Effect of GR24 on the growth and development of licorice under differentlow phosphorus concentrationsstress

4 5

Yuting Jing^{1,2}, Man Li^{1,2}, Yong Wu², Chengming Zhang², Chengshu Qiu², Hengming Zhao^{1,2}, Li Zhuang1^{*}, Hongling

¹College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China, ²Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticulural Biological Resources, Chengdu Normal University, Chengdu, Sichuan, China

7 8 9

6

1 2

3

Corresponding author:

10 Li Zhuang¹

11 Shihezi, Xinjiang, 832000, China

12 2214403407@gg.com

13 Hongling liu

14 Chengdu, Sichuan, 610000, China

<u>llhhll7878@163.com</u>

15 16 17

18

19

20

21

22

23

24

25

26

27

28 29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Abstract:

Background. Glycyrrhiza-is, a perennial herbaceous medicinal plant, which is widely usedextensively utilized in the pharmaceutical industry. The growth of Glycyrrhiza is often limitedfrequently constrained by the soil phosphorus effectiveness availability, as a significant portion of the soil because most of the arable land in China is in asuffers from phosphorus deficitedeficiency.

Method. In this This study, utilized Ural Glycyrrhiza uralensis Fisch was used as the research object, subject and GR24 (a synthetic Srigolactones) was applied under three environments, simulating no phosphorus (P1), low phosphorus (P2), normal phosphorus supply (P3), to investigateexamined the effect of GR24 on the growth and development of licorice and to getapplication of GR24, a synthetic strigolactone, under three phosphorus conditions: none (P1), low (P2), and normal (P3). The research aimed to ascertain the optimal concentration of GR24 application, which can provide for promoting licorice growth and development, thereby providing a theoretical basis for the cultivation of licorice. foundation for its agricultural management. Results. The optimal GR24 concentration of GR24 underfor P3 and P2 treatments conditions was identified as G3, which led to increased enhanced growth indices, organmetrics, chlorophyll a and b content, as well as enhanced levels, and while also boosting antioxidant enzyme activityactivities in licorice. Moreover, Specifically under P3 treatment, it significantly promoted the accumulation of , significant increases in liquiritigenin and glycyrrhizic acid, while under P2 treatment, it promoted the accumulation of Isoliquiritigenin levels were observed. Under P2, increases were noted in isoliquiritigenin, liquiritigenin, and liquiritin. It was shown by the transcriptome levels. Transcriptome analysis that there were revealed differential expression, with 137 and 270 cases of Isoliquirtin, liquirtrigenin, liquirtin under P3 and P2 137 and 294 genes were up-regulated and 77 and 294 genes were down-regulated underin the P3 and P2 treatments, respectively. GO functional enrichment revealed that identified 132 and 436 DEGs were annotated, differentially expressed genes for P1 and P2 respectively, and while KEGG was mainly pathways were predominantly enriched in the pathways of phytopathogenplant-pathogen interactions and phenylpropanoid synthesis, respectively. The effects of P1 treatment spraying with GR24 on the Glycyrrhiza uralensis Fisch growth index, phosphorus content accumulation, chlorophyll a and b content, and antioxidant enzyme activity promotion wasbiosynthesis. Application of GR24 in P1 conditions did not

significant, significantly affect growth indices but significantly promoted the accumulation ofdid enhance

Formatted: Font: Not Italic

Commented [DB1]: Needs defining

Commented [DB2]: gene

Commented [DB3]: correct should be P3 and P2

glycyrrhetic acid, <u>Isoliquirtin</u>, <u>Iiquirtin</u>, <u>Iiquirtin</u>, <u>Iiquirtin</u>, <u>and Iiquirtin</u> <u>accumulation</u>. Transcriptome <u>analysisprofiling in this treatment</u> identified 465 up-regulated <u>genes</u> and 1,109 down-regulated genes. GO <u>function</u> annotation <u>involvinginvolved</u> 1,108 <u>DEGs</u>, <u>whiledifferentially expressed genes</u>, and KEGG analysis <u>mainlywas primarily</u> enriched in the plant-pathogen interaction pathway. <u>In addition, analysis of the changes in Furthermore</u>, transcription <u>factors showed that there were changes factor analysis revealed alterations</u> in the C2H2, NAC, and MYB families <u>related to</u>, <u>which are associated with phosphorus response</u>.

Keywords: Glycyrrhiza uralensis Fisch; Strigolactones; antioxidant enzymes; medicinal constituents; transcriptome

Phosphorus, as is an essential nutrient for plant growth, that plays a crucial pivotal role in nearly all metabolic processes within plants (Kayoumu M et al., 2023). Nevertheless However, the concentration of effective phosphorus concentration in the soil is far from meetingoften fails to meet the demands of normal demand of plant growth (Qiu et al., 2020). However, the effective concentration of phosphorus in the soil is far from enough to meet the normal demand of plant growth. If the Insufficient phosphorus supply is insufficient, the can lead to significant changes in both the external and root morphology of the plant will change, and plants, as well as transformations in their physiological characteristics will be transformed (Li et al., 2006). Phosphorus is As a non-renewable resource, with global phosphorus reserves beingare limited-Soil, making soil phosphorus availability constitutes the primary limiting factor affecting for high agricultural yields in China (Tian, 2001). Soil phosphorus availability is the primary limiting factor affecting agricultural productivity in China. The phosphorus required for plant growth and development is mainly obtained through the primarily sourced from soil phosphorus reservoir, or reserves and fertilization so that plants can absorb enough phosphorus. Increasing, ensuring adequate absorption by plants. The practice of increasing phosphorus fertilizer isuse, however, represents a "high input, low output" pathway to solve the problem of phosphorus nutrition to maintainstrategy. Consequently, maintaining high crop yields while protecting the environment has become a worldwidecritical area of global research task-(Yuan et al., 2024). Additionally, at the same time, phosphorus stress is also an important factor limiting significantly limits the production of medicinal plants-, further emphasizing its crucial role in agricultural productivity (Vance ey al., 2002). Moreover, phosphorus stress is also an important factor limiting the production of medicinal crops.

Glycyrrhiza uralensis Fisch-is, a plant belonging tomember of the genus Glycyrrhiza Linn within the Leguminosae family, which has the effects of relieving recognized for its medicinal properties, including pain, expelling relief, phlegm and expulsion, cough, benefiting the vital suppression, energy and tonifying theenhancement, spleen tonification, and regulating the modulation of various medicines, etcpharmaceuticals (Gao et al., 2009). Moreover, it also serves as an important Additionally, this species plays a crucial role as a sand-fixing plant in the desert and semi-desert areas regions of western China (Du, 2007). However, Nevertheless, over-extraction has severely depleted wild licorice has been damaged by over-exeavation and its populations, rendering their resources are seriously critically scarce. Cultivated licorice, as despite being a mainstream commodity, suffers from the problems of plantfaces challenges such as inhibited growth, quality degradation, yield reduction, etc. which makes it difficult to meet and reduced yields, issues that complicate adherence to the quality standards stipulated established in the Chinese Pharmacopoeia (Gao, 2019). The quality Furthermore, the biochemical composition of licorice does not meet the standards outlined in the Chinese Pharmacopoeia. Licorice contains a variety includes a diverse array of terpenoids (Zhang et al., 2015). Phosphorus is both plays a critical role in the synthesis biosynthesis of terpene precursors viathrough the MVA pathway-(, involving acetyl-CoA, ATP, and NADPH) and phosphorus synthesis via, as

Commented [DB4]: need a different word – over harvesting

well as through the MEP pathway (involving glyceraldehyde phosphate and pyruvate) were found to be, both of which are significant (KAPOOR for plant metabolic functions (Kapoor R et al., 2017).

Strigolactones (__(SLs) is a), sesquiterpene hormonehormones derived from beta-carotene (Omoarelojie et al., 2021). This phytohormone is thought, are believed to play a keycrucial role in the regulation of regulating both aboveground plant conformation architecture and root development (Omoarelojie et al., 2021; Ma N et al., 2017; Marzec et al., 2016). GR24, a synthetic Srigolactonesstrigolactone, is known to participaterecognized for its involvement in the responseresponses to abiotic stresses and isacts as a positive regulator of the response to adversitystress responses (Shi et al., 2024). Specifically, GR24, identified as a positive regulator of stress response, has been demonstrated shown to enhance drought and salt tolerance in Arabidopsis thaliana (Jumyong Y et al., 2023) and interacts to interact with other hormones to promote lateral root growth in oilseed rape (MAMa et al., 2020). MoreoverAdditionally, it has also been showndemonstrated that exogenous GR24 can improve the metabolism of antioxidant enzyme systems, phenylpropanoid, phenylpropanoids, nitric oxide (NO), and H2 Shydrogen sulfide (H2S) in strawberry to maintainstrawberries, thereby maintaining fruit quality during storage (Huang et al., 2021). The results of this study are summarized in the following table. Meanwhile, it has also been shown that Moreover, dulcitolactone eanhas been shown to regulate the plant type and phytoplasma of medicinal plants, therebythus influencing the growth and development of medicinal parts in a targeted manner, and achieving the purpose of regulating the to achieve the desired "optimal type" (Cao et al., 2023).

Therefore, in In the present study, we aimed our aim was to screenidentify a more favorable effective regimen for the growth of Glycyrrhiza uralensis Fisch in a—low—phosphorus environment as well astoenvironments and to investigate the effect of exogenously applied effects of the exogenous application of monocotyledonin lactone on the accumulation of medicinal components.

1. Experimental methodology

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107 108

109

110

111

112

113

114

115

116

117

118 119

120

121

122

123

124

125

1.1 Overview of the pilot area

The testexperimental material wasconsisted of Glycyrrhiza uralensis Fisch seedlings, each with four true leaves, and the These seedlings were maintained cultivated and treated in the Wenjiang District, of Chengdu (located at coordinates 30°36′-30°52′ N₇ and 103°41′-103°55′ E), which has This region is characterized by a subtropical monsoon climate—with, which offers a favorable, temperate climate, a longenvironment, extended summer period, a shortseasons, brief winter period periods, and a long prolonged frost-free period intervals (Deng, 2022).

1.2 Experimental material

The plant material used for the test was For the experiment, uniform and fully developed seeds of Glycyrrhiza uralensis Fisch, full and uniformly textured seeds—were selected for. These seeds were treated by soaking and mixing within 98% sulfuric acid for half an hour and rinsedthirty minutes followed by extensive rinsing (more than three times) with plenty of distilled water (Deng, 2022; Liang et al., 2016). The test-substrate for the test was a 1:1 homogeneous mixture of field soil and sand, in a 1:1 ratio. The culture

Commented [DB5]: delete

Commented [DB6]: what is meanig

Commented [DB7]: describe

Commented [DB8]: delete

containers <u>used</u> were autoclaved (121°C, 2h) hydroponic boxes (70 boxes), 121°C for 2 hours) and 30×25 cm plastic pots, totaling 70 boxes.

