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ABSTRACT

Recent studies have highlighted the importance of microglia, the resident
macrophages in the brain, in regulating cognitive functions such as learning and
memory in both healthy and diseased states. However, there are conflicting results
and the underlying mechanisms are not fully understood. In this study, we examined
the effect of depleting adult microglia on spatial learning and memory under both
physiological conditions and lipopolysaccharide (LPS)-induced neuroinflammation.
Our results revealed that microglial depletion by PLX5622 caused mild spatial
memory impairment in mice under physiological conditions; however, it prevented
memory deficits induced by systemic LPS insult. Inactivating microglia through
minocycline administration replicated the protective effect of microglial depletion on
LPS-induced memory impairment. Furthermore, our study showed that PLX5622
treatment suppressed LPS-induced neuroinflammation, microglial activation, and
synaptic dysfunction. These results strengthen the evidence for the involvement of
microglial immunoactivation in LPS-induced synaptic and cognitive malfunctions.
They also suggest that targeting microglia may be a potential approach to treating
neuroinflammation-associated cognitive dysfunction seen in neurodegenerative
diseases.

Subjects Animal Behavior, Cell Biology, Neuroscience
Keywords LPS, Neuroinflammation, Memory impairment, Microglia, CSFIR inhibitor, Mice,
Hippocampus

INTRODUCTION

Microglia are self-renewing, resident immune cells in the central nervous system (CNS)
that play essential roles in maintaining brain homeostasis from the embryonic brain
rudiment to the aged brain (Lukens ¢» Eyo, 2022). Under physiological conditions,
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microglia constantly sample the CNS environment, quickly respond to changes, and
maintain homeostasis. They are the most dynamic cells in the adult brain that actively
regulate spine pruning, neuronal excitability, and blood-brain barrier (BBB) (Paolicelli
et al., 2022). However, under pathological conditions such as neurodegenerative diseases,
microglia become dysfunctional, transitioning from an activated state to a neurotoxic state
and contributing to disease progression and cognitive deficit (Colonna ¢» Butovsky, 2017).

The functional states of microglia are plastic and strongly depend on context, such as
the type and extent of CNS insult or damage (Hanisch ¢ Kettenmann, 2007). Traditionally,
microglial activation is classified into M1 and M2 states. M1 activation mainly release
proinflammatory cytokines such as interleukin-1f (IL-1), IL-6, and tumor necrosis factor
alpha (TNF-a), leading to synaptic dysfunction and eventual neuronal death. In contrast,
M2 activation mainly produce anti-inflammatory cytokines such as IL-10 and
transforming growth factor beta (TGF-f), playing anti-inflammatory and neuroprotective
roles. In the context of chronic neuroinflammation, the balance between pro-inflammatory
and anti-inflammatory microglia is disrupted, especially in the hippocampus, resulting in
memory impairment (Cornell et al., 2022; Li et al., 2022a). Recent transcriptome studies
have revealed the coexistence of many different activation states of microglia besides the
traditional M1/M2 paradigm, which may closely associate with their diverse functions in
vivo (Li et al., 2023a).

Neuroinflammation can be initiated by various stimuli and is a complex combination of
acute and chronic inflammatory responses in the CNS (Sochocka, Diniz & Leszek, 2017).
Chronic neuroinflammation has been considered a common detrimental factor
contributing to the pathogenesis of neurodegenerative diseases (e.g., Alzheimer’s disease,
AD) and neuropsychiatric disorders (e.g., Autism spectrum disorder, ASD) characterized
by cognitive disability (Matta, Hill-Yardin ¢» Crack, 2019; Leng & Edison, 2021). Microglia
play a critical role in the onset and progression of neuroinflammation (Aguzzi, Barres ¢
Bennett, 2013). Lipopolysaccharides (LPS), found in the outer membrane of gram-negative
bacteria, is commonly used as proinflammatory stimuli to induce neuroinflammation both
in vivo and in vitro (Skrzypczak-Wiercioch & Salat, 2022). Studies have shown that both
systemic administration (e.g., intraperitoneal, i.p.) and local microinjection (e.g.,
intracerebroventricular, i.c.v.) of LPS can strongly activate microglia in the brain and lead
to cognitive impairments (Zhao et al., 2019; Jung et al., 2023).

