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ABSTRACT
Background: Nitrogen mineralization plays a critical role in the ecosystem cycle,
significantly influencing both the ecosystem function and the nitrogen
biogeochemical cycle. Therefore, it is essential to investigate the evolutionary
characteristics of soil nitrogen mineralization during the karst vegetation restoration
to better understand its importance in the terrestrial nitrogen cycle.
Methods: This study analyzed from various stages of vegetation growth, including a
40-year-old woodland, 20-year-old shrubland, 15-year-old shrubland, 5-year-old
grassland, and nearby cropland. The aerobic incubation technique was used for 35
days to evaluate soil N mineralization characteristics and their correlation with soil
environmental factors. The study focused on examining the variations in soil N
mineralization rate (NMR), N nitrification rate (NR), net nitrification rate (AR), and
NHþ

4 -N and NO�
3 -N levels.

Results: Nitrate nitrogen, the primary form of inorganic nitrogen, increased by
19.38% in the 0–40 cm soil layer of the 20-year-old shrubland compared to the
cultivated land. Soil NHþ

4 -N levels varied during the incubation period, decreasing by
the 14th day and rising again by the 21st day. Soil NO3−-N and total inorganic
nitrogen levels initially increased, then declined, and eventually stabilized, reaching
their highest levels on the 14th day. During vegetation restoration, the soil NR and
NMR decreased gradually with increasing incubation time. The 15-year shrub, 20-
year shrub, and 40-year woodland showed the potential to increase soil NR and
NMR. Furthermore, the 15-year shrub and 20-year shrub also increased soil AR. The
Mantel test analysis indicated positive correlations among total nitrogen (TN), total
phosphorus (TP), total potassium (TK), silicon (Si), AR, NR, and NMR. While
available phosphorus (AP) and NMR demonstrated positive correlations with NR
and NMR. Furthermore, TN, TP, TK, and Si were found to be positively correlated
with AR, NR, and NMR, whereas AP and NO�

3 -N showed negative correlations with
AR, NR, and NMR. It is worth noting that NHþ

4 -N had the greatest effect on AR,
while the bulk density (BD) significantly affected the NR. Furthermore, ammonium
nitrogen (AN) and soil organic carbon (SOC) were identified as the primary
contributors to NMR. This study provides a theoretical basis for comprehending the
influence of vegetation restoration on soil nitrogen mineralization and its role in
ecosystem restoration.
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INTRODUCTION
Nitrogen is crucial for the synthesis of a wide range of complex organic compounds and is
essential for the survival of all living organisms on Earth (McNeill & Unkovich, 2007;
Pandey, Panda & Singh, 2024). Soil comprises about 95% of the total nitrogen in terrestrial
ecosystems around the globe, and soil nitrogen is considered an essential element that
significantly influences plant growth, regulates nutrient cycling, and supports ecosystem
functioning (Knops, Bradley & Wedin, 2002; Zhang et al., 2014; Yadav et al., 2021).
Although the majority of nitrogen in the soil is found in organic forms, the nitrogen
mineralization rate (NMR), which measures the ratio of organic to inorganic nitrogen, is a
key indicator of how efficiently soil nitrogen is converted to a form available for plant
uptake (Risch et al., 2020). The process of converting organic nitrogen to inorganic
nitrogen, referred to as nitrogen mineralization, directly affects the availability of nitrogen
in the soil (Zhong & Makeschin, 2003). This process is critical for plant growth and
supports various ecosystem services. Soil microorganisms are responsible for the processes
of ammonification and nitrification, which are essential to the mineralization of organic
nitrogen (Maslov & Maslova, 2022). Several factors can influence nitrogen mineralization
in the soil, including land use, soil characteristics, pH levels, temperature, moisture levels,
type of vegetation, apoplastic quality, microbial populations, and human activities
(Templer et al., 2005; Hu et al., 2019; Risch et al., 2019; Maslov & Maslova, 2022; Zhang
et al., 2022; Li et al., 2023). Changes in nitrogen mineralization affect nitrogen availability
(Schlesinger & Bernhardt, 2013), as well as primary productivity, ecosystem functioning,
and long-term sustainability (Chen, Zeng & Fahey, 2009; Heitkamp et al., 2008).
Furthermore, nitrogen cycling and transformation processes are significantly influenced by
the microbial population in the soil and the soil carbon-to-nitrogen (C:N) ratios (Chen
et al., 2019; Padalia et al., 2022; Pandey et al., 2024). Therefore, the characteristics of
nitrogen mineralization serve as critical indicators for the assessment of soil quality.

Land use and restoration techniques have been shown to substantially influence soil
nitrogen (N) mineralization in numerous studies (Gurlevik & Karatepe, 2016; Li et al.,
2018;Wang et al., 2017). These effects are primarily due to variations in plant diversity and
abundance, as well as variations in soil physical, chemical, and microbial properties under
different restoration techniques (Deng et al., 2014; Rhoades & Coleman, 1999). The impact
of vegetation on N mineralization depends on the vegetation type, which influences both
the quantity and quality of organic matter and the efficiency of nitrogen uptake by plants
(Rahman, Bárcena & Vesterdal, 2017; Unver, küçük & Tufekcioglu, 2014). Various research
focused on the impact of land use changes on N transformations (Contosta, Frey & Cooper,
2011; Li et al., 2014). However, there is a debate about how N mineralization rates are
affected by vegetation restoration (Li et al., 2014). Some studies reported an increase in N
mineralization (Gurlevik & Karatepe, 2016; Wang et al., 2017), while others observed a
decrease (Li et al., 2014; Yang et al., 2010), or found no significant change (Zeng et al.,
2009). Owen et al. (2003) observed higher soil mineralization rates in forests compared to
grasslands attributing to the variations in carbon assimilation among plant functional
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groups and differences in soil characteristics. Wei et al. (2017) observed that, despite an
increase in functional group abundance, root nitrogen content decreased together with
higher biomass, resulting in a reduced net soil nitrogen mineralization rate. There are
substantial seasonal variations in the availability and turnover of soil nitrogen (Dujardin
et al., 2012). Microbial activity is directly influenced by environmental factors, including
temperature, moisture, and pH (Unver, küçük & Tufekcioglu, 2014; Ye et al., 2015).
Dujardin et al. (2012) observed that soil ammonium content reaches its highest level
during the summer, due to increased microbial activity. Hu et al. (2015) observed similar
soil nitrogen transformations in both biocrust-covered soils and bare ground, attributed to
decreased microbial abundance and activity in extremely low temperatures. Despite the
importance of soil nitrogen mineralization, there is limited research focusing on profiled
soils in karst ecosystems. Furthermore, ecosystem responses to influencing factors can vary
significantly (Booth, Stark & Rastetter, 2005; Tapia-Torres et al., 2015; Zhou et al., 2009),
highlighting the necessity for site-specific assessments of nitrogen transformation (Burke,
1989; Liu et al., 2017). Moreover, the majority of ecosystems lack a comprehensive
understanding of the impact of vegetation restoration on soil nitrogen mineralization and
the influence of soil environmental factors on this process. These knowledge gaps limit the
precise prediction of nitrogen biogeochemical cycling.

