
640	62:393–402. DOI: 10.1614/WS-D-13-00077.1.
641	Stenberg JA. 2017. A conceptual framework for Integrated Pest Management. Trends in Plant
642	Science 22:759–769. DOI: 10.1016/j.tplants.2017.06.010.
643	Stern VM, Smith RF, van den Bosch R, Hagen KS. 1959. The integration of chemical and
644	biological control of the spotted alfalfa aphid: The integrated control concept. Hilgardia
645	29:81–101.
646	Teasdale JR. 1996. Contribution of cover crops to weed management in sustainable agricultural
647	systems. Journal of Production Agriculture 9:475–479. DOI: 10.2134/jpa1996.0475.
648	Wallander S, Smith D, Bowman M, Claassen R. 2021. Cover crop trends, programs, and
649	practices in the united states. US Department of Agriculture Economic Research Service.
650	Wallin H, Ekbom BS. 1988. Movements of carabid beetles (Coleoptera: Carabidae) inhabiting
651	cereal fields: a field tracing study. Oecologia 77:39–43. DOI: 10.1007/BF00380922.
652	Ward MJ, Ryan MR, Curran WS, Barbercheck ME, Mortensen DA. 2011. Cover crops and
653	disturbance influence activity-density of weed seed predators Amara aenea and Harpalus
654	pensylvanicus (Coleoptera: Carabidae). Weed Science 59:76-81. DOI: 10.1614/WS-D-
655	10-00065.1.
656	Westerman PR, Wes JS, Kropff MJ, Van Der Werf W. 2003. Annual losses of weed seeds due to
657	predation in organic cereal fields. Journal of Applied Ecology 40:824–836. DOI:
658	10.1046/j.1365-2664.2003.00850.x.

Table 1(on next page)

Sampling dates for plant biomass sampling

Table includes the year of sampling, the field, the date plant-biomass was collected, when weed seed bank soil was collected and when mid-season weed biomass was collected.

1 Table 1: Sampling dates for plant biomass sampling

Year	Field	Pre-plant biomass	Weed-seed bank	Mid-season weed
		(CC + weeds)	soil collection	biomass
2017	North	17-May-2017	15-May-2017	24-Aug-2017
	South	12-May-2017	8-May-2017	15-Aug-2017
	North	8-May-2018	9-May-2018	15-Aug-2018
2018	South	14-May-2018	16-May-2018	29-Aug-2018 to 5-
				Sept-2018
	North	15-May-2019	15-May-2019	21-Aug-2019 to 22-
2019				Aug-2019
	South	7-May-2019	6-May-2019	13-Aug-2019 to 15-
				Aug-2019

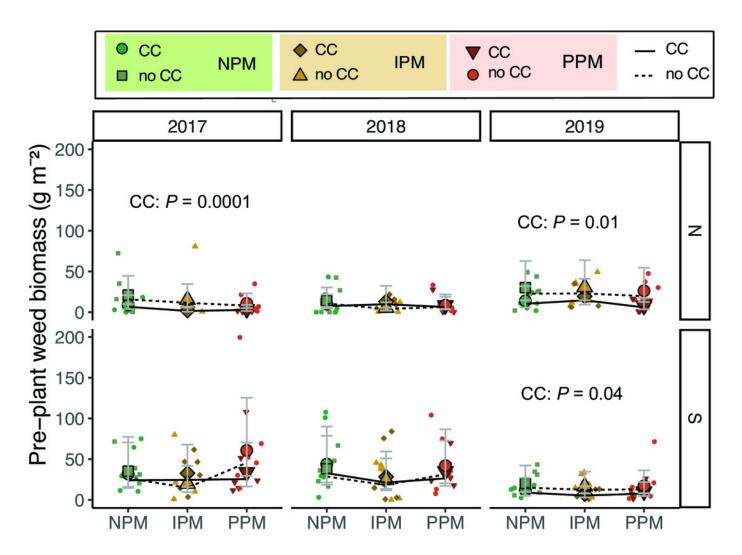
2

3

Table 2(on next page)

