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Abstract:

Background. Glycyrrhiza—is, a perennial herbaceous medicinal plant, which-is widely—usedextensively
utilized in the pharmaceutical industry. The growth of Glycyrrhiza, is eften-timitedfrequently constrained by
thesoil phosphorus effectivenessavailability, as a significant portion of the-seil-beeause-most-of-the-arable
land in China is-in-asuffers from phosphorus defieitdeficiency.

Method. Ha-thisThis studys utilized Ural Glycyrrhiza uralensis Fisch was-used-as the research-objeet;subject
and & e . . NV ) ]

2y cexamined the effeet-of GR24-on-the
stapplication of GR24, a synthetic strigolactone, under three

phosphorus conditions: none (P1), low (P2), and normal (P3). The research aimed to ascertain the optimal
concentration of GR24 appl-}eaﬂeﬂ—wh«teh—e%—prewdefor promoting licorice growth and development,
thereby providing a theoretical basis

iee-foundation for its agricultural management.

Results. The optimal GR24 concentration ef GR24-underfor P3 and P2 treatmentsconditions was identified
@[GSL which led-te-inereasedenhanced growth indices,organmetrics, chlorophyll a and b eontentas-wellas

enhaneed—levels, and while also boosting antioxidant enzyme activityactivities in licorice.
Mereever;Specifically under P3—treatment—it—significantlyprometed—theaceumulation—of—, significant
increases in liquiritigenin and glycyrrhizic acid;-while-under P2-treatment-it prometed-the-aceumulation-of

Iseliquiritigenin levels were observed. Under P2, increases were noted in isoliquiritigenin, liquiritigenin, and

liquiritin——was—shown—by—the—transeriptome_levels. Transcriptome analysis that—there—wererevealed

differential gxpression, with 137 and 270 eases-ofIsohiquirtin: tiquirtrigenin tiquirtin-under P3-and P2-137
1 G TG

and-294-genes were-up-regulated and 77 and 294 genes were-down-regulated underin the P3 and P2
treatments, respectively. GO functional enrichment revealed—thatidentified 132 and 436 DEGs—were
anneotated;differentially expressed genes for fPl and P2 trespectlvely andwhile KEGG was-maintypathways

were predominantly enriched in < plam—palhogen interactions and
phenylpropanmdA i 2 S EAR

eﬂ%ymHeﬁ%LHy—pmﬁm&eﬂ—wasbiosvmhesis. Application of GR24 in Pl conditions did not

signifieantsignificantly affect growth indices but significantly-promeoted-the-aceumulation—ofdid enhance

{ Formatted: Font: Not Italic

[Commented [DB1]: Needs defining

[Commented [DB2]: gene

[Commented [DB3]: correct should be P3 and P2



mailto:2214403407@qq.com
mailto:llhhll7878@163.com

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

glycyrrhetic acid, Iseliquirtin,—liquirtinsisoliquiritin, _and  liquiritin _accumulation. Transcriptome
analysisprofiling in this treatment identified 465 up-regulated genes-and 1,109 down-regulated genes. GO
funetion-annotation invelvinginvolved 1,108 DEGs.whiledifferentially expressed genes, and KEGG analysis
maintywas primarily enriched in the plant-pathogen interaction pathway. In-addition;-analysis-of the changes

#r-Furthermore, transcription factersshowed-that-there-were-changesfactor analysis revealed alterations in
the C2H2, NAC, and MYB families-related-te, which are associated with phosphorus response.

Keywords: Glycyrrhiza uralensis Fisch; Strigolactones; antioxidant enzymes; medicinal constituents;

transcriptome

Phosphorus:-as is an essential nutrient ferplant-growth,-that plays a erucialpivotal role in nearly all
metabolic processes within plants (Kayoumu M et al., 2023). NeverthelessHowever, the concentration of

effective phosphorus eencentration-in the soil is-farfrem-meetingoften fails to meet the demands of normal

demand-efplant growth (Qiu et al., 2020). However-the-effective-concentration-of phosphorus-in-theseilis

far—from—enough—to—meet—the normal-demand—of plant—growth—thelnsufficient phosphorus supply is
insutfieient—the-can lead to significant changes in both the external and root morphology of the-plant-will

