

Divergent effects of short-term and continuous anthropogenic noise exposure on Western Bluebird parental care behavior

Kerstin Ozkan ¹, Jordan M Langley ¹, Jason W Talbott ¹, Nathan J Kleist ², Clinton D Francis ^{Corresp. 1}

Corresponding Author: Clinton D Francis Email address: cdfranci@calpoly.edu

Sensory environments are rapidly changing due to increased human activity in urban and non-urban areas alike. For instance, background sounds can interfere with parent-offspring communication and mask cues reflective of predation risk, resulting in elevated vigilance at the cost of provisioning. Here we present data from two separate studies involving noise and nestling provisioning behavior in Western Bluebirds (Sialia mexicana): one in response to short-term (1 hr) experimental noise playback and a second in the context of nest located along a gradient of exposure to continuous noise. In the short-term playback experiment, the playback of either ambient control or noise interacted with the order in which trials were presented. The outcome was that provisioning rates were highest during second trials with ambient sound playback and was clearly higher than provisioning rates during noise playback on first or second trials. Additionally, failed provisioning attempts only occurred during noise trials. In contrast, provisioning rates increased with increases in continuous noise levels. Additionally, the latency to resume provisioning behavior following disturbance covaried with noise exposure level such that birds in the loudest areas resumed behavior quickly and those in the quietest locations took much longer to resume provisioning. Collectively, both studies demonstrate that noise can influence avian parental care of offspring, but the direction of the effect of noise appears to conflict. Although this difference could reflect variation in populations or environmental context, a more likely explanation is that it reflects important differences in organismal responses to short-term versus long-term noise exposure. Because short-term noise exposure experiments are often used to understand the consequences of noise pollution for organisms living in noisy environments, our results provide a cautionary tale that shortterm responses might not always reflect those for organisms in real-world noisy conditions.

¹ Department of Biological Sciences, California Polytechnic State University - San Luis Obispo, San Luis Obispo, California, United States

² Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, Colorado, United States

- 1 Divergent effects of short-term and continuous anthropogenic noise exposure on Western Bluebird
- 2 parental care behavior

3

4 Kerstin Ozkan¹, Jordan M. Langley¹, Jason W. Talbott¹, Nathan J. Kleist², Clinton D. Francis¹,*

5

- 6 ¹Department of Biological Sciences, California Polytechnic State University, San Luis Obispo,
- 7 California, USA
- 8 ²Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado,
- 9 USA
- 10 *Corresponding Author:
- 11 Clinton D. Francis
- 12 Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA
- 13 93407, USA
- 14 Email Address: cdfranci@calpoly.edu

15

16 **ABSTRACT**

- 17 Sensory environments are rapidly changing due to increased human activity in urban and non-
- 18 urban areas alike. For instance, background sounds can interfere with parent-offspring
- 19 communication and mask cues reflective of predation risk, resulting in elevated vigilance at the
- 20 cost of provisioning. Here we present data from two separate studies involving noise and
- 21 nestling provisioning behavior in Western Bluebirds (Sialia mexicana): one to short-
- 22 term (1 hr) experimental noise playback and a second in the context of nest ocated along
- 23 gradient of exposure to continuous noise. In the short-term playback experiment, the playback
- of either ambient control or noise interacted with the order in which trials were presented. The
- 25 outcome was that provisioning rates were highest during second trials with ambient sound
- 26 playback and well-leady higher than provisioning rates during noise playback on first or second
- 27 trials. Additionally, failed provisioning attempts only occurred during noise trials. In contress
- 28 provisioning rates increased with increases in continuous noise levels. Add least ally, the latency
- 29 to resume provisioning behavior following disturbance considered with noise exposure level such
- 30 that birds in the loudest areas resumed behavior quickly and those in the quietest locations took
- 31 much longer to resume provisioning. Collectively, both studies demonstrate that noise can
- 32 influence avian parental care of offspring, but the direction of the effect of noise appears to
- 33 conflict. Although this difference could reflect variation in populations or environmental context,
- 34 a more likely explanation is that it reflects important differences in organismal responses to

39

- 35 short-term versus long-term noise exposure. Because short-term noise exposure experiments
- 36 are often used to understand the consequences of noise pollution for organisms living in noisy
- 37 environments, our results provide a cautionary tale that short-term responses might not always
- 38 reflect those for organisms in real-world noisy conditions.

INTRODUCTION

- 40 Urbanization is an omnipresent threat to biodiversity that is increasing in many parts of the world
- 41 (Dominoni et al. 2020). As urbanization expands, so do stimuli that alter the way animals
- 42 experience the world around them. Anthropogenic changes in an organism's sensory
- 43 environments can create novel environmental conditions that disrupt the ability to perceive
- 44 once-reliable environmental cues (Ferraro et al. 2020) and have the potential to result in
- 45 dramatic behavioral, reproductive, and community-level responses among wildlif
- 46 2013, Shannon et al. 2016). Despite a growing body of research, many aspects compower sensory
- 47 pollutants alter species behaviors, and which life stages are most heavily impacted, remain
- 48 poorly understood.
- 49 Noise can interfere with behavior by changing the way individuals perceive and interact with
- 50 their surroundings through a variety of mechanisms including acoustic masking (Dominoni et al.
- 51 2020). Acoustic masking occurs when sound, such as human-created noise, impairs the
- 52 detection or discrimination of target sounds, such as the call of a mate or the rustling sound of
- 53 prey (Dominoni et al. 2020). The most well-studied examples of masking involve impaired
- 54 communication among conspecifics (reviewed in Francis et al. 2023). For instance, noise has
- been shown to impair communication between parent and offspring through acoustic masking,
- 56 with nestlings exposed to noise begging less upon their parents' arrival (Leonard and Horn
- 57 2012, Lucass et al. 2016). Masking by noise can also impair an individual's ability to detect an
- 58 approaching predator (reviewed in Francis et al. 2023). To compensate for the loss of their
- 59 auditory sense, animals often rely on other sensory modalities, such as vision. However, unlike
- audition, vision is directional, and effective threat detection requires visual scanning (Rabin et al.
- 61 2006, Meillere et al. 2015). This increase in visual vigilance behavior (i.e., scanning) can
- 62 decrease the amount of time an adult spends on other behaviors like parental care and foraging
- 63 (i.e., foraging-vigilance tradeoff; Sweet et al. 2022). Additionally, species that rely on audition to
- capture prey, such colors, experience reduced foraging efficiency when exposed to traffic
- 65 noise (Mason et al. 2016, Senzaki et al. 2016). Collectively, these consequences of masking,
- 66 increased vigilance, reduced foraging efficiency, and missed detections, all have the potential to
- 67 interfere with critical parental care behaviors such as provisioning food for young.
- 68 Here, we studied the effects of noise exposure on parental care in Western Bluebirds (Sialia
- 69 mexicana). Western Bluebirds are known to readily nest in areas with high noise exposure
- 70 (Kleist et al. 2017), but chicks from noisy nests experienced reduced hatching success,
- 71 hormone dysregulation, and stunted nestling growth (Kleist et al. 2018)—all of which could be
- 72 linked to effects of noise on parental care, specifically nestling provisioning behavior. Changes
- 73 in provisioning behavior have been shown in other species when exposed to disturbances,
- 74 including noise exposure (Lucass et al. 2016, Injaian et al. 2018), and is often used to study
- 75 parental care as it is easy to accurately measure.