1.3 Drugs and reagents

126

127

128

129

130

131

132

133

134 135

136

137

138

139

140

141

142 143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

The synthetic analog of strigolactones, GR24 of the test Strigolactones, was purchasedprocured from Beijing Kulaibo Science and Technology Co., Ltd₂₁, with a CSA No.; of 76974-79-3. Initially, 1 mg of GR24 was taken<u>dissolved</u> in advance, and a small amountvolume of acetone was added to dissolve it, and then diluted with water was added to a volume of 335.2 μμL to obtain theprepare a 10 mM GR24 motherstock solution (Zhu et al., 2022), which was then configured into). This stock solution was further diluted to create standard solutions at concentrations of 0 μμmol/L, 1 μμmol/L, 10 μμmol/L, 100 μμmol/L. The GR24 mother solution was then reconstituted into 0 μmol/L, 1 μμmol/L, 10 μμmol/L, and 1000 μmol/L aqueous solution, 1000 μmol/L aqueous GR24 solutionμmol/L for experimental use.

1.4 Experimental design

The test began experiment commenced on April 10, 2023, firstwith the sterilization of all, the licorice seeds were sterilized, and petri dishfollowed by their germination, 7 in Petri dishes. Seven days after the seed post-germination, seedlings with a high top cover moved—were transferred into the hydroponic box seedlingboxes (70 boxes, each box of containing 9 plants, a total of totaling 630 seedlings) hydroponic). These were cultivated hydroponically until the licorice grows out of seedlings developed 4-5 pieces of true leaves (probably about, approximately 20 days), later. Subsequently, seedlings exhibiting similar growth were selected the growth of the similar licorice seedlings moved into the diameter of 30 cm, the height of the 25 em-and relocated to plastic pots, the pots measuring 30 cm in diameter and 25 cm in height. The cultivation substrate for the Mixed and in these pots consisted of a sterilized mixture of garden soil and sand (in a 1:1), 3 ratio. Three seedlings were transplanted into each pot, totaling resulting in a total of 120 pots. After transplanting, alltransplantation, the pots were placed in the initially stored inside a building, and one. One week later, they were placed in themoved to an outdoor experimental field, which was sheltered protected from rain. At the beginning of soilSoil cultivation, 1/4 of the began with the application of 1/4 strength Hoagland nutrient solution was used to slow cultivate for 5 days, after that, 1/2 of theto gradually acclimate the seedlings over five days, followed by 1/2 strength for the next five days. Full-strength Hoagland nutrient solution was used to cultivate for 5 days, and then the full amount of Hoagland nutrient solution was used for normal regular management, and then. When the seedlings were starved for five days when they grewbore 6-8 true leaves, and they underwent a five-day starvation period during which they were moderately rehydrated during the period (Zhang et al., 2023). After the end of Following the starvation treatment, different phosphorus concentrations were supplied, and three phosphorus concentrationsadministered. Three treatments were set: theestablished: full-amount of-strength Hoagland nutrient-solution as the normal phosphorus supply treatment (P3), theone-third the original NH₄H₂PO₄ concentration of the Hoagland nutrient solution NH4H2 PO4 was reduced to 1/3 of the original as for the low phosphorus treatment (P2), and thea phosphorus-free Hoagland nutrient-solution was set as for the zero phosphorus-free treatment (P1), and regular fertilizer application was carried out i.e., once a week). Regular fertilization involved weekly watering, with 500 ml at a time, of solution, supplemented by moderate supplemental additional watering- as necessary. Foliar spraying of differentwith various concentrations of GR24 treatments was started commenced on June

Commented [DB9]: amendment?

Commented [DB10]: From what?

Commented [DB11]: high

Formatted: Subscript

10, the. The treatment groupgroups included a control sprayed with GR24 (G1), as a blank control at) and four concentration levels (1 μΜ, additional groups treated with GR24 at concentrations of 1 μΜ (G2), 10 μμΜ, (G3), 100 μμΜ, (G4), and 1000 μΜ) i.e., G2, G3, G4, and μΜ (G5, and spray every). Spraying was performed each evening until the leaves solidify intoretained water droplets and do not drop, with a frequency of once a week. The pots of all treatment groups were randomly placed at a distance between the pots to avoid shading each other. The pots were randomly switched every two weeks towithout dripping, repeated weekly. To minimize the effect of environmental factors on them. At the endbiases, the placement of pots within each treatment group was randomized, and their positions were systematically rotated every two weeks. At the conclusion of the growing season in October 2023, Uralic sweetgrass started to be measured for the morphological indexes as well as various and physiological indexes indices of Glycyrrhiza uralensis were systematically measured.

1.5 Indicators and methods

165

166 167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

1.5.1 Measurement of growth indicators

All plants were harvested at At the end of October 2023, all plants were harvested, and the adhering soil on the plants-was slowly washed awaygently rinsed off with running water. FiveIn each treatment group, five plants were collected in each group-sampled. The length of the underground partportion was measured withusing a steel tape, while the diameter of the main root was measuredgauged with a vernier caliper, and the. The fresh weightweights of the aboveground and underground parts of Glycyrrhiza uralensis Fisch was weighed withwere determined using a balance. Take a picture A photograph of each specimen, with a ruler as a reference, upload the picture for scale, was taken and uploaded to Image J for root area projection analysis, get the projected area of the root, dry it. The samples were then dried in an oven at 75°C to °C until a constant weight was achieved, and weigh the dry weightweights of the aboveground and underground parts of Glycyrrhiza uralensis Fisch with a balancewere subsequently weighed.

1.5.2 Determination of chlorophyll content

FiveFor each treatment, five fresh leaves were collected from each treatment, washed, and dried, the.

The veins were cut offremoved, and cut into pieces, 0.1gthe remaining leaf tissue was weighed, chopped. A sample weighing 0.1 g was used for the extraction and the quantification of chlorophyll a and B were detected by b using the acetone method (Yang, 1996), and then the). The concentrations of chlorophyll a and chlorophyll b were calculated according to using the formula appropriate formulas.

1.5.3 Antioxidant enzyme assay

FiveFrom each treatment group, five plants were randomly selected from each treatment, and the. The fully expanded apical leaves were collected harvested, washed and dried, and weighed to determine. The activities of superoxide dismutase (SOD) and peroxidase (POD) were measured spectrophotometrically byusing a Solarbio kit, and catalase (CAT) by activity was determined using a Shimadzu UV-2041 ultraviolet spectrophotometer (Shimadzu, Japan) (Xu et al., 2022), model UV 2041 spectrophotometer (Shimadzu, Japan).

- 1.5.4 Materials and methods for the determination of pharmaceutical ingredients
- 202 1.5.4.1 Pharmaceutical ingredient measurement materials

Commented [DB12]: no GR24?

Commented [DB13]: italics

Commented [DB14]: ruler?

Commented [DB15]: Which ones?

Commented [DB16]: What are they?

Formatted

Formatted

Commented [DB17]: How many?

Formatted

Formatted

Formatted

Formatted

Formatted

Commented [DB18]: Manufacturer? Briefly describe

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

The medicinal constituents of Glycyrrhiza uralensis Fisch were determined quantified using High-Performance Liquid Chromatography (HPLC as detailed by Xu et al., (2021), and the). Standards for glycyrrhetic acid standard was purchasedwere sourced from Chengdu Pufide Biotechnology Co. Lsoliquirtin standard was purchased, isoliquiritin from Shanghai McLean Company, and the rest of the standard was purchased ther standards from Chengdu Kangbang Biotechnology Co. Ltd., with batch. Batch numbers offer these standards include Glycyrrhizic acid (21080201), Glycyrrhetic acid (20041002), LsoliquirtigeninIsoliquiritigenin (21101901), LsoliquirtinIsoliquiritin (C11602211), Glabridin (21032701), Liquirtigenin (22110902)), and Liquirtin (21041301) (see annex for). Further details), are provided in the annex

Commented [DB19]: delete

Commented [DB20]: appendix

1.5.5 Transcriptome assays

The root tips of Glycyrrhiza uralensis Fisch was dug out and the root tips were picked and excavated, washed to remove the soil, and quickly put into immediately immersed in liquid nitrogen for quickrapid freezing and then transferred into a. Subsequently, samples were stored at -80°C refrigerator, °C and sent to Beijing Baimaike Company for testing transcriptome analysis.

1.6 Data processing

The dataData were analyzed using SPSS 25 software and the level of . The significance of differencedifferences was analyzedassessed using Duncan's multiple comparisons of Duncan's range test and LSD intest within a one-way ANOVA (one-way ANOVA) analysis, and the experimental results framework.

Results were plottedgraphically represented using Origin2022 software.

223 2. Results and analysis

2.1 Effect of GR24 on growth indexes indices of Glycyrrhiza uralensis Fisch under different phosphorus concentrations

As shown in Table 1,—demonstrates that under no phosphorus stress, the fresh weight, dry weight, root length, basal stem_diameter, and root projected area of *Glycyrrhiza uralensis* Fisch under no phosphorus stress—were smaller than—lower compared to those of observed under low phosphorus stress and normal phosphorus supply treatments, fresh weight, dry weight, root length and basal stem of *Glycyrrhiza uralensis* Fisch. Furthermore, these indices under low phosphorus stress were smaller than those under also reduced when compared to the normal phosphorus supply treatments conditions, although the these differences were not statistically significant. And the difference The variation in root projected area, however, was significant. Under There were no significant differences in any indices among the GR24 concentration treatments under no-phosphorus stress, there was no significant difference between all indexes of GR24 concentrations when compared to the G1 concentration treatments. However, Under low phosphorus stress, the G3 concentration significantly increased the fresh weight, dry weight, root length, and projected root area of licorice by 53.8%, 38.2%, 20.1%, and 28.3%, respectively. The In the normal phosphorus supply treatment, the G3 concentration significantly increased the fresh weight, dry weight, root length, and basal stem diameter of *Glycyrrhiza uralensis* Fisch by 78.57%, 82.1%, 36%, and 45.8%, respectively.

Commented [DB21]: high

Commented [DB22]: high

Commented [DB23]: If not significant then why make a note of it? Better to say that there was no difference between these indices.

Formatted: Font: Times New Roman, Font color: Auto, Pattern: Clear

Commented [DB24]: High

Formatted: Font: Italic

Additionally Moreover, the root projected area of *Glycyrrhiza uralensis* Fisch was significantly increased by 46.1% and 36.1% under G3 and G5 concentrations, i.e. by 46.1% and 36.1%, respectively.

2.2 Effect of GR24 on phosphorus content of roots, stems, and leaves of *Glycyrrhiza uralensis* Fisch at different phosphorus concentrations

As depicted in Figure 1—illustrates that, under no phosphorus stress conditions, under no-phosphorus stress treatment, phosphorus accumulation in the roots, stems, and leaves of licorice treated with GR24 was lower than that of the observed under low-phosphorus stress-treatment. Similarly, under low-phosphorus stress-treatment, phosphorus accumulation in roots, stems, and leaves of treated Glycyrrhiza uralensis Fische was lower than that of thereduced under low phosphorus stress compared to normal phosphorus-supplying treatment supply conditions.