changeandplants, as well as transformations in their physiological characteristics witl-be-transformed-(Li et
al., 2006). Phesphorus—is-As a non-renewable resource, with-global phosphorus reserves beirgare limited-
Seil, making soil phosphorus availability eonstitutes-the prlmary 11m1t1ng factor aﬁc—etmgfor hlgh agrlcultural
yields in China (Tian, 2001). Se+ ; ek > e
produetivity-in-China-The phosphorus required for plant growth and development is mainly-obtained-throush
the-primarily sourced from soil phosphorus reserveir—erreserves and fertilization-se-thatplantsean-absorb
enough—phesphorus—Inereasing, ensuring adequate absorption by plants. The practice of increasing
phosphorus fertilizer isuse, however, represents a "high input, low output" pathway-to-selve the-preblem-of
phespherus-nutrition-to-maintainstrategy. Consequently, maintaining high crop yields while protecting the
environment has become a worldwidecritical area of global research task-(Yuan et al., 2024). Additionally, at
the-same-time;phosphorus stress is-also-an-important-facter himitingsignificantly limits the production of
medicinal plants-, further emphasizing its crucial role in agricultural productivity (Vance ey al., 2002).

Glycyrrhiza uralensis Fisch-is, a plantbelonging tomember of the genus Glycyrrhiza Linn within the
Leguminosae family, which-has-the-effeets-of relievingis recognized for its medicinal properties, including
pain;expeHing relief, phlegm andexpulsion, cough;-benefiting-the—vital_ suppression, energy and-tonifying
theenhancement, spleen tonification, and regulatingthe modulation of various medieines;-etepharmaceuticals

(Gao et al., 2009). Moreoveritalso-serves-asanimportant Additionally, this species plays a crucial role as a
sand-fixing plant in the desert and semi-desert areasregions of western China (Du, 2007).

HeweverNevertheless, overfextraction |has severely depleted wild licorice has—been—damaged—by—over

exeavationand-is-populations, rendering their resources are-serioushycritically scarce. Cultivated licorice,

asdespite being a mainstream commodlty, &u#em—kem—th%pmblem&—e#p}amlaces challenges such as
inhibited growth, quality degradation, F and reduced yields,
issues that complicate adherence to the quality standards %HpﬁJﬁfcedeﬁlablmhed in the Chinese Pharmacopoeia
(Gao 2019) Jih%qua-l-&yFurthermore the biochemical compoemon of licorice dees-not-meet-the-standards

includes a diverse array of terpenoids

(Zhang etal., 2015). Phosphorus is-bothp lays a critical role in the synthesisbiosynthesis of terpene precursors
viathrough the MVA pathway-(, involving acetyl-CoA, ATP, and NADPH}-and-phesphorus-synthesis-via, as
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well as through the MEP pathway-{involving glyceraldehyde phosphate and pyruvate)-were found-te-be, both

of which are significant (KAPOORfor plant metabolic functions (Kapoor R et al., 2017).

Strigolactones —_ (SLs >——is—a), sesquiterpene hermenehormones derived from beta-carotene
{Omearelojie—et-al;—202H—Thisphytehermene—is—theught, are believed to play a keycrucial role in the
regulation—efregulating  both aboveground plant cenformationarchitecture and root development
(Omoarelojie et al., 2021; Ma N et al, 2017; Marzec et al, 2016). GR24, a synthetic
Srigelaetonesstrigolactone, is knewn-to-partieipaterecognized for its involvement in the-respenseresponses
to abiotic stresses and isacts as a posmve regulator of therespense-to-adversitystress responses (Shi et al.,
2024). Specifically, GR24-+ < s stress-respense; has been demenstratedshown
to enhance drought and salt tolerance in Arabidopsis thaliana (Jumyong Y et al., 2023) and interaetsto interact

with other hormones to promote lateral root growth in oilseed rape (MAMa et al, 2020).
MereoverAdditionally, it has alse—been shewndemonstrated that exogenous GR24 can improve the
metabolism of antioxidant enzyme systems, phenylpropanoid;-phenylpropanoids. nitric oxide (NO), and Hz
Shydrogen sulfide (H2S) in %t-r—awber—%y—te—maﬂmm trawberries, thereby mamtammg fruit quahty durlng
storage (Huang et al., 2021). 5
has—also—been—shewn—that-Moreover. dulcitolactone eanhas been shown to regulate the k)lant type and
phytoplasma‘ of medicinal plants, therebythus influencing the growth and development of medicinal parts in

a targeted manner;-and-achieving the-purpese-ofregulatingthe to achieve the desired "optimal type" (Cao et
al., 2023).