While studies have emphasized the importance of microglia in modulating cognitive
functions in both healthy and diseased brains, the results are controversial and the
underlying mechanisms are not fully understood. For example, recent studies revealed that
microglia support recognition memory (Basilico et al., 2022b; Yegla et al., 2021), mediate
fear memory forgetting (Wang et al., 2020), facilitate fear memory extinction (Yegla et al,
2021; Allen et al., 2020), and regulate spatial memory in healthy rodents (Elmore et al,
2014; Rice et al., 2015). However, other studies with microglia depletion have suggested
that microglia might not play a key role in shaping these cognition-related behaviors (Allen
et al., 2020; Elmore et al., 2014; De Luca et al., 2020; Feng et al., 2017; Willis et al., 2020).
Similarly, microglial depletion in rodent models of brain disorders also generates
heterogeneous effect on disease-associated cognitive dysfunction. For instance, studies
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have reported memory improvement by depletion of microglia in traumatic brain injury
mice (Willis et al., 2020; Henry et al., 2020), rotenone-induced Parkinson’s disease (PD)
model mice (Zhang et al., 2021), and 3xTg-AD model mice (Dagher et al., 2015). However,
others have found that microglia depletion fails to rescue memory deficit in epilepsy rats
(Wyatt-Johnson et al., 2021) and APP/PS1-AD model mice (Unger et al., 2018), on the
contrary, it worsens motor function in MPTP-induced PD model mice (Yang et al., 2018).
All these contentious findings demonstrate the gap of our knowledge and the need of more
studies on microglial function in cognition. To this end, we aim in this study to explore the
role of microglia in shaping spatial learning and memory.

The colony-stimulating factor 1 receptor (CSFIR) is crucial for microglial proliferation
and survival. The administration of PLX5622, a small molecule inhibitor of CSF1R, was
reported to induce a rapid depletion of microglial (Elmore et al., 2014; Erblich et al., 2011).
Minocycline, a tetracycline antibiotic with anti-inflammatory properties, was confirmed to
inhibit microglial activation and the release of pro-inflammatory cytokines (Tikka et al.,
2001; Simoncicovd et al., 2022). Therefore, we investigated the effect of PLX5622 and
minocycline on spatial learning and memory in mice under both physiological conditions
and LPS-induced neuroinflammation. Our findings support the dual role of microglia in
regulating spatial learning and memory in the adult brain.

MATERIALS AND METHODS

Animal care and housing

C57BL/6] mice were chosen for this study due to their well-characterized genetic
background, consistent immune response, and susceptibility to LPS-induced
neuroinflammation (da Silva et al., 2024; Piirsalu et al., 2022). We obtained C57BL/6] mice
at 8 weeks of age from Vital River Laboratory Animal Technology Co. (Beijing, China).
Upon arrival, the animals were acclimatized for 2 weeks before the start of the experiments.
Mice were housed in groups of 4 per cage under constant conditions of temperature (21 +
2 °C) and humidity (50 + 10%), with a 12-h light/dark cycle, and ad libitum access to food
and water. All behavioral experiments were conducted using male adult mice (3-4 months
old, weighing 25-30 g), during the light cycle from 9:00 am to 6:00 pm. The Chancellor’s
Animal Research Committee at Qingdao University approved all animal protocols
(#3207090367) used in this study, following the National Institutes of Health guidelines.

LPS administration

Intraperitoneal injections of 0.5 mg/kg LPS (Sigma, Tokyo, Japan) were given daily for 7
days, with the dosage adjusted based on previous studies (Zhao et al., 2019). The final LPS
injection was done 24 h before the start of behavioral experiments. Injections were
performed with a 27-gauge needle in the lower right quadrant of the abdomen to avoid
vital organs, using a volume not exceeding 10 mL/kg. Mice were gently restrained during
injections to minimize stress, and their condition was closely monitored afterward for any
signs of distress or adverse reactions. If any animal showed discomfort, appropriate care
was provided, including human euthanasia as per guidelines of the Chancellor’s Animal
Research Committee at Qingdao University. No anesthesia was given for i.p. injections.
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PLX5622 and minocycline treatment

PLX5622 is a highly selective CSF1R inhibitor known for its effectiveness in depleting
microglia (Spangenberg et al., 2019). Mice were fed with PLX5622 (1,200 mg/kg) or control
chow (Dyets Inc., Bethlehem, PA, USA) for 3 weeks. The 3-week administration period is
chosen based on both previous studies (Badimon et al., 2020) and our preliminary results,
which demonstrate that this duration is minimal to achieve significant microglial depletion
without causing adverse effects on overall health. The intraperitoneal injections of

100 mg/kg minocycline (Sigma, Tokyo, Japan) were administered daily for 7 days (Wang
et al., 2020; Dagher et al., 2015). The injection protocol and post-injection monitoring for
minocycline were same as for LPS injection.