Under normal phosphorus supply treatment, the accumulation of phosphorus content in the roots of licorice treated with the G3 concentration was significantly higher than that of treated with the G1 concentration by showing an increase of 23.1%. Conversely, normal phosphorus supply treatment, G3, G5 concentration treatment of Glycyrrhiza uralensis Fisch stemFor the stems, phosphorus content accumulationunder treatments with G3 and G5 concentrations was significantly higher than under the G1 concentration treatment, respectively increased by with increases of 98.33% and 138.33%.%, respectively. Furthermore, under no-phosphorus stress treatment, the accumulation of phosphorus content in the leaves of licorice under treated with the G4 concentration treatment was significantly higher than that ofin the G1 concentration treatment, which increased by exhibiting an increase of 68.66%, and under%. Under low phosphorus stress treatment, the accumulation of phosphorus content in the leaves of Glycyrrhiza uralensis Fisch—under G2 and G3 concentration treatments was significantly higher than that of under the G1 concentration—treatment, which increased by with increases of 29.31% and 30.46%, respectively. And the Additionally, under normal supply of phosphorus treatments upply conditions, the G3 treatment group hadexhibited a significant increase in leaf phosphorus content of 19.35% compared to the G1 group.

2.3 Effect of GR24 on antioxidant enzyme activities of *Glycyrrhiza uralensis* Fisch at different phosphorus concentrations

Figure 2 demonstrates illustrates the impact of phosphorus stress on the activities of SOD (superoxide dismutase), POD ((SOD), peroxidase (POD), and CAT (catalase (CAT)). The activities of SOD, POD, and CAT all became larger increased with the aggravation of escalating phosphorus stress, and the activities levels. The activity levels of SOD and POD of *Glycyrrhiza uralensis* Fisch under no phosphorus stress were higher than those of in the low phosphorus stress group and the normal phosphorus supply treatment group. Additionally, the Furthermore, CAT activities of CAT were significantly higher than those of seen in the low phosphorus stress group and the normal phosphorus supply treatment group, and the activities of Also, SOD activities were higher in the no phosphorus stress group than those of in the normal phosphorus supply treatment group, and the activities of whereas POD and CAT activities were significantly higher than those of the normal phosphorus supply treatment group at the in the low phosphorus stress. POD and CAT activities were both significantly higher than those of group compared to the normal phosphorus supply treatment group.

Formatted: Normal, Left

Formatted

Commented [DB25]: high

Commented [DB26]: high

Commented [DB27]: high

Commented [DB28]: high

Commented [DB29]: high

Commented [DB30]: high

Under no-phosphorus stress treatment, the G2 concentration of GR24 treatment significantly increased the SOD activity of SOD i.e.by 15.76% increase, but the effect of%, although the G3 concentration treatment group was notshowed no significant, and there effect. There was no increase, and thealso a significant increase in POD and CAT activities of the GR24 concentration treatments compared withto the G1 concentration treatment. Under low phosphorus stress treatment, The POD activity of G3 concentration treatment was higher than that of G1 concentration treatment, which with a significant increased by 19.6%, while CAT activity was not improved and significantly increased in each concentration treatment group. Theresulted in a significant 19.6% increase in POD activity compared to the G1 concentration treatment. Similarly, SOD activity of the G3 concentration treatment was significantly higher than that of in the G1 concentration treatment and, with a significant increase of 38.5%. The POD activity of the G3 concentration treatment was discarded higher than that of the G1 concentration treatment, withalso showed a significant increase of 22.9%% over the G1 treatment. However, there was no improvement andwere no significant increase improvements in CAT activity in eachacross any concentration treatment groups.

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

2.4 Effect of GR24 on the content of medicinal components of *Glycyrrhiza uralensis* Fisch at under different phosphorus concentrations

Based on the The experimental results, it was known indicated that the G3 concentration had the best effect on the regulation of was most effective in regulating Glycyrrhiza uralensis Fisch, so the treatment with 63; therefore, this concentration was chosenselected for the subsequent experiments. Analysis from of Figure 3 revealed that there was showed no significant difference differences in the contents levels of glycyrrhetic acid, liquirtigenin, liquirtin, and glabridin between the treatments with different levels of across varying phosphorus supplylevels and different GR24 concentrations. The However, the content of Isoliquirtigeninisoliquirtigenin in the low phosphorus stress treatment was significantly higher than that in the no-phosphorus stress treatment at both G1 and G3 concentrations, and the content of Isoliquirtigenin in the normal phosphorus supply treatment was significantly higher than that in the no-phosphorus stress treatment at both G1 and G3 concentrations. Furthermore, contentSimilarly, isoliquirtigenin levels in the normal phosphorus supply treatment were significantly elevated compared to those in the no-phosphorus stress treatment at both concentrations. Additionally, the levels of liquirtigenin in both the normal phosphorus supply treatment and low phosphorus stress treatment wastreatments were lower than that of those in the no phosphorus stress treatment, and the content of. Specifically, in the G3 concentration treatment, the contents of liquirtigenin and glycyrrhizic acid in G3 concentration treatment was increased significantly increased by 72.2% and 21.26%, respectively. The Isoliquirtigenin content of the Under low phosphorus stress treatment was significantly higher than that of the no-phosphorus stress treatment under the G1 concentration treatment, and that of the G3 concentration treatment was higher than that of the no-phosphorus stress treatment but not significant. Lsoliquirtigenin, the levels of isoliquirtigenin, liquirtigenin, and liquirtin were significantly higher in the G3 treatment than in the G1 treatment under low phosphorus stress treatment by, showing increases of 131.29%, 118.79%, and 145.83%, respectively. Under In the phosphorus-free treatment, the G3 treatmentconcentration significantly increased Isoliquirtinboosted the contents of isoliquirtigenin and liquirtin by 164.52% and 23.94%, respectively.

2.5 Effect of GR24 on the expression of *Glycyrrhiza uralensis* Fisch genes under different phosphorus concentrations

Commented [DB31]: %

Commented [DB32]: G2-G5

Commented [DB33]: As summarized in Figure 3

Commented [DB34]: There were

2.5.1 Transcriptome sequencing quality assessment

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

In this experiment, thestudy, RNA sequencing analysis was performed on 18 eukaryotic reference transcriptome (RNA-seq) analysis of 18 samples was completed, and, yielding a total of 122.60 Gb Clean Data was obtained, and the Clean Data of of clean data, with each sample reached providing approximately 5.82 Gb (See Appendix Table 3). In this study, the The quality of the sequencing was substantiated by a Q30 base percentage of Q30 bases was exceeding 95.17% and above (See Appendix Table 4), indicating that the sequencing base recognition was reflecting reliable and accurate. In this study, the Clean Reads of base recognition. The clean reads from each sample were sequenced against the designated reference genome, and the with a matching efficiency ranged ranging from 70.36% to 91.75%.—

2.5.2 Differential gene expression analysis

In this study, differential Differential gene expression analysis was conducted for the comparisons AvsB, DvsE, and GvsH was conducted using Fold Change ≥ a fold change threshold of ≥2 and a FDR ← of <0.01 as sereening criteria (Fig. 4). The statistical power value of for AvsB iswas 0.7422, that of DvsE iswas 0.4688, and that of GvsH iswas 0.506. A total of 1,574 differential gene expressions were identified in AvsB, of whichcomprising 465 were up-regulated genes and 1,109 were down-regulated genes, a total of. In DvsE, 214 differential gene expressions were identified in DvsE, of which, with 137 were up-regulated genes and 77 were down-regulated genes, and a total of. For GvsH, 588 differential gene expressions were identified in GvsH. 137 noted, evenly split with 294 up-regulated genes and 77294 down-regulated genes, GvsH identified a total of 588 differentially expressed genes. of which 294 were up-regulated genes and 294 were down-regulated genes.

2.5.3 GO enrichment analysis

The GO functional enrichment analysis of differentially expressed genes (DEGs) in the Glycyrrhiza uralensis Fisch transcriptome (Fig., as depicted in Figure 5), revealed that 1,108, 132, and 436 DEGs were annotated in the GO database underfor the comparative analyses of AvsB, DvsE, and GvsH, respectively. In the AvsB was distributed incomparison, DEGs were classified into 17 elassescategories of Biological processProcesses (BP), 3 of Cellular Components (CC), and 12 of Molecular Functions (MF). DvsE showed distributions across 16 BP classes, 3 CC classes-of Cellular component (CC), and 1211 MF classes-of Molecular function (MF), DvsE was distributed in 16, whereas GvsH had 19 BP classes of BP, 3 CC classes of CC, and 11 MF classes of MF, and GvsH was distributed in 19 classes of BP, 3 classes of CC and 11 classes of MF. AvsB was distributed in 17 categories of BP, 3 categories of CC, and 12 categories of , with an additional category in MF, DvsE was distributed in 16 categories of BP, 3 categories of CC, and 11 categories of MF, and GvsH was distributed in 19 categories of BP, 3 categories of CC and bringing the total to 13-categories of MF. Further analysisscrutiny of the tophighest-ranked GO terms revealed that the BP was mainly concentrated indicated a primary concentration in BP, especially under the AvsB treatment of AvsB. BP is mainly. Notably, the cellular process was significantly enriched in cellular process with 509 changes, of which alterations, comprising 139 are up-regulated regulations and 370 are down-regulated, and regulations. Similarly, the cellular anatomical entity exhibited 560 modifications, with 560 changes, of which 138 are upregulated regulations and 423 are down-regulated, and MF is mainly enriched regulations, aligning with the enrichment in CC-with-, which also displayed 560 changes, of which 138 are up-regulated and 423 are downregulated. In DvsE, there were 67 changes in . In the DvsE set, the metabolic process enriched in BP, of which __included 67 changes (38 were up-regulated and 29 were down-regulated,), and there were 69 changes

Commented [DB35]: ? delete

Commented [DB36]: Of what?

Commented [DB37]: Specify exactly which one was used

Commented [DB38]: define

Commented [DB39]: what tool was used to do this?

in the cellular anatomical entity enriched in MF, of which 69 were up-regulated and 29 were down-regulated. There were 69 changes in anatomical entity enriched in MF, of which 43 were up-regulated and 26 were down-regulated. 71 changes inin MF showed 69 changes with an equal number of up-regulations. Additionally, the catalytic activity enriched in CC, of which showed 71 changes, with 40 were up-regulated regulations and 31 were down-regulated regulations. For GvsH, the analysis reflected 204 changes were found in the cellular process enriched in BP in GvsH, of which 38 were up-regulated and 29 were down-regulated. In GvsH, there were 204 changes in BP, of which of BP (107 were up-regulated and 97 were down-regulated and 125 changes in MF (the cellular anatomical entity), of which MF (112 were up-regulated and 105 were down-regulated,), and in CC, binding was characterized by 216 changes in GvsH (cellular process), of which 91 were up-regulated and 125 were down-regulated, and 216 changes in binding enriched in CC, of which 91 were up-regulated and 125 were down-regulated. There were 216 changes in binding enriched in CC, of which 91 were up-regulated and 125 were down-regulated.