Therefore—inln the present study,we—aimmed our aim was to sereenidentify a more faverableeffective
regimen for the growth of Glycyrrhiza uralensis Fisch in a—low—-phosphorus environtent—as—well
asteenvironments and to investigate the effect-of exegenously-appliedeffects of the exogenous application of
hnonocotyledonin lactone on the accumulation of medicinal components.

1. Experimental methodology

1.1 Overview of the pilot area

The testexperimental material wasconsisted of Glycyrrhiza uralensis Fisch seedlings. each with four
true leaves;—and-the. These seedlings were maintainedcultivated and treated in the Wenjiang District; of
ated at coordinates 30°36’-30°52’ N; and 103°41’-103°55" E};—whieh-has. This region is

characterized by a subtropical monsoon climate—with, which offers a faverable—temperate climate;—a

lengenvironment, extended summer period;-a-shortseasons, brief winter periedperiods, and alengprolonged
frost-free periodintervals (Deng, 2022).

1.2 Experimental material

TFhe-plant-material-usedforthetest-was—For the experiment, uniform and fully developed seeds of

Glycyrrhiza uralensis Fisch—full-and-uniformly-textured seeds—_ were selected-for. These seeds were treated
by soaking and-mixing—within 98% sulfuric acid for half-an-heurand rinsedthirty minutes followed by

extensive rinsing (more than three times) with pleaty-ef-distilled water (Deng, 2022; Liang et al., 2016). The
test-substrate for the test was a +-thomogeneous mixture of field soil and sand- in a 1:1 ratio. The culture
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containers used were autoclaved (12+°C;-2h)-hydroponic boxes (70-bexes);-121°C for 2 hours) and 30x25

cm plastic pots, totaling 70 boxes.

1.3 Drugs and reagents

The synthetic analog of strigolactones, GR24-of the-test-Strigolactones, was purchasedprocured from
Beijing Kulaibo Science and Technology Co., Ltd;.. with a CSA No=:. of 76974-79-3. Initially, 1 mg of GR24
was takendissolved in advanee;—and-a small ameuntvolume of acetone—was—added-to-disselve-it, and_then
diluted with water was-added-to a volume of 335.2 uuL to ebtain-theprepare a 10 mM GR24-metherstock
solution (Zhu et al., 2022),~which-was-then-configured-inte). This stock solution was further diluted to create
standard solutions at concentrations of 0 gumol/L, 1 pumol/L, 10 ppmol/L, 100 pmel-The GR24-mother
solutionwas-thenreconstituted-into-Opmob b pmol L0 mol 100w pmol/L, and 1000 wmol-Lagucous
selution; 1000-pmelAaqueous-GR24-setutionumol/L for experimental use.

1.4 Experimental design

The test-began-experiment commenced on April 10, 2023, firstwith the sterilization of all-the-licorice
seeds were-sterilized;-and-petri-dishfollowed by their germination;7 in Petri dishes. Seven days after-the seed
post-germination, seedlings with a high top cover meved-were ftransferred into the—hydroponic bex
seedhngboxes (70 boxes, each bex-ofcontaining 9 plants, a-tetal-eftotaling 630 seedlings)-hydropenie). These
were cultivated hydroponically until the heericegrows-out-efseedlings developed 4-5 pieees-of-true leaves
{probably-about pproxundtely 20 days)— later. Subsequently seedlings exhibiting similar growth were
selected th eedlinos moved-intothe diamete heish

emrand relocated to plastic pots;the-pets—_measuring 30 cm in diameter and 25 cm in height. Thc cultivation
substrate for-the Mixed-andin these pots consisted of a sterilized mixture of garden soil and sand ¢in a 1:1);
3 ratio. Three seedlings were transplanted into each pot, tetaling-resulting in a total of 120 pots. After
transplantingalitransplantation, the pots were placed-n-the-initially stored inside a building;and-ere. One
week later, they were placed-in-themoved to an outdoor experimental field;-which-was-sheltered protected
from rain. Atthe-beginning-of-seilSoil k:ultlvatlon}—%ef—the began with the application of 1/4 strength
Hoagland nutrient solution was-used-te-slow-eultivate for 5-days,-after-that1H2-of theto gradually acclimate

the seedlings over five days, followed by 1/2 strength for the next five days. Full-strength Hoagland nutrient
solution was uscd to-cultivate for 5 days. and then the full amount of Hoagland nutrient solution was used
for nermalregular management;-and-then. When the seedlings werestarved-forfive-days-whenthey-grewbore