76 We studied the influence of noise on nestling provisioning in two locations and noise stimuli 77 contexts because they offered opportunities to measure different responses to noise that are 78 associated with parental care and, when considered together, should lead to greater 79 generalizability. First, at a nest box system in California me measured provisioning during 80 consecutive 1-hr trials that included either playback of noise or a silent audio track. Second, we 81 quantified provisioning behavior at nests located along a gradient of exposure to continuous 82 noise at a nest box system in New Mexico 🔁 cause noise can be a distracting stimulus, 83 interfere with parent-offspring communication, and impair acoustic surveillance for threats, we 84 expect to see a change in adults' provisioning rates when exposed to noise. If noise pollution 85 interferes with the provisioning behavior because it impairs surveillance for threats, then 86 observational data from short-term experiments should reveal that Western Bluebirds exposed 87 to noise will approach the nest more cautiously and spend more time outside the nest box than 88 when exposed to control conditions and this should also result in fewer nest visits per trial. 89 Similarly, we predict that birds will provision less with increases in continuous noise levels and 90 that birds will return to the nest more slowly following a nest disturbance, where parents 91 respond to the disturbance in a similar way as they would to predation (i.e., risk-disturbance 92 hypothesis; Frid and Dill 2002). Because noise can also interfere with parent-offspring 93 communication and chicks may fail to hear the arrival of their parents, we predict that there 94 would be more failed provisioning attempts in noisy conditions for both short-term playbacks 95 and with increases in continuous noise levels (Table 1).

MATERIALS & METHODS

- 97 Short-term Noise Exposure Study Description
- 98 We investigated Western Bluebirds' behavioral responses to noise pollution using field-based
- 99 experiments located throughout rangelands and oak woodlands adjacent to California
- 100 Polytechnic State University's campus on the Central Coast of California. This area co.....sts of
- ~180 nest boxes located 60-100m apart on fences (Ferraro et al. 2020). Occupied nest boxes
- were sufficiently separated in space and time to avoid the effects of playbacks on neighboring
- 103 nests.

- We monitored nest boxes from March to June 2022. Boxes were initially checked every two
- weeks for signs of nesting material. Once a complete nest had formed, we monitored nests
- 106 every 4-7 days until the completion of a full clutch and/or signs of incubation. The expected
- 107 hatch date was calculated by adding two weeks to the completed clutch date and/or the first
- 108 sign of incubation. Nearing the expected hatch date, we checked nests daily until at least one
- 109 egg had hatched (day 0) and left them undisturbed until experiments took place when nestlings
- 110 were five days old (day 5).
- 111 Experimental Treatment
- 112 We conducted a repeated-measures playback experiment on 23 nests with 57 old nestlings
- with and without traffic noise exposure. The order of exposure to either ambient or traffic noise
- was randomly assigned to balance potential variation in provisioning rates throughout the day

- and to control for order effects. Although previous studies observed almost immediate changes
- in behavior after changes in acoustic conditions (e.g., Gross et al. 2010, Shannon et al. 2014),
- 117 traffic or silent tracks were broadcast for 15 min prior to the beginning of any trial period to
- 118 ensure that behavioral changes were reflective of the acoustic environment rather than a
- 119 sudden change in sound levels with treatment (Le et al. 2019). In addition, a 15 min rest period
- 120 was included between each trial. Observation periods for each trial lasted 60 minutes (Figure
- 121 1C).
- 122 Nests were exposed to one of six traffic noise recordings from different locations on local
- roadways (e.g., Ferraro et al. 2020). Multiple recordings were used to increase the
- 124 generalizability of any potential responses and to minimize the influence of any acoustic
- 125 characteristics that may have been unique to one stimulus. Ambient conditions consisted of the
- 126 playback of a silent track with no acoustic energy to control for possible influences of
- 127 electromagnetic noise (Engels et al. 2014). Acoustic stimuli were broadcast from an Octasound
- 128 800 speaker with a Lepai LP-2020Tl amplifier and an Olympus LS-P2 audio player (e.g., Le et
- 129 al. 2019, Reed et al. 2021) that were placed 10-15 rom the nest such that received levels
- 130 averaged at 65 dB(A) at the nest (2 min time-integrated [Leq] sound level, re 20 μPa). Received
- 131 sound levels were measured using a Larson Davis 824 at the entrance of the nest box for 2 min
- 132 after the initial experimental setup.
- 133 We observed bird activity from an observation blind placed 25-30 rom the nest box (Figure
- 134 1A). A voice recorder was used to document provisioning visits made by parents and the time
- spent outside the nest box within a 10m radii. Small pieces of flagging tape were placed on the
- 136 fence line at 10m to help assess distance categories. Two video cameras (Canon Vixia HF R50)
- were used to verify the timing and identity of individuals and food items: one camera was
- mounted near the ground facing up at the nest box and a second camera was used in the blind.
- 139 Additionally, two acoustic recorders were used to document adult contact calls and chick
- begging calls. One Roland R05 recorded chick begging calls with an Olympus ME-15
- 141 microphone (100-12,000 Hz) and custom windscreen taped to the back-right interior of the nest
- box lid. The second R05 recorded adult contact calls at a distance of 10m from the nest box
- with a MicW iShotgun microphone oriented toward the nest and away from the playback
- speaker to minimize noise in the recording (Figure 1B). Once all recording equipment was set
- up, a wrentit call was broadcast to signal the start time of the experiment and to ensure that
- 146 analyses occurred the appropriate start time.

