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ABSTRACT

Processing large collections of earth observation (EO) time-series, often petabyte-
sized, such as NASA’s Landsat and ESA’s Sentinel missions, can be computationally
prohibitive and costly. Despite their name, even the Analysis Ready Data (ARD)
versions of such collections can rarely be used as direct input for modeling because of
cloud presence and/or prohibitive storage size. Existing solutions for readily using
these data are not openly available, are poor in performance, or lack flexibility.
Addressing this issue, we developed TSIRF (Time-Series Iteration-free
Reconstruction Framework), a computational framework that can be used to apply
diverse time-series processing tasks, such as temporal aggregation and time-series
reconstruction by simply adjusting the convolution kernel. As the first large-scale
application, TSIRF was employed to process the entire Global Land Analysis and
Discovery (GLAD) ARD Landsat archive, producing a cloud-free bi-monthly
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aggregated product. This process, covering seven Landsat bands globally from 1997
to 2022, with more than two trillion pixels and for each one a time-series of 156
samples in the aggregated product, required approximately 28 hours of computation
using 1248 Intel® Xeon® Gold 6248R CPUs. The quality of the result was assessed
using a benchmark dataset derived from the aggregated product and comparing
different imputation strategies. The resulting reconstructed images can be used as
input for machine learning models or to map biophysical indices. To further limit the
storage size the produced data was saved as 8-bit Cloud-Optimized GeoTIFFs
(COG). With the hosting of about 20 TB per band/index for an entire 30 m resolution
bi-monthly historical time-series distributed as open data, the product enables
seamless, fast, and affordable access to the Landsat archive for environmental
monitoring and analysis applications.
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INTRODUCTION

Raw earth observation (EO) data can rarely be used as a direct input to machine learning
(ML) models or zonal statistics, as they often contain a significant amount of clouds,
atmospheric features and artifacts. Several EO datasets, such as Landsat (Woodcock et al.,
2008), Moderate Resolution Imaging Spectroradiometer (MODIS) (Justice et al., 2002) and
Sentinel (Spoto et al., 2012) collections, can also be found as Analysis Ready Data (ARD)
products (Frantz, 2019; Potapov et al., 2020), where several preprocessing steps are applied
to provide more complete and consistent data, and more straightforward access to users.
However, most of the currently available ARD products are affected by sensor artifacts,
atmospheric contaminants (e.g., clouds), and data gaps that jeopardize the use of the data
set in practical applications, as discussed in recent publications on analysis-readiness of EO
data (Baumann, 2024). Furthermore, when a long time-series of moderate and high
resolution EO data is collected, the size of the dataset can exceed the petabyte (PB), making
data storage, access, and elaboration prohibitive for most potential users (Balsamo et al.,
2018). Solutions to these problems include data imputation (often named “gap-filling”),
smoothing, outlier removal, space and/or time aggregation, decomposition, data-fusion
and image compression. Several methods used for these processing tasks involve the
discrete convolution between the input time-series and a convolution kernel that varies
depending on the application. In general, for such methods, the discrete convolution
also represents the largest computational effort for their application. This observation
inspired us to develop a framework that we named Time-Series Iteration-free
Reconstruction Framework (TSIRF) which embodies several processing tools for
time-series. Within TSIRF, different methods can be applied by properly setting the
convolution kernels. This allows to focus the development endeavor in optimizing a
small number of operations and apply different methods by only modifying the
convolution kernel.

Temporal aggregation of satellite time-series can allow reducing storage size while
maintaining most useful information for common land cover classification
applications (Carrasco et al., 2019). In addition, it also serves as partial data imputation for
missing values in the time-series (Carrasco et al., 2022). However, since temporal
aggregation is usually applied on large raw datasets, it is fundamental that its
implementation is highly optimized. Therefore, TSIRF is a good framework for
implementing such tools.

Cloud and artifact detection algorithms allows to mask and remove contaminated
regions of images that could lead to biased results. However, the presence of such
contaminants create data gaps in affected regions. Since several modeling techniques and
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statistical analysis require the input data to be complete, i.e., no missing values or data
gaps, the application of imputation techniques is required (Hermosilla et al., 2015; Radeloff
et al., 2024). In the context of time-series, those techniques are often defined time-series
reconstruction methods, or more broadly gap-filling methods (we try to avoid the usage of
this term since it can be misleading). TSIRF can be used to apply some iteration-free time-
series reconstruction strategies, enabling its usage on large amount of pixels and/or long
time-series.

Finally, because time-series often suffer from the presence of noise and outliers,
smoothing techniques are often used to improve the quality of data (Atkinson et al., 2012;
Chen et al., 2004). Some of these techniques are combined in sequence with simple data
imputation strategies to improve their reconstruction performance. Notably,
Savitzky-Golay (Schafer, 2011) and Lanczos (Duchon, 1979) filters, are also based on
convolution between the original time-series and the specific convolution kernel. By
properly setting the TSIRF convolution kernel it is possible to combine the time series
reconstruction with the smoothing in one single operation, further reducing the
computational costs.

Despite the abundance of methods for time series processing available in the literature,
few of them are suitable for application on global-scale historical earth observation data,
due to the prohibitive computational cost (Siabi, Sanaeinejad ¢» Ghahraman, 2020). In
addition, most of their implementations are not provided as open-source code, and/or, in
the case of methods that require it, the external data are not openly available. This is the
research gap that we wanted to fill by presenting TSIRF. Furthermore, as a first large-scale
application of TSIRF, this work also presents a bimonthly aggregated, cloud-free,
analysis-ready, and cloud-optimized (ARCO) Landsat collection based on the Global Land
Analysis and Discovery (GLAD) Landsat ARD (version 2). Notably, Moreno-Martinez
et al. (2020) proposes a data-fusion approach that uses Landsat and MODIS images to
generate a product with similar target applications and characteristics. However, our
works differ in the source of data, since it is based on the GLAD Landsat ARD product
instead of the original United States Geological Survey (USGS) images, and in the
methodology used for the data processing. Additionally, we developed our open-source
code using Python combined with C++ and produced the data using our own computing
infrastructure instead of the Google Earth Engine (GEE) platform. Evidently, this brings
advantages and disadvantages in terms of accessibility of the data that are discussed in the
following. Other works used Synthetic Aperture Radar (SAR) images to reconstruct surface
reflectance one, taking advantage of the penetrability of clouds and atmospheric
contaminants of SAR satellites. For instance, Hamelberg (2020) and Pipia et al. (2019) used
Sentinel-1 data to reconstruct Sentinel-2 data. However, the earliest available SAR images
with spatial and temporal resolution comparable with Landsat are indeed the ones
produced by Sentinel-1. Since the mission was launched only in 2014, at the best of our
knowledge, there are no valid alternatives that can be used to apply this strategy on
previous years.

Consoli et al. (2024), PeerJ, DOI 10.7717/peerj.18585 3/42


http://dx.doi.org/10.7717/peerj.18585
https://peerj.com/

Peer/

We first introduce the theoretical background and implementation details of TSIRF. In
addition, we include some guidelines for its usage in different time-series processing tasks.
We then report the results obtained for the performance comparison of discrete
convolution computational backends and of some selected time-series reconstruction
methods, together with the analysis of the produced Landsat-bimonthly aggregated
dataset. Finally, we provide a deeper analysis of the results obtained and discuss future
development directions and implications of our findings. In this article, we specifically try
to answer the following research questions:

RQ1 Is it possible to encompass several EO time-series processing method in a single
framework?

RQ2 Is it possible to optimize the performance time-series processing tools in order to
apply them to PetaByte size datasets with reduced computational resources?

RQ3 Which is the best-performing highly-scalable time-series reconstruction method for
global-scale historical EO data?

RQ4 Which strategy can be used to produce a time-series of global-scale historical Landsat
data compact in storage size and free of data gaps?

The data reported in this work are available under an open data license from:

* https://stac.openlandmap.org/landsat_glad.swa.ard2_bimonthly/collection.json;
o https://stac.openlandmap.org/landsat_glad.swa.ard2_yearly.p50/collection.json;
o https://github.com/openlandmap/scikit-map/blob/feat_tsirf/ CATALOG.md;

o https://zenodo.org/records/11150343.

The code used to produce analysis and visualizations is available at https://github.com/
openlandmap/scikit-map/tree/feat_tsirf. Portions of this text were previously published as
part of a preprint (Consoli et al., 2024).

MATERIALS AND METHODS

A computational framework for time-series processing

The implementation of several tools used to preprocess Earth Observation (EO)
time-series involves the usage of a discrete convolution. Generally speaking,

convolution is the mathematical operation that takes two functions, slides them one over
the other, multiply them point by point, and integrates their product. In fact, the
methods that involve a sliding window in time (or also in space) are often based on
convolution, and many of them are used for EO data processing. Combining the
convolution operation with the Hadamard (element-wise) product and division, TSIRF
can also be used to perform time-series reconstruction and temporal data aggregation. In
addition, the implementation of the framework is provided using three different
computational back-ends. The selection of the most convenient back-end depends on the
application and used computational infrastructure. Implementation details are provided
after the definitions and notation.
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Table 1 Summary of defined symbols.