6-8 true leaves, aﬂeHhev underwent a five-day starvation period during which they were moderately

different phosphorus concentrations were supphedfaﬁd-thre%pheﬁahem&eeﬁeen%ﬂemadmmlsteled. Three

treatments were set:—theestablished: full-amount—of-strength Hoagland sutsient—solution as the normal |

phosphorus supply treatment-(P3), theone-third the original NH4H-POy concentration ofin the Hoagland
nutrient solution NHsH2 POs-was reduced-to-1/3-of the eriginalasfor the low phosphorus treatment (P2), and
thea phosphorus-free Hoagland nutrient solution was-set-asfor the zero phosphorus-free treatment (P1);-and
regularfertilizerapplication-was-carried-out i-e-onee-a-week). Regular fertilization involved weekly watering;
with 500 ml ata-time;of solution, supplemented by moderate supplementaladditional watering- as necessary.
Foliar spraying ef-differentwith various concentrations of GR24 treatments-was-startedcommenced on June

g
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10;-the. The treatment groupgroups included a kontrol sprayed with GR24 (G1).-as-a blank control-at) and

four eoneentrationtevels-Msadditional groups treated with GR24 at concentrations of 1 uM (G2), 10
#uM; (G3), 100 puM; (G4), and 1000 pM)e-G2,-G3-G4;-and-uM (GS;-and-spray-every-). Spraying was
pertormed each evening until the leaves %el—xd—ﬂ‘iyLm\tel etained water droplets aﬂéd&ne%d—mp—wﬁh%t-reqaeﬁey

WW&WMW@HMWHWW ithout dripping. repeated

weekly. To minimize the-effeetef-environmental factors-onthem—At-the-endbiases, the placement of pots

within each treatment group was randomized, and their positions were systematically rotated every two weeks.

At the conclusion of the growing season in October 2023, Uralic-sweetgrass-started-to-be-measured-for-the
morphological indexes-as-well-as—various-and physiological indexesindices of (Glycyrrhiza uralensis [were

systematically measured.

1.5 Indicators and methods

1.5.1 Measurement of growth indicators
Adplantswere harvested-atAt the end of October 2023, all plants were harvested, and the adhering soil
on-theplants-was slewly-washed-awaygently rinsed off with running water. Fiveln each treatment group, five

plants were eellected—in—each—group-sampled. The length of the underground pastportion was measured
withusing a steel hap& while the diameter of the main root was measuredgauged with a vernier caliper;-and

the. The fresh weightweights of the aboveground and underground parts of Glycyrrhiza uralensis Fisch was

welghedﬂw%hwcrc determined using a balance. Fake-a-pietureA photograph of each specimen, with a ruler
s : teturefor scale, was taken and uploaded to Image J for root area projection analysis;

. The samples were then dried in an oven at 75°C+6°C until a constant
welght was_achieved, and vvﬁglfrthe dry weightweights of the aboveground and underground parts ef

sewere subsequently weighed.

1.5.2 Determination of chlorophyll content

EiveFor each treatment, five fresh fleaves‘ were collected-from-eachtreatment,-. washed. and dried;the.
The veins were eut-offremoved, and eutinto-pieces; O-tsthe remaining leaf tissue was weighed;chopped. A

sample weighing 0.1 g was used for the extraction and the-quantification of chlorophyll a and B-were-detected
by-b using the acetone method (Yang, 1996),-and-then-the-). The concentrations of chlorophyll a and
ehlorophyltb were calculated aceording tousing the formulaappropriate [formulas|,

1.5.3 Antioxidant enzyme assay

FiveFrom each treatment group, five, plants were randomly selected-from-each-treatmentand-the. The
fully expanded apical [leaves were eollectedharvested, washed-and, dried, and weighed-to-determine. The |
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activities of, superoxide dismutase (SOD) and peroxidase (POD) were measured spectrophotometrically

byusing a/Solarbio it and-eatalase. Catalase, (CAT) by-activity was determined using a Shimadzu UV-2041

ultraviolet spectrophotometer (Shimadzu, Japan) (Xu et al., 2022),-medel-UV-2041 spectrophotometer

(ShimadzuJapan).
1.5.4 Materials and methods for the determination of pharmaceutical ingredients

1.5.4.1 Pharmaceutical ingredient measurement materials
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The medicinal constituents of Glycyrrhiza uralensis Fisch were determinedquantified using High-
Performance Liquid Chromatography (HPLC«H as detailed by Xu et al5-. (2021);-and-the-). Standards for
glycyrrhetic acid standard-was purehasedwere sourced from Chengdu Pufide Biotechnology Co-LEseliguirtin
standard-was-purchased., isoliquiritin from Shanghai McLean Company, and the rest-of the standard-was
purchasedother standards from Chengdu Kangbang Biotechnology Co. Ltd;-with-bateh. Batch numbers effor
these  standards  include  Glycyrrhizic acid (21080201), Glycyrrhetic acid  (20041002),
Lseliquirtigeninlsoliquiritigenin (21101901), Eseliquirtinlsoliquiritin (C11602211), Glabridin (21032701),
Liquirtigenin (22110902)). and Liquirtin (21041301){see-annexfor-). Further details). are provided in the

lnnex.