Sampling dates for pitfall traps and sentinel seed cards 2017-2019

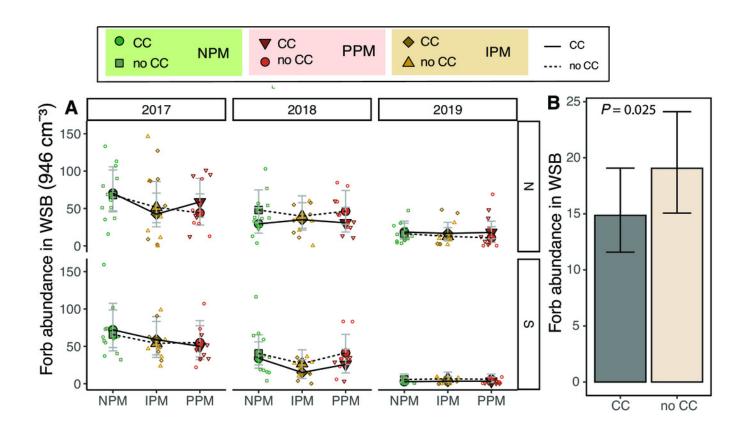
Table includes the year and field, the planting date of the crop (either corn or soy), and when the pitfall traps and sentinel seeds were deployed.



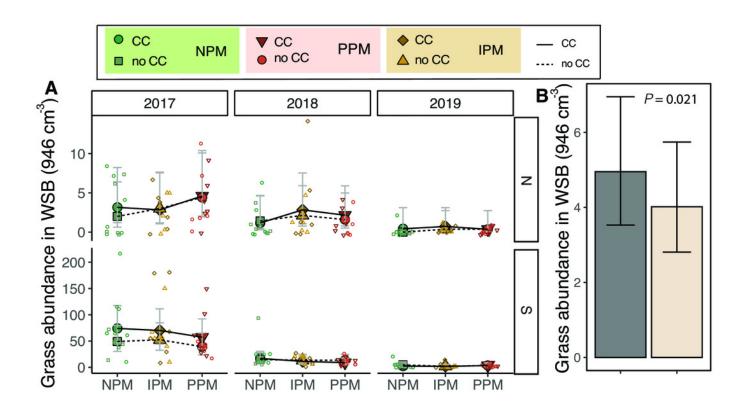
1 Table 2: Sampling dates for pitfall traps and sentinel seed cards 2017-2019

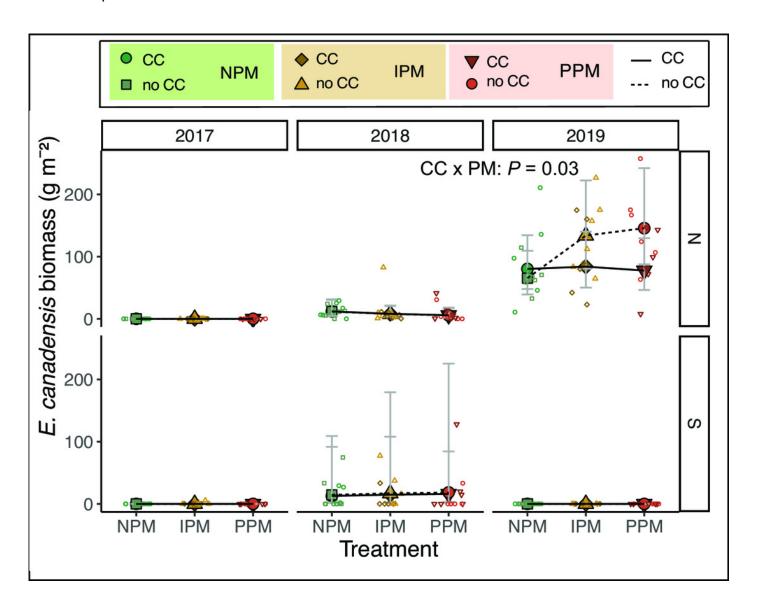
Year	Field	Planting Date	Pitfall Trap	Sentinel Seed
			deployed 72h	deployed 48h
2017	North	2-June-2017	23-Jun-2017	27-Jun-2017
				8-Aug-2017
			19-Sept-2017	10-Sept-2017
	South	19-May-2017	9-Jun-2017	12-Jun-2017
				24-Jul-2017
			1-Sept-2017	7-Sept-2017
2018	North	30-May-2018	15-Jun-2018	18-Jun-2018
				17-Jul-2018
			10-Aug-2018	13-Aug-2018
	South	14-June	6-Jul-2018	9-Jul-2018
		(Blocks 3-6)		6-Aug-2018
		26-June	31-Aug-2018	3-Sept-2018
		(Blocks 1-2)		
2019	North	22-May-2019	31-May-2019	3-Jun-2019
				23-Jul-2019
			23-Aug-2019	26-Aug-2019
	South	17-May-2019	7-Jun-2019	10-Jun-2019
				15-Jul-2019
			16-Aug-2019	19-Aug-2019