Symbol Description

T, Sampling period

N; Number of samples of the time series

N, Number of elements of the convolution kernel in the relative past
Ny Number of elements of the convolution kernel in the relative future
N, Total number of elements of the convolution kernel

N, Number of the periodic extension of the time-series

w Vector containing the convolution kernel samples

w, Sub-vector of w with elements from the relative past

wy Sub-vector of w with elements from the relative future

N, Number of time-series to which a the method is applied

N, Aggregation factor for temporal aggregation

€ Floating point machine precision

Theoretical background and notation

Consider two real-valued functions v(¢) and w(t), where v(t) represents the variable of
interest in function of time (e.g., blue band value for a certain pixel in EO time-series), and
w(t) is the convolution kernel, input that is defined depending on the target processing
task. The uni-dimensional convolution between the two variables is defined as

(v w)(t) = /_OC v(t)w(t — 1)dx,

oo

where the integrated variable 7 is used to slide one of the function on the other one
(Oppenheim ¢ Schafer, 1975). The time-discrete version of convolution can be defined for
uniformly sampled versions of the two variables as

o0

(v+w)[n] = Z vim|w[n — m],

m=—0oQ

where 7 is the index of a time sample, with sampling period T and frequency f = Tis As
detailed in the following, in order to optimize computational performance in case of
long time-series, it is convenient to perform the discrete convolution using Fast

Fourier Transform (FFT). In order to do that, we extend here the notation to the also
define the circular convolution. Noting that the observed variable v[n] is only

available for a limited number of samples N, relative to the observation time-frame

(To, To + N;T;), and supposing to have a convolution kernel with limited support in the
sample range (—N,, Ny), where N,, is the number of non zero samples in the “relative past”
and Ny is the number of non zero samples in the “relative future”, it is possible to define a
periodic extensions of the two time-discrete variables, v.[n] and w,[n], with periodicity
N, T, where

N, = N; + max(N,, Ny).
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Figure 1 Graphical representation of circular convolution. In this example, the number of samples in
the input time-series stored in v is N; = 10, while the convolution kernel stored w has N, =Nf=2
weights for in the relative past and relative future (for N,, = 5 in total including the relative present).
After padding, this lead to N, = 12 as size of the extended version of the vectors. Each element of the
output vector v, ¥) w, is computed as the summation between the products of the sliding kernel vector
and the input time-series. Full-size £&] DOT: 10.7717/peerj.18585/fig-1

In order to facilitate the reading of the equations, the symbology is summarized in
Table 1. Following this notation, we define their circular convolution (Bamieh, 2018) as

Ne-1
(Ve ®we)[n] = Z Ve[m|we[n — mj. (1)
m=0

Note that from previously defined range of the support of w[n], (—N,, Ny), the total
number of element in w{n] support is N,, = N, + Ny + 1. Assuming that N, < N; > Ny,
periodic extension of v.[n] and w,[n] can be performed with zero-padding for newly
introduced elements such that (v« w)[n] = (v, ® w,)[n]. A visual interpretation of the
circulant convolution operation, inspired by the one in Guo et al. (2023), is shown in Fig. 1.

In order to describe the different computational backends for the convolution, we
introduce the vectorial notation of the previously defined quantities. The values of the
time-discrete variables v[n] and w[n] are respectively stored in the row vectors.

T owe 1T wl0] 17"
w wil
Yo T v[0] T 1 [ ]
151 v[1] :
v = . _ : and w— | W1 _ w[Nf — 1]
‘ : WN,—N, w[—(Np — 1)]
VN2 V[N; — 2] ) :
VN;*I V[NS — 1]
WN, —2 w[—2]
| WN,—1 L w1
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Note that the indexing notation concatenates the values of the relative past in the
convolution kernel after those of the relative future, from the least recent, w[— (N, — 1)], to
the most recent, w[—1] (Fig. 1). Similarly, the vectors storing their periodic extensions are

defined as
— -— T _ _
We0 wl0] T
We;1 w(1]
- T — -
Veo o] 17
Vel v[1 ) .
- We;N;—1 W[Nf —1]
. We;Nf 0
B Ve:N,—1 _ V[N —1] o . o .
Ve = v = y We= : = :
&;N,—max(N,,Ny) 0
. : We:N;—N,—1 0
i WeN,—N, w[—(Np — 1)]
Ve;N(fZ 0 :
O .
Ve.N,—
L e;N,—1 . L . Wen» W[—Z]
We;N,—1 | L W[_l] J

As highlighted in the notation, the (zero) padding elements are inserted at the end of the
input time-series and in the center of the convolution kernel, in order to correctly align the
two vectors.

Following this indexing convention, the convolution between v[n| and w[n] can be
computed as

No—1

(Ve @ We)[n] = Z VmWe;(N,+m—n)%N,- (2)

m=0

We now define the vector with elements containing the result of the convolution and of
the circulant convolution respectively as

(vxw), 7' (v w)[0] ’ (Ve ®we)y 1" (ve ® we)[0] !
(v w), (v w)[1] (ve ® we), (ve @ we)[1]
ViwW = = ;o Ve ® W, = =
(vxw)y 5 (v * w)[Ns — 2] (ve ® We)y, 5 (ve ® we)[Ne — 2]
(V * W)Nr1 (v w)[N; — 1] (Ve ® We)N£71 (Ve ® we)[N, — 1]

From these definitions, we have that the elements of vector v * w coincide with the first
N; elements of v, () w,. Finally, we introduce the circulant matrix with columns derived
by rolling the vector w, as

Wo,0 wo1 ... WoN,-2 WO,N,—1 Weo  WeN,—1 --- We2  Werl
w10 w11 ... WiN,—2 WI.N,—1 We;1 Weo  -or Wes  Wen
W,= =
WN,—2,0 WN,—2,1 --- WN,—2,N,—2 WN,—-2N,—1 We:N,—2 We;N,—3 -+ We:0 WeN,—1
WN,-1,0 WN,-1,1 --- WN,—1,N,—2 WN,—1,N,—1 WeN,—1 WeN,—2 --- Wel  Wepo
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The same indexing notation is used for all the other matrices. Clearly, the circulant
matrix W, can be used to compute the elements of v, ) w, performing the vector-matrix
product

Ve (® w, = v, W,.

From the top left quarter of the matrix W,, we also define the sub-matrix

We;O We;Ne—l o We;NS+1 We:N,
Wel  Weo oo WeNt2 WeNotl
W=
We:N—2  WeNg—3 - - - We,0 We;N,—1
We:N,—1 WeN,—2 - - We:1 We:0

where elements of the convolution kernel associated with the relative past, below the main
diagonal, are under-lined, while the ones associated with the relative future, above the
main diagonal, are upper-lined to emphasize the interpretability of the defined operation.
In the case of zero-padding, this results in

vE w=vW. (3)

Note that matrices W, and W, respectively, are of circulant and Toeplitz type. It is well
known that matrix-vector products involving circulant or Toeplitz matrices can be
efficiently computed using FFT (Strang, 1986). For several applications, this represents a
convenient solution in terms of computational cost and time, as shown in the results
section.

Targeting large-scale applications, we consider the case in which the same processing
method is applied to multiple time-series. We so define the matrix V, which contains on
each row one of the N, input time-series. Clearly, the matrix resulting from the
matrix-matrix product VW will contain on each row the convolution between the
corresponding time-series and the convolution kernel w|[n]. However, the same result can
be obtained by explicit iterative summation, as in Eq. (1), or as detailed in the following
sections, using FFT. Finally, in order to deal with missing values in the original time-series,
we define the matrix

My o mMy,1 e Moy, N,—2 Moy N,—1
my o my 1 . M1 N,—2 My N,—1
M =
MN,—20 WN,—21 ... MN—2N-—2 HMN,—-2N,—1
mMN,—-10 ™MN,-11 ... MN-1N-—-2 MN,—1,N—1,

containing the validity-mask of the matrix V, with elements value defined as

e — 1 if v;; is a valid sample;
Y1 0 otherwise.

The processing framework
We now introduce the definition of TSIRF. We assume that the elements of V that contain
missing values, so where the elements of M are equal to 1, are set to 0. With this setting, the
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matrix M can be used to normalize the result of the discrete convolution depending on the
availability of the sample. In particular, we apply SIRLCE as

V= (VW) (MW), (4)
where © denotes the Hadamard (element-wise) division. This matrix equation with the
above definitions allows for instance to efficiently compute weighted averages with sliding
window weights between available samples, and is the base of the time-series
reconstruction method presented in the following. Equivalently, the computation of each
element of V reads like

No—1
~ Dkio VikWkj
Vij = N1 :
Dok MikWkj

Finally, we want to highlight that it is also possible to includes arbitrary element-wise
scaling of available samples in the original time-series by performing the Hadamard

(element-wise) product between the desired scaling matrix and both V and M before
applying Eq. (4).

Efficient computation of circular convolutions

Different strategies can be used to compute the discrete convolution between w(t] and
the time-series stored in V (and in M). The current implementation included in the
Python library scikit-map includes three different backed implementations for its
computation. The first method, in the following text referred to as Summation,

consists of simply computing the elements of the final result by summation as in Eq. (2).
However, only the non-zero elements of the convolution kernel contribute to the

result of the operation, so only N,, iterations of the summation are necessary. Indeed,

as proved by the benchmarks, this is particularly effective when the convolution kernel
has few non-zero elements compared to the length of the time-series (e.g., Savitzky-Golay
filters).

The second method explicitly computes the matrix-matrix products present in Eq. (4).
For this reason, this backend is referred to as Matrix in the following. This strategy is
generally convenient when the same processing strategy is applied to several time-series, so
when N, is high (e.g., time-series reconstruction of high spatial resolution EO data). This
comes from the higher efficiency of the CPU caching and, possibly, by the lower
asymptotic complexity of the linear algebra library implementation of the matrix-matrix
product.

Finally, as mentioned before, it is possible to compute the convolution using the
properties of the Fourier series. It is well known that the eigenvectors of any circulant
matrix coincide with the columns of the discrete Fourier transform (DFT) matrix F
(Flannery et al., 1992; Gray, 2006), sampled version of the harmonic functions (sinusoidal
waves). In fact, the matrix W, can be diagonalized multiplying it by F, leading to the
decomposition

W, =FAy F ', (5)
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where Ay, is the diagonal matrix containing the eigenvalues of W,, in spectral
order. In addition, the eigenvalues of W, can be computed using only one of its columns

AWE = weF; (6)

where 4y, coincide with the main diagonal of Ay, . Substituting Eq. (5), and then Eq. (6),
in Eq. (3), we have

ve ® w, = v.FAw.F ' = ((v.F) ® (w.F))F ',

where © is the Hadamard (element-wise) product. Indeed, in the Fourier domain the
convolution operation is translated in the multiplication, and vice-versa. Using the fast
implementation of the 1D DFT (the 1D FFT), the matrix-vector multiplication between F
and a vector can be obtained applying the forward FFT transform, while one involving its
inverse, using the backward or inverse fast Fourier transform (IFFT). Using this approach,
the computational complexity of the entire operation scales asymptotically as
O(N.log,N.), reducing it from quadratic to quasi-linear. This makes the FFT backend a
valuable solution in the case of very long time-series (or high temporal resolution). A
deeper analysis of the computational complexity of the backends is provided in the
discussion section.