1.5.5 Transcriptome assays

The root tips of Glycyrrhiza uralensis Fisch was-dugeut-and-the reot-tips-were picked-andexcavated,
washed to remove the-soil, and quicklyput-inteimmediately immersed in liquid nitrogen for quickrapid
freezing-and-then-transferred-inte-a. Subsequently, samples were stored at -80°C—refrigerator;°C and sent to
Beijing Baimaike Company for testingtranscriptome analysis.

1.6 Data processing

The—dataData were analyzed using SPSS 25 software—and-thelevel-of-. The significance of

differeneedifferences was analyzedassessed using Duncan's multiple eomparisons-of Dunean's-range test and

LSD intest within a one-way ANOVA (ene-wayANOVA)-analysis;-and-the-experimental resultsframework.
Results were plettedgraphically represented using Origin2022 software.

2. Results and analysis

2.1 Effect of GR24 on growth indexesindices of Glycyrrhiza uralensis Fisch under different phosphorus

concentrations

As-shewnin-Table 15— demonstrates that under no phosphorus stress, the fresh weight, dry weight, root
length, basal stem diameter, and root projected area of Glycyrrhiza uralensis Fisch underne-phespherus
stress—were smaler—than-lower Lompamd to_those efobserved under low phosphorus stress and hormal |
phosphorus supply treatments s g F : asat-ste ey ;
Fiseh. Furthermore, these indices under low phosphorus stress were smdﬂer—ﬂﬁn%hes&uﬁdeﬁnlso reduced
when compared to the hormal phosphorus supply treatmentsconditions, lalthough thethese differences were

not statistically signiﬁcanti And-the-differeneeThe variation in root projected area, however, was significant.

UYnder-There were no significant differences in any indices among the GR24 concentration treatments under

no-phosphorus stress; s when

compared to the G1 concentration treatments. Hewever;Under low phosphorus stress, the G3 concentration
significantly-inereasednotably enhanced the fresh weight, dry weight, root length, and projected root area of
licorice by 53.8%, 38.2%, 20.1%, and 28.3%, respectively. Theln the bormal phosphorus supply treatment,
the G3 concentration significantly increased the fresh weight, dry weight, root length, and basal stem
diameter of Glycyrrhiza uralensis Fisch by 78.57%, 82.1%, 36%, and 45.8%, respectively.

{

Commented [DB19]: delete

{

Commented [DB20]: appendix

{

Commented [DB21]: high

Commented [DB22]: high

| Commented [DB23]: If not significant then why make a

note of it? Better to say that there was no difference

between these indices.

Formatted: Font: Times New Roman, Font color: Auto,
Pattern: Clear

Commented [DB24]: High

[
W
|
[
|

Formatted: Font: Italic

o o A A 00




240
241
242

243
244

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

265
266

267
268
269
270
271
272
273
274
275
276
277
278

AdditienallyMoreover, the root projected area s-significantly increased by
46.1% and 36.1% under G3 and G5 concentrations, %%J%ﬂﬁd%#respectlvely

2.2 Effect of GR24 on phosphorus content of roots, stems, and leaves of Glycyrrhiza uralensis Fisch at
different phosphorus concentrations

As depicted in Figure 1-illustrates-that, under no phosphorus stress conditions, tnderno-phesphorus<
stress-treatment;-phosphorus accumulation in the roots, stems, and leaves of licorice treated with GR24 was
lower than that ef the-observed under low- phosphorus stress-treatment. Slmllarly, under—lew—phesphem&
stress-treatment,-phosphorus accumulation i 5.8 S Vrrhiza r
was lower-than-that-ef thereduced under low phosphorus stress compared to hormal phosphorus—xuppiymﬁ
treatment supply conditions.

Under hlormal bhosphorus supply-treatment, the aceumulation-of phosphorus content in the roots of
licorice—treated with the G3 concentration was 51gn1ﬁcant1y higher than that ef-treated with the G1

concentratlon%yu showing an increase of 23.1%.