Different batches of mice were used in the following in vivo and ex vivo experiments.
The hippocampal tissues used in different studies were obtained from separated batches of
mice brains. Double-blind experiments were conducted by separate groups of researchers
to minimize bias and ensure objective results. Specifically, JL and MD administered the
drugs. NL conducted the behavioral and electrophysiological assessments. FH carried out
the immunostaining, quantitative reverse transcription PCR, and enzyme-linked
immunosorbent assays. Data analysis was handled by TZ, VL and MZ: TZ and VL
analyzed the behavioral results, VL analyzed the electrophysiological results, and MZ
analyzed the remaining results. NL, FH, TZ, VL and MZ were blinded to the treatment
conditions during all assessments and data analyses.

Behavioral assessments

All behavioral assessments were done according to our previous studies (Lu et al., 2019; Liu
et al., 2024). To evaluate the overall behavioral state of the mice and ensure that differences
in learning and memory performance are not attributed to changes in motor function or
anxiety levels, we first conducted the Elevated Plus Maze (EPM) and Open Field (OF) tests
before cognitive assessment. The EPM consists of a central area, two closed arms with walls
(16.5 cm height), and two open arms without walls. Each arm measures 30 cm in length
and 6 cm in width, while the main frame stands at a height of 50 cm from the ground. Mice
were released from the center and allowed to freely explore the maze for 10 min. The time
spent in each arm and total travel distance were analyzed.

The OF test was conducted in a 28 x 28 x 35 cm square arena, divided intoa 12 x 12 cm
center zone and the left periphery zone. Mice were released from the center and allowed to
freely explore for 10 min. The total distance traveled and time spent in both zones were
analyzed.

The Morris water maze (MWM) circular water pool is 120 cm in diameter and 30 cm
deep, divided into four quadrants. Mice undergo training with an invisible platform placed
just below the water’s surface, aiming to climb onto it to escape the water. Training consists
of 4 trials/2 blocks per day for 7 days, with an inter-block interval of 1 h and an inter-trial
interval of 30 s. A trial ends when mice reach the platform or after a cut-off time of 60 s. To
assess spatial memory, a probe test is conducted 1 h after training on the 37 5th and 70
days respectively. In these tests, the hidden platform is removed and mice are allowed to
navigate the pool for 60 s.
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Mice were acclimated to the experimental environment for at least 1 h before behavioral
tests. Their behaviors were recorded and analyzed using Noldus EthoVision XT software
by two independent researchers unaware of the treatment details.

Electrophysiological recordings ex vivo

Mice were deeply anesthetized with 3% isoflurane and intracardially perfused with saline.
Coronal hippocampal slices (300 pm thick) were freshly prepared using a Leica VT-1000
vibratome as described previously (Cui et al., 2016). Slices were perfused with 32 °C
artificial cerebrospinal fluid (ACSF) containing 120 mM NaCl, 1.25 mM NaH,PO,, 3.5
mM KCl, 2.5 mM CaCl,, 26 mM NaHCO3, 1.3 mM MgSO,, and 10 mM glucose. Field
excitatory postsynaptic potentials (fEPSPs) at the hippocampal Schaffer collateral-CA1
(SC-CA1) pathway were triggered with a FHC stimulating microelectrode (Li et al., 2022b,
2023b). The input-output (I/O), paired-pulse ratio (PPR) and long-term potential (LTP)
were recorded. LTP was induced by 100 Hz stimulation. All stimulating pulses were 100 ps
in duration. Data were acquired using a MultiClamp 700B amplifier and pCLAMP 10.0
software (Molecular Devices, San Jose, CA, USA). All chemicals used were purchased from
Sigma.

Immunostaining

Immunostaining was done according to our previous study (Li et al., 2023b; Zhao et al.,
2014). Mice were deeply anesthetized with 3% isoflurane and then intracardially perfused
with saline and 4% paraformaldehyde. The brains were then post-fixed in 4%
paraformaldehyde for 4-6 h, dehydrated in 30% sucrose for 48 h, and sectioned into 40 um
slices. The CA1 region of the dorsal hippocampus were identified based on anatomical
landmarks. Coronal sections of the dorsal hippocampus were taken from bregma —1.34 to
—2.8 mm according to mouse brain atlas by Paxinos & Franklin (2019), using the corpus
callosum for orientation. The CA1 region appears as a crescent shape running parallel to
the curved edge of the dorsal hippocampus, characterized by a thin band of densely packed
pyramidal neurons. The border between the CA1 and CA3 regions is identifiable by
changes in the density and orientation of pyramidal cells. These brain sections were
incubated overnight at 4 °C with a primary anti-Ibal antibody (1:400; Millipore,
Burlington, MA, USA), followed by a 1-h incubation with FITC-conjugated donkey
anti-mouse secondary antibody (Jackson Immuno Research, West Grove, PA, USA) at
room temperature. Images were captured using a virtual slide microscope (VS120;
Olympus, Tokyo, Japan) equipped with a 20x objective lens. Three representative coronal
sections spaced equally along the anteroposterior axis of the dorsal hippocampus and three
representative images taken per section were selected for quantification purposes. The
density of microglia in the hippocampus was analyzed as Ibal™ cells/mm® using Image] 1.5
software.