The Southwest Karst region is recognized as one of the world’s three major continuous
karst distribution areas (Sheng et al., 2018). Throughout the latter half of the 20th century,
significant carbonate development in this region resulted in shallow soil layers, complex
karst ecosystems, high population density, and frequent human activities. These elements
contributed to significant vegetation loss and ecosystem degradation (Wang, Liu & Zhang,
2004). In response, the Chinese government has initiated various vegetation restoration
projects in the region (Basile-Doelsch, Balesdent & Pellerin, 2020; Chen et al., 2018; Wang
et al., 2018). Despite the increased vegetation cover achieved through these initiatives, the
impacts (Li et al., 2019) and the underlying mechanisms of long-term restorations on soil
inorganic nitrogen accumulation (Li et al., 2019; Liu et al., 2024) and nitrogen
mineralization remain unclear.

This study analyzed ecosystems at various stages of natural succession following the
retirement of agricultural land. The focus was on grasslands retired for 5 and 15 years,
shrublands abandoned for 20 years, and woodlands left fallow for 40 years, with
comparisons made to actively cultivated arable land as a baseline. This study was based on
the hypothesis that vegetation restoration has a major effect on soil N mineralization. This
effect was attributed to the continuous build-up of soil organic matter and significant
changes in soil environmental factors. To validate this premise, the study aimed to achieve
two primary objectives: (1) elucidate the mechanisms through which vegetation
restoration affects soil N mineralization and (2) quantify the key soil physico-chemical
parameters that influence this process. The primary objective was to verify the effects of
vegetation restoration on soil N mineralization, assess the impact of key soil properties,
and establish a strong scientific basis to guide ecological rehabilitation and soil
management practices.
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MATERIALS AND METHODS
Study area
Pingba District (26�15′–26�37′40″N, 105�59′20″–106�33″43″E), Anshun City, Guizhou
Province, lies within subtropical humid monsoon climate zone. The area, with an elevation
ranging from 963 to 1,645.6 m and an average annual temperature of 13.3 �C, features
complex topography characterized by typical karst landscapes and diverse restored
vegetation types. The parent rock of the study area is dominated by limestone, whereas the
soil is primarily calcareous (Fig. 1).

Selection of sample plots
The vegetation types and restoration timelines of the area were accurately determined
through detailed analysis using Google Historical Image Maps and on-site field surveys.

Figure 1 Basic information about the samples. Sampling sites. Map data © 2024 Bigmap. Full-size DOI: 10.7717/peerj.18582/fig-1
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Afterward, a series of carefully chosen sample plots were identified, ensuring minimal
variation in crucial factors like the type of restored vegetation, the duration of restoration,
the topography, and the soil type. The selected restored vegetation types included
grassland, shrub, shrub grassland, and woodland, corresponding to restoration periods of
5, 15, 20, and 40a, respectively. Conversely, adjacent cultivated land was used as a control
(CK). The dominant vegetation type in grassland was Leucaena [Imperata cylindrical (L.)
Beauv]. In shrub areas, key species included pyracantha (Pyracantha fortuneana),
artemisia (Artemisia annua), wild berry (Rubus idaeus L.), and wild peppercorn
(Zanthoxylum simulans). The woodland primarily featured Park and Rowan
(CatalpabungeiC.A.Mey, Celtis sinensis Pers). While the cultivated land was predominantly
planted with maize (Zea mays). Further details on the sample plots can be found in Table 1.

Soil sampling
In July 2022, soil samples were collected from the study area following a precise protocol.
The surface was first cleared of any debris and humus to maintain sample integrity.
Using the “S” sampling method, five different soil horizons (0–5, 5–10, 10–20, 20–30, and
30–40 cm) were obtained from three selected soil profiles. To maintain soil structural
integrity during transportation, samples were carefully sealed and laid flat. A total of 75 soil
samples were collected and analyzed for their physicochemical properties through detailed
laboratory assessments.

Sample analysis and methods
Soil pH was determined using the potentiometric method with a water-to-soil ratio of
2.5:1. Total phosphorus (TP) and total potassium (TK) were analyzed through NaOH
dissolution while AN was determined using the alkali diffusion method. Available
phosphorus (AP) was determined by the 0. 5 mol·L−1NaHCO3 method and available
potassium (AK) was assessed by ammonium acetate leaching flame photometry. Soil
moisture content (SMC) was quantified through dehydration, soil bulk density (BD), and
total portfolio porosity (STP) was determined by the ring knife method. Soil texture was

Table 1 Basic information of the sample site.