2.5.4 KEGG pathway enrichment analysis

KEGG pathway enrichment analysis was performed on DEGs. Figure 8 shows to identify the most significant metabolic and regulatory pathways affected. As illustrated in Figure 6, the analysis highlighted 20 pathways with the highest enrichment inlevels across the comparisons of AvsB, DvsE, and GvsH, where. In the AvsB and DvsE were most abundant incomparisons, the plant-pathogen interaction pathway was predominant, with 96 and 18 entries, respectively, This was followed by the GvsH comparison in the MARKMAPK signaling pathway-plant pathway with 36 entries and 7, and GvsH in the Phenylpropanoid biosynthesis (PBP) pathway with 14, followed by entries. Additionally, the DNA replication pathway was notable with 8. In addition to this, we found that entries. AvsB was significantly enriched in showed a significant enrichment of four genes in the Flavone and flavonol biosynthesis pathway, Similarly, in GvsH, there was significantly enriched in notable enrichment of four genes in the Flavonoid biosynthesis pathway, Terpenoid backbone biosynthesis, and GvsH was significantly enriched in and two genes in the Terpenoid backbone biosynthesis pathway, and GvsH was significantly enriched in two with another five and four genes enriched in the Terpenoid backbone biosynthesis pathway, and 4 genes, respectively.

2.5.5 Analysis of differential transcription factors

A total of 1495 Unigene were annotated as transcription factors in The Glycyrrhiza uralensis Fisch glabra transcriptome data, and as can be seen revealed a total of 1495 unigenes annotated as transcription factors. As demonstrated in Table 2, there were 24 types of transcription factor types with differentfactors exhibited varied expression patterns of across the same transcription factor in AvsB, DvsE, and GvsH comparisons, with the highest number of differentially expressed. The C2H2, NAC, WRKY, MYB, and GRAS The top 3 transcription factors showed the highest numbers of differentially expressed genes. Specifically, the most up-regulated transcription factor families with the most up-regulated expression in AvsB were included AP2/ERF-ERF, C2H2, and MYB, which were with up-regulated regulations noted for 6, 2, and 2 genes, respectively. The top 3 transcription factor families with the The most down-regulated expression families were C2H2, NAC, and WRKY, with 10, 9, and 8 genes down-regulated, respectively. The top 3 transcription factor families up-regulated in In DvsE-, the top up-regulated transcription factor families were WRKY, MYB, and bHLH, each with increases in 2, 1, and 1 genes up-regulated, respectively, and the no down-regulations were observed. For GvsH, the most up-regulated transcription factor families were all

Commented [DB40]: Summarized or shown

Commented [DB41]:

Commented [DB42R41]: Full names

0. The top 3 transcription factor families up-regulated in GvsH were C2H2, bHLH, and HSF, all up-regulated cach by 1 gene, and while the top 3 most down-regulated transcription factor families were included AP2/ERF-AP2, MYB, and AP2/ERF-ERF, down-regulated by with decrements of 4, 3, and 3 genes, respectively.

3. DISCUSION

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

Phosphorus plays a critical role in-is crucial for various physiological pathways of plant growth and is one of the indispensable elementsan essential element for plant growth (Santoro V et al., 2024), and—). Deficiency in phosphorus deficiency will affect a significantly impact the morphological, physiological, and biochemical characteristics, physiology, and biochemistry of plants. SLs have been demonstrated to positively regulateshown to enhance plant growth indicators, participate in contribute to the stress response of plants (Marzec et al., 2016), and regulate the support positive growth of plants in adversity (under adverse conditions (Andreo-Jimenez et al., 2015; Hong et al., 2020; HA C V L-G M A et al., 2014). It has also been shown that Additionally, GR24 can directionally, a synthetic analog of SLs, has been found to specifically regulate the medicinal partscomponents of medicinal plants (Cao et al., 2023; Wani K I et al., 2022). Despite extensive research on theinto GR24's ability of GR24-to mitigate plant-stress, there are no reports on the alleviation of in plants, its effects on phosphorus stress in Glycyrrhiza uralensis Fisch by GR24have not yet been reported.

3.1 Effect of GR24 on growth indexesindices of Glycyrrhiza uralensis Fisch at different phosphorus concentrations

Since the Phosphorus in soil will fix the phosphorus is predominantly in a form that ean beplants cannot directly absorbed by the plant causing it to be difficult to move, the main phosphorus that can be absorbed by the plant is the effective phosphorus that can be accessed by the roots absorb, leading to its immobilization and limited availability to roots, which can only access what is termed 'effective phosphorus' (Péret et al., 2011; Li et al., 2023), so the). Consequently, root system indexes such as the length of the plant roots and the absorbing area can be used as an indicator of the efficiency of phosphorus uptake by the plantindices _ (Ding et al., 2008). The root system indicators such as root length and absorption area ean be usedserve as indicators of plant phosphorus absorption uptake efficiency (Ding et al., 2008). . In this This study, it was found revealed that phosphorus stress significantly impedes the growth morphology of Glycyrrhiza uralensis Fisch-was significantly inhibited under phosphorus stress, and the; specifically, fresh weight, dry weight, root length, basal stem diameter, and root projected area of the plant were significantly markedly reduced compared to those in plants supplied with that of the normal phosphorus-supplying group, and the decline of the above indexes was levels. These declines in growth indices were more obvious with the aggravation of pronounced as phosphorus stress intensified. Under no-phosphorus stress, and under conditions of low phosphorus stress, sprayingavailability, the application of GR24 at the G3 concentration of GR24 significantly increasedenhanced the fresh weight, dry weight, root length, and root projection area of Glycyrrhiza uralensis Fisch compared withto the G1 treatment group. For instanceSupporting this observation, Tang (2019) reported that GR24 treatment improved the morphological indexes indices of Oryza sativa L_k seedlings under phosphorus stress, and. Additionally, Tai et al. (2017) et al. found that GR24 treatment could promote the promoted biomass accumulation of Panicum virgatum La seedlings under cadmium stress, which is Formatted: Not Superscript/ Subscript

Commented [DB43]: But these were not all significant – so cannot make that conclusion

Formatted: Font: Not Italic

Formatted: Font: Not Italic

eonsistent withcorroborating our findings, indicating that SLsstrigolactones can allocatemitigate the damagedetrimental effects of low phosphorisphosphorus stress to plantin plants. These results indicated that strigolactone could regulatestrigolactones can enhance the growth of Glycyrrhiza uralensis, Fisch under low phosphorus stress, and can improve the ability of Glycyrrhiza uralensis Fisch seedlingsseedlings' adaptability to adapt to low phosphorus environment-deficient environments. Similarly, Pang (2020) found that the use of GR24 could promote the increase of discovered that GR24 application promoted increases in body length and the number of lateral roots ofin Astragalus membranaceus var. mongholicus (Bunge) P.K.Hsiaomain root, and inHsiao. In this study, we also foundobserved that under a normal phosphorus supply treatment, the G3 concentration of GR24 significantly enhanced the fresh weight, dry weight, root length, basal stem diameter, and —root projectionprojected area of Glycyrrhiza uralensis Fisch, It can be inferredThis suggests that GR24 can also aetfunction as a plant hormone to regulate plant growth under non-stress free-conditions as well (Zhou, 2016). Under conditions of complete phosphorus free stress treatment, sprayingdeprivation, however, application of GR24 did not significantly improve the above indicatorsaforementioned growth indices of licorice, indicating that spraying—GR24 can only partially alleviate the damage caused byadverse impacts of stress to a certain extent.

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

3.2 Effect of GR24 on chlorophyll content of *Glycyrrhiza uralensis* Fisch at different phosphorus concentrations

Chlorophyll plays a crucial role in is essential for photosynthesis by, absorbing (Fromme et al., 2003) and transferring light energy for primary photochemical reactions and other processes (TREVORFromme et al., 2003; Trevor G et al., 2009). Chlorophyll-The chlorophyll content in plant leaves can reflect the photosynthetic capacity of plant leavesthe plants. Low phosphorus stress inhibits photosystem activity (Tang et al., 2005) and chloroplast membrane development, thus inhibitingthereby reducing photosynthesis (Li et al., 2018). Plants accumulate biomass through photosynthesis, and photosynthetic pigment content influences photosynthetic performance(Li et al., 2013), and in this This study, found that chlorophyll a and b in Glycyrrhiza uralensis Fisch decreaseddiminished with increasing forestphosphorus stress, indicating a decreasedecline in photosynthetic pigments and a decline in the photosynthetic performance of licorice under low phosphorus stress. Furthermore,, it was also found that conditions. However, the exogenous application of GR24 at the G3 concentration significantly increased the content of chlorophyll a and b under low phosphorus stress. It has been Previous studies have shown that GR24 can increaseenhance the chlorophyll content of Triticum aestivum L_x under drought stress (Fang et al., 2021), which is consistent aligns with the results findings of this study. This suggests that monocotyledonin lactone can participatestrigolactones may play a role in the photosynthetic regulation of plants (Li et al., 2017) and exogenous that the addition of GR24 can increase theimprove chlorophyll content in plant leaves under phosphorus stress-and alleviate, thereby mitigating the effectadverse effects of low phosphorus stress on the photosynthetic performance of plants (Seiji et al., 2014). Additionally, the presentthis study also foundobserved that thea normal supply of phosphorus to the plant can increase theinherently increases chlorophyll content. In addition, this study also found that the The application of an appropriate concentration of GR24 (i.e., specifically, the G3 concentration) under normal phosphorus supply could conditions also increase elevated the content of chlorophyll a and b content in Glycyrrhiza uralensis Fisch and improve, enhancing the photosynthetic performance of Glycyrrhiza uralensis Fisch photosynthetic system.the plant. Contrarily, Tian (2018) foundreported that differentyarious concentrations of strigolactone have differenthad differing effects on the leaves of Bambusa oldhamii Munro, andnoting that a high concentration (5 μmol/4L GR24) has an inhibitory

Formatted: Font: Not Italic

Formatted: Font: Not Italic

Formatted: Font: Not Italic

effect oninhibited the green content of leaves, which is contrary to this study, which. This discrepancy may be becaused to the optimal concentration of GR24 is varying among different for different plantsplant species.