5

the stems. phosphorus content

aceumulationunder treatments mlh G3 and G5 concentrations was 51gn1flca.ntly higher than under the G1
concentration treatment, respectively-inereased-by-with increases of 98.33% and 138.33%:%, respectively.
Furthermore, under no-phosphorus stress-treatment, the acenmulation-ef-phosphorus content in the leaves ef
licorice-under-treated with the G4 concentration treatment-was significantly higher than that efin the G1
coneentration-treatment, which—inereased-byexhibiting an increase of 68.66%;—-andunder’%. Under low
phosphorus stress-treatment, the-acenmulation-of phosphorus content in the leaves ef-Glyeprihi 8 .
Fiseh-under G2 and G3 concentration treatments was significantly higher than that e£u11der the Gl
concentration—treatment, which—inereased—bywith increases of 29.31% and 30.46%, respectively. And

theAdditionally, under normal supply-ef-phosphorus treatmentsupply conditions, the G3 treatment group
hadexhibited a significant increase in leaf phosphorus content of 19.35% compared to the G1 group.

2.3 Effect of GR24 on antioxidant enzyme activities of Glycyrrhiza uralensis Fisch at different phosphorus
concentrations

Figure 2 demenstratesillustrates the impact of phosphorus stress on the activities of SOB-{superoxide
dismutase}; POB+{ (SOD), peroxidase (POD), and EAF{catalase (CAT). The activities of SOD, POD, and
CAT all-becamelarger-increased with ﬂeHggmvaneWemlatmg phosphorus stress;-and-the-activities
levels. The activity levels of SOD and POD ef-&he iseh-under no phosphorus stress were
higher than those ofin the low phosphorus stress group and the homal pphosphorus supply treatment group.
Additienallythe Furthermore, CAT activities of CAT-were significantly higher than those efseen in the low
phosphorus stress group and the )normal }phosphorus supply treatment goupﬂﬁé@h&aeﬁﬂ&e%ef Also, SOD

treatment group, and-the-activities-ef-whereas POD and CAT activities were s1gn1ﬁcantly higher than-these
of the normal phosphorussupply-treatment-group-atthe-in the low phosphorus stress-POB-and-CAT-activities
were-beth-significantlyhigherthanthese—of group compared to the hormal phosphorus supply treatment
group.
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Under no-phosphorus stress treatment, the G2 concentration of GR24 treatment significantly increased
theSOD activity ef SOD-i-e-by 15.”7&%4&6%&%%&%&'%@@4% although the G3 concentration treatment

group was—netshowed no significant—and—there effect. There was ne—inerease—and—thealso a significant
increase in POD and CAT activities ofin the K}R24 concentration )treatments compared withto the GI1

concentration treatment. Under low phosphorus stress treatment, TFh%PQ&aeﬂHW—QFG3 concentration
treatment F F

TFheresulted in a significant 19.6% increase in POD activity compared to the G1 concentration treatment.

Similarly, SOD activity efin the G3 concentration treatment was significantly higher than that-efin the G1
concentration-treatment-and-, with a-significant-inereased-byan increase of 38.5%. The POD activity of the
G3 concentration treatment was—diseardedhigherthan—that-of the- Gl -concentration—treatment—withalso
showed a significant increase of 22.9%-% over the G1 treatment. However, there was-no-improvement
andwere no significant inereaseimprovements in CAT activity in-eachacross any concentration treatment

rOupEIoups.

2.4 Effect of GR24 on the content of medicinal components of Glycyrrhiza uralensis Fisch atunder different
phosphorus concentrations

Based-on-theThe experimental results;-it-was-known indicated that the G3 concentration had-the best
effect-on-the regulation-ofwas most effective in regulating Glycyrrhiza uralensis Fischyse-the-treatment-with
&3 therefore, this concentration was ehesenselected for the-subsequent experiments. L’-\nalysm‘ fromof Figure

3 revealed-that there-wasshowed o significant differencedifferences in the contentslevels of glycyrrhetic

acid, liquirtigenin, liquirtin, and glabridin between the—treatments with—differenttevels—ofacross varying
phosphorus  supplylevels and  different—GR24  concentrations. FheHowever, the content of
hel—}q&ﬁ-ﬁgemﬂ sohgulrtlgenm in the low phosphorus stress treatment was 31gn1ﬁcantly hlgher than that-in