Sample
type

Recovery
years/a

Altitude
/m

Longitude and
latitude

Predominant species

Cropland 0 1,211 26�20′52″N,
106�32′18″E

Zea mays

Grassland 5 1,217 26�20′59″N,
106�32′18″E

Imperata cylindrical

15 1,285 26�20′5″N,
106�27′56″E

Imperata cylindrical

Shrubland 20 1,289 26�18′54″N,
106�28′39″E

Pyracantha fortuneana, Artemisia annua, Rubus idaeus L., Zanthoxylum simulans

Woodland 40 1,223 26�19′19″N,
106�29′6″E

CatalpabungeiC.A.Mey
Celtis sinensis Pers
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analyzed using the hydrometer method. The soil particles were classified according to the
international system (Ge et al., 2019) (sand (Sa) 2–0.02 mm, silt (Si) 0.02–0.002 mm, and
clay (Cl) < 0.002 mm). The methodology for specific references to the above indicators was
based on guidelines from (Sparks et al., 1996).

The soil’s NH4
+-N was obtained using a 2 mol·L−1 KCl solution and the indophenol

blue colorimetric technique (Lu, 1999). On the other hand, the NO--N levels were
determined through the dual-wavelength ultraviolet spectrophotometric approach along
with a correction factor (Norman, Edberg & Stucki, 1985). NH4

+-N and NO3
--N in soil

samples were conducted utilizing the METASH UV-5500 UV-Vis spectrophotometer, a
precision instrument sourced from METASH Instruments in Shanghai, China.

Determination of mineralizable nitrogen
Soil organic nitrogen mineralization was assessed through aerobic incubation (Stanford &
Smith, 1972; Chenxiao et al., 2024). Initially, 60 g of soil, sieved through a 2 mmmesh, were
placed in 250 mL of PE clinker bottle for the incubation process. The soil’s moisture
content was then adjusted to 30% of its field water-holding capacity was set at 25 �C before
being placed in a temperature-controlled incubator (ROX-250B). A 7-day pre-incubation
period was carried out to restore soil microbial activity. After the pre-incubation stage, the
samples were sealed with black cling film, which was punctured to allow for aeration, and
then stored in darkness at 25 �C for 35 days. Aeration was performed every 3 days for
30 min, while moisture levels were carefully monitored by regularly weighing the sample.
Destructive sampling was conducted on days 7, 14, 21, 28, and 35 following incubation. On
each occasion, 10 g of soil were combined with 35 mL of 2 mol·L−1 KCl solution (in a 5:1
ratio), shaken for 1 h and filtered into plastic containers for subsequent analysis.
Ammonium nitrogen content was measured using KCl leaching and colorimetric analysis
with indophenol blue. Nitrate nitrogen levels were determined using a dual-wavelength
UV spectrophotometric method with a correction factor.

Statistical methods
Experimental data were averaged across three replicates, and statistical analysis was
performed using ANOVA with SPSS 27.0. The significance of differences between
treatments was evaluated by using the least significant difference (LSD) method. Graphs
depicting mean values with standard errors were generated using Origin 2024.
Furthermore, the Mantel test was conducted in the R v 4.2.2 (R Core Team, 2022)
environment using the dplyr, ggcor, and ggplot2 packages. This test determined the
significance of various influencing factors on nitrogen mineralization, offering a detailed
analysis of their relative importance.

Calculation of indicators
The formula for calculating the indicator of soil N mineralization characteristics can be
written as follows:
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Net ammonification amount mg � kg�1
� � ¼ NHþ

4 �N content after culture

�NHþ
4 �N content before culture

Net nitrification mg � kg�1
� � ¼ NO�

3 �N content after culture

� NO�
3 �N content before culture

Soil mineral nitrogen content mg � kg�1
� � ¼ NHþ

4 �N þ NO�
3 �N

Net mineralization mg � kg�1
� � ¼ soil mineral N content after incubation

� soil mineral N content before incubation

Net nitrogen mineralization rate mg=kg � dð Þ ¼ net mineralisation mg � kg�1ð Þ
culture days

Net ammonification rate mg=kg � dð Þ ¼ net ammonification amount mg � kg�1ð Þ
culture days

Net nitrification rate mg=kg � dð Þ ¼ net nitrification amount mg � kg�1ð Þ
culture days

RESULTS AND ANALYSIS
Effects of vegetation restoration on inorganic nitrogen
The soil NHþ

4 -N content varied from 0.19 to 1.28 mg·kg−1 across different vegetation
restoration sites, with the highest concentration observed in the 40-year-old woodland. In
particular, the soil’s ammonium nitrogen values were determined as 0.84 to 1.28 mg·kg−1

for 40-year-old woodlands, 0.19 to 0.48 mg·kg−1 for 20-year-old shrubs, 0.17 to 0.76
mg·kg−1 for 15-year-old shrub grasslands, 0.15 to 0.36 mg·kg−1 for 5-year-old grasslands,
and 0.19 to 0.28 mg·kg−1 for cultivated areas (Fig. 2A).
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Figure 2 Effects of vegetation restoration on ammonium nitrogen and nitrate nitrogen.
Full-size DOI: 10.7717/peerj.18582/fig-2
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In the top 5 cm of soil, the ammonium nitrogen content ranged from 0.26 to
1.23 mg·kg−1. Over 40 years, the woodland area demonstrated a notable increase in soil
ammonium nitrogen, reaching 1.23 mg·kg−1, which was 3.31 times higher than that found
in the cultivated land. The sequence of soil ammonium nitrogen levels can be written as
follows: 40-year-old woodland > 20-year-old shrub > 5-year-old grassland > cultivated
land > 15-year-old shrub grassland. The described pattern remained consistent in the
5–10 cm soil depth. In the 10–20 cm stratum, the order shifted to the following: 40-year-
old woodland > 15-year-old shrubland > cultivated land > 20-year-old shrub > 5-year-old
grassland. At greater depths, in the 20–30 and 30–40 cm stratums, the sequence changed to
the following: 40-year-old woodland > 15-year-old shrubland > 20-year-old shrub > 5-
year-old grassland > cultivated land, with increases compared to cultivated land of 4.89,
2.03, 0.58, and 0.41 times, respectively.