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

3.3 Effect of GR24 on antioxidant enzyme activities of *Glycyrrhiza uralensis* Fisch at different phosphorus concentrations

Phosphorus is, a keycritical component of cell membranes, and the cell membrane significantly influences their structure-of plants will be affected, particularly under conditions of low phosphorus stress (Jiang et al., 2024). The toTo mitigate theoxidative damage of induced by reactive oxygen radicals (Gill et al., 2010), species, plants will reduce regulate the damage of reactive oxygen radicals on activities of SOD, POD, and CAT. This regulation is essential for protecting proteins, nucleic acids, and membrane systems by regulating the activities of SOD, POD, and CAT to ensure their, thereby supporting normal growth (Wang et al., 2022₇₂ Foyer et al., 2013₇₂ Wei et al., 2018). Research by Tang (2019) showeddemonstrated that the application of GR24 applied under low phosphorus stress could reduce not only reduces the accumulation of reactive oxygen species, increase in Oryza sativa L. seedlings but also enhances the activities of protective enzymes (such as SOD, POD, CAT) and alleviateCAT, thereby alleviating the effects impacts of phosphorus stress on Oryza sativa L. seedlings,. Further studies by NI M et al. (2020) and also showedLi et al. (2023) found that exogenous application of GR24 could significantly alleviate the effects mitigates oxidative stress damage in cotton and Malus pumila Mill. seedlings under conditions of low-temperature stress-and alkali stress-on-cotton-seedlings (NI M et al., 2020) and Malus pumila Mill. seedlings (Li et al., 2023) oxidative stress damage and increase the activities of SOD, POD and CAT., respectively, by increasing the activities of these antioxidant enzymes. This study also found revealed that with the aggravation of as phosphorus stress intensifies, the activities of SOD, POD, and CAT in the leaves of Glycyrrhiza uralensis Fisch leaves gradually increased progressively increase, indicating that Glycyrrhiza uralensis Fisch can alleviate an inherent mechanism by which the plant alleviates the adverse effects of phosphorus stress by increasing the activity of antioxidant enzymes. Under low phosphorus treatment deficiency. Specifically, the application of GR24 at G2, G3, and G4 concentrations ean increase enhances SOD activity, with the G3 concentration proving most effective. Similarly, GR24 at the G3 concentration notably boosts the activities of both POD and CAT. Furthermore, under normal phosphorus conditions, the application of GR24 still enhances the activity of antioxidant enzymes in plants. At the G3 concentration, there is a notable increase in the activities of SOD in plants. G3 treatment has the best effect and POD, while the application of GR24 at G3 concentration can increase the treatments at G2, G3, and G4 concentrations elevate CAT activity of POD and CAT in plants. This indicates. These findings suggest that the GR24 application of GR24 can alleviate at the G3 concentration optimally mitigates the adverse effects of phosphorus stress, and it can be concluded that the application of GR24 at G3 concentration has the best effect. Under normal phosphorus supply treatment, the application of GR24 can also increase the and enhances overall plant resilience by augmenting antioxidant enzyme activity of plants. GR24 at G3 concentration can increase the activity of SOD and POD, while GR24 treatment at G2, G3, and G4 concentrations can increase the activity of CATactivities.

3.4 Effect of GR24 on the content of medicinal components of *Glycyrrhiza uralensis* Fisch at different phosphorus concentrations

Both triterpenoids Triterpenoids and flavonoids are constitute the main primary active components of Glycyrrhiza uralensis Fisch medicinal constituents. Glycyrrhizic acid, with glycyrrhizic acid and glycyrrhetic acid arebeing structurally similar triterpenoids, and liquirtigenin, liquirtin, Isoliquirtigenin, Isoliquirtinisoliquirtigenin, isoliquirtin, and glabridin arecategorized as flavonoids (Liu et al., 2013; Sheng et al., 2022). Phosphorus plays a pivotal role as it is an important element that constitutes involved in the initial substrates of the terpenoid synthesis pathway, acetyl-CoA2 and glyceraldehyde-3-phosphate (Zeng et al., 2013) so). Consequently, phosphorus stress will affectimpacts the production and accumulation of active ingredients in medicinal plants. The Our experimental results of this experiment revealed indicate that the contents of Isoliquirtigeninisoliquirtigenin, liquirtigenin, glycyrrhizic acid, Isoliquirtinisoliquirtin, and liquirtin were higherelevated under low phosphorus treatment than conditions compared to those in the group with no phosphorus treatment, and group. Moreover, the contents content of Isoliquirtin were isoliquirtin was higher than those in the group with no phosphorus stress in both the normal supply of phosphorus and low phosphorus stress. Studies have found conditions than in the no phosphorus stress group. This aligns with findings by Hu et al. (2018), who reported that the synthesis of dihydroflavone and flavonols such as naringenin, rutin, and taxifolin, etc. can could be significantly notably inhibited under phosphorus deficiency deficient conditions (Hu et al., 2018), which is consistent with our results. The . Notably, the content of Isoliquirtin decreases with the aggravation of isoliquirtin decreased as phosphorus stress. However, contrary to intensified, diverging from the research results of Winkel-Shirley (2002), it shows that the which suggests multifaceted influences on flavonoid production of flavonoids by in plants is affected in many ways. In this. Additionally, our study, it was also found that the application of GR24 could increase the content of under various phosphorus conditions could enhance the content of several terpenoids and flavonoids. Specifically, under no-phosphorus stress, GR24 increased the levels of glycyrrhetic acid, glycyrrhizic acid, glabridin, Isoliquirtin and liquirtin under no-. Under normal phosphorus stress, Isoliquirtigenin, supply, the increases were noted in isoliquirtigenin, liquirtigenin, and glycyrrhizic acid, while under normal low-phosphorus supply, and Isoliquirtigeninstress, GR24 elevated the contents of isoliquirtigenin, liquirtigenin, glycyrrhizic acid, Isoliquirtinisoliquirtin, and liquirtin-under low-phosphorus stress treatments, which It indicated. This indicates that GR24 application couldcan variably promote the accumulation of terpenoid and flavonoid contents of Glycyrrhiza uralensis Fisch to different degrees at different phosphorus concentrations. Previous Such effects are consistent with previous research supports the ideaindicating that GR24 can promotecnhances the accumulation of anthocyanins in Arabidopsis thaliana (L.) Heynh (Cao et al., 2023) which is similar to the results of this study. It has also been shown that the induction of Tripterygium wilfordii Hook. f. suspension cells with GR24 inhibitsand suggests that GR24 may also modulate the production of terpenoids, as evidenced by its inhibition of diterpene secondary metabolites such as regolith methylesterase and strigolactone to varying degrees in Tripterygium wilfordii Hook. f.

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

3.5 Effect of GR24 on the transcriptome of *Glycyrrhiza uralensis* Fisch at different phosphorus concentrations

suspension cells (Wu et al., 2019), suggesting that GR24 application may also inhibit terpenoid production.).

Plants exhibit a complex sophisticated response to adversity involving that encompasses physiological, biochemical, and metabolic process that involves processes. This response is mediated through the synergistic actionactions of multiple genes and a complex mechanism of co-regulation (Li et al., 2024; PANTP and BD et al., 2015; Sun et al., 2016). The results of In this study, we identified that 12981,298, 163, and 513 DEGs were found under conditions of no-phosphorus stress, low-phosphorus stress, and normal phosphorus supply

Formatted: Font: Not Italic

treatments, respectively. Notably, the lowest number of DEGs was found in response to observed under lowphosphorus stress-compared, aligning with the other two treatments, which was consistent with the study of findings by Guan (2016). The GO enrichment results indicated analysis revealed that the DEGs underacross the three treatments were mainly enriched in the functions of predominantly associated with cellular processes, metabolic processes, cellular anatomical entities, and catalytic activity, and among the DEGs... KEGG pathway results revealed analysis showed that the no-phosphorus and low-phosphorus stress treatment and low phosphorus stress treatmenttreatments were significantly enriched in pathways such as plant-pathogen interaction and signaling pathways, and respectively. Conversely, the normal phosphorus supply treatment was significantly enriched in pathways such as phenylpropanoid biosynthesis; and DNA replication, etc., whereas the. The phenylpropanoid biosynthesis pathway is not only an important pathway, crucial for the synthesis of synthesizing secondary metabolites, but also plays an importanta vital role in plant growth-and, development, and environmental adaptation (Zhong et al., 2009),, which suggests that GR24 application can regulate the growth of), thereby underscoring the regulatory effects of GR24 on Glycyrrhiza uralensis, Fisch. In addition, the Moreover, all three treatments were also enriched showed enrichment in the pathways related to secondary metabolite production pathway, suggesting that GR24 application had, indicating a positive effect of GR24 on the synthesis of medicinal components in Ural Glycyrrhiza uralensis Fisch.

It has been shown Our findings demonstrate that transcription factor genes factors such as bHLH, AP2, MYB, WRKY, and NAC are responsive to phosphorus deprivation, among which the Specifically, bHLH (Wang et al., 2023) and AP2 (Zhao et al., 2018) transcription factors are not only involved participate in plant growth and development but also respond to secondary metabolic processes and abiotic stresses in plants (Zhang, 2023), In this study, we identified that bHLH and ERF transcription factors are not only involved in plant growth and development but also respond to plant secondary metabolic processes and abiotic stresses. In this study, we found that under Under no phosphorus stress, the highest number of most differentially expressed transcription factors identified was were from the C2H2 family, followed by the NAC family, and all of themwhich were down-regulated suggesting. This suggests that GR24 application could improve may enhance tolerance to phosphorus deficiency tolerance in Uralia glycyrrhiza. Additionally, in Glycyrrhiza uralensis Fisch. Under low phosphorus stress, the highest number of WRKY family was the most differentially expressed transcription factors identified was the WRKY family and waspredominantly upregulated-(, consistent with observations by Huang et al., (2012). Showed) that the WRKY family was expressed in different exhibits varied expression patterns in response to various abiotic stresses, and most of them were up-regulated in Uralia glycyrrhiza (Guan et al., 2023). in Ural Glycyrrhiza uralensis Fisch, which is consistent with the present study. different abiotic stresses. Under normal phosphorus supply treatment, the AP2/ERF-ERF family was the most differentially expressed transcription factor familygroup and was down-regulated. The AP2 family of transcription factors is often associated with the growth hormone signaling pathway in plants (Feng et al., This 2020; Gu et al., 2017; Ritonga et al., 2021), and the downregulation of this family of transcription factors may because the applicationmight be attributed to the effect of GR24 affected theon growth hormone regulation of Glycyrrhiza uralensis, Fisch, impacting associated signaling pathways (Feng et al., 2020; Gu et al., 2017; Ritonga et al., resulting in down-regulation of the signaling pathway being affected. 2021).

Formatted: Font: Not Italic

Formatted: Not Superscript/ Subscript

Formatted: Font: Not Italic

564

565 566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

In general, spraying Overall, the application of GR24 improvedameliorates the negative adverse effects of phosphorus stress in Glycyrrhiza uralensis Fisch under phosphorus stress, increased the by increasing biomass of Glycyrrhiza uralensis Fisch, increased the accumulation of, enhanced the photosynthetic eapacity, that is, the content of photosynthetic pigments (chlorophyll a and b) increased, pigment levels, and while reducing the content of antioxidant enzymes decreased, and increasedenhancing the accumulation of somecertain triterpenoids and flavonoids in Glycyrrhiza uralensis Fisch, so that . Differential expression genes (DEGs) were mainlyprimarily enriched in pathways conducivefavorable to the growth-and, development of Glycyrrhiza uralensis Fisch and the accumulation of, and secondary metabolites, and also upregulatedmetabolite accumulation in Glycyrrhiza uralensis Fisch, with the upregulation of the WRKY family related to phosphorus stress, with response. The G3 concentration being the bestwas found to be most effective, indicating that the GR24 application of GR24 improved improves the phosphorus deficiency tolerance of Glycyrrhiza uralensis Fisch. In addition, the application of GR24 Moreover, under normal phosphorus supply treatment can promote the conditions, GR24 promotes plant growth and development of Glycyrrhiza uralensis Fisch, increase its, increases biomass, and accumulation, elevates chlorophyll content, reduce the content ofdecreases antioxidant enzymesenzyme levels, and improveenhances the accumulation of some medicinal ingredients components. DEGs in this context are mainly enriched in the pathways related to plant growth regulation, and upregulateelevate the AP2 family of transcription factors related to associated with the plant growth hormone signaling pathway, indicating demonstrating that gr24 canGR24 not only improve the improves growth of Glycyrrhiza uralensis Fisch under low phosphorus, conditions but also have a positive impact on positively impacts the growth and development of Glycyrrhiza uralensis, Fisch under normal phosphorus nutrition.