: in the no-phosphorus stress
treatment at both G1 and G3 concentrations. F—ui—t-her—mefe—eeﬁtemSnmlallV isoliquirtigenin levels in the

normal phosphorus supply treatment were significantly elevated compared to those in the no-phosphorus

stress treatment at both concentrations. Additionally, the levels of liquirtigenin in both the normal phosphorus
supply treatment-and low phosphorus stress treatment-wastreatments were lower than that-efthose in the no
phosphorus stress treatment;-and-the-content-of-. Specifically, in the G3 concentration treatment, the contents

of liquirtigenin and glycyrrhizic acid in-G3-concentration-treatment-was-increased significantly inereased-by
72.2% and 21.26%, respectively. Thelsoliquirtigenin-content-of the-Under low phosphorus stress-treatment

. the levels of isoliquirtigenin, liquirtigenin, and liquirtin were significantly
higher in the G3 treatment than in the G1 treatment-undertow—phesphorus—stress—treatment-by, showing
increases of 131.29%, 118.79%, and 145.83%, respectively. Underln the phosphorus-free treatment, the G3
treatmentconcentration significantly inereased—Iseliquirtinboosted the contents of isoliquirtigenin and
liquirtin by 164.52% and 23.94%, respectively.

2.5 Effect of GR24 on the expression of Glycyrrhiza uralensis Fisch genes under different phosphorus

concentrations

—
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2.5.1 Transcriptome sequencing quality assessment

In this experiment—thestudy, RNA sequencing analysis was performed on 18 kukaryotlc
transeriptome(RNA-seq)-analysis-of 18-samples-was-completed;-and, yielding a total of 122.60 Gb Clean
Data-was-obtained;-and-the-CleanData-of of clean data, with each sample reachedproviding approximately
5.82 bb\ (See Appendix Table 3). h-thisstudythe The quality of the sequencing was substantiated by a Q30

base percentage of Q30-bases-wasexceeding 95.17% and-abeve(See Appendix Table 4), indicating that the
Gequenemg—bas%reeeamheﬁ—%% reflecting reliable and accurate#mﬁ%ﬁtudy—bh&@le&ﬂ—k%e&d%e# base

genome,ﬁand-the with a matchmg efficiency rangedranging from 70.36% to 91.75%.—
2.5.2 Differential gene expression analysis

T-thisstady-ditferentialDifferential gene expression analysis was conducted for the comparisons LAVSB,
DvsE, and GvsHI was-condueted-using Feld-Change=-a fold change threshold of >2 and a FDR <-of <0.01

as-sereeningeriteria-(Fig. 4). The statistical power vatue-effor AvsB iswas 0.7422, thatefDvsE iswas 0.4688,
and that-ef GvsH iswas 0.506. A total of 1,574 differential gene expressions were identified in AvsB, of
whichcomprising 465 were-up-regulated genes-and 1,109 were-down-regulated genes;-a-total-of. In DvsE

214 differential gene-expressions were identified-in-DvskE -ef which, with 137 swere-up-regulated genes-and
77 were-down-regulated genes;and-a-total-of. For GvsH, 588 differential sene-expressions were identified-in

GvsH37noted, evenly split with 294 up-regulated genes-and 77294 down-regulated genes; GvsH-identified

2.5.3 GO enrichment analysis

The GO functional enrichment hnalysis lof differentially-expressed-senes(DEGs) in the Glycyrrhiza

uralensis Fisch transcriptome-Fig-, as depicted in Figure 5), revealed that 1,108, 132, and 436 DEGs were
annotated in the GO database underfor the comparative analyses of AvsB, DvsE, and GvsH, respectively. In
the AvsB was—distributed—ncomparison, DEGs were classified into 17 elassescategories of Biological
preeessProcesses (BP), 3 of Cellular Components (CC), and 12 of Molecular Functions (MF). DvsE showed
distributions across 16 BP classes, 3 CC classeSﬁf—EeHaJ‘ar—eempeﬁc—ﬁH—ee} and 1211 MF classes-of

¢ 5 5 whereas GvsH had 19 BP classes-ofBP, 3 CC classes

an additional category in MF
3¢ 5 ¢ svsHowas dis > %t 5 ¢ 5 ~and bringing the total
to 13f&tegeﬂeseﬁMF Further analysisscrutiny of the tephighest-ranked GO terms revealed-that the BP-was
mainly-coneentratedindicated a primary concentration in BP, especially under the AvsB treatment-ef AvsB-
BP-is-mainty. Notably, the cellular process was significantly enriched in-eellularprocess-with 509 ehanges;
of which-alterations, comprising 139 are-up-regulatedregulations and 370 are-down-regulated;andregulations.
Similarly, the cellular anatomical entity exhibited 560 modifications. with %O%mges—eﬁwh%—hl% are-up-
regulatedregulations and 423 are-down- ¢ >
enrichment in CC-with-, which also dlsplaycd 560 changesmsgﬁv&p%ga%d&m%ﬁeéewn—