The nitrate nitrogen content in the soil ranged from 5.58 to 501.56 mg·kg−1 across
various vegetation restoration scenarios. In particular, the highest soil nitrate nitrogen
content was observed in the 20-year-old shrubland. The levels of soil nitrate nitrogen in a
woodland of 40a, shrub of 20a, shrub grassland of 15a, grassland of 5a, and cultivated land
varied from 65.9–267.54, 120.02–501.56, 82.88–187.32, 5.58–223.3, and 71.56–413.96
mg·kg−1, respectively (Fig. 2B).

In the 0–5 cm soil stratum, the soil nitrate-nitrogen content ranged from 187.32 to
501.56 mg· kg−1. The nitrate nitrogen content in the shrub soil after 20 years was
significantly higher than that in cultivated land, reaching 501.56 mg·kg−1. This value
represented a 21.16% increase compared to the nitrate nitrogen content present in the
cultivated land. The following is the observed ranking of nitrate nitrogen performance:
shrubs after 20 years > cultivated land > woodland after 40 years > grassland after 5 years >
shrubland after 15 years. In the 5–10 cm soil stratum, the order of nitrate nitrogen content
can be written as cultivated land > shrubs after 20 years > woodland after 40 years >
shrubland after 15 years > grassland after 5 years. In the 10–20 cm soil stratum, the nitrate
nitrogen performance is similar to that of the 0–5 cm stratum. In the 20–30 cm soil
stratum, the following is the nitrate nitrogen performance: shrubs after 20 years >
cultivated land > woodland after 40 years > shrub grassland after 15 years > grassland after
5 years. Finally, in the 30–40 cm soil stratum, the ranking of nitrate nitrogen performance
was observed as shrubs after 20 years > shrub grassland after 15 years > cultivated land >
woodland after 40 years > grassland after 5 years. Overall, shrub growth in the 0–40 cm soil
depth demonstrated a 19.38% increase over 20 years compared to cultivated land.

Effects of vegetation restoration on nitrogen mineralization
Variation characteristics of soil ammonium nitrogen

The nitrogen content of NHþ
4 -N in the soil varied from 0.09 to 4.19 mg·kg−1 depending on

the stage of vegetation restoration. Specifically, the concentrations varied as follows: 0.25 to
4.19 mg·kg−1 in a 40-year-old forest, 0.19 to 2.54 mg·kg−1 in a 20-year-old shrub area, 0.15
to 2.18 mg·kg−1 in a 15-year-old grassland, 0.10 to 1.13 mg·kg−1 in a 5-year-old field, and
0.09 to 1.17 mg·kg−1 in farmland. The NHþ

4 -N levels in the soil showed a cyclical pattern,
characterized by alternating phases of increase, decrease, increase, decrease, and eventual
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stabilization over time. After 7 days of cultivation, significant differences were observed
between various vegetation types and cultivated land. By the 14th day, the overall content
decreased but increased again by the 21st day. Furthermore, NHþ

4 -N concentrations were
higher in the 0–10 cm topsoil stratum compared to the deeper stratum (10–20, 20–30,
30–40 cm).

In the 0–5 cm soil layer, NHþ
4 -N levels reached their lowest point on the 14th day, with

no significant statistical differences observed compared to other sampling days. The
concentration was found to be highest on the 21st day. The ranking of soil NHþ

4 -N was as
follows: woodland (40a) > shrub (20a) > shrub grassland (15a) > grassland (5a) >
cultivated land. Specifically, woodland (40a) and shrub (20a) increased by 3.39 times and
1.66 times, respectively, compared to cultivated land. In the 5–10 cm soil layer, after the
21st day, the order of NHþ

4 -N concentrations was as follows: shrub (20a) > woodland (40a)
> shrub grassland (15a) > cultivated land > grassland (5a). In particular, shrub (20a) and
woodland (40a) increased by 3.47 times and 1.15 times compared to cultivated land. After
21 days in the 10–20 cm soil stratum, the order of soil NHþ

4 -N was determined as shrub
(20a) > woodland (40a) > shrub grassland (15a) > grassland (5a) > cultivated land. In this
case, shrub (20a) and woodland (40a) demonstrated 2.22 times and 1.95 times increase
compared to the cultivated land. This trend continued in the 20–30 cm soil layer, where
NHþ

4 -N levels in the 20-year-old shrub and 40-year-old woodland were 2.23 times and
2.02 times higher, respectively, compared to the cultivated land. Finally, in the 30–40 cm

0 7 14 21 28 35

0

1

2

3

4

5

6

7

N
H
4+
-N
/(m
g·
kg

-1
)

incubation time/d

CK

5a

15a

20a

40a

a b c

ed

a= 0-5cm

b= 10-20cm

c= 10-20cm

d= 20-30cm

e= 30-40cm

0 7 14 21 28 35

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
H
4+
-N
/(m
g·
kg

-1
)

incubation time/d

CK

5a

15a

20a

40a

0 7 14 21 28 35

0

1

2

3

4

5

N
H
4+
-N
/(m
g·
kg

-1
)

incubation time/d

CK

5a

15a

20a

40a

0 7 14 21 28 35

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
H
4+
-N
/(m
g·
kg

-1
)

incubation time/d

CK

5a

15a

20a

40a

0 7 14 21 28 35

0

1

2

3

4

5

N
H
4+
-N
/(m
g·
kg

-1
)

incubation time/d

CK

5a

15a

20a

40a

Figure 3 (A–E) Characteristics of soil ammonium nitrogen changes under vegetation restoration. Full-size DOI: 10.7717/peerj.18582/fig-3
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soil stratum, the trend remained consistent with previous stratums, where shrub (20a) and
woodland (40a) increased by 2.44 and 1.94 times upon comparison with cultivated land
(Fig. 3).