Implementation details

Some care must be taken when implementing equations Eq. (4). In particular, when
elements in the resultant of the convolution operation involving the validity mask M are
expected to be exact zeros, it means that no values in the original time-series were available
in the corresponding temporal range, and should remain data gaps. However, numerical
noise, due to round-off error and numerical cancellation, could slightly modify the result
of the convolution, up to the numerical precision of the machine (e.g., 107'° for floats in
double precision) (Goldberg, 1991). If a numerical error makes such elements different
from exact zeros, the remaining gaps will not be detected, and numerical noise will be used
as actual data.

To overcome this issue, the first step is to define a convolution kernel where the
smallest non-zero element is at least one or two orders of magnitudes larger than the
numerical precision (to keep some margin). Then, once the convolution between the
validity mask and the convolution kernel is performed, the resulting values that are inferior
to the smallest nonzero element in the convolution kernel can be clipped to zero, since
any non-zero element should be larger or equal to that because the mask is composed by
either one or zeros. This is the default behavior implemented in the scikit-map
library. Note that, however, in the case where also the element-wise scaling is applied, the
masking threshold should not be set to the minimum value of the convolution kernel, but
to the product between it and the maximum value of the matrix S. This imply that the
additional margin should be kept when setting the smallest non-zero value in the
convolution kernel.

Finally, for a more convenient usage, the library interface was implemented
defining three input parameter: wy, w, and wy. The first parameter is a scalar defining
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the value of w[0], the while the second and the third are vectors containing, in
chronological order, the elements of w for the relative past and the relative future,
respectively.

Guidelines for convolution kernel definition

As anticipated, different time-series processing tasks can be accomplished by properly
defining the convolution kernel in TSIRF. This section provides some details on how to set
the convolution kernel based on the target application. All convolution kernel elements are
supposed to be in the range € < w[n| < 1, where ¢ is the machine accuracy previously
mentioned (e.g., for double float € = 2.22 - 107¢). Using an higher upper limit instead of 1
would have no impact on the final result, but it is a preferable choice to avoid potential
overflows. For all the following application the value of w[0] is set to 1 and, for sake of
brevity, this will not repeated. As a general note, in case the application requires to respect
the causality principle, it is necessary to do not use nonzero weights for the values
associated with the relative future of the convolution kernel. A property of TSIRF is to be
an interpolant, so the reconstructed values will be numerically bounded between the
minimum and the maximum of the available ones.

As first application, we describe how to perform temporal aggregation by averaging a
sliding window of images. If we want an aggregation factor of N, simply by setting N,
consecutive elements of the convolution kernel to 1. For instance, these elements could be
centered in w[0] (included in the 1 element count). However, after the application of
TSIRF, the output V would still have N; columns as input data. To obtain the aggregated
time-series it is necessary to keep one column every N,. More conveniently, when using the
Matrix backend, it is possible to remove the unused columns directly from W before
performing the matrix-matrix, in order to save unnecessary computation. A graphical
example and summary is reported in the first row of Table 2.

We now describe the implementation different methods for time series reconstruction.
Some of the propose methods do not exactly match their standard counterpart but are
approximations of them. For instance, piecewise linear interpolation, a popular choice for
simple time-series reconstruction (Potapov et al., 2021; Yin et al., 2017), can be
approximated applying TSIRF with a convolution kernel described by the function

f)=1—
w(t) NT.

_|_ g (7)

and represented in the second row of Table 2. The operation is indeed interpolant
and linear, however not piecewise as usually implemented in literature. Compared to the
standard piecewise version, this implementation does not require to iterate over the
time-series to fine the two nearest available values. The vectorization of the operation
generally reduce the computational cost and as shown in the results section also lead to
improved reconstruction performance compared to the standard version.

Another widely used strategy is the most recently available value propagation to
reconstruct missing values. Similarly to the linear interpolation, this method can be
approximated with TSIRF. In particular, using the convolution kernel
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Table 2 Summary and graphical representation of the convolution kernel setup guidelines for different applications.

Method Convolution kernel shape Description
Temporal aggregation 1.0 e Set to 1 a number of consecutive elements of the convolution kernel equivalent
by averaging o8 to the aggregation factor N,. Only keep one column out of N, in V (or more
g conveniently of W).
s 0.6
S04
o
>
50.2
o
0.0
-4 -2 0 2 4
Relative year
Approximated linear 1.0 Using the convolution kernel described by Eq. (7) results in a linear
interpolation T 08 interpolant of the available values, with properties similar to the standard
g piecewise linear interpolation.
c 0.6
2
S04
o
>
§0.2
O
0.0~ X
—a -2 0 2 a
Relative year
Approximated most 1.0 Using the convolution kernel described by Eq. (8), when the machine precision
recent image £ is not too coarse nor N; too high, results in a numerical approximation of the
propagation g & most recently available value propagation.
c 0.6
20.4
o
>
§0.2
0.0 ~ -
-1 ) 0 2 a
Relative year
Seasonally weighted 1.0 P e The function is described by Eq. (9) and can be used to reconstruct time series
average (linear) T 08l it it fi . ; - with known seasonality of period T, (in this case one year).
g O U S T S A O A
c06y7 v vy e
= BRI RN R
204 LEovp e b
s IFERTAR SRR VAR FRR AR
0.2 4 4y by
S ‘ ’ ' * Voo '
PP I S T T T A A
—a =2 0 2 a
Relative year
Seasonally weighted 1.0 Similar to the previous row, but also including an envelope attenuation to
average (exponential) 3 o reduce land-cover changes propagation. The function is described by
o Eq. (10).
c 0.6 .
S ! !
S04 b
Coh
§o2 g
IR AN AWV AR WA,

Relative year
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W(t) = 10’@'1"81087 (8)

the weight associated with each available image decay exponentially with relative time
distance, as shown in the third column of Table 2. If the numerical precision is not too
coarse nor the number of samples too high, each weight can differ of order of magnitudes,
propagating numerically the most recent available image.

An additional strategy for EO time-series reconstruction implemented within the TSIRF
framework relies on the prior that most of the global land surface reflectance shows an
yearly seasonal pattern (typically with one year periodicity). In particular, a higher weight
is given to images with relative time distance nearer to integer multiples of one season
period Tieas. From this comes its name Seasonally Weighted Average (SWA). An example
of such a convolution kernel is represented in the forth row of Table 2. This can be
implemented using a triangular wave function of period T, that reads like

! { ! + 1J ' +e 9)
Tseas Tseas 2 ’

w(t)=1-2

where | | is the floor function.

Furthermore, to avoid potential propagation land-cover change along the time-series, it
is preferable to also give higher priority to images that are more recent. This is done by
subtracting a scaled modulo function from Eq. (9). To enhance the numerical impact of the
weighting, like in the case of most recent image propagation, the function is used as an
exponent of 10. Two input parameters are introduced to define the seasonal attenuation
Aseas> and the envelope attenuation A,,,, with the latter used to limit land-cover changes
propagation. Both attenuations are interpreted in decibels (dB), leading to the final version
of the weighting function

Aseas

w(t) = 10720

Tsias_ LTsius+%J _A%V Nsth| . (10)
Note that in consideration of the numerical problems previously described, it is

Aenv
10

the convolution kernel is represented in the bottom row of Table 2, while a detailed

recommendable to respect the condition log, e < — (% + 4a22) A graphical example of
interpretation of the method is shown in Fig. 2. On top-left the input time-series with
missing samples that need to be reconstructed. In the bottom left of the scheme, the graph
shows the weights of the convolution kernel w|t] associated with w,. In the central column,
for each of the three missing values, the convolution kernel is shifted and overlapped with
the original time series to highlight the method functioning. The right most column we
find the reconstructed time-series.

Analysis ready and cloud-free Landsat bimonthly aggregates

The Landsat ARD provided by the GLAD team at the University of Maryland is one of the
few globally consistent archives for historical time-series of normalized surface reflectance
harmonizing the entire Landsat satellite collections (Potapov et al., 2020). However, the
raw GLAD Landsat ARD images include cloud contamination and image artifacts that
could propagate in derived product if used as direct input for modeling land-use (LU) or
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Figure 2 Schematic description of SWA functioning for time-series reconstruction. On top-left the input time-series with missing samples that
need to be reconstructed. On bottom-left the convolution kernel used as weight for the reconstruction, with higher weight for samples with same
seasonality and lower weights for samples farther in time. In the central column, the reconstruction of each missing sample is performed centering on
it the convolution kernel, summing the weighted available samples and renormalizing the result by the used weights. On the right the reconstructed
time-series. Full-size K] DOTI: 10.7717/peerj.18585/fig-2

land-cover (LC). In addition, the storage size of the whole collection amounts to about
1.4 PB, a size that can make prohibitive its usage due to download time and required
hardware. For these reasons, we produced a derived collection removing contaminated
part of images, performing weighted temporal aggregation, and applying SWA for
reconstructing the times-series associated with each pixel. The so-produced images can be
used as direct input for modeling or to produce global time-series of biophysical indices.
Stored as cloud optimized GeoTIFF (COG) on S3 systems, they result in an ARCO product
that can also be straightforwardly used for geo-spatial analysis. The production pipeline,
schematized in Fig. 3 and described in the following, represents a first large-scale
application of TSIRF.