147 <u>Video/Audio Recording</u>

- 148 Behavioral responses were recorded as video files and audio recordings from both the
- observation blind and directly below the nest box. From videos, provisioning behavior and time
- 150 spent within 10m of the box were scored blind to treatment. We defined provisioning behavior
- as when a Western Bluebird was observed to enter the nest box with a food source (insects or
- 152 berries) and the resen exiting the nest box with no food in its bill. We defined a failed
- provisioning attempt as when a bird entered the nest box with a food item and exited the box
- 154 with the food remaining in its bill or when a bird was perched or directly hovering at the nest box
- entrance with food but did not enter the nest box to feed its young. This research was approved

- 156 by the California Polytechnic State University Institutional Animal Care and Use Committee
- 157 (protocol 2105).
- 158 Continuous Noise Exposure Study Description
- 159 This part of the study took place in 2012 and 2013 at a nest box system in northwestern New
- 160 Mexico where 240 nest boxes were distributed across 12 pairs of noi reatment and guiet
- 161 control sites (10 boxes per site) (Kleist et al. 2017, 2018). Nest boxes were systematically
- arranged surrounding sites between 75 and 175 irom the center of gas well pads. Large
- 163 compressor engines and fans for each well pad continuously produced high-amplitude, low-
- 164 frequency noise throughout the entire nesting cycle. Doing so achieved a gradient of noise
- exposure among nest boxes from gas well compressors on noisy sites (see Kleist et al. 2017 for
- 166 details).
- Nests were monitored for activity from May to July each year from nest discovery until they
- 168 fledged or failed. When chicks were 12 (± 1) days old, we installed a video camera (Kodak
- Playsport zx3) approximately 4 m from the nest box and recorded nestling provisioning for
- approximately two hours (mean = 111:25, SD = 14:27 minutes). We also calculated time-
- averaged sound pressure levels (i.e., L_{eq} in unweighted decibels (dB), fast response, re. 20 μ Pa)
- 172 for each nest from 1 min measurements with a Larson-Davis 824 because shorter interval
- measurements from separate days, times and conditions were found to be highly repeatable in
- 174 this system (Kleist et al. 2018).
- 175 Similar to the short-term experiment, we scored successful and failed provisioning events from
- 176 videos, but lid not separate these by parental sex. Additionally, because nesting adults respond
- 177 to the approach to the nest in a manner similar to real predation events (i.e., risk-disturbance
- 178 hypothesis, Frid and Dill 2002), we calculated provisioning rate as the number of visits per hour,
- 179 but quantified over the duration of the observation period after provisioning resumed (i.e.,
- 180 latency to provision following nest disturbance). Thus, provisioning rates culated over a mean
- of 104:01, SD = 13:48 minutes). This work was approved by the University of Colorado Boulder
- 182 Institutional Animal Care and Use Committee (Protocol 1404.03). Although use of audio
- 183 recorders or cameras during both the short-term experiments and at nests exposed to
- 184 continuous noise could potentially impact the privacy of people by inadvertently recording them,
- this was not an issue in this study. We did not complete short-term trials when people were
- present and could be inadvertently recorded. In the continuous noise study, our nest boxes are
- 187 in a very remote area where we have never encountered people near our nests since starting to
- 188 work in this system in 2005.
- 189 Analyses
- 190 Short-term Noise Exposure. Twenty-three nest boxes were used for analysis. All statistical tests
- 191 were performed using R Version 4.2.0.
- 192 For analyses of the number of provisioning events per trial, we built generalized linear mixed
- models (GLMMs) with Poisson error with the glmer function in the Ime4 R package (version 1.1-

- 31). Using the glmer.nb function in the Ime4 R package, we built negative binomial GLMMs models for the number of failed provisioning attempts. A linear mixed effects model (LMM) was created with the Imer function in the Ime4 R package for analysis of the time an adult spent < 10 meters from the nest box. Nest box was treated as a random effect for all analyses to account for the repeated measures design and non-independence of data. Sound file was also initially
- 199 treated as a random effect to account for multiple stimulus files but was removed from the
- 200 model as the variance was < 0.0001 (Bates et al. 2015).
- Fixed effects for provisioning and failed provisioning attempt models included trial treatment (noise/ambient), order of treatment, brood size, ordinal date and the amount of time parent spent within 10 m of the nest box. We also included an interaction between treatment and trial For the models explaining the amount of time a parent spent within 10 m, we transformed the
- response by taking the natural logarithm of time spent with 10 m +1 and included trial treatment
- 206 (noise/ambient), order of treatment, brood size, ordinal date and the interaction between
- treatment and trial. Order in which the treatments occurred was included to personal trial.
- order effects influencing behavior. Brood size was included to account for each nest box having
- different numbers of chicks, which also has the potential to impact provisioning behavior. In
 these models ordinal date was included to account for seasonal variation in provisioning
- 211 behavior. The amount of time parent spent within 10 m of the nest box was included to examine
- 212 whether noise influenced a parent's hesitancy to approach the nest box, thus impacting the
- 213 number of provisioning events. We tested for an interaction between treatment and trial to
- 214 determine whether provisioning behavior within each treatment varied by trial order. We center
- 215 and scaled ordinal date and time a parent spent within 10 m to improve model convergence.
- 216 We verified that models met model assumptions by inspecting residuals using the
- 217 simulateResiduals function in the DHARMa R package (version 0.4.6) and by verifying model
- 218 dispersion was near 1 using the dispersion glmer function in the blmeco R package (version
- 219 1.4). For failed provisioning attempts, we checked the model using the check zeroinflation
- 220 command in the performance R package (version 0.10.2). Using the dredge function in the
- 221 MuMIn package in R (version 1.47.1), we compared models with Akaike's Information Criterion
- corrected for small sample size (AIC_c) and considered models with Δ AIC_c \leq 2 as strongly
- 223 supported. We calculated marginal effects using the ggeffects R package (version 1.2.2). We
- 224 used the estimated effect size and 95% confidence intervals (95% CIs) to interpret the
- 225 magnitude and precision of model predictor estimates. When parameter estimates appear in
- 226 multiple supported models, we present estimates from the highest-ranked model.
- 227 Continuous Noise Exposure. We initially modeled provisioning rate, failed provisioning rate and
- 228 the latency to resume provisioning using linear mixed-effect models with the Imer function in the
- 229 Ime4 R package. We treated sound amplitude, lay date, clutch size and time of day as fixed
- 230 effects and site as a random intercept. However, in all cases, we removed the random effect of
- 231 site because it explained near-zero variance (i.e., < 0.0001) and refit models as linear models
- 232 with the Im function in R (Bates et al. 2015). We ranked models with AIC_c and used effect sizes
- and 95% confidence intervals to gauge the size and precision of the influence of predictors. We
- used model diagnostics to verify bdel assumptions were met for all strongly supported models.
- 235 Cook's distance identified a single record with potentially high leverage for the provisioning rate