Variation characteristics of soil nitrate nitrogen
Soil nitrogen content varied significantly among different vegetation restoration types,
ranging from 14.20 to 868.06 mg·kg−1. Specifically, the levels ranged from 53.84 to
868.06 mg·kg−1 in 40a woodland, 120.02 to 680.38 mg·kg−1 in 20a shrubs, 72.94 to
454.58 mg·kg−1 in 15a shrub grassland, 14.08 to 676.29 mg·kg−1 in 5a grassland, and 34.26
to 560.42 mg·kg−1 in cultivated land. As time progressed, soil nitrogen content generally
increased with the duration of cultivation, peaking on the 14th day. Furthermore, nitrogen
levels were consistently higher in the top 0–10 cm soil stratum compared to the deeper
strata (10−20, 20−30, and 30−40 cm).

The highest concentration of soil NO�
3 -N was observed on the 14th day of cultivation. In

the top 0–5 cm soil stratum, soil NO�
3 -N levels were observed as follows: 40a woodland >

20a shrubs > cultivated land > 15a shrub grassland > 5a grassland, with 40a woodland and
20a shrubs demonstrating a respective increase of 0.44 and 0.39 times compared to
cultivated land. In the case of the 5–10 cm soil stratum, the order shifted to the following:
20a shrubs > cultivated land > 40a woodland > 15a shrub grassland > 5a grassland, with
shrubs showing a 0.13 times increase compared to cultivated land in 20a. The described
trend persisted in the 10–20 cm soil stratum, with shrubs showing a 0.46 times increase
compared to cultivated land in 20 years. In the 20–30 cm soil stratum, soil NO�

3 -N levels
ranked as follows: 20a shrubs > 40a woodland > 15a shrubland > cultivated land > 5a
grassland, where 40a woodland and 20a shrubs demonstrated a respective increase of 0.71
and 0.92 fold compared to cultivated land. The pattern remained consistent in the
30–40 cm soil stratum, with 40a woodland and 20a shrubs showing a 0.17 and 1.36 times
increase, respectively, compared to the cultivated land (Fig. 4).

Vegetation restoration on net ammonification rate
The results depicted in Fig. 5 revealed that the soil’s net ammoniation rate followed a
fluctuating pattern over time: it initially decreased, then increased, subsequently declined,
and finally stabilized. On the 14th day, the soil’s net ammoniation rate reached its lowest
level during cultivation, while the highest concentration was observed on the 21st day.
Notably, the ammoniation levels on the 35th day were found to be lower than those
observed on the 7th day. With the increase in the cultivation period, the soil’s ammoniation
impact was reduced, resulting in a decrease in the net ammoniation rate. Throughout
cultivation, the net soil mineralization rate increased in the following order: 40a woodland,
cultivated land, 5a grassland, 15a shrub grassland, and 20a shrub grassland, with an
average value of 7.36, 11.18, 21.11, 21.71, and 58.26 mg/(kg·d), respectively. Compared to
cultivated land, the net mineralization rate increased by 0.94 times for 15-year-old shrub
grassland and 4.21 times for 20-year-old shrub grassland.

During the first 7 days of planting, the soil net nitrification rate (AR) size at different
depths followed a consistent order: 20a shrubs > 5a grassland > 15 shrubland > cultivated
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Figure 5 (A–E) Characteristics of net soil ammonification rate under vegetation restoration. Full-size DOI: 10.7717/peerj.18582/fig-5
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land > 40a woodland. Specifically, 20a shrubs, 5a grassland, and 15a shrub vegetation
demonstrated significantly higher measurements than cultivated land. With the increase in
cultivation to 14 days, woodland in 40a showed the lowest measurement, compared to
other vegetation types. On the other hand, 20a shrubs displayed the highest measurement,
with no significant differences observed among the other vegetation types. After 21 days of
cultivation, the soil AR size ranked as follows: 20a shrub > 40a woodland > 15a shrubland
> cultivated land > 5a grassland, with a notable difference between shrubs and cultivated
land in 20a. By the 28th day, the sequence of soil AR size remained consistent across the
strata: 20a shrubs > 15a shrubland > 5a grassland > cultivated land > 40a woodland, with
considerable differences observed between shrubs and cultivated land in 20a. With
increase in planting till day 35, the soil AR size in the 0–5 cm stratum was determined as
follows: 5a grassland > 15a shrub vegetation > cultivated land > 20a shrubs > 40a
woodland, whereas in the 5–10, 10–20, 20–30, and 30–40 cm stratums, the arrangement
was observed as follows: 20a shrubs > cultivated land > 5a grassland > 15 shrub vegetation
> 40a woodland.

Vegetation restoration on net nitrification rate
Figure 6 illustrates a progressive decrease in the soil net nitrification rate over time. The
peak rate was observed at 7 days of cultivation, with the lowest rate recorded at 35 days.
Furthermore, the soil net nitrification rate consistently decreased over the culture period,
indicating a reduction in soil nitrification with prolonged cultivation time. Throughout the
cultivation process, the net soil mineralization rate decreased sequentially in a 40-year-old
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Figure 6 (A–E) Characteristics of net soil nitrification rate under vegetation restoration. Full-size DOI: 10.7717/peerj.18582/fig-6
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woodland, 15-year-old shrubland, a 20-year-old shrub, cultivated land, and a 5-year-old
grassland, with an average value of 10.63, 7.91, 6.81, 2.94, and 1.16 mg/(kg·d) respectively.
Woodland aged 40 years, shrubland aged 15 years, and shrubs aged 20 years demonstrated
respective increases of 2.62 times, 1.69 times, and 1.32 times, compared to cultivated land.