Quantitative reverse transcription PCR (RT-qPCR)
Quantitative reverse transcription PCR was done according to our previous study (Liu
et al., 2024). Mice were deeply anesthetized with 3% isoflurane. The hippocampal tissue
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was freshly isolated and quickly collected in enzyme-free EP tube and stored at —80 °C
until use. Total RNA was extracted using the PureLink RNA Mini Kit (Thermo Fisher
Scientific, Waltham, MA, USA), followed by quantity and quality measurement with a
NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA).
Single-stranded cDNA was synthesized from 1 ug of RNA with SuperScript III reverse
transcriptase (Invitrogen, Waltham, MA, USA). The reaction condition was as follows:
25 °C for 10 min, 50 °C for 30 min, 85 °C for 5 min. PCR-based quantification of
transcripts was performed using a Thermal Cycler Dice Real Time System (Roche,
Indianapolis, IN, USA) and QuantiFast SYBR Green PCR kit (Qiagen, Hilden, Germany).
The PCR cycling parameters were as follows: initial denaturation at 95 °C for 10 min
followed by 40 cycles of PCR reaction at 95 °C for 15 s, 60 °C for 1 min, and 72 °C for
1 min. The primer sequences used were as follows: Iba-1-F GACGACCCTTCTTCGGG
TTT, Iba-1-R GAGAGCCCACAATCTTGCCT; I1I-6-F GCCTTCTTGGGACTGATGCT,
II-6-R GCCATTGCACAACTCTTTTCTCA; Cd68-F ACTTCGGGCCATGTTTCTCT,
Cd68-R GGGGCTGGTAGGTTGATTGT; Tmem119-F AGCCTACTACCCATCCTCGT,
Tmem119-R CTGGGTAGCAGCCAGAATGT; Bdnf-F GGCTGACACTTTTGAGCACGTC,
Bdnf-R CTCCAAAGGCACTTGACTGCTG; Syp-F TCCTGCAGAACAAGTACCGAGA,
Syp-R GGCCATCTTCACATCGGACAG. 27**“T method was used to normalize CT values
against housekeeping gene Gapdh and to quantify relative expression. Triplicates were
done for each sample. Assays were carried out in our own lab by investigators unaware of
experimental design.

Enzyme-linked immunosorbent assay (ELISA)

Enzyme-linked immunosorbent assays (ELISAs) were done according to our previous
study (Guo et al., 2019). The hippocampal tissue was freshly isolated and homogenized in
0.5 ml of ELISA buffer and centrifuged at 3,500x g for 10 min. The resulting supernatant
was collected and stored at —80 °C until use. Concentrations of IL-6, AB1-40, and Ap1-42
in the hippocampus were measured using mouse ELISA kits from Wuhan Colorful Gene
Biological Technology Co., China. Absorbance values were measured at 450 nm using a
96-well microplate spectrophotometer, with triplicates performed for each sample.

Euthanasia

Humane endpoints were set to ensure animal welfare. Mice displaying severe distress (e.g.,
over 20% weight loss, inability to eat or drink, severe lethargy, or unresponsiveness) were
immediately euthanized using carbon dioxide (CO,) asphyxiation for 5 min followed by
cervical dislocation. No mice met these criteria. At the study’s end, any remaining mice not
needed for further research were humanely euthanized using CO, for 5 min to ensure
minimal stress and suffering.

Statistical analyses
Data were expressed as mean + S.E.M. and analyzed with GraphPad Prism 9.0 software.
Sample size, ANOVAs or t-tests used for statistical analyses were described, with normal
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distributions and equal variances confirmed before performing parametric statistical
analyses. A significance level of P < 0.05 was considered statistically significant.

RESULTS

Adult depletion of microglia with PLX5622 causes mild spatial memory
impairment

Consistent with previous reports (Lopez-Aranda et al., 2023), we initially demonstrated
that treatment with PLX5622, a highly selective brain-penetrant inhibitor of the CSF1R, for
3 weeks resulted in widespread depletion of microglia throughout the brain, including
approximately 83% reduction in the hippocampus (Figs. 1A-1C; Unpaired ¢ test, PLX5622
chow vs. control chow, P < 0.0001). Under physiological conditions, microglial depletion
in adult mice did not impact locomotor activity or anxiety-related behaviors (Figs. 1E and
1F), nor did it affect spatial learning (Fig. 1G) or swimming speed (Fig. 1I) in the WMW
task. However, during the probe test, it was found that while both groups of mice were able
to form long-term spatial memories (Fig. 1H; one sample ¢ test, P < 0.001 in comparison to
random 50%), PLX5622-treated mice spent less time searching in the training quadrant
than controls (Fig. 1H; Unpaired ¢ test, PLX5622 vs. CON, ¢ = 2.61, P < 0.05), indicating
mild impairment in spatial memory.