The input dataset GLAD Landsat ARD is a tiled multi-band 16-days interval composite
of images with 23 images per year from 1997 to 2022, for a total of 598 GeoTIFF images per
tile saved as unsigned 16-bit integer, and a total storage size of about 1.4 PB (Potapov et al.,
2020). The GLAD Landsat ARD harmonizes all available images from the different
Landsat satellites (Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 OLI/TIRS) from 1997 to
present, providing one of the best sources of historical 30 m resolution surface reflectance
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Figure 3 Block scheme of Landsat ARD processing based on TSIRF. In top left the input tiled dataset (seven bands + quaintly assessment, 30 m
spatial resolution and 16-days time resolution). For each tile the whole time-series is sequence (i) cloud screened, (ii) time aggregated in bimonthly
frames and (iii) reconstructed using SWA. Time aggregation and SWA are implemented within the TSIRF framework, and both their result are saved
in a S3 storage system. The Landsat bimonthly Reconstructed dataset is used as input to compute biophysical indices, like the normalized difference
vegetation index (NDVI), land-masked and stored as global mosaiced and cloud optimize GeoTIFFs (COG) in a S3 storage system. Base map ©
Google Hybrid. Full-size Kal DOI: 10.7717/peerj.18585/fig-3

time-series. In addition to the seven reflectance bands, blue, green, red, near infrared
(NIR), short-wave infrared 1 (SWIR1) and short-wave infrared 2 (SWIR2) and the thermal
band, the GLAD Landsat ARD includes a detailed quality flag (QA) that classifies each
pixel as: land, water, cloud, cloud shadow, topographic shadow, hill shade, snow, haze,
cloud proximity, shadow proximity, other shadows or buffered proximity of the previously
mentioned ones. From this flag a space-time not clear-sky mask was derived, including the
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points that are classified as cloud, cloud shadow, haze, cloud proximity, shadow proximity
or other shadows. Those points are considered as gaps and are imputed with the following
procedure.

From the 16-days time interval time-series, a bimonthly product was derived by
performing weighted temporal aggregation. The aggregation was obtained using four
images from the original product to produce one image in the aggregated product. Since
each year has 23 images, the last image of the year, associated to the November-December
time-frame, was produced aggregating the last three images of the relative year and the first
images of the following year of the GLAD Landsat ARD (excluding November-December
for the year 2022 for which only three images were used). To minimize cloud-induced
artifacts in the time-series, a heuristic approach was employed, prioritizing images with
lower cloud cover. For each image in the bi-month time-frame, a clear-sky fraction of the
relative image was computed (e.g., in an image where one-fourth of the pixels are
considered as gap the clear-sky fraction is 0.75). The aggregation was then performed as a
weighted average between the available values, where each pixel was weighted by the
clear-sky fraction of the associated image. If no valid observation was found, the pixel was
considered as “no-data” value in the output. The computation was performed using the
previously described temporal aggregation of TSIRF with N, = 4 and element-wise scaling
of the values based on the clear-sky fraction. Finally, each time-frame/tile/band
combination was saved in a separate GeoTIFF as unsigned 8-bit (byte) integer, with values
ranging from 0 to 250 and associating the no-data values to 255. After compressing per
chunks of 1,024 by 1,024 pixels with Deflate (Deutsch, 1996), the total storage size resulted
in about 60 TB.

However, the aggregated product still contains several missing values in the images
time-series. In particular, this is due to: (i) no available images during winter months in
northern areas, (ii) cloud cover during the rain season in tropical areas, and (iii) a high
revisit period during years in which fewer Landsat satellites are active, in particular when
only Landsat 7 producing images affected by striping due to sensor malfunctioning was
active (Hermosilla et al., 2015). To produce complete time-series, SWA was applied on top
of the bimonthly aggregated product, for each band and each pixel. In particular, the A,
and A.,, parameters were optimized by grid-search optimization on the benchmark
dataset (Consoli et al., 2023), consisting of 16-days time-series of NDVI images derived
from the harmonized Landsat-Sentinel (HLS) collection from 2015 to 2022. The A.,,
parameter was scaled to be consistent with the different time range of the two products. As
a result of the optimization, we used A.,; = 45 dB and A,,, = 46 dB. To avoid
reconstructions of missing values with future images, wy was left empty. In addition to
respect causality, this strategy allows one to consistently update the product when images
when more recent ones are available applying the time-series reconstruction only on them,
without modifying the previous images. However, this implies that missing values could
still be present in case no images are available at the beginning of the time-series. Since this
generally impacts only few regions and for a few time frames, the choice on how to perform
imputation is left to the final user. For instance, it is possible to apply SWA again using
images from the future only for the imputation of the remaining missing values. In
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addition to the seven Landsat reconstructed bands, we also produced a clear sky flag
specifying if the value was reconstructed or already available in the aggregated product. In
case the value was already available in the aggregated product the flag is set to 250, while
255 represent again the no-data values. All other values of the flag are associated with
reconstructed pixels. Also in this case, each time-frame/tile/band combination was saved
and compressed, as for the aggregated product, leading to a total storage size resulting in
about 100 TB of data.

As shown in the bottom of Fig. 3, the Landsat bimonthly reconstructed images can be
used as input for LU/LC modeling, or alternatively, to produce remote-sensed biophysical
indices. This was the case for the soil health monitoring data produced in Tian et al. (2024).
The production pipeline of each index used the reconstructed images to calculate the index
values. Then each bimonthly time frame is landmasked to remove sea water pixel, and
finally aggregated in global (or regional) mosaics saved as cloud-optimized GeoTIFF
(COQ). Storing data in S3 cloud systems allows fast access and inspection of the data for
users, providing an ARCO product.

RESULTS

This section summarizes the most relevant results obtained from this work; however,
implementation details and additional results are available as a Jupyter notebook at https://
github.com/openlandmap/scikit-map/tree/feat_tsirf. The section mainly focuses in
describing experiments and specification used to produce the results, leaving the
discussion of them to the next section. Following the same order of contents of the
methods section, we first report computational performance of TSIRF, time-series
reconstruction accuracy of SWA and compared methods and, finally, the results of the
Landsat bimonthly aggregated and reconstructed products.

A benchmark data set was designed to validate and compare time-series reconstruction
methods. In particular, the land cover dataset ESA CCI (European Space Agency, 2021) was
used in this scope. The initial 37 classes were aggregated into 18 classes based on similarity
(water bodies classes were excluded from this analysis). This aggregation process was
applied to maps from 2000 to 2020 to determine the number of changes in land cover
within each pixel. Most of the pixels (approximately 95%) exhibited no changes in land
cover during this period. To address this an additional strata was created for pixels with
one or more land cover changes. Unchanged pixels were grouped into strata based on their
corresponding aggregated ESA CCI class, resulting in a total of 18 strata for stable land
cover and one strata for land-cover changes. We collected 2,600 random points from each
stratum, ensuring a confidence level of 0.99 and a maximum standard error of 0.02. The
selected points are shown in Fig. 4. From the Landsat bimonthly aggregated dataset
described in the following section, bimonthly time-series were extracted for each sample
point from 1997 to 2022, following stratification and random sampling.

Comparison of discrete convolution computational backends
The three strategies to perform the discrete convolution presented in “Efficient
Computation of Circular Convolutions” were compared in terms of computational time as
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Figure 4 Sampling points of the benchmark dataset. The points were selected based on a stratified sampling design was based on aggregated
version of ESA CCI land cover classes (European Space Agency, 2021). The initial 37 classes were aggregated into 18 classes. Pixels with stable LC over
2000 and 2020 are assigned to one stratum associated to an aggregated class. In addition, pixels with one or multiple LC changes were assigned to two
additional strata, for a total of 19 strata. About 2,600 points per strata were selected for a total of 51,978 sampling points. The points where uniformly
selected along the strata. However, point density could vary toward space due to presence of more localized strata.

Full-size £l DOI: 10.7717/peerj.18585/fig-4

a function of the three parameters that could influence it. In particular, the involved
parameters are the time-series length N;, the number of processed time-series N,
corresponding to the number of rows in the matrix V, and the size of the convolution
kernel. For the latter, considering the assumption N, < N; > Ny, implying N,, < 2N, + 1,
and that the ratio between N,, and N; impacts the sparsity of the matrix W, we introduce
the sparsity parameter S. This parameter is used to create a benchmark experiment in
which random data are used to create V, w,, wy and wy, where the size of w, and wy is
[SN;], with S in the range (0, 1) and [] the ceil function. With § = 1, W, is a dense matrix.
This experiment was run with each backend, Matrix, Summation and FFT, for each
combination of Ny = [1 — 2,200], N, = [1 — 40],and S = [0.05,0.1, 0.5, 1.0], repeating for
three iterations each and averaging the total computational time for each combination of
parameters and backend (for a total of about three million runs). The results were used to
find the fastest backend at each point of the parameter space. The computation was
performed on a workstation HP® Z840 with Intel® Xeon® CPU E5-2650 v4 @ 2.20 GHz x
48 and 128 GB of Hynix® DDR4 Synchronous Registered (Buffered) 2,666 MHz RAM.
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Figure 5 Selection of the TSIRF backend with lowest computational time in function of the
application. The considered parameters are the number of samples in the time-series N, the number
of time-series N, (e.g., the number of pixels pixels) and the sparsity of the extended convolution kernels S
(fraction of non-zero elements). The curves were obtained by studying the asymptotic behaviors of
computational complexity and by empirically fitting them to real data. Note that the figure does not
report precise values for N; and N, since those greatly vary between different architectures and installed
libraries, and the user is invited to perform a small test to orient to it. In general, when N, is very high, the
Dense backend is probably the best choice, while it is the FFT backend in case of high N;. When neither of
the two is very high S is small, the best option is the Sparse backend.