During the initial 0–7 days of soil incubation, the size of soil NR in the 0–5 cm stratum
followed the order of 40a woodland > 15a scrub grassland > cropland > 20a shrub > 5a
grassland, with 40a woodland showing significantly higher N nitrification rate (NR) than
cropland. In the subsequent 5–10, 10–20, and 20–30 cm stratum, the soil NR size was
ranked as follows: 15a scrub grassland > 40a woodland > cropland > 20a shrub > 5a
grassland, with 15a scrub grassland, demonstrated remarkably higher NR than cropland.
However, in the 30–40 cm stratum, no significant differences were observed in vegetation
recovery. For the case of 0–14 days of incubation, in the 0–5 cm stratum, the soil NR size
was determined as follows: 40a woodland > 5a grassland > 15a shrub meadow > 20a shrub
> cropland, with 40a woodland showing significantly higher NR than cropland. In the
subsequent stratum (5–10, 10–20, and 20–30 cm), the soil NR size showed the following
sequence: 20a shrub > 40a woodland > cropland > 15a shrub meadow > 5a grassland, with
20a shrub showing significant superiority over cropland. In the 30–40 cm stratum, no
significant differences were observed among the various types of vegetation restoration.

During the initial 0–21 days of incubation, the soil NR size in the 0–5 cm stratum was
ranked as follows: 40a woodland > 20a shrub > 15a shrub meadow > cropland > 5a
grassland, with 40a woodland demonstrating significant superiority over cropland. In the
subsequent stratum (5–10, 10–20, 20–30, and 30–40 cm), the overall trend for soil NR size
can be written as 20a shrub > 40a woodland > 15a shrub meadow > cropland > 5a
grassland. Lastly, at 0–28 days of incubation, the 0–5 cm stratum showed a soil NR size
sequence of 40a woodland > 15a shrub meadow > 20a shrub > cropland > 5a grassland,
with 40a woodland showing significantly higher NR than cropland. In the subsequent
stratum (5–10, 10–20, and 20–30 cm), the overall soil NR size was ranked as follows: 40a
woodland > 20a shrub > 15a shrub meadow > cropland > 5a grassland. In the stratum of
soil measuring 30–40 cm, there were no significant differences observed in plant life.
Following an incubation period of 0–35 days, the ranking of NR size in the soil stratum of
0–5 cm was observed in the following order: 15a meadow of shrubs > 40a forested area >
20a shrubbery > 5a grassy meadow > cultivated land. For the stratum of soil measuring
5–10 and 10–20 cm, the NR size ranking can be written as follows: 20a shrubbery > 15a
meadow of shrubs > 5a grassy meadow > 40a forested area > cultivated land. However, in
the stratum of soil measuring 20–30 and 30–40 cm, no significant disparities were
observed in vegetation regeneration.

Vegetation restoration on net nitrogen mineralization rate

The nitrogen mineralization rate in the soil reflects the changes in inorganic nitrogen over
time. This research evaluated the nitrogen mineralization rate at varying time intervals,
ranging from 0–7 to 0–35 days. Figure 7 illustrates a distinct decrease in nitrogen
mineralization throughout vegetation restoration, with a peak value of 46.86 ± 7.55 mg/
(kg·d) observed on the 7th day in a 40-year-old forest area. The ranking of nitrogen
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mineralization rates in the 0–40 cm soil stratum can be written as follows: shrub grassland
aged 15 years > woodland aged 40 years > cultivated land > shrubland aged 20 years >
grassland aged 5 years. The reduction in nitrogen mineralization was associated with
longer cultivation periods, resulting in a slower nitrogen mineralization process in the soil.

Throughout the cultivation period, the nitrogen mineralization rates in woodland aged
40 years, shrubland aged 15 years, shrubland aged 20 years, grassland aged 5 years, and
cultivated land decreased progressively, with average values of 10.64, 7.93, 6.87, 2.95, and
1.18 mg/(kg·d) respectively. In comparison, nitrogen mineralization rates in 40-year-old
woodland, 15-year-old shrubland, and 20-year-old shrubland were determined to be 8.01,
5.72, and 4.82 times higher, respectively than those observed in cultivated land. Overall,
vegetation restoration has the potential to significantly enhance soil nitrogen
mineralization rates.

During the initial 7 days of cultivation, the highest soil nitrogen mineralization rate was
recorded at 46.86 ± 7.55 mg/(kg·d) in a 40-year-old woodland area, while the lowest value
was found to be negative in a 5-year-old grassland region. In the 0–40 cm soil stratum,
the NMR values showed the following order: 15a shrub grassland > 40a woodland >
cultivated land > 20a shrub > 5a grassland. Specifically, in the 0–5 cm soil stratum, the
sequence of soil NMR values can be written as 40a woodland > 15a shrubland > cultivated
land > 20a shrub > 5a grassland, with 40a woodland showing significantly higher values
compared to cultivated land and 5a grassland demonstrating negative values. In the 5–10
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Figure 7 (A–E) Characteristics of net soil nitrogen mineralisation rate under vegetation restoration.
Full-size DOI: 10.7717/peerj.18582/fig-7
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and 10–20 cm soil stratum, the soil NMR trends were determined to be consistent with
those observed in the 0–40 cm soil stratum. However, no significant difference was
observed between the 20–30 and 30–40 cm soil stratum.

During the initial 2 weeks of planting, the soil NMR levels varied from 38.85 ±
14.00 mg/(kg·d) in the 40a forest area to 4.74 ± 4.04 mg/(kg·d) in 5a grassy terrain. The
sequence of nitrogen mineral rates in the 0–40 cm soil stratum was determined as follows:
40a woodland > 20a shrub > 5a grassland > 15a shrubland > farmland. In the top 5 cm soil
stratum, the soil NMR hierarchy was determined as follows: 40a woodland > 5a grassland
> 15a shrubland > 20a shrubs > farmland. For the case of 5–10 cm soil stratum, the soil
NMR performance showed the following ranking: 20a shrubs > 40a woodland > 15a
shrubland > farmland > 5a grassland. In the 10–20 cm soil stratum, the soil NMR pattern
demonstrated the following order: 20a shrubs > farmland > 40a woodland > 15a shrubland
> 5a grassland.

Significant differences were observed between 20a shrubland, 40a woodland, and
farmland in the 20–30 and 30–40 cm soil segments.