Depletion or inactivation of microglia blocks LPS-induced spatial
memory impairment

In previous studies, we have demonstrated that systemic administration of LPS (0.5 mg/kg)
daily for 7 days impairs spatial learning and memory in C57BL6 mice (Liu et al., 2024). To
investigate the effect of microglial depletion on LPS-induced memory impairment, we
initiated PLX5622 treatment 2 weeks prior to LPS administration. MWM training started
24 h after the conclusion of LPS injection (Jung et al., 2023) (Fig. 2A). Our results indicate
that microglial depletion prevented LPS-induced spatial learning and memory impairment
(Figs. 2B-2D). Specifically, PLX5622-pretreated mice (PLX5662+LPS) exhibited reduced
latency to platform compared to controls (CON+LPS) over the course of 7 training days
(Fig. 2B; Two-way repeated measure ANOVA with Sidak’s multiple comparisons test,

P < 0.05 to P < 0.001 from training day 5 to day 7). During the probe test on day 7,
PLX5622+LPS mice spent a significantly higher percentage of time navigating the training
quadrant than CON+LPS mice (Fig. 2C; unpaired t test, t = 3.74, P < 0.01). Both groups of
mice displayed similar swimming speed during the probe test (Fig. 2D). Therefore, our
findings demonstrate that adult depletion of microglia prevents LPS-induced impairment
in both spatial learning and spatial memory.

Systemic administration of LPS has been reported to induce significant microglial
activation in the hippocampus (Zhao et al., 2019; Jung et al., 2023). We sought to inhibit
microglial activation by administering minocycline during LPS insult. Previous research
has demonstrated that minocycline, the broad-spectrum tetracycline antibiotic with
pleiotropic effects, is capable of inhibiting microglial activation and M1 polarization
(Schmidtner et al., 2019; Kobayashi et al., 2013). We found that pretreatment with
minocycline for 1 week replicated the blocking effect of PLX5622 on LPS-induced

Zong et al. (2024), Peerd, DOI 10.7717/peerj.18552 7/21


http://dx.doi.org/10.7717/peerj.18552
https://peerj.com/

Peer/

X PLX5622 or ctrl chow et 1 . & PLX5622 or ctrl chow
3 wooks ba-1 immunostaining Tweeks ] 2an ] 2 d
EPM OF MWM

b

Iba-1/

EPM OF [ center
300 3 open 1 peri
o ok > [ closed __ 600 o
< 1 o z 0,0
E [ ] E oo @ (%)
E = 200 o E 400 o°
2 400 = 3 =
[\ ] L] ] o 3
8 L z o o o 2
4 B 200 510] 9 |° 2 o 5 200{ oo
. : ' 5 F’%J |'3'| g R
£ “ oL 1 1o o0l Y ﬁ
CON PLX5622 CON PLX5622 CON PLX5622
g h i
MWM MWM MWM
80 100
-= CON - [ adjL _25
- PLX5622 s = [ Training @
~ 60 o 757 — ; £ 2 o
< £ Heokkok Kk [ adjR % ®
) = 50 PP : 1
2 40 = 8
] & 00 » %00 o®
® 5 o 10
- 20 ® 254 b eeree.d o.{..lbd- - 2
5 L& ki e
>
o o-—@ : ol < o . .
1 2 3 4 5 6 7 CON PLX5622 CON PLX5622

Days

Figure 1 Adult microglial depletion causes mild spatial memory impairment. (A) Experimental design. (B) Representative images. Ibal (green),
DAPI (blue). Scale bar, 200 um. (C) Ibal™ cell density in the hippocampus. n = 4 mice per group. (D) Behavioral experiment design. (E) EPM. (F) OF.
(G-I) MWM. n = eight mice per group. ****P < 0.0001, ***P < 0.001 or *P < 0.05 means significant difference.
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cognitive dysfunction (Figs. 2E-2G). Similar to PLX5622, minocycline administration
reduced latency to platform during MWM training (Fig. 2E; Two-way repeated measure
ANOVA with Sidak’s multiple comparisons test, minocycline+LPS vs. vehicle+LPS,

P <0.05to P <0.01), and increased training quadrant searching time during the probe test
(Fig. 2F; Unpaired ¢ test, minocycline+LPS vs. vehicle+LPS, t = 3.40, P < 0.01). Notably,
minocycline treatment did not affect swimming speed (Fig. 2G). Overall, our results
demonstrate that either depletion or inactivation of microglia can protect against
LPS-induced spatial learning and memory impairment, highlighting the crucial role of
proinflammatory activation of microglia in mediating LPS-induced cognitive deficits.