Full-size k&l DOL: 10.7717/peerj.18585/fig-5

Since the results heavily depend on the used computational infrastructure and the used
library, we combined the asymptotic behavior of each method and manual tuning of
constant to fit functions that can describe the observed results. Those functions were used
to produce Fig. 5 that helps users predict which backend works better depending on the
application. The figure shows curves delimiting regions where each backend performs
better, but without specifying the axis value, since this would be nonsensical for different
computational infrastructures. However, since the asymptotic behavior should instead
hold, shape and behavior of the regions should generally hold, and serve as baseline to
decide which backend to use. The parameters N; and N, are on the x-axis and y-axis,
respectively, and the three sets of curves are plot for S equal to 0.05, 0.1 and 1.0. Region I is
the region in which the summation backend is the fastest and shrinks toward the origin of
the axis (low N; and low N,) with increasing S. Region II, associated with the FFT backend,
is located on the bottom right (high N; and low N,) and expands with increasing S. Finally,
for intermediate values of N; and high N, we generally fall in Region III, associated with the
matrix backend. The selection of the best backend depending on the application is
discussed in “Feasibility of Petabyte Scale Remote Sensing Time-Series Processing”.

Time-series reconstruction methods comparison

The benchmark dataset previously described was used to assess the effectiveness of
time-series reconstruction methods under variable gap conditions by introducing artificial
gaps into the extracted Landsat bimonthly time-series. These artificial gaps, also

represented by “no data” values, were randomly inserted into the time-series to simulate
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real-world data loss. By varying the number of artificial gaps, the performance of different
reconstruction methods under increasing gap density was evaluated, to test the robustness
and project the error to the original gap fraction. The evaluation was done by comparing
the imputed values and the original values corresponding to the artificial gaps. This
comparison enabled the determination of the ability of each method to recover the original
land cover dynamics despite the presence of both cloud-induced and artificial gaps. Note
that, to have a fair comparison, the optimization of the method’s parameters was
performed on a different dataset (Consoli et al., 2023).

We compared the performance of five different methods: (i) piecewise linear
interpolation between available samples, in the following labeled Piecewise LI, (ii) TSIRF
version of linear interpolation between available samples, as defined in Table 2, labeled
TSIRF LI, (iii) TSIRF version of most recent images propagation smoothed with
Savitzky-Golay filters, labeled MR-SG, (iv) SWA with the parameters used for production,
labeled SWA, and (v) SG smoothed version of SWA, labeled as SWA-SG. The Piecewise LI
was implemented imputing the value of the linear interpolation between the most recently
available samples in the past and in the future of each missing value. For the other
TSIRF-based methods the convolution kernel was set using the function described in the
guidelines. For all the reconstruction methods, no weights for the future were used.
However, for the SG a polynomial of order two was used to smooth a window of five
samples centered on the third sample with zero-padding, making it non-causal (but only
locally). An alternative could be to use non-symmetric SG by shifting the SG coefficients
toward the w, vector. The SG filters were applied on top of SWA and MR results to
evaluate the impact of smoothing.

We computed the Root Mean Square Error (RMSE) for each method in 10 experiments
adding a varying fraction of artificial gaps. The results are reported for the Landsat NIR
and red bands and for NDVI. For the NDVI, we also compared the impact of computing
the NDVTI first and then applying the reconstruction methods with the case in which the
raw bands are first reconstructed and then used to compute the NDVI. The results are
shown in Fig. 6. In the supplementary computational notebooks the same results are
reported for all the bands. Projecting the curves toward the original gap fraction, for all the
four cases, SWA and its smoothed version show a RMSE between 10% and 14% lower then
the other methods. However, since the comparison only involves TSIRF-based or simple
methods like piecewise linear interpolation, this comparison is not intended to
comprehensive, but mainly used to compare alternatives for the Landsat aggregates
reconstruction.

Furthermore, we compared the coefficient of determination (R?) for different methods
and different bands, similarly to what is done in Hermosilla et al. (2015). Figure 7 shows the
density scatter plot of the original NDVT against its reconstructed version using SWA on a
the benchmark dataset with 10% of artificial gaps. The same plot is available for the other
methods in the supplementary computational notebooks. In particular, the R* of each
method in this experiment was 0.87 for Piecewise LI, 0.88 for TSIRF LI, 0.89 for MR-SG,
0.91 for SWA and 0.91 for SWA-SG. Notably, the ranking of the R? values is similar to the
one of RMSE.
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Figure 6 Comparison of time-series reconstruction performance of different methods based on
RMSE. The error is computed on artificially created data gaps randomly located in the original time-
series of Landsat bimonthly aggregated collection. Different fractions of artificial gaps are added to the
original time-series in order to study the resilience of the method to gap presence and to project the
RMSE to the original gap fraction. The compared methods are piecewise linear interpolation (Piecewise
LI), its approximated version (TSIRF LI), approximated most recent image propagation with
Savitzky-Golay filtering (MR-SG), seasonally weighted average (SWA), and SG filtered version (SWA-
SG). The results are reported, from top to bottom, for near-infrared band and red band, NDVI com-
puting the NDVI before performing the reconstruction and vice-versa.
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Land-cover and spectral dependency of time-series reconstruction
error

To analyze the performance of the the time-series reconstruction for different LC, the
RMSE was computed for each strata from the aggregated ESA CCI classes and the LC
change samples for each band. In this case, only the results for a 10% of additional gaps are
considered. Figure 8 shows the result for SWA with the previously described input
parameters. The rows, representing the different LC classes, are ordered based on the total
fraction of gap present in the input dataset, to see the correlation between RMSE and the
number of gaps (except the LC changes class that is placed on the bottom of the graph).
The error in each band is represented by a different symbol/color. The scatter plots and R?
values are reported in Fig. 9. Finally, different error metrics in are computed for each band
and summarized in Table 3, where also normalized versions of the RMSE and
Concordance Correlation Coefficient (CCC) are included. The results were produced using
the data available at https://zenodo.org/records/11150343 processed with the open-source
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Figure 7 Density scatter plot of NDVI data (reconstruct first) for 10% artificial gap fraction with
SWA. Similar patterns are observed for other methods, and not reported here, but variation are
observable in the R? values. In particular we have 0.87 for Piecewise LI, 0.88 for TSIRF LI, 0.89 for MR-
SG, 0.91 for SWA and 0.91 for SWA-SG. Full-size K&l DOT: 10.7717/peer;j.18585/fig-7

code available at https://github.com/openlandmap/scikit-map/blob/feat_tsirf/. Note that
the notebooks uses a pure Python implementation of TSIRF in order to facilitate

reproducibility of the results. The production code based on hybrid Python/C++ code is
also available on other branches of the same folders, but requires to be compiled before

usage.

Landsat bimonthly cloud-free global ARCO

This section reports some results of the GLAD Landsat ARD processing and
reconstruction. Figure 10 shows a zoomed-in RGB composite of the passage from four
cloud screened images to a bimonthly aggregated and reconstructed images of a tile in
Papua New Guinea, summarizing the passages for the production of a single time-frame of
one tile.

Figure 11, on top, shows a region of the global mosaic of the NDVTI cloud-free ARCO
product relative to the bimonthly timeframe January-February 2022. From the global
mosaics, three zoomed-in regions, corresponding to one 16th of the original tiles, are
analyzed to show details and artifacts. In particular, site A is located in Turkey (30E, 37N),
site B in Papua New Guinea (144E, 7S) and site C in Norway (13E, 61N). For each site, in
the bottom of the figure, we find from left to right the Landsat bimonthly aggregated NDVI
(with no-data in gray), the Landsat bimonthly reconstructed NDVI, the QA layer
associated to the reconstruction and the high-resolution RGB composites from Google
Hybrid, used to compare with some reference data. In these last images, we also locate with
a red cross the central location used as query point to analyze the associated time-series
reported in Fig. 12. The values already available in the Landsat bimonthly aggregated
NDVTI are plotted with orange crosses in function of time from the year 1997 to the year

Consoli et al. (2024), PeerJ, DOI 10.7717/peerj.18585 22/42


https://github.com/openlandmap/scikit-map/blob/feat_tsirf/
http://dx.doi.org/10.7717/peerj.18585/fig-7
http://dx.doi.org/10.7717/peerj.18585
https://peerj.com/

Peer

Bare areas | ¢ =3 O Blue
Shrubland | ¢ XeOIs A Green
Irrigated crop | ¢ o il O Red
=+ NIR
Grassland O X @ SWIR1
Rainfed crop | ¢ OADX: - dh X SWIR2
Mosaic crop-nat.veg. O (0. G S ¢$ Thermal
Urban areas | ¢ O
Dec. broadl. tree | ¢ K+ &
Sparse vegetation O X
Mosaic t.-shrub-herb. O X % (T dh
Everg. broadl. tree | QDX+ =
Flooded tree cover| ¢ @&~ <=
Flooded schrub-herb. | ¢ K] + o
Mix broadl.-needl. | ¢ X0 =
Everg. need|. tree O X @
Dec. needl. tree O X Yic |
Lichens-mosses o X LER O]
Permanent snow-ice O X [o]mEH
Land cover change O R 4
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0 100
RMSE . % gaps
. % valid

Figure 8 Time-series reconstruction performance of SWA, the method presented in this work, for
different strata (associated with ESA CCI land cover classes) and different Landsat spectral bands.
The error was computed adding a 10% of artificial data gaps to the Landsat bimonthly aggregated col-
lection and calculating the RMSE on those samples. The different land cover classes are sorted based on
the total fraction of data gaps (shown on the right side of the figure), while the error on pixel with varying
land cover between 2000 and 2020 is shown in the last row. Each band is distinguished by a different
marker and a different color as specified in the legend. Full-size K&) DOT: 10.7717/peer;j.18585/fig-8
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Figure 9 Density scatter plot for different Landsat surface reflectance bands for 10% artificial gap fraction with SWA. Different distributions
and R? values are observable for different bands, in accordance to what is observed in Fig. 8. Full-size K&] DOT: 10.7717/peer;j.18585/fig-9
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Table 3 Different reconstruction error metrics on each band for SWA with 10% of artificial gaps.