Within the first 21 days of planting, the highest soil NMR value was recorded as 26.33 ±
10.34 mg/(kg·d) in the 40a woodland. In the 0–40 cm soil stratum, the following sequence
of soil NMR values was observed: 40a woodland > 20a shrubs > land under cultivation >
15a shrub grassland > 5a grassland. For the soil stratum of 0–5 cm, the soil NMR values
were found to be similar to those observed in the 0–40 cm stratum, with 40a woodland
demonstrating significantly higher values compared to cultivated land. In the soil stratum
of 5–10, 10–20, 20–30, and 30–40 cm, the following sequence of soil NMR values was
observed: 20a shrub > 40a woodland > 15a shrub grassland > land under cultivation > 5a
grassland.

Throughout the first 28 days of plant growth, the 40-acre woodland area demonstrated
significantly larger soil NMR values in the top 5 cm stratum compared to other vegetation
types. As the cultivation increased till day 35, the soil NMR dimensions in the top 5 cm
stratum were ranked in the following order: shrub grassland spanning 15 acres > woodland
area of 40 acres > shrub area of 20 acres > grassland area of 5 acres > cultivated land.
In the 5–10, 10–20, 20–30, and 30–40 cm soil stratum, the overall soil NMR dimensions
were observed in the following order: shrub area of 20 acres > shrub grassland spanning
15 acres > woodland area of 40 acres > grassland area of 5 acres > cultivated land.

During the incubation period across different plant regenerations, soil ammonification
rates were significantly lower than nitrification rates, demonstrating an increasing trend
that contrasted with the declining pattern of soil nitrification. The predominant net
mineralization form in the soil was nitrification, consistent with established findings on
soil nitrification processes.

Effects of environmental factors on vegetation restoration
Analysis of the Mantel test revealed the positive correlation between AR and total nitrogen
(TN), total phosphorous (TP), total potassium (TK), ammonium nitrogen (AN), AK, soil
organic carbon (SOC), silicon (Si), NHþ

4 -N; NR and TN, TP, TK, Si, BD, STP, SMC; NMR
and TN, TP, TK, AN, AK, SOC, Si, Sa, pH. In contrast, AR, NR, and NMR showed negative
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correlations with NO�
3 -N and Ap. The findings suggest that soil mineralization processes

in the study area were primarily influenced by TN, TP, TK, and Si, with ammonium
(NHþ

4 -N) having the most significant effect on AR, BD affected the NR, and ammonium
nitrogen (AN) and SOC influenced the NMR. Moreover, NHþ

4 -N showed a positive
correlation with TK, AK, and C, while NO�

3 -N was positively associated with TN, AP, and
SOC.

DISCUSSION
Effects of vegetation restoration on inorganic nitrogen
Subtropical and tropical forests are generally considered phosphorus-limited, while
temperate and boreal forests are often nitrogen-limited (Elser et al., 2007). Recent research
by Zhang et al. (2015) and Lan, Hu & Fu (2020) has shown that karst landscapes in
subtropical regions can exhibit nitrogen-limited conditions as vegetation begins to
regenerate. The detection of NO�

3 -N as the primary form of inorganic nitrogen in this
study was consistent with the results of Hu et al. (2021), showing a 19.38% increase in
shrub areas compared to cultivated areas. The observed increase in NO�

3 -N was associated
with vegetation recovery, which enhanced the accumulation of plant debris and roots in
the soil. This process improves soil permeability and stimulates bacterial and microbial
activities, ultimately leading to higher nitrogen concentrations. The higher levels of
NO�

3 -N in woodlands compared to grassland samples observed in this study supported the
findings reported by Xing et al. (2013), contrasting grassland ecosystems with a wide
variety of trees, shrubs, and grasses (Li et al., 2019; Dong et al., 2022a). Woodlands often
contain more apoplastic substances with lesser C/N ratios, leading to the presence of
greater mineral N in the surface soil (Pang et al., 2020; Babur et al., 2022). The research
findings revealed a significant variation in nitrate N levels between the upper and lower soil
strata. (Karki, Bargali & Bargali, 2021; Dong et al., 2022b; Siwach et al., 2023). This
variation was attributed to the rich oxygen environment, abundant organic matter, and
diverse array of microorganisms in the topsoil, which facilitated the nitrification process.
In the soil stratum ranging from 0–40 cm, the ranking of soil ammonium nitrogen levels
was as determined as follows: woodland > shrub-grassland > shrub > grassland > arable
land, with increases of 4.89, 2.03, 0.58, and 0.41 times respectively compared to arable land.
These variations were linked to the continuous decomposition of plant matter during the
process of vegetation restoration, ongoing mineralization of organic nitrogen in the soil,
accumulation of inorganic nitrogen, and the increase in NHþ

4 -N content.

Effects of vegetation restoration on nitrogen mineralization
Restoring vegetation significantly enhances the uptake and consumption of ammonium
and nitrate nitrogen in the soil (Maslov & Maslova, 2022;Wang et al., 2023). According to
Loeb et al. (2009), the rate of nitrogen mineralization is crucial for supplying these essential
nutrients. Over time, soil accumulates various nitrogen species, leading to substantial
nitrogen reserves. The rate of net mineralization is a key metric for the assessment of soil
nitrogen effectiveness (Zhang et al., 2021b). They also revealed that inorganic nitrogen
concentrations in the soil varied from 14.50 to 869.36 mg·kg−1 across different vegetation
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restoration conditions. As the incubation period increased, the levels of inorganic nitrogen
in the soil generally showed a pattern of increase, followed by a decrease and eventual
stabilization, peaking on the 14th day, consistent with the trends observed in nitrate
nitrogen. The adsorption and utilization of NO�

3 -N in the soil are restricted by its
negatively charged nature, resulting in the majority of NO�

3 -N remaining in the soil
solution without being effectively consumed. Soil nitrification processes consume
ammonium nitrogen from the soil and external fertilizers, reducing the loss due to
ammonia volatilization and leading to NO�

3 -N accumulation in the soil. The study
highlighted the presence of higher concentrations of inorganic nitrogen in the upper 0-10
cm soil stratum compared to the deeper stratum. Surface soils have a higher capacity to
absorb external organic N, leading to more rapid accumulation. In contrast, with increase
in soil depth, permeability generally decreases, which slows down the aging and
decomposition processes of soil organic matter (Qiu et al., 2021). This results in decreased
organic matter availability for decomposition and plant uptake, causing a reduction in
microbial populations and activity, which could potentially lower the rate of N
mineralization (He et al., 2021). Soil surface temperature variations significantly affect
microbial activity, whereas deeper soil strata are less influenced by these changes (Naylor,
McClure & Jansson, 2022). The research demonstrates that NO�

3 -N is the primary form of
inorganic nitrogen. Initially, vegetation absorbs NO�

3 -N, resulting in a significantly lower
net residual of NO�

3 -N in areas with dense vegetation compared to those with sparse
vegetation (Li et al., 2017). The loss rate of NO�

3 -N exceeded that of NHþ
4 -N, while the

relatively high levels of NHþ
4 -N in soils across varying locations contributed to the

sustained nitrogen content in the soil (Sainju et al., 2006). Soil inorganic N levels increased
gradually during vegetation mineralization recovery but decreased with increasing the
recovery period. This trend resulted from the gradual stabilization of organic matter and
apoplastic material in the soil, coupled with decreased microbial activity during the process
of vegetation restoration. Therefore, the mineralization processes slowed down, leading to
varying concentrations of inorganic nitrogen over time as the restoration period
progressed.

Factors affecting soil nitrogen mineralization
Vegetation plays an essential role in the nitrogen cycle and is vital for soil health (Manral
et al., 2020). It enhances water retention, improves soil aeration and infiltration rates, and
contributes to better soil texture (Zhang et al., 2021a). These improvements can directly
influence the structure and operation of plants (Pandey et al., 2023). Furthermore, the
contributions from vegetation debris and decomposition processes play a crucial role in
determining soil nutrient levels (Awasthi et al., 2022; Pandey et al., 2024). Land use
patterns considerably affect the fertility and stability of an ecosystem, serving as a crucial
source of nutrients due to their rapid turnover (Padalia et al., 2018). Moreover, plants,
along with cultural practices, can alter the soil environment by influencing the
microclimate and generating detritus (Trentini et al., 2018). They contribute to nutrient
redistribution (Wu et al., 2021), enhance N2 fixation (Li et al., 2021), improve soil biota
(Cai et al., 2022), and influence soil physicochemical characteristics (Qiu et al., 2022; Lyu
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et al., 2023). The Mantel test analysis revealed positive correlations of TN, TP, TK, and Si
with soil AR, NR, and NMR (Fig. 8), consistent with the findings reported by Li et al.
(2019). However, pH showed a negative correlation with AR and NR, indicating that
substrate abundance and favorable conditions can enhance soil N mineralization (Li et al.,
2018), a critical factor in regulating soil N availability (Wei et al., 2011). N transformations
including mineralization and nitrification greatly influence soil N availability. Sa showed a
negative correlation with AR and NR, aligning with studies that suggest clay-rich,
fine-textured soils typically contain a higher amount of microbial biomass, organic carbon,
and nitrogen compared to coarse-textured soils, thereby enhancing overall N
mineralization (Ding et al., 2021). Total N mineralization was significantly higher in soils
with elevated levels of fines and clays (Elrys et al., 2023). SMC was negatively correlated
with soil NO�

3 -N, possibly due to increased NO
�
3 -N depletion in soils with higher moisture
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Wu et al. (2024), PeerJ, DOI 10.7717/peerj.18582 18/26

http://dx.doi.org/10.7717/peerj.18582/fig-8
http://dx.doi.org/10.7717/peerj.18582
https://peerj.com/


contents (Srivastava et al., 2015). Furthermore, alkaline soils hinder the decomposition of
organic matter, leading to reduced soil N mineralization (Beltran-Hernandez et al., 1999).
This was consistent with the observed negative relationship between pH and soil AR and
NR parameters. Soil inorganic N levels play a crucial role in soil nutrient dynamics, with
soil NMR indirectly affecting SOC and serving as an important indicator of soil fertility in
revegetated ecosystems (Wei et al., 2009). Factors affecting soil N transformations vary
across ecosystems, primarily due to variations in climate, vegetation, and land use history
(Burke, 1989; Li et al., 2014; Maithani et al., 1998).

CONCLUSION
(1) Over 20 years, shrubs demonstrated a 19.38% increase in inorganic nitrogen at the
0–40 cm depth, primarily in the form of nitrate nitrogen, compared to cultivated areas.

(2) As the duration of incubation increased, soil NHþ
4 -N levels showed a distinct

pattern: an initial rise, followed by a decrease, a subsequent spike, another decrease, and
finally, stabilization. On the 14th day of incubation, the NHþ

4 -N content reached its lowest
point, while it peaked on the 21st day. In contrast, the soil NO�

3 -N and total inorganic
nitrogen showed a pattern of increase, decrease, and stabilization, with their highest levels
observed on 14 days of incubation. Furthermore, the NO�

3 -N, NO
�
3 -N, and organic

nitrogen levels in the upper 0–10 cm stratum of soil exceeded those in the deeper stratum
(10–20, 20–30, and 30–40 cm).

(3) Under vegetation restoration, the soil NR and NMR gradually decrease with
incubation time. However, soil NR and NMR increased in 15-year shrub, 20-year shrub,
and 40-year woodland areas. Moreover, the 15-year shrub and 20-year shrub conditions
led to higher soil AR.

(4) The analysis of the Mantel test showed positive correlations between TN, TP, TK,
and Si with soil AR, NR, and NMR. Among these, NHþ

4 -N had the most significant impact
on AR, BD had the most pronounced influence on NR, and AN and SOC were identified as
the key driving forces of NMR.
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