Weed biomass before planting


Estimated marginal means (95% confidence intervals [CIs]) of weed biomass (g m⁻²) before planting in each field and year. Significance of cover crop (CC) treatments included in panels where GLMM indicated cover crops had a significant effect by year/field slicing. Means for treatments with cover crops indicated with a solid line, means without cover crop indicated by a dashed line. Raw data are shown as open small shapes behind means and CIs. North fields (N) on top panels, South fields (S) on bottom panels for each year.

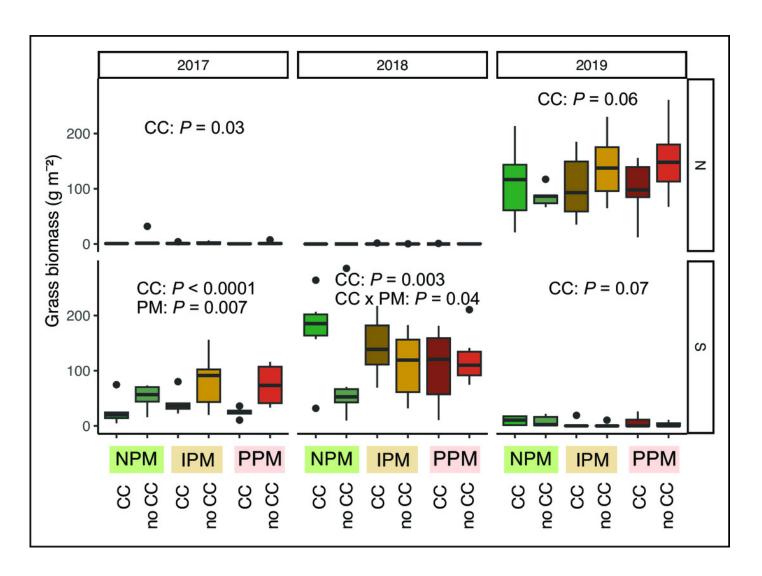
For abundance in the weed seed bank


A) Estimated marginal means (95% confidence intervals [CIs]) of forb abundance (per 946 cm³ soil) in the weed-seed bank before planting in each field and year, and B) for 2018 and 2019 and fields combined. Means for treatments with cover crops indicated with a solid line, means without cover crop indicated by a dashed line. Raw data shown as open small shapes behind means and CIs.