Band: Blue Green Red NIR SWIR1 SWIR2 Thermal
RMSE 0.031 0.031 0.034 0.039 0.028 0.024 0.005
RMSE/u 0.56 0.33 0.32 0.15 0.12 0.15 0.0067
RMSE/o 0.39 0.37 0.33 0.46 0.25 0.2 0.25

R? 0.85 0.86 0.89 0.79 0.94 0.96 0.94
cccC 0.92 0.93 0.94 0.89 0.97 0.98 0.97

Original 16-days GLAD Landsat ARD-2

~20% clear-s"I:<y 5. ~ 15 % clear-sky

2022-01-01

2022-01-17

~60 % clear-sky

2022-02-18

Bimonthly aggregated and reconstructed Landsat ARD

Clear-sky cover weighted
average temporal-aggregation

Final output with SWA
time-series reconstruction

1

i, 4 . nd

January-February 2022 January-February 2022

Papua New Guinea
(144°, -8°, 145°, -7°)

Figure 10 Example with original 16-day Landsat scenes (percentages indicate cloud coverage) and final bimonthly cloud-free product for a

small area in Papua New Guinea. Notice some artifacts (lines) are still visible in the output.

Full-size ] DOT: 10.7717/peer;.18585/fig-10

2022, for a total of 156 samples per time-series. The Landsat bimonthly reconstructed

NDVI time-series is instead plotted with a blue line. Due to the usage of only images from

the past, it is possible to observe missing values in the reconstructed time-series in case of

complete lack of images at the beginning of it. A green box highlights the time frame

associated with the images shown in Fig. 11.

In Fig. 13 we compared the reconstructed Landsat images against Sentinel-2 L2A. We
selected three locations in Europe with different latitudes and landforms. To each location
we associated a different spectral band, in particular, the blue band with a location in
Norway, the NIR band with a location in France and the SWIR2 band with a location in
Italy (top-left and bottom-right corner coordinates are reported in the figure). The first

location is 1° x 1° in size, while the other two 0.5° x 0.5°, in order to show

additional details and artifact. Aggregated Sentinel-2 images to the time-frames (Q1)
2019/12/02-2020/03/20, (Q2) 2020/02/21-2020/06/24 (Q3) 2020/06/21-2020/09/24 (Q4)
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Figure 11 On top the image shows part of a global mosaic of the Landsat bimonthly reconstructed
and landmasked NDVI for the timeframe January-February 2022. For three selected sites (A, B and C)
zoomed in areas of 1001 by 1001 pixels are visualized in the bottom. For each of them, the first column
shows the Landsat bimonthly aggregated image used as part of the input for the time-series recon-
struction. The second column shows the reconstructed image and the third column the quality assess-
ment relative to the reconstruction derived from the weights of the available images in the time-series
used during for the reconstruction. The last column shows the satellite images derived from Google
Hybrid with a cross in the query point of the pixels for which Fig. 12 report the whole time-series.
Full-size k&l DOL: 10.7717/peer;.18585/fig-11
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Figure 12 Time-series of aggregated and reconstructed Landsat bimonthly NDVI for the pixel
associated with the query points shown in Fig. 11. In green the timeframe of Jan-Feb 2022, corre-
sponding to the images in Fig. 11. The pixel in A shows NDVI seasonality and few missing values in the
aggregated product. The pixel in B shows high and stable NDVI with missing values at the beginning of
the time-series due to absence of satellite images before 1999 and the usage of causal time-series
reconstruction method. Pixel in C shows seasonality only in the end of the time-series, probably due to
systematic absence of images during winter season at the beginning of the time-series.

Full-size B4l DOI: 10.7717/peer;.18585/fig-12

2020/09/12-2020/12/01. In order to have most overall with the Sentinel-2 time-frames,
Landsat images are referred to the bimonthly time-frames Jan-Feb, May-June, Jul-Aug,
Sep—Oct of 2020. To test reconstruction performance, for the corresponding time-frame of
the visualization was considered as gap for all pixels. Since NIR and SWIR?2 values are quite
skewed non linear color-maps are used for visualization. It is evident that the quality of the
blue band of Landsat is not comparable with the one of Sentinel-2 images, while NIR and
SWIR2 bands mostly match. In the Landsat NIR image for the Jan-Feb time-frame it is
possible to noticed some stripes artifacts propagated during time-series reconstruction.
The Sentinel-2 images used for comparison are available at https://stac.ecodatacube.cu
(Witjes et al., 2023).
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Figure 13 Comparison between reconstructed Landsat and quarterly aggregated Sentinel-2 L2A
images for different bands and locations. Landsat images are referred to bimonthly time-frames of
2020. Aggregated Sentinel-2 images to the time-frames (Q1) 2019/12/02-2020/03/20, (Q2) 2020/02/21-
2020/06/24 (Q3) 2020/06/21-2020/09/24 (Q4) 2020/09/12-2020/12/01. Each Landsat image was recon-
structed with SWA after creating gaps in all pixels for the relative time-frame.

Full-size K&l DOT: 10.7717/peer;j.18585/fig-13

Finally, two complete global mosaics, corresponding to the January-February and
July-August timeframes of 2022 for NDVT are available at https://github.com/
openlandmap/scikit-map/blob/feat_tsirf/ CATALOG.md. The values range from 0 to 250,

Consoli et al. (2024), PeerJ, DOI 10.7717/peerj.18585 I 0 [27/42


https://github.com/openlandmap/scikit-map/blob/feat_tsirf/CATALOG.md
https://github.com/openlandmap/scikit-map/blob/feat_tsirf/CATALOG.md
http://dx.doi.org/10.7717/peerj.18585/fig-13
http://dx.doi.org/10.7717/peerj.18585
https://peerj.com/

Peer/

where 0 corresponds to —1 NDVT values and 250 to +1 NDVI value. In “Discussion” we
discuss the cause of the artifacts present in the data and possible solution to attenuate them
that will be developed in future works. That the land-mask is derived from the global land
cover maps produced form the GLAD group in Potapov et al. (2020), considering as not-
land any pixel associated to a water-related class at least one time in the time-series from
2000 to 2020. Note that since the LC map is derived from the first version of the GLAD
Landsat ARD the arctic regions and other smaller ones are not included in the masked and
mosaiced data, but still available in the tiled products.

DISCUSSION

Feasibility of petabyte scale remote sensing time-series processing
The storage size of several collections of satellite images today reaches the petabyte scale. In
addition to the Landsat collection mentioned above, as of August 2023, the Sentinel-2
archive amounted to a storage size of 20 PiB (Bauer-Marschallinger ¢ Falkner, 2023;
Radeloff et al., 2024). In addition, both missions keep generating about 0.5 PiB and 2 PiB of
data per year, respectively (Frantz, 2019), without considering the distribution of
different user-levels of the same product. Similar storage sizes are also required for satellite
images used to monitor atmospheric conditions and solar activity, such as the ones
produced by the Geostationary Operational Environmental Satellites (GOES) program.
Indeed, as of July 2022, the GOES-16 and GOES-17 archives require more than 4.7 PB of
storage size (Willett et al., 2023). While this does not represent a problem for most
academic institution or big IT companies with high performance computing (HPC)
infrastructure and programming know-how, the usage of such data is prohibitive for
organizations with limited resources. Even more limited is the hosting of the data since it
requires distributed storage systems and high-performance interconnect solutions.
Platforms like Amazon Web Services (AWS), Microsoft Azure (Azure), and Google Cloud
Platform (GCP) can help overcome hardware limitations. However, cutting-edge-derived
products also require the usage of highly optimized and parallel software. Unfortunately,
few open-source libraries provide a computational framework that can be used for such
large-scale geospatial data applications. For these reasons, we developed scikit-map
(https://github.com/openlandmap/scikit-map), a Python library that uses ad-hoc
developed C++ functions for a computationally intensive task by directly exposing the data
structures between the two languages, zero-copy operations and performing most of the
operations with high parallelism. The library includes the described implementations of
TSIRF, both with Python and C++ backends. In summary, scikit-map tires to combine
computational performance with flexibility for large scale EO data processing, focusing in
particular to time-series reconstruction.

In the result section, we compared the computational performance of the three
algorithmic backends to perform the circulant convolution operation. In the following
sections, we discuss the reasons and implications of this result, following the
Bachmann-Landau notation for the asymptotic analysis. The computational complexity of
the matrix backend is dominated by the matrix-matrix product(s). Most of the available
libraries for matrix operations are based on BLAS (Basic Linear Algebra Subprograms) that
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chose the best algorithm based on the computational architecture and sizes of the involved
matrices for each operation. However, for most cases V is a rectangular matrix for which
fast methods for the matrix-matrix product are convenient only for very large-scale and
specific cases (Knight, 1995), the computational complexity of the selected algorithms is
likely asymptotically bounded by ©(N,N?). For the FFT backend instead, we know that for
N; — oo the complexity of the convolution of each time-series scales asymptotically as
O(N,log,N;) (and the same goes for [S]) (Flannery et al., 1992), while for N, — oo as
O(N;,). Finally, the summation backend is probably asymptotically bounded by

O(N, [SN;]?). This analysis helps to understand the results presented in Fig. 5. For
example, for N; — oo, the FFT backend scales as O(Nlog,N;), while the matrix and
summation ones as O(N?), making the first the best choice for processing of time-series
with many samples in time (Region II in the figure), as in the case of historical data from
GOES. On the other hand, for N, — 00, all methods behave asymptotically as O(N; ).
However, from empirical results, the matrix backend is generally the best option (Region
III in the figure). In this case, the dominant factor comes not from computational
complexity, but from the fact that the BLAS code is highly optimized, and probably
caching optimization allows it to reuse the content of W for all time-series without
reloading it from memory. As already mentioned, a scenario that falls into Region III is
when the same processing is applied to several time-series, as for the case of a moderate
and high spatial resolution EO dataset (MODIS, Copernicus Sentinel, and Landsat
collections). Finally, for S — 0, we clearly expect the summation backend to perform
better, since its complexity reduces quadratically with S, while the computational
complexity of the FFT backend only linearly and that of the matrix backend is not
impacted at all. This defines the boundary of region Region I, which could be of interest
when using Savitzky-Golay or other digital filters with small window length compared to
time-series length.