236 and latency to resume provisioning models. We reran supported models without the records 237 with mentially high leverage and found that their exclusion did not alter the interpretation of the 238 results, thus we present the results with their inclusion below. 239 240 **RESULTS** 241 Short-term Noise Exposure 242 We performed a total of 48 experimental trials on 24 individual nest boxes, with each nest box 243 receiving a control and noise treatment. Three models were competitive following model 244 selection (i.e., $\triangle AIC_c \le 2$). The top model explaining provisioning behavior included parental 245 sex, treatment, trial, time the adults spent < 10 m from the nest, and the interaction between treatment*trial (Table 2). The second-ranked model included the same variables as the top 246 247 model, plus brood size. The third-ranked model included parental sex, trial, and time the adults 248 spent < 10 m from the nest. 249 Based on marginal effect estimates from the highest-ranked model, among first trials, treatment 250 alone did not have a strong influence on provisioning behavior. However, the order in which the 251 treatment occurred had a strong effect on the provisioning behavior of Western Bluebirds. 252 During second trials, parents typically provisioned nestlings only 4.17 times per hour (95% CI 253 3.15, 5.52) when exposed to noise, but 6.81 times per hour (95% CI 5.30, 8.75) under ambient sound conditions (Figure 2). Provisioning rates during second trials in ambient sound conditions 254 255 were (also) higher than provisioning rates when exposed to noise during first trials (predicted= 256 4.97/hr, 95% CI [3.81, 6.49]). For ambient sound condition trials, provisioning rates were 71% 257 higher in second relative to first trials. The pattern was reversed among noise exposure trials, 258 where provisioning rates in second trials were 16% lower than first trials, but the precision of the 259 estimated difference was low (Table 3). Among other influential predictor variables, parental sex 260 had a strong effect on provisioning rates, with males provisioning less than females (Figure 2, 261 Table 3). Additionally, adults that spent more time <10 m of the nest box provisioned their 262 nestlings more frequently (Table 3). 263 Although the top-ranked model explaining parent time < 10 m from the nest box included only 264 the random effect of nest ID, 4, 5 and 4 other competitive models included treatment, trial or the 265 interaction, respectively (Table 4). From the second-ranked model, during first trials parents 266 spent less time < 10 m during noise trials (β = -0.99 ± 0.48, 95% CI -1.95, -0.02), but more time 267 < 10 m of the nest box during second trials that included noise ($\beta_{\text{treatment*trial}}$ = 2.02 ± 0.79, 95% 268 CI 0.40, 3.64). However, because the top-ranked models was the null, interpretation of these treatment and trial order effects should be interpreted with caution Table 5). 269 270 Analysis of failed provisioning attempts produced 11 candidate models, none of which included 271 the null (ΔAICc 26.40). All top models included parental sex and treatment as predictor 272 variables. Trial order was in 6 models, two of which also included the interaction with treatment. 273 in 15 of the 25 models (Table 6). The top model included parental sex, treatment and brood

274 size. Based on this model, the failed provisioning rate in noise trials was over six times higher 275 (predicted= 0.19/hr, 95% CI [0.06, 0.55]) than control trials (predicted= 0.03/hr, 95% CI [0.01, 0.13]; β = 1.70 ± 0.49 SE, 95% CI 0.82, 2.80). Additionally, males had fewer failed provisioning 276 277 attempts than females overall (β = -1.45 ± 0.69 SE, 95% CI -2.45, -0.61; Supplementary Table 278 S2), and males were only observed to have failed provisioning events during noise trials. There 279 was a weak trend for failed provisioning attempts to increase with brood size, but the precision 280 of the estimated effect was low (β = 1.09 ± 0.69 SE, 95% CI -0.29, 2.66). Finally, close 281 inspection of the data revealed that many failed provisioning attempts were due to the activity of 282 one female, thus we performed a sensitivity analysis by removing activity from this female from 283 the dataset and rerunning the top model identified with the full dataset. As with the full dataset, 284 the number of failed provisioning attempts was higher during noise trials; however, there was no 285 longer a difference in failed provisioning attempts between male and female parents (Table S1).

286 Continuous Noise Exposure

- Thirteen Western Bluebird nests were included in our analyses spanning sound levels from 58.4
- to 82.3 dB. Following model selection, only a single model with sound amplitude as a predictor
- variable was strongly supported among models explaining provisioning rate and latency to
- resume provisioning (Table 7). Two models were supported for failed provisioning rate, but the
- 291 highest-ranked model was the null (Table 7).
- 292 Provisioning rates averaged 8.79 (± 4.15 SD) per hour but increased with sound exposure
- amplitude from approximately 5 visits per hour at amplitudes below 60 dB to more than 14 per
- 294 hour at nests with amplitudes near 80 dB (β = 0.39 ± 0.09, 95% CI 0.19, 0.60, R^2 = 0.58; Figure
- 295 3A). Although the latency to resume provisioning after nest approach averaged 443.85 s (±
- 296 269.76 SD) across all nests, the latency declined from over 600 s at relatively guiet nests to
- 297 approximately 250 s at the loudest nests ($\beta = -19.39 \pm 7.96$, 95% CI -36.90, -1.87, $R^2 = 0.29$;
- 298 Figure 3B). Failed provisioning rates averaged 2.53 (\pm 2.03 SD) events per hour but were
- 299 unrelated to sound levels and all other predictor variables.

300

301

DISCUSSION

- 302 Anthropogenic noise is an inescapable sensory pollutant around the globe and influences 303 physiology, reproductive success, and behavior (Dominini et al. 2020). Because noise has been 304 shown to influence reproductive success and nestling size (Kleist et al. 2018, Injaian et al. 2018, 305 Ferraro et al. 2020), understanding if and how parental care may change with noise exposure 306 could provide insights into the way(s) by which noise exposure affects nestlings. Our results 307 demonstrate that anthropogenic noise influences Western Bluebird parental care through two 308 separate studies. In short-term experimental trials, we found experimental noise exposure to 309 increase failed provisioning rates and also that trial order interacted with treatment to influence 310 provisioning behavior. Specifically, second trials had fewer provisioning events in noisy 311 conditions than in ambient conditions. These results contrast with those from nests located in a
- gradient of continuous noise exposure: provisioning rates increased with noise amplitude and