PLX5622 treatment protects against LPS-induced synaptic dysfunc-
tion in the hippocampus

Next, we examined the possible impact of microglial depletion on LPS-induced synaptic
dysfunction in hippocampal SC-CA1 pathway. Mice were fed with PLX5622 or control
chow for 3 weeks prior to ex vivo field recordings in acute hippocampal slices isolated from
LPS-insulted mice (Fig. 3A). Our results revealed that microglial depletion led to a slight
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increase in basal synaptic transmission (Fig. 3B; Two-way repeated measure ANOVA with
Sidak’s multiple comparisons test, PLX5622+LPS vs. CON+VEH, P < 0.0001 at 100 pA
stimulation intensity) and a slight facilitation of paired-pulse ratio (Fig. 3C; PLX5622+LPS
vs. CON+VEH, P < 0.05 at ISI of 50 ms) in SC-CAL1 synapses. Notably, microglial
depletion ameliorated LPS-induced LTP deficit (Figs. 3D-3F). Specifically, both the initial
5-min post-tetanic potentiation (PTP) and the last 20-min LTP were greater in PLX5622
+LPS mice than in CON+LPS mice (Fig. 3B; Unpaired ¢ test, PTP: t = 3.64, P < 0.01; LTP:
t = 3.26, P < 0.01). Therefore, our findings indicate that microglial depletion protects
against LPS-induced synaptic dysfunction in the hippocampus, contributing to memory
improvement.

PLX5622 treatment suppresses LPS-induced proinflammatory activa-
tion of microglia in the hippocampus

Consistent with previous findings (Skrzypczak-Wiercioch & Salat, 2022; Lopez-Aranda
et al., 2023), our RT-qPCR assays revealed upregulation of Iba-1, II-6, and cd68, as well as
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downregulation of Tmem119 in the hippocampus following systemic LPS administration
(Figs. 4A-4D; one sample t test, CON+LPS mice vs. control naive mice, P < 0.01),
indicating proinflammatory activation of microglia. Additionally, we observed reduced
expression of Bdnfand Synaptophysin (Syp) in the hippocampus of LPS-treated mice (Figs.
4E and 4F; one sample t test, CON+LPS vs. control naive mice, P < 0.01), suggesting
synaptic deficit due to LPS insult. Notably, PLX5622 pretreatment inhibited LPS-induced
microglial activation. Specifically, PLX5622+LPS mice exhibited significantly reduced
expression of Iba-1, Tmem119, Il-6, and ¢d68 in the hippocampus (Figs. 4A-4D; Unpaired
t test, PLX5622+LPS vs. CON+VEH, P < 0.01 to P < 0.0001), along with a dramatic
increase in Syp expression (Fig. 4F; Unpaired ¢ test, t = 8.01, P < 0.0001). Moreover, our
ELISA assays showed decreased levels of IL-6 (Fig. 4G) and AP1-40 (Fig. 4I) in the
hippocampus of PLX5622+LPS mice (Unpaired ¢ test, PLX5622+LPS vs. CON+LPS, IL-6:
t = 4.20, P < 0.01; AP1-40: t = 4.61, P < 0.01), indicating that microglial depletion can
mitigate LPS-induced microglial activation, which may contribute to improved synaptic
and cognitive dysfunction.

DISCUSSION

The CSF1R belongs to the class III transmembrane tyrosine kinase receptor family,
predominantly expressed in microglia within the CNS (Chitu et al., 2016). CSFIR is
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essential for the proliferation, differentiation, and survival of microglia (Stanley et al,
1997). Studies with CSF1R knockout mice have demonstrated complete absence of
microglia at birth, accompanied by developmental defects (Erblich et al., 2011).
Continuous CSF1/CSF1R or interleukin (IL)-34/CSFIR signaling is also required to
maintain survival of microglia in adult brain (Chitu et al., 2016; Bohlen et al., 2017). The
application of CSFIR inhibitors allows for time-dependent and reversible depletion of
microglia in the CNS (Elmore et al., 2014). The inhibitors PLX3397 and PLX5622 are
widely used to efficiently remove the majority of microglia from the brain (Elmore et al.,
2014; Spangenberg et al., 2019). Consistent with previous reports (Elmore et al., 2014;
Spangenberg et al., 2019; Rice et al., 2017), our study found that depleting microglia with

Zong et al. (2024), Peerd, DOI 10.7717/peerj.18552 11/21


http://dx.doi.org/10.7717/peerj.18552/fig-4
http://dx.doi.org/10.7717/peerj.18552
https://peerj.com/

Peer/

more selective CSFR1 inhibitor PLX5622 for 3 weeks did not affect locomotor activity or
anxiety-like behavior. Therefore, we propose that the observed dual effects of microglial
depletion on spatial learning and memory should be specific, highlighting the importance
of microglia in regulating cognition under both physiological conditions and LPS-induced
inflammation.