The Python library SciPy also offer different backends to perform the convolution
(https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve. html). In
particular, its backend full matches the backend summation in TSIRF, while the FFT one
intuitively matches the FFT in TSIRF. However, there is no equivalent for the matrix
backend, which was instead the most convenient option for our processing of the GLAD
Landsat ARD archive. In addition, with the used software setup and computing
infrastructure, even if using the same number of CPUs, we noticed that the computational
efficiency of the SciPy library was not comparable to the one achieved by combining the
C++ libraries Eigen (https://eigen.tuxfamily.org/) for algebraic operations and OpenMP
(https://www.openmp.org/) for multi-threading. This is probably due to limitations
imposed by the Python’s Global Interpreter Lock (GIL) and different implementation
strategies.

Time-series reconstruction for EO data imputation

Even if in literature several works used purely spatial approaches for EO data imputation
(Desai ¢ Ganatra, 2012), in this work, we only focused on time-series reconstruction
methods (including hybrid approaches). This is because purely spatial methods risk
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creating patches in the imputed images, reducing the actual spatial resolution of the final
product. Yu et al. (2021) categorizes time-series reconstruction methods into three
categories: local window, global window, and others. Differently, Siabi, Sanaeinejad ¢
Ghahraman (2020) and others (e.g., Desai ¢ Ganatra (2012), Gerber et al. (2018), Zeng,
Shen & Zhang (2013)) divided the methods between spatial, temporal, and spatio-
temporal. Following this categorizations, our framework would fall under the categories
temporal and global window, since it only uses the temporal information but consider the
whole time-series to reconstruct each missing sample.

The mentioned articles, also provides a comprehensive review of imputation methods
for EO data. However, only few of them represents a good option for reconstruction of
petabyte size historical EO time-series, and most of them are not openly available.
Similarly to what is done in Julien ¢ Sobrino (2018), to assent the performance of SWA, we
decided to create a benchmark dataset based on the Landsat product that we presented in
this work, since different time-series reconstruction methods could perform quite
differently depending on the data set to which they are applied. Indeed, an intrinsic
limitation of SWA, is that applying it to time-series where there is no seasonality (or
known periodicity in general) would be actually equivalent to the numerical
approximation of most recent available value propagation. As already mentioned, the
benchmark dataset is openly available and we invite other groups to use it to compare the
result with other methods.

From Fig. 6, projecting the error towards the original gaps fraction, we can
observe that for all bands/indices, SWA, or its smoothed version, are the methods with
best performance. In addition, we also wanted to study whether computing the NDVI
before performing the reconstruction or doing the vice versa would have an impact
on the final error. However, comparing the two graphs in the bottom, we can observe only
a slight increase in error for the smoothed version of SWA. We are aware that this
comparison is not comprehensive of space-time or data-fusion approaches that could
potentially outperform SWA, however, since we did not find openly available code to
compare such methods and we currently did not develop other methods that can be
applied to large-scale dataset, we limited the analysis to what is reported. More
comprehensive comparisons are available in Kandasamy et al. (2013) and Julien &
Sobrino (2010).

Figure 8 instead analyses the reconstruction-error on different LC classes for each of the
8 Landsat spectral bands. In this case, only the result relative to SWA with a 10% of
additional artificial gaps is considered. The aggregated ESA CCI classes of the benchmark
dataset are listed on the left. To help taking into account that different land covers could
present a larger fraction of missing values, we used this parameter to sort the classes, in
addition to plot it on the right of the figure. Observing the figure, it can be noticed that for
most of the LCs, there is an inverse correlation between the RMSE of each band end their
wavelength. This is probably due to the fact that bands with shorter wavelengths are more
sensitive to atmospheric contamination, introducing more noise in the time-series. Indeed,
considering the spectral absorption profile of snow/ice shows, it is evident that more blue
light is reflected compared to other LC classes, reducing the relative noise in the satellite
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sensor reading. It is also interesting to note that the error in samples with changes in land
cover is not particularly high. This is probably due to the fact that because of the
deforestation of the last years, many LC changes involve the transformation of forest pixels
into crops or grassland pixels, for which the error is generally in the same order of
magnitude. This also validates the efficacy of using a envelop attenuation for the weights of
SWA to track LC changes.

Analysis-readiness of EO data and Landsat processing
The analysis-readiness of the EO data is a trending topic of debate (Baumann, 2024;
Truckenbrodt et al., 2019). The definition of the term is per se controversial. In fact, anyone
could argue: “Ready for what?”. Following the definition of the USGS (https://www.usgs.
gov/landsat-missions/landsat-us-analysis-ready-data), their Landsat ARD products
drastically reduce the magnitude of data processing required for direct use in monitoring
and evaluating landscape change (Dwyer et al., 2018). The product includes a Quality
Assessment (QA) layer that allows, for instance, to filter out cloudy pixels from the
analysis. Frantz (2019) presents the FORCE (Framework for Operational Radiometric
Correction for Environmental monitoring), designed to produce ARD Landsat and
Sentinel data. The work highlights that the USGS Landsat ARD still amounts to prohibitive
size data volume, in addition to suffering from poor spatial and temporal consistency, and
attempts to address these issues. However, FORCE is only provided as a tool, and not as a
global and historical consistent dataset. For this reason, in Potapov et al. (2020), the GLAD
group presents the already mentioned GLAD Landsat ARD, which represents a unique
product in terms of consistency and usability of the data, to the best of our knowledge.
Evidently, the cloud presence could impact for the production of biophysical indices
maps such as normalized differences, albedo, gross and net primary productivity (GPP and
NPP), or water vapor. In addition, for applications like LU/LC classification, most machine
learning modeling techniques (e.g., random forests, artificial neural networks, support
vector machines) could produce artifacts in the output map if the contaminated pixels are
provided in input. An option is to label such pixels as no-data and eventually propagate the
no-data value to the output. However, considering that, at the global level from 1997 to
2022, in the bimonthly aggregated Landsat product presented in this work, about 40.1% of
the pixels are no data, propagating this to the output would mean to do not classify large
areas. Yearly statistics of valid pixels fraction for each year is reported in Table 4, where is
interesting to observe the increasing trend of images availability. A per-pixel count of the
presence of data gaps in the Landsat bimonthly aggregated time-series is shown in Fig. 14,
for which source COG data at 30 m resolution can be downloaded or visualized at https://
github.com/openlandmap/scikit-map/blob/feat_tsirf/ CATALOG.md. In addition to
higher gap presence in cloudy regions, it is possible to observe patterns determined by
scenes overlap. However, all these statistics also depends on the aggregation factor and on
the used flags criteria to define a pixel valid or not. For instance, to consider snow a valid
pixel or to aggregate the product quarterly would reduce the amount of gaps. In any case,
the percentage of gaps are not negligible, especially in some regions. In fact, to produce
some products derived from Landsat data, the GLAD group applies time-series
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Table 4 Percentage of valid pixels for all tiles and all time-frames of each year in the Landsat aggregated product.

Year 1997

Valid pixels 42.3%
2006
58.1%
2015
67.8%

1998 1999 2000 2001 2002 2003 2004 2005
45.3% 50.7% 58.0% 58.7% 56.9% 51.1% 57.1% 56.8%
2007 2008 2009 2010 2011 2012 2013 2014
58.1% 57.5% 60.3% 57.2% 56.5% 52.7% 63.7% 67.1%
2016 2017 2018 2019 2020 2021 2022 Mean
68.7% 67.5% 67.5% 67.4% 68.3% 68.0% 67.8% 59.6%

reconstruction techniques such as piecewise linear regression (Potapov et al., 2021). This
approach still requires to load and preprocess the time-series to use these images, again
limiting the usage of the data for some user, in addition to potentially achieving poorer
results in the time-series reconstruction when compared to other methods. Figure 15
compare reconstructed Landsat summer and winter images with averaged annual Sentinel-
2B images and shows that our product still suffer from artifact presence, in particular in
northern area or rain forests. In addition, it is possible to notice the Landsat 7 strips and
the shapes of different scenes from which each image is produced (Fig. 11). Similar artifacts
can be observed in Fig. 13. In future versions more efforts will be invested in reducing these
limitations. Note that all the produced mosaics were landmasked using pixels classified as
land-related classes, for at least one time frame, in the land-cover product described in
Potapov et al. (2022). In the boundaries between water bodies and land, depending also on
the timeframe, some not masked pixels could actually be derived from water reflectance
and show heavy contrasts compared to land pixels.