PeerJ

313 failed provisioning attempts were unrelated to noise levels. Additionally, adults returned to the 314 nest more quickly following nest disturbance with higher noise levels. We discuss these findings 315 in detail below, including potentially influential differences between studies, but chiefly how 316 short-term noise playback might not adequately capture the complexity of living in noisy 317 landscapes. 318 Our study found that trial order strongly influenced provisioning behavior during short-term 319 experimental noise exposure. Slower provisioning rates for both control and noise trials during 320 trial one relative to ambient sound conditions in trial two may reflect parents' response to the 321 novel stimuli of new equipment in and around their nests. Novel objects can be an acute 322 stressor that increases stress hormones and alter behaviors in several species, including Great 323 Tits (Parus major) (Baugh et al. 2017) and Tree Swallows (Tachycineta bicolor) (Rivers et al. 324 2017). Introducing equipment to the nest area prior to trial 1 may have elicited a stress response 325 that carried over into first trials and overrode any effects of noise (i.e., carryover effect; 326 O'Connor et al. 2014). As such, the enduring response to novel objects is not changed with the 327 addition of a second stressor in the form of noise exposure during trial 1 (see Wilson et al. 2021 328 for a review of cumulative effects). However, in a lab experiment done on European Starlings 329 (Sturnus vulgaris), corticosterone ("CORT") levels typically return to normal basal levels within 330 60 minutes following an acute stressor (Rich and Romero 2005), meaning to possible that 331 CORT levels returned to basal levels prior to trial 2. Under this scenario, for the nests that 332 received the noise treatment in trial 2, the novel acoustic conditions could re-activate CORT and 333 the associated self-preservation behaviors that are associated with slower provisioning rates. 334 Therefore, trial 2 may be more reflective of behavioral responses due to the noise stimulus, as 335 birds had a longer period to acclimate to equipment and noise was the only new stimulus 336 introduced. This possibility is further supported by the finding that provisioning rates in ambient 337 sound conditions during trial 2 were greater than rates in trial 1 and trial 2 noise-exposed 338 conditions. This finding parallels Lucass et al.'s (2016) work on Great Tits where parental 339 provisioning was lower in experimental noisy conditions compared to control. However, Lucass 340 et al.'s (2016) study did not find an order effect between trials. One possible reason for this may 341 be in part due to mini-speakers hidden within the nesting material of nest boxes rather than 342 placed outside the nest box, eliminating the potential for birds to have a carryover effect from a 343 visual novel stimulus. Future research should consider the effects of the novel stimuli when 344 determining the acclimation period of individual species of birds in experimental trials. 345 Although not part of our original hypotheses, we found sex-specific differences in total 346 provisioning regardless of noise in short-term experimental trials. Our finding that males 347 provision less in comparison to females regardless of treatment supports previous research 348 showing that females increase provisioning rates in relation to males following the brooding 349 period, beginning around nestling day 5 (With and Balda 1990, Porras-Reyes et al. 2021). 350 Although we found no evidence of an interaction between sex and treatment in regard to total 351 provisioning, males in our study had fewer failed provisioning attempts than females when exposed to noise. One possibility for this could be attributed to differences in sexual selection 352 353 experienced by males and females, as male Western Bluebirds face selection pressures in 354 terms of territorial and nest defense (Dickinson and Weathers 1999, Naguib et al. 2013). 355 However, in our sensitivity analysis that excluded one female with many failed provisioning

attempts, there was no longer a difference in failed provisioning attempts between males and females. Still, there were more failed attempts in noisy conditions regardless of the uncertainty on whether males and females differed in their number of failed provisioning attempts. These findings match the findings of Leonard and Horn (2012) in which Tree Swallows exhibited a higher number of missed nestling detections in noisy conditions.

360 361 362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377378

379

380

381

382 383

384

385

386

387

388

389

390

356

357

358

359

Our findings that higher continuous noise exposure was associated with increased provisioning rates and reduced latency to resume provisioning contrasts 7 r initial prediction that birds would provision less with increasing sound levels. Declines in real or perceived nest predation risk with noise likely explain these relationships. Previous studies in the same study system found that Woodhouse's Scrub-Jays (Aphelocoma woodhouseii) avoid areas of high noise, ultimately resulting in reduced nest predation for a variety of nesting species (Francis et al. 2009). It is possible that Western Bluebirds nesting in noisy areas increased their provisioning rates and decreased their latency time because their perception of nest predation risk was low due to lower densities of nest predators. This trend has also been seen in a multi-species, long-term predator removal study (Fontaine and Martin 2006), which found that parents feed nestlings at a higher rate when predation risk is experimentally reduced. Importantly, however, it is perceptions of risk and not actual risk that drive changes in behavior. In other words, the same changes in behavior could occur when perceived nest predation risk is reduced even when actual nest predation risk is unchanged. For instance, experimental playback of common predator calls to elevate perceived nest predation risk contributed to declines in parental care and reduced reproductive success in Song Sparrows (Melospiza melodia) (Zanette et al. 2011). Because noise exposure can impair an animal's ability to listen for threats of predators through acoustic masking (Barber et al. 2010), a reduction in perceived nest predation risk via acoustic masking could also be involved in increased provisioning rates and reduced latency times in areas of high-amplitude noise. However, this possibility conflicts with studies that have evaluated perceptions of adult predation risk in noise via foraging-vigilance trade-offs. In lab and field studies, birds and mammals have been shown to increase visual vigilance in noise at the expense of active foraging, presumably due to the reduction in passive acoustic surveillance for threats due to noise (Quinn et al. 2006, Shannon et al. 2014, Ware et al. 2015, Le et al. 2019). This increase in vigilance has further been shown in California ground squirrels (Spermophilus beecheyi) living under chronic noise exposure, suggesting that not all animals may grow accustomed to high levels of noise over time (Rabin et al. 2006). Why responses reflective of perceptions of risk for nest predation in the context of noise may differ from perceptions of adult predation risk is unclear and needs further study, including potential links to hormonal changes during reproduction.

391 392 393

394

395

396

397

398

399

Separately from the perception of nest predation risk and the responses to noise among actual nest predators, hormonal changes in response to acute and chronic stressors may contribute to the difference in provisioning behavior in our short experimental and continuous noise exposure studies, respectively. As discussed above, stress-induced release of CORT due to novel stimuli and noise associated with the short-term noise exposure experiment could suppress provisioning behavior. Additionally, noise has been shown to be a chronic stressor that depresses baseline CORT in systems exposed to noise over long periods of time (Cyr and

400 401 402 403 404 405 406	Romero 2007), including Western Bluebirds exposed to continuous noise (Kleist et al. 2018). Lowered baseline CORT may allow birds to maintain behaviors that increase reproductive success, such as provisioning. Therefore, it is possible that the suppression of baseline CORT of birds in this system played a role in the increase of provisioning behaviors and decreased latency time in response to nest disturbance, but more work is needed to explicitly link stress hormone profiles that result from chronic stressors to behaviors that result from a second acute stressor.
407 408 409 410 411 412 413 414 415 416	Finally, it is worth noting that there are several other differences between our study sites and experimental design. For example, nestlings of different ages may have different requirements in terms of parental care. One previous study with Western Bluebirds found that provisioning rates were not influenced by nestling age or brood size (With and Balda 1990). However, another study found that both males and females increased their rate of provisioning as nestlings got older (Porras-Reyes et al. 2021). Whether or not provisioning rate changes with nestling age, we would not expect differences in age to change the direction of the effect of noise on provisioning rates. Instead, the differences are likely explained by different physiological responses among parents to short and continuous noise exposure and the larger community-level changes that occur in landscapes that experience continuous or chronic noise
417	
418	CONCLUSIONS
419 420 421 422 423 424 425 426 427 428 429 430	Overall, our results demonstrate that anthropogenic noise exposure influences parental care behaviors of Western Bluebirds in both the short and long term. The difference in results between the two studies highlights the caution researchers should take when using results from short-term experiments to extrapolate to scenarios where individuals live in noisy landscapes. This is especially important because much of the research involving the consequences of anthropogenic noise comes from short-term, controlled experiments. Although short-term experiments are essential in that they control for many confounding variables that complicate observational studies, responses observed on shorter timescales may not adequately capture influential organismal and community-level responses to noise that occur when individuals are exposed to noise continuously. Clarifying if and when behavior differs from experiments and real-world conditions is essential as urbanization expands and changes sensory landscapes throughout the world.
431	
432	ACKNOWLEDGEMENTS
433 434 435 436	We thank Paul Kessler, Maci Lee, Eva Moylan, Isabelle Smits, Sophia Jones, Anjana Kumar, Skyler Meinholz, Ruby Sibul, Kayla Hansen, Makena Keane, Kelley Boland, and Edward Trout for assistance with fieldwork and scoring videos and Emily Taylor and Sean Lema for helpful feedback on earlier drafts of this manuscript.