Grass abundance in the weed seed bank

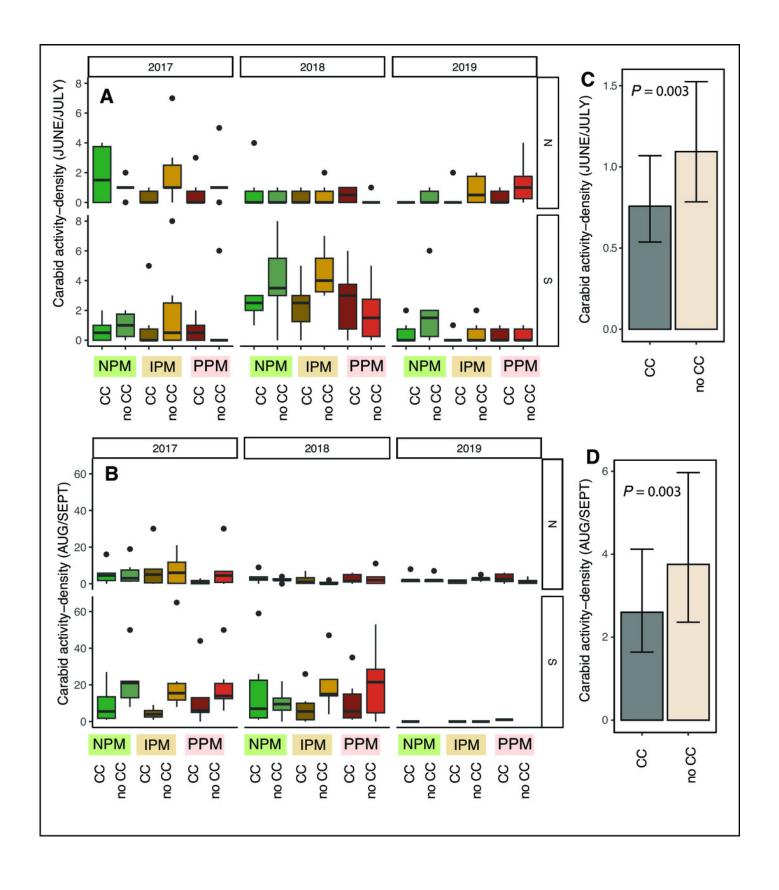
Estimated marginal means (95% confidence intervals [CIs]) of grass abundance (per 946 cm³ soil) in the weed-seed bank before planting A) for in each field and year, and B) for all years and fields combined. In A) means for treatments with cover crops indicated with a solid line, means without cover crop indicated by a dashed line. Raw data shown as open small shapes behind means and CIs.

Erigeron canadensis biomass in august

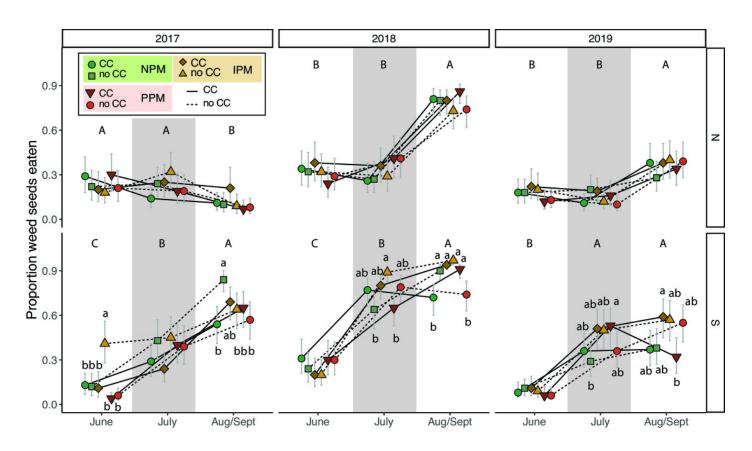

Estimated marginal means (95% confidence intervals [CIs]) of *E. canadensis* biomass (g m⁻²) in August for in each field and year. Means for treatments with cover crops indicated with a solid line, means without cover crop indicated by a dashed line. Raw data shown as open small shapes behind means and CIs.

Grass biomass in August

Boxplots of grass biomass (g) in August for in each field and year. Analyses for each field year were calculated separately. Significance of treatments included in panels where GLM indicated cover crops (CC) or pest management (PM) had a significant effect on grass biomass.



Carabid activity-density from pitfall traps


Granivorous carabid activity-density in A) June/July and C) Aug/Sept for each field and year and estimated marginal means across all years and fields in B) June/July and D) Aug/Sept. Significance of cover crop treatments (CC) included in panels B and where GLM indicated cover crops had a significant effect overall (combined across all dates)

Weed seed predation probability

Estimated marginal mean probability (95% confidence intervals [CIs]) of weed seeds eaten at each sampling event. Means for treatments with cover crops indicated with a solid line, means without cover crop indicated by a dashed line. Groups of means that share capitalized letters are significantly different among sampling points within a given site-year, where GLM indicated seasonality had a significant effect by year/field slicing. Plot means that share lower case letters are significantly different where GLM indicated CC x PM had a significant effect by season/year/field slicing.