An important first achievement in processing is the reduction in the storage space of the
derived products. In particular, compared to the 1.4 PiB of the input collection, aggregated
and reconstructed bimonthly only require 60 and 100 TB of storage, respectively. Derived
products of global time-series with the same temporal and spatial resolution saved as COG
require approximately 20 TB each. However, to achieve such compression, the temporal
interval increased from 16-days to bimonthly, for some applications such detection of
multiple corp cycle during one year, this could be a limiting factor. Nevertheless,
considering that globally for several regions in some part of each year there are anyway no
available images, this does not necessarily impact the analysis at global scale. Another
factor impacting the compression is the storage of data as 8-bit unsigned integers instead of
16-bit ones. This could be relevant, for example, for the mapping of different vegetation
species distributions or soil moisture. With these considerations we would expect a total
compression factor of about 7.7 times, while we observe a compression factor of about 14
times. Part of the compression comes indeed from the storage of the images as 1,024 by
1,024 compressed chunks instead of 1 by 4,004 chunks. This emphasizes the importance of
storing and compression strategies. In addition, we released an yearly aggregated version
using the percentile 50 for each pixel, also available at https://stac.openlandmap.org. For
applications that do not require a temporal resolution superior to one year, this represents
the most compact way to access the data, in addition to being less affected by artifacts.
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Percentage of available
values in the time-series

Figure 14 Per-pixel count of available value in the bimonthly aggregated Landsat time-series from 1997 to 2022. Since all the time series are of
the same length and determined by the considered period and aggregation factor, we report this information as percentage of available values (not
gap) in the time series. Darker areas are more affected by presence of data-gaps in the time-series. In addition to cloud-presence and snow-cover, it is
possible to notice patterns determined by overlapping scenes in the original Landsat raw images.  Full-size Kal DOI: 10.7717/peerj.18585/fig-14

Another problem connected to the time-series reconstruction strategy can be observed
in the time-series of the point queried at site C shown at the bottom of Fig. 12. In this case,
it can be noticed that the complete absence of available images during winter months in
northern regions brings to the propagation of values from summer into them. This result
in the shown case in an NDVI time-series for those regions that resembles the one of a
tropical area as the one shown for cite B. To overcome this issue, it could be possible to do
not consider as gap pixels flagged as snow and ice. Finally, as anticipated, the application of
SWA without using values from the past implies that if no values are available at the
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Low I III High Artifacts

Figure 15 Landsat vs Copernicus-2: comparison of Landsat bimonthly ARD NDVI at 30 m (this project) vs Sentinel 10 m spatial resolution
annual NDVI for a smaller 5 x 5 km area near Ellis Grove in Illinois. Full-size K&l DOT: 10.7717/peer;j.18585/fig-15

beginning of the time-series, missing values will still be present. This could be solved, for
example, by using future images only for such samples and assigning them to wy lower
values compared to w;,. All these consideration will be taken into account for the
production of the next version.

Additional applications and future works

As for TSIRF, the Savitzky—-Golay (SG) filters are a flexible tool that can be used for
different applications by simply adjusting the input parameters. Through local polynomial
fitting, SG filters smooth out noise while keeping the analytical signal features, thus, is
widely applied for data smoothing and time-series reconstruction (Chen et al., 2004;
Savitzky ¢ Golay, 1964). By accurately calculating the elements of the convolution kernel
of TSIRF, it is possible to combine several time-series reconstruction techniques with SG
filters without the need to apply them in a second step, saving additional computational
resources. As future development we plan to automatize the convolution kernel definition
to integrate SG filter on top of other convolution kernels for arbitrary parameters.

Another approach to perform time-series reconstruction with TSIRF could be to set all
the values of the convolution kernel using pure data-driven approaches. For instance, it
could be possible to tune the convolution kernel using the gradient descent algorithm to
minimize the RMSE on artificially generated data-gaps. Other loss functions or
minimization algorithms could also apply. However, such an approach would lead to less
interpretability about the application of the time-series reconstruction.

The flexibility of the framework, can also allow to extend it from purely temporal to a
spatio-temporal approach (Liu et al., 2019). For instance, for each pixel time-series, it
could be possible to create another time-series containing the value of the spatially nearest
available pixel for each timeframe. These time-series can be concatenated to the extended
ones in Eq. (4) (while maintaining the proper padding distance), and the convolution
kernel defined to also include those values, possibly with lower weights for them compared
to the original pixel time-series. A similar approach could also be used to perform data
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fusion. Indeed, concatenating to the original one a time-series from an harmonized
product and then performing the convolution could allow the use of information from
other sensors while keeping the same spatial resolution.

An option to improve quality of the Landsat ARD bimonthly product could indeed be
the data fusion with the MODIS collection, which has lower spatial resolution but shorter
revisit period (8-day). However, this approach requires the usage of time-series
harmonized in space, time and variable spectrum. Then, a modified convolution kernel
based on SWA can be used, in combination with the concatenated and padded time-series.
In particular, the part of the convolution kernel associated with MODIS data can be
defined with same seasonal end envelope attenuations as the Landsat one, but scaled by a
factor f < 1, such that higher priority will be given to Landsat values with the same
seasonality and temporal distance from the value under reconstruction. This could help for
instance to reduce the reconstruction artifacts in winter months in Northern regions. Since
the result would still be a weighted average along the time-series that still involves 30 m
resolution values from the Landsat data, by properly tuning the value of f, we expect that
the presence of artifacts due to double resolution will be marginal. A combination of
Landsat and MODIS satellite collections for data fusion was proposed in Luo, Guan ¢
Peng (2018). However, their product is unfortunately not openly available, so it is also
difficult to validate and reproduce.

Another aspect that will be explored in future version is the usage of different projection
strategies to further reduce the storage size. As demonstrated in Bauer-Marschallinger &
Falkner (2023), the projection used to store Sentinel-2 images increases about 33% the
amount of information that they actually provide. Bauer-Marschallinger, Sabel ¢~ Wagner
(2014) proposed a solution to the oversampling issues consisting of a girding system of
seven different continental projections in order to minimize area deformation, from which
the name “Equi7 Grid”, reducing the global mean oversampling to about 2%. In addition,
since the area deformation is minimal, data store in Equi7 can be directly used as input for
application where the a match between graph-distance and geodesic-distance is required
(e.g., convolutional neural networks or hydrological modeling). However, this strategy has
some drawbacks when working on a global scale. Since different projection systems are
used, to visualize global mosaics requires different re-projection on each continent, with
consequent computational over-head. In addition, applying spatial convolutions could be
tedious in transitional regions, and padding strategies could be required. An alternative is
to work with “Discrete Global Grid System” (DGGS) (Kmoch et al., 2022), where the
spatial distribution of the data is obtained by associating each location with an equal-area
cell from Earth surface tessellation. Nevertheless, this approach requires the usage of
proper data-structure to store and process the data. In summary, both Equi7 and DGGS
are elegant solutions for storing global EO data, but both require infrastructure and
additional efforts to process the data.

Recent works targeting production of analysis ready geospatial images focus on usage
multi-sensor data. This is done using different approaches, such as deep-features
extraction (Zhou et al., 2023), multi-spectral data-fusion (Moreno-Martinez et al., 2020)
and the creation of geospatial foundation models (Jakubik et al., 2023; Han et al., 2024).
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Deep-learning (DL) with convolutional neural networks demonstrated effectiveness in
extracting features from raw surface reflectance data suitable for LU/LC classification (Dou
et al., 2024). Applying unsupervised or transfer learning techniques on such models, it is
possible to extract abstract features from a set of EO images that can vary in acquisition
time, spectral band or even satellite sensor and use them for different modeling tasks. The
advantages of such approaches consist in the possibility to combine several raw EO data
sources and compress their useful information in few general purpose abstract features. On
the other side, the usage abstract features lead to lack of interpretability of the features
importance ranking of a model. In addition, the abstract features can not be used to
directly compute well established biophysical indices (Montero et al., 2023). This implies
the usage of modeling techniques to produce such indices, while using the reconstructed
bands produced in this work they can be computed from simple arithmetic formulas.
Overall, deep-features extraction could be a promising enabling approach for several
applications in EO data classification. Similarly, foundation models such the one proposed
in Jakubik et al. (2023) are innovative and flexible options for several geospatial
applications, including ARD generation. In future works could be interesting to compare
complete satellite images produced by foundation models with the ones obtained with
classical imputation methods. Another front that could be explored is the training of a
foundation model based on a set of reconstructed images selected by expert based visual
interpretation, taking advantage of both approaches and potentially avoiding some model
biases. As a final note, we want to highlight that the boundary in the definition of ML (or
DL) and other data driven approaches can be blurred. Indeed, if as previously proposed the
weights of TSIRF are all obtained by minimization of a loss function, TSIRF could be also
defined as ML model.

CONCLUSION

Processing of petabyte size collections of EO time-series is a challenging task that requires
the use of cutting-edge technologies. The ARD versions of such collections can rarely be
used as direct input for widespread modeling techniques. The additional processing
needed can be prohibitive in terms of computational cost, or lead to poor quality results
when naive techniques are used. Few options suitable for such a task are openly available
and none are flexible enough to be easily tuned for different applications. With the TSIRF
computational framework, we tried to fill this research gap. By properly setting its
convolution kernel, different processing techniques can be obtained. Implemented with
optimized and parallel code in C++, TSIRF can be applied to very large-scale time-series
processing.

In addition to the TSIRF framework, this article also introduced SWA, a time-series
reconstruction strategy integrated in it. The method takes advantage of the seasonality
present in EO time-series to reconstruct missing values, while also giving higher priority to
more recent images compared to the one under reconstruction. To assess the
reconstruction performance of the method, a benchmark dataset was created adding
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artificial missing values to the time-series, and computing the RMSE on those samples. The
RMSE of SWA and other competing methods was computed for different surface
reflectance bands and NDVI. For all cases, the best performing method was SWA or its
version smoothed with Savizky-Golay filters, with at least a 10% error reduction compared
to the other methods.

As first real-case application, TSIRF was used to process the entire GLAD ARD Landsat
archive to derive a cloud-free bimonthly aggregated product. The temporal aggregation
was performed by averaging four 16-days interval input images, weighting them by the
local clear-sky factor. The remaining missing values in the time-series were then
reconstructed applying SWA. Both the aggregation and the reconstruction were
implemented within TSIRF. The reconstruction phase of the seven Landsat bands at global
scale form 1997 to 2022, for a total of more than two trillions of 156 long time-series,
requires about 28 hours of computation using 1248 Intel® Xeon® Gold 6248R CPUs. The
reconstructed images can be used as input for ML models to derive biophysical indices,
such as NDVI, mosaiced and stored as COGs, leading to an ARCO dataset. As a limitation,
the global mosaics and the reconstructed time-series show some artifacts and evident
outlier values. However, the product will serve as a baseline for the development of further
improved versions. Hosting it as open data in cloud storage will require about 20 TB per
band/index for the entire 30 m resolution, bimonthly interval, historical time-series,
enabling its utilization to many EO data users.
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