REFERENCES

- Barber, J. R., K. R. Crooks, and K. M. Fristrup (2010). The costs of chronic noise exposure for terrestrial organisms. Trends in Ecology & Evolution 25:180–189.
- Bates, D., R. Kliegl, S. Vasishth, and H. Baayen (2015). Parsimonious Mixed Models.
 https://doi.org/10.48550/ARXIV.1506.04967
- Baugh, A. T., K. R. Witonsky, S. C. Davidson, L. Hyder, M. Hau, and K. Van Oers (2017).
 Novelty induces behavioural and glucocorticoid responses in a songbird artificially selected for divergent personalities. Animal Behaviour 130:221–231.
- Cyr, N. E., and L. Michael Romero (2007). Chronic stress in free-living European starlings
 reduces corticosterone concentrations and reproductive success. General and
 Comparative Endocrinology 151:82–89.
- Dickinson, J. L., and W. W. Weathers (1999). Replacement males in the western bluebird:
 opportunity for paternity, chick-feeding rules, and fitness consequences of male parental
 care. Behavioral Ecology and Sociobiology 45:201–209.
- Dominoni, D. M., W. Halfwerk, E. Baird, R. T. Buxton, E. Fernández-Juricic, K. M. Fristrup, M. F. McKenna, D. J. Mennitt, E. K. Perkin, B. M. Seymoure, D. C. Stoner, et al. (2020). Why conservation biology can benefit from sensory ecology. Nature Ecology & Evolution 4:502–511.
- Engels, S., N.-L. Schneider, N. Lefeldt, C. M. Hein, M. Zapka, A. Michalik, D. Elbers, A. Kittel, P.
 J. Hore, and H. Mouritsen (2014). Anthropogenic electromagnetic noise disrupts
 magnetic compass orientation in a migratory bird. Nature 509:353–356.
- Ferraro, D. M., M.-L. T. Le, and C. D. Francis (2020). Combined effect of anthropogenic noise and artificial night lighting negatively affect Western Bluebird chick development. The Condor 122:duaa037.
- Fontaine, J. J., and T. E. Martin (2006). Parent birds assess nest predation risk and adjust their reproductive strategies. Ecology Letters 9:428–434.
- Francis, C. D., C. P. Ortega, and A. Cruz (2009). Noise Pollution Changes Avian Communities and Species Interactions. Current Biology 19:1415–1419.
- Francis, C.D., J.N. Phillips & J.R. Barber. (2023) Background acoustics in terrestrial ecology.

 Annual Review in Ecology, Evolution and Systematics 54:351-373.
- Frid, A., and L. M. Dill (2002). Human-caused Disturbance Stimuli as a Form of Predation Risk.

 Conservation Ecology 6:art11.
- Gaston, K. J., J. Bennie, T. W. Davies, and J. Hopkins (2013). The ecological impacts of nighttime light pollution: a mechanistic appraisal: Nighttime light pollution. Biological Reviews 88:912–927.
- 474 Gross, K., G. Pasinelli, and H. P. Kunc (2010). Behavioral Plasticity Allows Short-Term 475 Adjustment to a Novel Environment. The American Naturalist 176:456–464.
- Injaian, A. S., C. C. Taff, and G. L. Patricelli (2018). Experimental anthropogenic noise impacts avian parental behaviour, nestling growth and nestling oxidative stress. Animal Behaviour 136:31–39.
- Kleist, N. J., R. P. Guralnick, A. Cruz, and C. D. Francis (2017). Sound settlement: noise
 surpasses land cover in explaining breeding habitat selection of secondary
 cavity-nesting birds. Ecological Applications 27:260–273.

- Kleist, N. J., R. P. Guralnick, A. Cruz, C. A. Lowry, and C. D. Francis (2018). Chronic anthropogenic noise disrupts glucocorticoid signaling and has multiple effects on fitness in an avian community. Proceedings of the National Academy of Sciences 115.
- L. Quinn, J., M. J. Whittingham, S. J. Butler, and W. Cresswell (2006). Noise, predation risk compensation and vigilance in the chaffinch *Fringilla coelebs*. Journal of Avian Biology 37:601–608.
- 488 Le, M.-L. T., C. M. Garvin, J. R. Barber, and C. D. Francis (2019). Natural sounds alter
 489 California ground squirrel, Otospermophilus beecheyi, foraging, vigilance and movement
 490 behaviours. Animal Behaviour 157:51–60.
- Leonard, M. L., and A. G. Horn (2012). Ambient noise increases missed detections in nestling birds. Biology Letters 8:530–532.
- Lucass, C., M. Eens, and W. Müller (2016). When ambient noise impairs parent-offspring communication. Environmental Pollution 212:592–597.
- Mason, J. T., C. J. W. McClure, and J. R. Barber (2016). Anthropogenic noise impairs owl hunting behavior. Biological Conservation 199:29–32.
- Meillere, A., F. Brischoux, and F. Angelier (2015). Impact of chronic noise exposure on antipredator behavior: an experiment in breeding house sparrows. Behavioral Ecology 26:569–577.
- Naguib, M., K. Van Oers, A. Braakhuis, M. Griffioen, P. De Goede, and J. R. Waas (2013).
 Noise annoys: effects of noise on breeding great tits depend on personality but not on noise characteristics. Animal Behaviour 85:949–956.
- 503 O'Connor, C. M., D. R. Norris, G. T. Crossin, and S. J. Cooke (2014). Biological carryover 504 effects: linking common concepts and mechanisms in ecology and evolution. Ecosphere 505 5:art28.
- Porras-Reyes, B., S. Ancona, A. A. Ríos-Chelén, A. Bautista, and B. Montoya (2021). Sex bias
 in parental care is associated with brood age and fledglings' growth rate in Western
 Bluebirds Sialia mexicana. Journal of Ornithology 162:409–419.
- Rabin, L. A., R. G. Coss, and D. H. Owings (2006). The effects of wind turbines on antipredator behavior in California ground squirrels (Spermophilus beecheyi). Biological Conservation 131:410–420.
- Reed, V. A., C. A. Toth, R. N. Wardle, D. G. E. Gomes, J. R. Barber, and C. D. Francis (2021).
 Natural noise affects conspecific signal detection and territorial defense behaviors in
 songbirds. Behavioral Ecology 32:993–1003.
- Rich, E. L., and L. M. Romero (2005). Exposure to chronic stress downregulates corticosterone responses to acute stressors. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 288:R1628–R1636.
- 518 Rivers, J. W., G. N. Newberry, C. J. Schwarz, and D. R. Ardia (2017). Success despite the 519 stress: violet-green swallows increase glucocorticoids and maintain reproductive output 520 despite experimental increases in flight costs. Functional Ecology 31:235–244.
- Senzaki, M., Y. Yamaura, C. D. Francis, and F. Nakamura (2016). Traffic noise reduces foraging efficiency in wild owls. Scientific Reports 6:30602.
- 523 Shannon, G., L. M. Angeloni, G. Wittemyer, K. M. Fristrup, and K. R. Crooks (2014). Road traffic 524 noise modifies behaviour of a keystone species. Animal Behaviour 94:135–141.