Formatted: Font: Italic

ACKNOWLEDGEMENTS

The authors are very grateful to SHZ University and Chengdu Normal University for providing the test site and equipment. This research forms part of the author's master's thesis.

ADDITIONAL INFORMATION AND DECLARATIONS

629 Funding

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

- This study was supported by National Natural Science Foundation of China (31871568,31560656); Project
- 631 for Innovative Reasearch Team of Chengdu Normal University (CSCXTD2020A04); Innovation and
- 632 Entrepreneurship Project for college students in Sichuan Province (S202214389093).
- 633 Competing Interests
- The authors declare there are no competing interests.
- 635 Author Contributions
- 4636 Yuting Jing conceived and designed the experiments, performed the experiments, analyzed the data,
- performed the computation work, prepared figures and/or tables, authored or reviewed drafts of the paper,
- and approved the final draft.

- 639 Man Li authored or reviewed drafts of the paper, contributed to the analysis of the mathematical properties,
- and approved the final draft.
- 641 Yong Wu, Chengming Zhang and Chengshu Qiu contributed to the experimental design and participated in
- the revision of the manuscript.
- 643 Hengming Zhao assisted with some of the experiments and recorded data.
- 644 Li Zhuang and Hongling Liu was involved in conceptualizing the experimental design and suggested
- revisions to the experiment and the completion of the article and approved the final draft.
- 646 Supplemental Information
- 647 Transcriptom data information for this article can be found online at PRJNA1112769. The remainin
- 648 g raw data can be found in the attachment.

REFERENCES

649

- 650 Andreo-Jimenez, B.; Ruyter-Spira, C.; Bouwmeester, H.J.; Lopez-Raez, J.A. Ecologic
- 651 <u>al relevance of strigolactones in nutrient uptake and other abiotic stresses, and in pl</u>
- 652 <u>ant-microbe interactions below-ground. Plant Soil 2015, 394, 1–19.</u>
- 653 Cao Y Y, Chen Y C, Guo S H, Gan X Y, Tian I, Huang L Q, Yuan Y. Research progress in
- 654 Strigolactones and application prospect in medicinal plants[J]. China Journal of Chinese
- 655 <u>Materia Medica, 2023, 48(12): 3132-3139.</u>
- 656 Deng Q Z. Effects of dominant AM fungal colonization on the rhizosphere microecology of
- 657 <u>licorice[D].Shihezi:Shihezi University,2022.</u>
- 658 Ding H X, Yu W T. Rexiew on soil inorganic-P fractionation and the influential on P bio-
- 659 <u>availability[J]. Chinese Journal of Soil Science</u>, 2008, (03): 681-686.
- 660 Du Q. Effects of water and fertilizer on yield and quality of Glycyrrhiza uralensis in
- 661 Ningxia[J]. Grassland and Turf,2007,(05):62-64.
- 662 Feng K, Hou X L, Xing G M, Liu J X, Duan A Q, Xu Z S, Li M Y, Zhuang J,
- Kiong A S. Advances in AP2/ERF super-family transcription factors in plant[J].Criti
- cal reviews in biotechnology, 2020, 40(6):750-776.DOI:10.1080/07388551.2020.17685
- 665 <u>09</u>.
- 666 Fang B T, Li X D, Wang H F, Yue J Q, Shao Y H, Zhang D Q, Yang C, Qin
- 667 F.Effects of spraying Strigolactone on photosynthetic characteristics, antioxidant capa
- 668 city and yield of wheat under drought conditions[J].Journal of Henan Agricultural Sc
- iences, 2021,50(6):7.DOI:10.15933/j.cnki.1004-3268.2021.06.005.
- 670 Foyer C H, Noctor G. Redox signaling in plants. Antioxid. Redox. Signal., 2013, 18(16):
- 671 <u>2087-2090.DOI:10.1089/ars.2013.5278.</u>
- Fromme P, Melkozernov A, Jordan P, Krauss N. Structure and function of photosystem I:
- 673 <u>interaction with its soluble electron carriers and external antenna systems[J]. Febs 47</u>
- 674 Letters, 2003, 555(1): 40-44.

Formatted: Indent: Left: 0", Hanging: 1 ch, First line: -1 ch, No bullets or numbering, Tab stops: Not at

Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Red

- 675 Gu C, Guo Z H, Hao P P, Wang G M, Jin Z M, Zhang S L. Multiple regulatory
- 676 roles of AP2/ERF transcription factor in angiosperm[J].Botanical Studies, 2017, 58
- 677 (1).DOI:10.1186/s40529-016-0159-1.
- 678 Gao X Y, Wang W Q, Wei S L Li W D. Review of pharmacological effects of Glycyrrhiza
- 679 Radix and its bioactive compounds[J]. China Journal of Chinese Materia
- 680 <u>Medicine, 2009, 34(21): 2695-2700.</u>
- 681 Gao Z Q. Study on the molecular mechanism of the triterpene metabolic pathway of
- 682 Glycyrrhiza glabra based on X-ray irradiation treatment and RNA-seq[D]. 2019.
- 683 Gill S S, Tuteja N. Reactive oxygen specise and antioxidant machinery in abiotic stress
- tolerance in crop plants[J].Palnt Physiology and Biochemistry, 2010,48(12):909-930.
- 685 Guan S J, Ge T T, Xu R R, Wang N, Gao J, Zhang G, Peng L, Zhang Y L, Xie F P.
- 686 <u>Transcriptome analysis of root in glycyrrhiza under salt, low phosphorus and drought</u>
- 687 <u>stress[J].Molecular Plant Breeding,2023,21(05):1496-1509.</u>
- 688 HA C V L-G M A, OSAKABE Y, Tran U, Nishiyama R, Watanabe Y, Tanaka M,
- Seki M, Yamaguchi S, Dong N V. Positive regulatory role of Strigolactone in pl
- ant responses to drought and salt stress[J]. Proceedings of the National Academy of
- 691 <u>Sciences of the United States of America, 2014, 111(2).</u>
- 692 Hong I, Yang L, Yang H J, Wang W, Tan P. Research Progress on the regulation
- of plant abiotic stress response by Strigolactone[J].Journal of Plant Physiology, 2020,
- 694 <u>56(06):1097-1108.</u>
- 695 Huang D D, Wang Y Y, Zhang D C, Dong Y F, Meng Q X, Zhu S H, Zhang L L.
- 696 <u>Strigolactone maintains strawberry quality by regulating phenylpropanoid, NO, and H2S</u>
- 697 <u>metabolism during storage[J]</u>. Postharvest Biology and Technology, 2021, 178.
- 698 Huang S X, Gao Y F, Liu J K, Peng X L, Niu X L, Fei Z J, Cao S Q, Liu Y S. Genome-wide
- 699 <u>analysis of WRKY transcription factors in Solanum lycopersicum[J].Molecular genetics and</u>
- Molecular genetics and genomics: MGG,2012,287(6):495-513.
- 701 <u>Hu Q, Min L, Yang X Y, Jin S X, Zhang L, Li Y Y, Ma Y Z, Qi X W, Li D</u>
- 702 Q, Liu H B, Keith Lindsey, Zhu L F, Zhang X L. Laccase GhLac1 modulates broa
- 703 d-spectrum biotic stress tolerance via manipulating phenylpropanoid pathway and jas
- monic acid synthesis[J]. Plant Physiology, 2018,176(2):1808-1823
- Jiang R Y, Zhu M T, Yang J, Han Y Z, He T Y, Rong J D, Zhen Y S, Chen L G. Effects of
- low phosphorus stress on non-structural carbohydrates and antioxidant protective enzyme
- 707 systems in leaves of Dendrocalamus latiflours seedlings[J]. Journal of Fujian Agriculture and
- Forestry University (Natural Science Edition), 2024, 53(01): 56-61.
- Jumyong Y, Han Y F, E Z Y, Zhu J S, Zhao T L, Chen J H. Alleviation effects of exogenous
- 710 strigolactone on cold stress in upland cotton seedlings[J]. Molecular Plant Breeding, 2023,
- 711 21(22): 7486-7499.
- Kapoor R, Anand G, Gupta P, Shantanu M. Insight into the mechanisms of enhanced
- production of valuable terpenoids by arbuscular mycorrhiza[J]. Phytochemistry Reviews,
- 714 <u>2017, 16(4): 677-92.</u>

Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Red

Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Text 1

```
715 Kayoumu M, Ilbal A, Muhammed N, Li X T, Li L L, Wang X R, Gui H P, Qi Q, Ruan S J,
```

- Guo R S, Zhang X L, Song M Z, Dong Q. Phosphorus availability affects the photosynthesis
- 717 and antioxidant system of contrasting low-P-tolerant cotton genotypes[J].
- 718 <u>ANTIOXIDANTS,2023,12(2),466.</u>
- Li D H, Xiang C L, Jiang Y Q, Guo Z H, He L Y. Physiological characteristic of roots of
- 720 <u>Different rice variety under the stress of low phosphorus[J].Journal of Huazhong Agricultural</u>
- 721 <u>University</u>, 2006, (06): 626-629.
- 722 <u>Li G D, Tian M Q, Shen R F. Analysis of chlorophyll fluorescence parameters in leaves of</u>
- 723 Strigolactone mutant of Arabidopsis thaliana[J]. Journal of Zhejiang A & F University, 2017,
- 724 <u>34(01): 36-41.</u>
- 725 <u>Li L J. The mitigating effects of exogenous Strigolactones on apple seedings under alkali</u>
- 726 <u>stress[D]. Shandong Agricultural University,2023.</u>
- 727 Li P L, Weng J Y, Zhang Q, Yu L Y, Yao Q, Chang L Y, Niu Q L. Physiological and
- 728 <u>Biochemical Responses of Cucumis melo L. Chloroplasts to low-phosphate stress[J].</u>
- 729 <u>Frontiers in Plant Science, 2018, 9: 1525.</u>
- 730 Li P C, Ma X L, Wang J C, Yao L R, Li B C, Meng Y X, Si E J, Yang K, Sh
- 731 <u>ang X W, Zhang W Y, Wang H J. Integrated Analysis of Metabolome and Transcri</u>
- 732 <u>ptome Reveals Insights for Low Phosphorus Tolerance in Wheat Seedling[J],Internati</u>
- 733 <u>onal Journal of Molecular Sciences</u>, 2023,24(19):14840. doi: 10.3390/ijms241914840.
- 734 _
- 735 <u>Li Y, Fang Y H, Peng C J, Hua X, Zhang Y, Qi X L, Li Z L, Wang Y M, Hu L, Xu W G.</u>
- Transcriptomic analysis of OsPHR2 transgenic wheat under different phosphorus stress
- 737 <u>treatments[J].acta agronomica sinica, 2024, 50(02): 340-353.</u>
- Tang X W, Mei L F, Zhang C R, Tang X M, Chen X X, Yang Q. Optimization
- of dormancy release method of *Glycyrrhiza uralensis* seeds under tissue culture con
- 740 <u>ditions[J].Modern Chinese Medicine</u>, 2016(3):4.DOI:10.13313/j.issn.1673-4890.2016.3.0
- 741 <u>19.</u>
- Liu Y Y, Liu C S, Zeng B F, Fan B T, Li P S, Xu D H, Liu T H. Research progress of
- 743 Glycyrrhiza uralensis Germplasm Resources[J]. Chinese Herbal Medicines,
- 744 <u>2013,44(24):3593-3598.</u>
- 745 <u>Li Y L, Jin Z Q, Wang Q, Peng L Q. Comparison of Photosynthetic Physiological</u>
- 746 Characteristics and chlorophyll fluorescence parameters of Juglans regia in different
- 747 <u>habitats[J]_Journal of Zhejiang University_[50] 2013, 40(02): 221-229.</u>
- 748 Ma N, Hu C, Wan I, Hu Q, Xiong J L, Zhang C L. Strigolactones Improve Plant Growth,
- 749 <u>Photosynthesis, and Alleviate Oxidative Stress under Salinity in Rapeseed (Brassica napus</u>
- 750 <u>L) by Regulating Gene Expression[J]. Frontiers in Plant Science, 2017, 8: 1671.</u>
- 751 Ma N, Wan L, Zhao W, Liu H F, Li J, Zhang C L. Exogenous Strigolactones promote lateral
- root growth by reducing the endogenous auxin level in rapeseed[J]. Journal of Integrative
- 753 <u>Agriculture, 2020, 19(2): 465-82.</u>
- Marzec, Marek. Strigolactones as Part of the Plant Defence System[J]. Trends in Plan
- 755 <u>t Science</u>, 2016:900-903.DOI:10.1016/j.tplants.2016.08.010.

Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Text 1

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: Italic

Formatted: Font: (Default) Times New Roman, 12 pt,

Font color: Text 1

Formatted: Font: (Default) Times New Roman, 12 pt,

Font color: Text 1

Formatted: Font: (Default) Times New Roman, 12 pt,

Font color: Text 1

- 756 Omoarelojie L O, Kulkarni M G, Finnie J F, Staden Van J. Strigolactone analog (rac-GR24)
- 757 enhances chilling tolerance in mung bean seedlings[J]. South African Journal of Botany,
- 758 <u>2021, 140: 173-81.</u>
- 759 Pang J. The regulatory mechanism of auxin and strigolactone on roots development of
- 760 stragalus membranaceus(fisch.)bunge seedings[D]. Inner Mongolia University,2020.
- 761 Pant B D, Pant P, Erban A, Huhman D, Kopka J, Scheible W R. Identification of primary
- 762 and secondary metabolites with phosphorus status-dependent abundance in Arabidopsis, and
- of the transcription factor PHR 1 as amajor regulator of metabolic changes during phosphorus
- 764 <u>limitation[J]. Plant, Cell & Environment, 2015,38(1):172-187.</u>
- Péret B, Clément M, Nussaume L, Desnos T. Root developmental adaptation to pho
- 766 sphate starvation: Better safe than sorry. Trends Plant Sci. 2011, 16, 442–450.
- Qiu Z F, Fan C J, Zeng B S. The physiological and biochemical responses of Acacia
- 768 <u>melanoxylon under phosphorus deficiency[J]. JOURNAL OF SOUTHWEST</u>
- 769 FORESTRY UNIVERSITY, 2020, 40(06): 27-33.
- Ritonga F, Ngatia J, Wang Y, Khoso M, Farooq U, Cheng S. AP2/ERF, an import
- 771 ant cold stress-related transcription factor family in plants: A review.[J].Physiology a
- 772 <u>nd molecular biology of plants: an international journal of functional plant biology,</u>
- 773 <u>2021, 27(9):1953-1968.DOI:10.1007/s12298-021-01061-8.</u>
- 774 Santoro V, Schiavon M, Visentin I, Constan-Aguilar C, Cardinale F, Celi L.Strigola
- 775 ctones affect phosphorus acquisition strategies in tomato plants[J].Plant, Cell & Envi
- 776 <u>ronment[2024-07-29].DOI:10.1111/pce.14169.</u>
- 777 Nagasaka S., Furusawa S., Shimomura K., Yamada Y., Yamaguchi S., Umehara M.
- 778 Strigolactone signaling regulates rice leaf senescence in response to a phosphate
- 779 <u>deficiency[J]</u>. Planta An International Journal of Plant Biology, 2014,240(2):399-408.
- 780 Sheng Y Z, Xie Y S, Wang W L, Luo H, Chen J, Zou H. Yield and medicinal ingredients of
- 781 G.macrophylla Pall. response to N,P and K fertilization[J]. Journal of Arid Land Resources
- 782 <u>and Environment, 2022,36(4):1-8.</u>
- 783 Shi L Y, Feng Y, Zhao Z S, Wang J N, Dai W Y, Jiao M L, He S M, Wang Z,
- Shang W Q, Shen X Y. Research progress on the effect of abiotic stress on the gr
- 785 owth and development of rose[J]. Journal of Henan Agricultural University,2024,58
- 786 <u>(1):1-21: 1-21.</u>
- 787 Sun Y L, Mu C H, Chen Y, Kong X P, Xu Y C, Zheng H X, Zhang H, Wang Q C, Xue Y F,
- 788 <u>Li Z X, Ding Z J, Liu X. Comparative transcript profiling of maize inbreds in response to</u>
- 789 long-term phosphorus deficiency stress[J]. Plant Physiology and Biochemistry, 2016,
- 790 <u>109:467-481.</u>
- 791 Tian M Q. Effects of Strigolactone analogue GR24 on seedling growth and leaf senescence
- 792 of Dendrocalamus oldhami [D].Zhejiang Agricultural and Forestry University,2018.
- 793 <u>Tai Z, Yin X, Fang Z</u>, Shi G, Lou L, Cai Q. <u>Exogenous GR24 Alleviates Cadmium Toxicity</u>
- 794 by Reducing Cadmium Uptake in Switchgrass (Panicum virgatum) Seedlings[J].
- 795 <u>International Journal of Environmental Research and Public Health, 2017, 14(8):852-852.</u>

Formatted: Font: (Default) Times New Roman, 12 pt

- 796 Tang C B. Physiological effects of Strigolactone on rice seedlings under low phosphorus
- 797 <u>stress[D]. Hunan Agricultural University, 2019.</u>
- 798 Tang J, Yang C D, Kang H M. Research progress of plant nutrition diagnosis methods[J].
- 799 <u>World Forestry Research, 2005, 18(6):45-48.</u>
- 800 Tian Z M. Role of root secretion in plant phosphorus nutrition[J]. Journal of Xianyang
- 801 Teachers' College, 2001, (06): 60-3+9.
- 802 Trevor G, Vanessa C, N K B. Root based approaches to improving nitrogen use efficiency in
- 803 plants[J]. Plant, cell & environment, 2009, 32(9): 1272-1283.
- 804 Vance C P, Uhde-stone C, Allan D L. Phosphorus acquisition and use:critical adapt
- ations by plants for securing a nonrenewable resource[J]. New Phytologist,2002,157
- 806 (3):423-447.
- 807 Wang B, Zhang T X, Liu C Q, Zu Y Y, Li Y F, Meng X C. Research progress in the effects
- of abiotic stress on reactive oxygen species metabolism in medicinal plants[J]. Research and
- 809 <u>Practice on Chinese Medicine, 2022, 36(03): 94-98.</u>
- 810 Wang X J, Li K Z, 2015, Progress of plant bHLH transcription factors involved in abiotic
- stress signaling pathways, Shengming Kexue (Chinese Bulletin of Life Sciences), 27(2):208-
- 812 <u>216.</u>
- 813 Wani K I, Zehra A, Choudhary S, Naeem M, Khan M M A, Khan R, Aftab T. Ex
- ogenous Strigolactone (GR24) positively regulates growth, photosynthesis, and impro
- 815 <u>ves glandular trichome attributes for enhanced artemisinin production in artemisia an</u>
- 816 <u>nua[J]</u>. Journal of Plant Growth Regulation, 2022,42(8): 1-10.
- 817 Wei Z, Gao T T, Liang B W, Qi Z, Ma F W, Chao L, Effects of Exogenous Melatonin on
- 818 Methyl Viologen-Mediated Oxidative Stress in Apple Leaf[J].International Journal of
- 819 <u>Molecular Sciences</u>, 2018, 19(1):316-.DOI:10.3390/ijms19010316.
- 820 Winkel-Shirley B. Biosynthesis of flavonoids and effects of stress[J].Current Opinion in
- 821 <u>Plant Biology,2002,5(3):218-223.</u>
- 822 Wu X Y, Zhang R, Ma Y, Meng L J, Tu L C, Hu T Y, Gao W. Effects of GR24 on
- accumulation of diterpenoid in triterygium wilfordii suspension cellls[J]. China Journal of
- 824 <u>Chinese Materia Medica, 2019, 44(16): 3582-3587.</u>
- 825 Xu H X, Ma M, Zhang D D, Zhu R L. Ma Y, Shen L Y. Effects of Allelopathy
- 826 of Xanthium sibiricum on Seed Germination and seedling growth of Glycyrrhiza ura
- lensis Fisch[J].Journal of Shihezi University: Natural Science, 2022(003):040.DOI:10.
- 828 <u>13880/j.cnki.65-1174/n.2022.23.002.</u>
- 829 Xu H X, Ma M. Comparison of interspecific competitiveness between Xanthium sibi
- 830 <u>ricum and Glycyrrhiza uralensis[J]</u>. Acta Ecologica Sinica,2021,41(16), 6644-6653.D
- 831 <u>OI:10.5846/stxb202008222191.</u>
- 832 Yang Z D. Studies on the determination of ChlorophyII content by spectrophotometric
- method[J]. Journal of Guangxi Agricultural and Biological Science, 1996(2):145-
- 834 <u>150.DOI:CNKI:SUN:GXNB.0.1996-02-011.</u>

Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Red

Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Red

Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Red

Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Red

Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Red

Formatted: Font: Italic

- 835 Yuan S Y, He J, Su D R. Advances in the effects of precipitation pattern change and grazing
- on soil phosphorus conversion in grassland[J]. ACTA AGRESTIA SINICA,2024,32(01):1-
- 837 <u>24.</u>
- 838 Zeng Y, Guo L P, Chen B D, Hao Z P. Wang J Y, Huang L Q, Yang G, Cui X M, Yang L,
- 839 Wu Z X, Chen M L, Zhang Y. Arbuscular mycorrhizal symbiosis and active ingredients of
- medicinal plants: current research status and prospectives[J]. Mycorrhiza, 2013, 23(4): 253-
- 841 <u>265</u>
- Zhang M, Deng Y. Advances in the Pharmacodynamics study of Gancao and its active
- ingredients[J]. Western Journal Traditional Chinese Medicine, 2015, 28(04): 156-159.
- Zhou X Y. A review of the research progress of Strigolactones[J]. Anhui Agricultural
- 845 <u>Science Bulletin,2016,22(20):3.DOI:10.3969/j.issn.1007-7731.2016.20.010.</u>
- Zhang X, Ma Y J, Qi B B, Yu B, Lv D G, Qin S J. Alleviation effect of GR24, a Strigolactone
- 847 <u>analogue, on low-nitrogen stress in Malus baccata seedlings[J]. Chinese Journal of Applied</u>
- 848 <u>Ecology</u>, 2023,34(6): 1592—1600.
- 849 Zhang Y L. Effects of Bacillus megaterium on physiological characteristics of Glycyrriza
- 850 <u>uralensis</u> under phosphorus deficiency stress and transcriptome analysis[D]. Shaanxi
- 851 <u>University of Chinese Medicine, 2023.</u>
- Zhao J, Li W, Guo C, Shu Y. Genome-wide analysis of AP2/ERF transcription factors in
- 853 <u>zoysiagrass, Zoysia japonica[J].Biotechnology & Biotechnological Equipment, 2018, 32:303</u>
- 854 <u>- 308.DOI:10.1080/13102818.2017.1418677.</u>
- 855 Zhu S Y, Duan J W, Xu B, Meng J. Effects of monocotyledonin on the growth of moonflower
- 856 plants under salt stress[J]. Contemporary Horticulture, 2022, 45(1): 4.
- 857 Zhong R Q, Ye Z H. Transcriptional regulation of Strigolactones[J]. Plant Signal Behav,
- 858 <u>2009, 4(11): 1028-1034.</u>

865

866

867

- 859 [1] Kayoumu M, Ilbal A, Muhammed N et al. Phosphorus availability affects the photosynthesis and antioxidant system of contrasting low-P-tolerant cotton genotypes[J].
- 861 ANTIOXIDANTS,2023,12(2),466.
- [2] Zhenfei QIU,Qunquan FAN, Bingshan ZENG. The physiological and biochemical
 responses of Acacia melanoxylon under phosphorus deficiency[J]. JOURNAL OF
 SOUTHWEST FORESTRY UNIVERSITY, 2020, 40(06): 27-33.
 - [3] Dehua LI, Chunlei XIANG, Yiquan JIANG, et al. Physiological characteristic of roots of Different rice variety under the stress of low phosphorus[J]. Journal of Huazhong Agricultural University, 2006, (06): 626-629.
- 868 [4] Zhongmin T. Role of root secretion in plant phosphorus nutrition[J]. Journal of Xianyang
 869 Teachers' College, 2001, (06): 60-3+9.
- 870 [5] Shuya Y, Jing H, Derong S. Advances in the effects of precipitation pattern change and
 871 grazing on soil phosphorus conversion in grassland[J]. ACTA AGRESTIA
 872 SINICA,2024,32(01):1-24.
- 873 [6] Vance C P, Uhde stone C, Allan D L.Phosphorus acquisition and use:critical adapt*
 874 ations by plants for securing a nonrenewable resource[J]. New Phytologist,2002,157
 875 (3):423 447.

Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Text 1

Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Text 1

Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Text 1

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted

- 876 [7] Xueyan G, Wenquan W, Shengli W et al.Review of pharmacological effects of Glycyrrhiza
 877 Radix and its bioactive compounds[J]. China Journal of Chinese Materia
 878 Medicine,2009,34(21):2695-2700.
- 879 [8] Qian D. Effects of water and fertilizer on yield and quality of Glycyrrhiza uralensis in Ningxia[J]. Grassland and Turf;2007;(05):62-64.

- [9] ZhiQiang G. Study on the molecular mechanism of the triterpene metabolic pathway of Glycyrrhiza glabra based on X-ray irradiation treatment and RNA seq[D]. 2019.
 - [10]Ming Z, Yi D. Advances in the Pharmacodynamics study of Gancao and its active ingredients[J]. Western Journal Traditional Chinese Medicine, 2015, 28(04): 156-159.
 - [11]Kapoor R, Anand G, Gupta P et al. Insight into the mechanisms of enhanced production of valuable terpenoids by arbuscular mycorrhiza[J]. Phytochemistry Reviews, 2017, 16(4): 677-92.
 - [12]O. O.L, G. K.M, F. F. J, et al. Strigolactone analog (rac-GR24) enhances chilling tolerance in mung bean seedlings[J]. South African Journal of Botany, 2021, 140: 173-81.
 - [13]Ma N, Ma N, Hu C, et al. Strigolactones Improve Plant Growth, Photosynthesis, and Alleviate Oxidative Stress under Salinity in Rapeseed (Brassica napus L) by Regulating Gene Expression[J]. Frontiers in Plant Science, 2017, 8: 1671.
 - [14] Liyun S, Ye F Zongsheng Z et al. Research progress on the effect of abiotic stress on the growth and development of rose[J]. Journal of Henan Agricultural University: 1-21.
 - [15] Jumyong Y, Yifei H, E Zhiying et al. Alleviation effects of exogenous strigolactone on cold stress in upland cotton seedlings[J]. Molecular Plant Breeding, 2023, 21(22): 7486-7499.
 - [16]Ni M, Lin W, Wei Z, et al. Exogenous strigolactones promote lateral root growth by reducing the endogenous auxin level in rapeseed[J]. Journal of Integrative Agriculture, 2020, 19(2): 465-82.
 - [17] Dandan H, Yuanyi W, Dingehuan Z, et al. Strigolactone maintains strawberry quality by regulating phenylpropanoid, NO, and H2S metabolism during storage[J]. Postharvest Biology and Technology, 2021, 178.
 - [18] Yiying C, Yuchao C, Shenghu G, et al. Research progress in strigolactones and application prospect in medicinal plants[J]. China Journal of Chinese Materia Medica, 2023, 48(12): 3132-3139.
 - [19]LY/T 1270-1999, Determination of total silicon, iron, aluminum, calcium, magnesium, potassium, sodium, phosphorus, sulfur, manganese, copper and zinc in forest plants and forest litter layers[S].
 - [20] Huaixiang D, Wantai U. Rexiew on soil inorganic P fractionation and the influential on P bio-availability[J]. Chinese Journal of Soil Science, 2008, (03): 681-686.
- 913 [21] Caibao T. Physiological effects of strigolactone on rice seedlings under low phosphorus
 914 stress[D]. Hunan Agricultural University, 2019.

Formatted

Formatted

915	[22] Tai Z , Yin X , Fang Z , et al. Exogenous GR24 Alleviates Cadmium Toxicity by Reducing	
915 916	Cadmium Uptake in Switchgrass (Panicum virgatum) Seedlings[J]. International Journal	
917	of Environmental Research and Public Health, 2017, 14(8):852-852.	
918	[23] Juan P. The regulatory mechanism of auxin and strigolactone on roots development of	
919	stragalus membranaceus(fisch.)bunge seedings[D]. Inner Mongolia University,2020.	
920	[24] Bingcheng X, Weizhou X, Zhi W, et al. Accumulation of N and P in the legume lespedeza	
921	davurica in controlled mixtures with the grass bothriochloa ischaemum under varying	
922	water and fertilization conditions[J]. Frontiers in plant science, 2018, 9:165.	
923	[25] Al-Babili S ,Bouwmeester J H .Strigolactones, a novel carotenoid-derived plant	
924	hormone[J]. Annual Review of Plant Biology, 2015, 66(1):161-186.	
925	[26] Weina S, Jiafu Z. Research progress on biological functions of strigilactone[J]. Shandong	
926	Agricultural Sciences, 2022, 54(05): 159-164.	
927	[27]Zhenxiang C, Qingqing W, Ling L. Effects of AMF and rhizobacteria on growth and	Formatted: Left, Line spacing: Exactly 17 pt
928	phosphorus absorption of soybean[J]. Horticulture & Seedling, 2023, 43(04): 68-70+5.	
929	[28] Trevor G, Vanessa C, N K B. Root based approaches to improving nitrogen use efficiency	
930	in plants[J]. Plant, cell & environment, 2009, 32(9): 1272-1283.	
931	[29]Pengli L, Jingyang W, Qing Z, et al. Physiological and Biochemical Responses of	Formatted: Left, Line spacing: Exactly 17 pt
932	Cucumis melo L. Chloroplasts to low-phosphate stress[J]. Frontiers in Plant Science	
933	e, 2018, 9: 1525.	
934	[30] Siya Z, Jianwei D, Bin X, et al. Effects of monocotyledonin on the growth of moonflower	
935	plants under salt stress[J]. Contemporary Horticulture, 2022, 45(01): 13-15+20.	
936	[31]Guodong L, Manqin T, Renfang S. Analysis of chlorophyll fluorescence parameters in	
937	leaves of strigolactone mutant of Arabidopsis thaliana[J]. Journal of Zhejiang A & F	
938	University, 2017, 34(01): 36-41.	
939	[32]Seiji, Nagasaka, Soya, et al. Strigolactone signaling regulates rice leaf senescence in	
940	response to a phosphate deficiency[J]. Planta An International Journal of Plant Biology,	
941	2014,240(2):399-408.	
942	[33] Ruiyi J, Mengtian Z, Jing Y, et al. Effects of low phosphorus stress on non-structural	Formatted: Left, Line spacing: Exactly 17 pt
943	carbohydrates and antioxidant protective enzyme systems in leaves of Dendrocalamus	
944	latiflours seedlings[J]. Journal of Fujian Agriculture and Forestry University (Natural	
945	Science Edition), 2024, 53(01): 56-61.	
946	[34]Bin W, Tengxiao Z, Chaoqun L, et al. Research progress in the effects of abiotic.	Formatted: Left, Line spacing: Exactly 17 pt
947	stress on reactive oxygen species metabolism in medicinal plants[J]. Research and	
948	Practice on Chinese Medicine, 2022, 36(03): 94-98.	
949	[35]Lijian L.The mitigating effects of exogenous strigolactones on apple seedings under	
950	alkali stress[D]. Shandong Agricultural University,2023	
951 952	[36] Winkel-Shirley B. Biosynthesis of flavonoids and effects of stress[J]. Current Opinion in Plant Biology, 2002, 5(3):218-223.	
•		

953 954	[37]Xiaoyi W, Rui Z, Yun M, et al. Effects of GR24 on accumulation of diterpenoid in triterygium wilfordii suspension cellls[J]. China Journal of Chinese Materia Medica, 2019,
955	44(16): 3582-3587.
956	[38]Sijing G, Tiantian G, Rongrong X, et al. Transcriptome analysis of root in glycyrrhiza
957	under salt, low phosphorus and drought stress[J]. Molecular Plant Breeding, 2023, 21(05):
958	1496-1509.
959	[39]Zhang Yali. Effects of Bacillus megaterium on physiological characteristics of Glycyrriza
960	uralensis under phosphorus deficiency stress and transcriptome analysis[D]. Shaanxi
961	University of Chinese Medicine, 2023.
962	[40]Shengxiong H ,Yongfeng G ,Jikai L, et al. Genome-wide analysis of WRKY transcription
963	factors in Solanum lycopersicum[J].Molecular genetics and Molecular genetics and
964	genomics: MGG,2012,287(6):495-513.
965	•
966	

Formatted: No bullets or numbering, Tab stops: Not at 0.29"