First, our findings demonstrate that adult microglial depletion for 3-4 weeks slightly
impairs spatial memory, providing further evidence to support the notion that microglia in
the healthy brain modulate memory strength and memory quality (Cornell et al., 2022).
While many studies have investigated the effect of adult microglial depletion on spatial
learning and memory under physiological conditions, results so far are rather divergent.
For example, some research has reported no effect of microglial depletion for 3 weeks on
spatial learning and memory in mice (Elmore et al., 2014; Willis et al., 2020), while others
have found memory impairment in both young and aged rats after 3 weeks of microglial
depletion (Yegla et al., 2021). In contrast, longer periods of depletion (up to 24 weeks) have
been found to improve spatial learning and memory (Elmore et al., 2014; Rice et al., 2015;
Spangenberg et al., 2019). The reason for this discrepancy is unclear; it may be due to
differences in the duration of microglia depletion or variations in animal sex or age
(Basilico et al., 2022a).

Secondly, we demonstrate that depleting adult microglia protects against LPS-induced
dysfunction in both synaptic plasticity and spatial learning and memory. Previous studies
have indicated that systemic LPS treatment promotes M1 activation while inhibiting M2
activation of microglia (Zhao et al., 2019). In our study, we found an increase in IL-6
expression in the hippocampus of LPS-treated mice, but no significant change in TNF-« or
IL-1P. The discrepancy may be attributed to the timing of observations following LPS
administration. We assessed cytokines expression in the mice hippocampus after
completing MWM training and probe test, at a delayed time point rather than shortly after
LPS injection. Importantly, we discovered that the upregulation of IL-6 induced by LPS
coincided with increased expression of Ibal, Cd68, as well as decreased expression of
Tmem119. These findings indicate the proinflammatory activation of microglia. More
importantly, our results demonstrate that PLX5622 treatment not only reverses
LPS-induced aberrant expression of II-6, Ibal, and Cd68 in the hippocampus, it also
promotes synaptophysin expression, a marker protein in presynaptic vesicles (Sheppard,
Coleman & Durrant, 2019). These changes could contribute to improved synaptic
plasticity, including both PPR and LTP, and eventually lead to improved spatial learning
and memory.

Furthermore, we confirm that inhibiting microglial activation and M1 polarization by
minocycline mimics the protective effect of microglial depletion on LPS-induced cognitive
dysfunction. Minocycline is a second-generation tetracycline antibiotic with high lipid
solubility, allowing it to cross the BBB effectively (Garrido-Mesa, Zarzuelo & Gdlvez, 2013).
In the CNS, minocycline exhibits diverse pharmacological effects beyond its antibacterial
properties. It primarily suppresses microglial activation by inhibiting several
proinflammatory cytokines, including IL-1p, IL-6, CCL8, and CXCL4 (Bergold, Furhang ¢
Lawless, 2023; Bergold, 2016). Minocycline mitigates neuroinflammation by
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downregulating Notch signaling in microglia, inactivating MAPK pathway, and
suppressing Nrf2-dependent antioxidation and NF-xB activity to reduce microglial M1
polarization (Liang et al., 2023; Tian et al., 2017). Altogether, we conclude that
proinflammatory activation of microglia is determinant to LPS-induced memory
impairment, and microglial depletion or inactivation is beneficial under persistent
neuroinflammation conditions such as neurodegenerative diseases.

Chronic activation of microglia often leads to a sustained release of pro-inflammatory
cytokines and reactive oxygen species, contributing to neuronal damage and synaptic
dysfunction (Leng ¢» Edison, 2021). The application of PLX5622 and minocycline can
mitigate chronic activation of microglia, decrease overall inflammatory burden, restore
homeostasis in the CNS, and protect neurons against damage or loss (Simoncicovd et al.,
2022; Pang et al., 2012). Supportively, pharmacological depletion or inactivation of
microglia has been proven to reduce amyloid plaque load at early pathological stages of AD
model mice (Kater et al., 2023). In addition, studies have indicated that microglial
depletion or inactivation facilitates neuroprotective pathways, reduces abnormal synaptic
pruning, increases dendritic spine density, and promotes neurogenesis (Rice et al., 2015;
Henry et al., 2020; Elmore et al., 2018; Zheng et al., 2022). PLX3397 has been approved by
the FDA for the treatment of tenosynovial giant cell tumor (TGCT), though it carries a
black box warning due to the risk of severe fatal liver damage (Spierenburg et al., 2022).
Clinical studies on PLX5622 are still limited. A safety evaluation in healthy adults
(NCT01282684) has been completed, but the results have not yet been disclosed.
Minocycline has been more extensively studied in human trials, particularly in psychiatric
and neurodegenerative diseases, including major depressive disorder (MDD), multiple
sclerosis (MS), and AD (Howard et al., 2020; Moller et al., 2016; Hellmann-Regen et al.,
2022). Short-term (9 months) use of minocycline has been well tolerated (Gordon et al,
2007), but long-term (2 years), high-dose (400 mg) use may be less tolerable in elderly
patients (Howard et al., 2020). Given the nonspecific effects of both minocycline and
CSF1R inhibitors on peripheral immune cells, further clinical research is warranted to fully
assess their safety and efficacy in CNS applications.