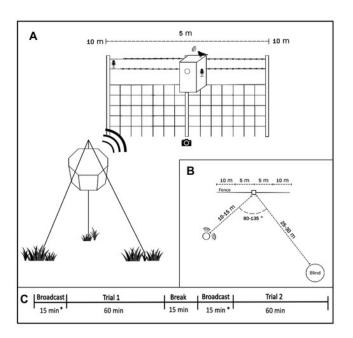

525	Shannon, G., M. F. McKenna, L. M. Angeloni, K. R. Crooks, K. M. Fristrup, E. Brown, K. A.
526	Warner, M. D. Nelson, C. White, J. Briggs, S. McFarland, and G. Wittemyer (2016). A
527	synthesis of two decades of research documenting the effects of noise on wildlife:
528	Effects of anthropogenic noise on wildlife. Biological Reviews 91:982–1005.
529	Sweet, K. A., B. P. Sweet, D. G. E. Gomes, C. D. Francis, and J. R. Barber (2022). Natural and
530	anthropogenic noise increase vigilance and decrease foraging behaviors in song
531	sparrows. Behavioral Ecology 33:288–297.
532	Ware, H. E., C. J. W. McClure, J. D. Carlisle, and J. R. Barber (2015). A phantom road
533	experiment reveals traffic noise is an invisible source of habitat degradation.
534	Proceedings of the National Academy of Sciences 112:12105–12109.
535	Wilson, A. A., M. A. Ditmer, J. R. Barber, N. H. Carter, E. T. Miller, L. P. Tyrrell, and C. D.
536	Francis (2021). Artificial night light and anthropogenic noise interact to influence bird
537	abundance over a continental scale. Global Change Biology 27:3987–4004.
538	With, K. A., and R. P. Balda (1990). Intersexual variation and factors affecting parental care in
539	Western Bluebirds: a comparison of nestling and fledgling periods. Canadian Journal of
540	Zoology 68:733–742.
541	Zanette, L. Y., A. F. White, M. C. Allen, and M. Clinchy (2011). Perceived Predation Risk
542	Reduces the Number of Offspring Songbirds Produce per Year. Science 334:1398–
543	1401.
544	

Figure 1

Figure 1. Layout and timeline of short-term experimental noise playback experiment.

Figure 1. A. Overview of the short-term experimental noise playback design. B. Birds eye view of experimental setup displaying distances of equipment from the nest box C. Timeline for which the repeated measures noise playback experiment occurred. *Denotes 2 min gradual increase in sound levels

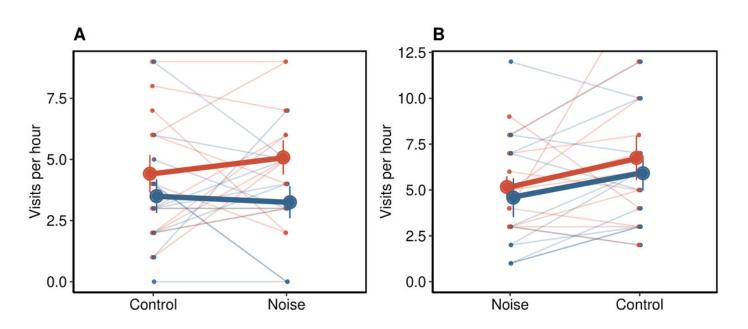


Figure 2

Figure 2. Western Bluebird provisioning rates during first and second trials under both ambient and noise conditions.

(A) Nests where trial order was ambient control first, then noise and the opposite in (B). Individual female and male provisioning rates denoted by small red and blue points, respectively, and connected with light lines. Large points and lines reflect mean provisioning rates per trial and sex. Error bars reflect SE. Trial order strongly influenced provisioning behavior, such that provisioning rates were higher overall on second trials relative to first trials. Provisioning rates were highest during second trial ambient sound conditions, and clearly higher than provisioning rates during noisy first and second trials. Males also tended to provision less than females overall.

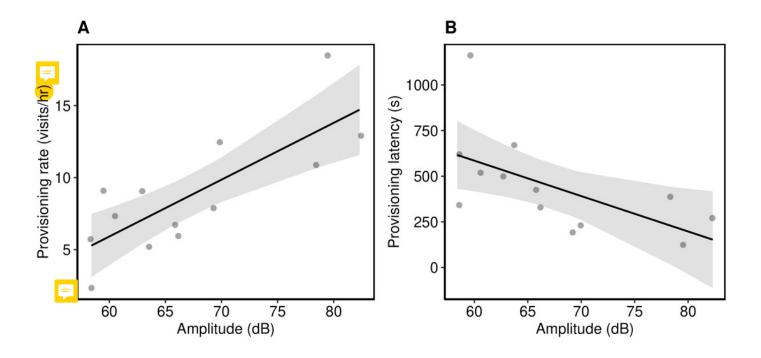


Figure 3

Figure 3. Changes in Western bluebird parental care behavior along a gradient of continuous noise.

(A) Western Bluebird provisioning rates increased with higher amplitudes of continuous noise. (B) The latency to resume provisioning following nest disturbance decreased with continuous noise amplitude. Grey ribbons reflect 95% CI of estimated effects.

Table 1(on next page)

Table 1. Consequences of acoustic masking and predictions of how these non-mutually exclusive mechanisms may impact behavior under both long and short-term noise exposure in Western bluebirds.

- 1 **Table 1**. Consequences of acoustic masking and predictions of how these non-mutually
- 2 exclusive mechanisms may impact behavior under both long and short-term noise exposure in
- 3 Western Bluebirds.

Mechanism	Prediction
Increased vigilance	Because noise increases the perception of risk (Meillere et al. 2015, Quinn et al. 2016), birds should approach the nest more slowly, spending more time within 10m of the nest during the approach and provision less. Similarly, birds should provision less and have a longer latency to resume provisioning under continuous noise exposure.
Reduced foraging	Because increased visual vigilance in noise comes at a cost to foraging rate (Sweet et al. 2022) and noise can reduce foraging efficiency by masking prey sounds (Mason et al. 2016, Senzaki et al. 2016), there should be a decline in provisioning rate, but not necessarily time spent within 10m of the nest box.
Missed detections	Because noise contributes to chicks failing to hear the arrival of parents (Leonard and Horn 2012, Lucass et al. 2016), there should be more failed provisioning attempts with short-term experimental noise exposure and/or increased sound levels.

4

Table 2(on next page)

Table 2. Model selection table for variables explaining provisioning behavior in response to short-term traffic noise playback.

Time within 10m was centered and scaled. +/- shows the direction of the trends. Bolded values show parameters with 95% CIs that do not overlap zero.

Table 2. Model selection table for variables explaining provisioning behavior in response to short-term traffic noise playback. Time within 10m was centered and scaled. +/- shows the direction of the trends. Bolded values show parameters with 95% CIs that do not overlap zero.

3	
4	

Model	K	AICc	ΔΑΙСα	weight
Parent sex (+), treatment (+), trial (+), time w/in 10m (+), treatment*trial (+)	7	460.46	0.00	0.42
Brood size (+), parent sex (+), treatment (+), trial (+), time w/in 10m (+), treatment*trial (+)	8	461.62	1.16	0.23
Parent sex (+), trial (+), time w/in 10m (+)	5	462.41	1.95	0.16
null	2	467.27	6.81	0.00

Table 3(on next page)

Table 3. Model parameter estimates from the top-ranked model in Table 2 for provisioning behavior of Western bluebirds in short-term noise exposure trials.

PeerJ

Table 3. Model parameter estimates from the top-ranked model in Table 2 for provisioning
 behavior of Western Bluebirds in short-term noise exposure trials.

Fixed Effects	Estimate	SE	95% CI	
(Intercept)	1.42	0.14	1.13, 1.70	
Treatment Noise	0.22	0.19	-0.16, 0.59	
Trial 2	0.53	0.19	0.16, 0.90	
Parent male	-0.24	0.09	-0.43, -0.05	
Time w/in 10m	0.12	0.05	0.01, 0.22	
Treatment Noise Trial 2	-0.71	0.32	-1.36, -0.05	

⁴

⁵

Table 4(on next page)

Table 4: Model selection table for variables explaining time a Western Bluebird spent within 10m of the nest box in response to short-term traffic noise playback.

Response was natural log transformed after the quantitative adjustment of adding 1 to all values. The ordinal date was center and scaled. +/- shows the direction of the trends. Bolded values show parameters with 95% CIs that do not overlap zero.

2

3

4

5 6 Table 4: Model selection table for variables explaining time a Western Bluebird spent within 10m of the nest box in response to short-term traffic noise pro/back. Response was natural log transformed after the quantitative adjustment of adding 1 to all values. The ordinal date was center and scaled. **Eshows the direction of the trends. Bolded values show parameters with 95% CIs that do not overlap zero.

Model	K	AIC_c	ΔAIC_c	weight
null	3	359.375	0.000	0.183
Treatment (-), trial (-),				
treatmen <mark>t*</mark> trial (+)	6	359.551	0.176	0.168
Ordinal date (+)	4	360.308	0.933	0.115
Ordinal date (+), treatment (–), trial				
(–), treatment <mark>*t</mark> rial (+)	7	360.479	1.105	0.106
Brood size (+), treatment (–), trial				
(-), treatment <mark>*</mark> trial (+)	7	360.482	1.108	0.105
Trial (+)	4	360.779	1.404	0.091
Brood size (+)	4	360.997	1.623	0.081
Parent sex (+)	4	361.001	1.627	0.081

7

361.322

1.947

0.069

Parent sex (+), treatment (-), trial

(-), treatment*trial (+)

Table 5(on next page)

Table 5. Model parameter estimates from 2nd-ranked model in Table 4 for the time a Western bluebird spent within 10 m of the nest box in short-term noise exposure trials.

Table 5. Model parameter estimates from 2nd-ranked model in Table 4 for the time a Western
 Bluebird spent within 10 m of the nest box in short-term noise exposure trials.

Fixed Effects	Estimate	SE	95% CI
(Intercept)	4.86	0.34	4.17, 5.54
Treatment noise	-0.99	0.48	-1.95, -0.02
Trial 2	-0.77	0.48	-1.73, 0.20
Treatment Noise* Trial 2	2.02	0.79	0.40, 3.64

⁴

Table 6(on next page)

Table 6. Model selection table for variables explaining failed provisioning attempts in response to short-term traffic noise playback for all Western Bluebirds in the study.

Time within 10m and ordinal date were centered and scaled. +/- shows the direction of the trends. Bolded values show parameters with 95% Cls that do not overlap zero.

Table 6. Model selection table for variables explaining failed provisioning attempts in response to short-term traffic noise playback for all Western Bluebirds in the study. Time within 10m and ordinal date were centered and scaled. +/- shows the direction of the trends. Bolded values show parameters with 95% CIs that do not overlap zero.

5
_

2

Model	K	AICc	ΔΑΙСα	weight
Brood size (+), parent sex (-), treatment (+)	6	107.52	0.00	0.14
Parent sex (-), treatment (+)	5	107.72	0.20	0.13
Parent sex (-), treatment (+), trial (-)	6	107.84	0.32	0.12
Brood size (+), parent sex (-), treatment (+),				
trial (–)	7	108.07	0.55	0.11
Brood size (+), parent sex (–), treatment (+), trial (–), treatment*trial (+)	8	108.48	0.96	0.09
Parent sex (-), treatment (+), trial (-), treatment*trial (+)	7	108.67	1.15	0.08
Parent sex (-), time < 10m (+), treatment (+) Parent sex (-), time < 10m (+), treatment (+),	6	108.70	1.18	0.08
trial (–)	7	108.93	1.41	0.07
Parent sex (-), ordinal date (-), treatment (+) Parent sex (-), ordinal date (-), treatment (+),	6	109.05	1.53	0.07
trial (–)	7	109.24	1.72	0.06
Brood size (+), Parent sex (-), time < 10m (+),				
treatment (+)	7	109.35	1.83	0.06
null	3	117.61	10.09	0.00

Table 7(on next page)

Table 7. Model selection tables for provisioning rate, failed provisioning rate and latency to resume provisioning models for Western Bluebirds exposed to continuous noise.

+/- shows the direction of the trends. Bolded parameters reflect those with effects that have 95% CIs that do not overlap zero.

- 1 Table 7. Model selection tables for provisioning rate, failed provisioning rate and pr
- 2 provisioning models for Western Bluebirds exposed to continuous noise. +/- shows me direction of the
- 3 trends. Bolded parameters reflect those with effects that have 95% CIs that do not overlap zero.

Response Candidate Models	K AIC _c	ΔAIC _c	weight
Provisioning rate			
sound amplitude (+)	3 69.09	0.00	1.00
null	2 78.03	8.94	0.00
Failed provisioning rate			
null	2 59.40	0.00	0.72
Lay date (+)	3 61.25	1.85	0.28
Latency to resume provisioning			
sound amplitude (-)	3 184.4	4 0.00	1.00
null	2 186.5	8 2.14	0.00