Inflammation-associated cognitive dysfunction is challenging, but there are several
preventive and diagnostic measures that can help mitigate its detrimental effects. Recent
studies have reported that healthy lifestyle such as anti-inflammatory diet, regular physical
exercise, adequate sleep, and stress management helps to reduce inflammation and
abnormal activation of microglia, and support cognitive health. Controlling chronic
conditions like diabetes and obesity also helps to prevent inflammation-related cognitive
decline (Tan et al., 2023). Blood tests, neuroimaging and cognitive assessments are useful
in early detection of inflammation-associated cognitive dysfunction (Patnode et al., 2020).
However, whether these measures can prevent or diminish neurodegeneration and
associated memory impairment is still uncertain.

It is worth noting that microglial depletion is originally proposed as a tool to study
microglial function and as a strategy to re-establish homeostasis in the diseased brain.
However, it actually produces distinct effects on cognition ranging from protective to
ineffective or even detrimental due to the high dynamics and heterogeneity of microglia in
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vivo (Basilico et al., 2022a). Recent studies have shown that microglia depletion restores
cognitive decline in LPS-insult mice (Chen et al., 2023), PD model mice (Zhang et al,
2021), aged 3xTg-AD model mice (Dagher et al., 2015), but not in 5XFAD-AD model mice
(Spangenberg et al., 2019). New tools for manipulating microglia with more specificity and
higher spatial and temporal resolution will become essential for future studies.
Additionally, our study has several limitations that should be considered. The LPS-induced
inflammation mouse model may not fully capture the complexity of human
neuroinflammation conditions. Our focus on a specific timeframe for microglial depletion
restricts the understanding of temporal aspects of treatment efficacy. Moreover, further
studies are needed to illustrate the precise molecular and cellular mechanisms mediating
the involvement of microglia in spatial learning and memory.

In conclusion, our findings provide new insight into the role and mechanism of
microglial activation in LPS-induced spatial learning and memory impairment. Targeting
microglia may provide a potential strategy for accurately treating inflammation-associated
cognitive dysfunction.

ABBREVIATIONS

AB Amyloid Beta

ACSF Artificial Cerebrospinal Fluid
AD Alzheimer’s Disease

ASD Autism Spectrum Disorder
BBB Blood-Brain Barrier

BDNF Brain-derived neurotrophic factor
CCL8 C-C Motif Chemokine Ligand 8
CDé68 Cluster of differentiation 68
CNS Central Nervous System

CO, Carbon dioxide

CSF1R Colony-Stimulating Factor 1 Receptor
CXCl4 C-X-C Motif Chemokine Ligand 4

DAPI 4,6-diamidino-2-phenylindole

EPM Elevated Plus Maze

ELISA Enzyme-Linked Immunosorbent Assay
fEPSP Field Excitatory Postsynaptic Potential
GAPDH  Glyceraldehyde-3-Phosphate Dehydrogenase

Iba-1 Ionized Calcium Binding Adapter Molecule 1
icv. intracerebroventricular

i.p. intraperitoneal

IL-18 Interleukin-1 beta

IL-6 Interleukin-6

1/0 curve Input/output curve

LPS Lipopolysaccharides

LTP Long-term potentiation
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MAPK Mitogen-Activated Protein Kinase

MS Multiple sclerosis

MWM Morris Water Maze

NF-xB Nuclear Factor kappa-light-chain-enhancer of activated B cells

Nrf2 Nuclear factor erythroid 2-related factor 2
PD Parkinson’s Disease

PPR Paired-pulse ratio

PTP Post-tetanic potentiation

qPCR Quantitative Polymerase Chain Reaction

RT-qPCR Reverse Transcription-Quantitative Polymerase Chain Reaction
SC-CA1  Schaffer collateral-CA1 Pathway

Syp Synaptophysin

TGF-B Transforming Growth Factor Beta

Tmem119 Transmembrane protein 119

TNF-a Tumor Necrosis Factor Alpha
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