= 3 —the ore . In the DvsE set, the metabolic process enriched-in BP;-of

which—_included 67 changes (38 were-up-regulated and 29 were down-regulated;), and there were 69-changes

edregulations, aligning with the
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363 éewa—regal—a%ed#l—ehaﬁgeq—mm MF showed 69 ch"mge% with an equal number of up-regulations.
364  Additionally. the catalytic activity enriched-in CC;—of—which showed 71 changes, with 40 were—up-
365  regulatedregulations and 31 wefe—down-regﬁ-la%ed—regulatlonq For GvsH, the analysis reflected 204 changes
366  sverefound-in the cellular process enrich

367 rega%afed—kk@%%H—&hefe—wefe%ehaﬂgea—&kBlLef—wm& of BP (107 wefe—up-regulated and 97 were-down-
368  regulated;), 217 changes in ME{the cellular anatomical entity); of which-MF (112 were-up-regulated and 105
369  were-down-regulated;), and in CC, binding was characterized by 216 ehanges—in-CC(binding)-ofwhich
370 alterations 191 wefe—up-regulated and 125 were—dewegu%a%ed—aﬂd%é—ehaﬂues—&@qlé—(eeﬁﬁm—pmee%
371 h ated-an W e h

372 %@Ge%&%@fe—upﬂ%ed—a%—u@f&ée%ﬁegﬂa{ed— own- regj;lated!

373  2.5.4 KEGG pathway enrichment analysis

374 KEGG pathway enrichment analysis was perfermedconducted on DEGs-Figure 8-shows to identify the
375 most significant metabolic and regulatory pathways affected. As illustrated in Figure 6, the analysis

376  highlighted 20 pathways with the highest enrichment inlevels across the eomparisoncomparisons of AvsB,
377  DvsE, and GvsH:—where. In the AvsB and DvsE were-mest-abundant-incomparisons, the plant-pathogen
378  interaction pathway was predominant, with 96 and 18 entries, respectively;. This was followed by the GvsH
379  comparison in the MARKMAPK signaling pathway-plant pathway-with 36 entries and-7;-and-GvsH-in the
380  Phenylpropanoid biosynthesis (PBP) pathway with 14, follewed by _entries. Additionally, the DNA
381  replication pathway was notable with 8—tn-addition—te-thiswefound-that entries. AvsB was-significantly
382  enrichedinshowed a significant enrichment of four genes in the Flavone and flavonol biosynthesis pathway:.
383 Similarly, in GvsH, there was ﬂgﬁmc—aﬂﬂlfeﬁﬁehed—ma notable enrichment of four genes in the Flavonoid
384  biosynthesis pathways; # and two
385  genes in the Terpenoid backbone biosynthesis pathway, aﬂd—GwH—waq—HgmﬁeaﬂHy—eﬂﬁehed—m—fwewnh

386  another five and four genes enriched in the ZFei-peﬁmd—baekbeﬁe—bmeymhesﬁlatter pathway-—baekbone
387 i s; respectively.

388  2.5.5 Analysis of differential transcription factors

389 A-total-of 1495 Unigene—were-annotated-as—transeriptionfactors—inThe Glycyrrhiza uralensis Fisch
390  glabra transcriptome data;-and-as-can-be-seen revealed a total of 1495 uni;enes annotated as transcription

391 factors. As

[Commented [DB40]: Summarized or shown

392  exhibited varied expression pattems ofacross the same-transeriptionfactor—in-AvsB, DvsE, and GvsH
393  comparisons;-with-the-highest-number—of-differentially-expressed-. The k12H2 NAC, WRKY, MYB, and

394 GRASHhHeﬁ—% transcription factors showed the highest numbers of differentially expressed genes. [Commented [DB41]:

395  Specifically, the most up-regulated transcription factor families with-the-most-up-regulated-expression-in
[Commented [DB42R41]: Full names

396  AvsB wereincluded AP2/ERF-ERF, C2H2, and MY B, svhich-werewith up-regulatedregulations noted for 6,

397 2, and 2 genes, respectively. The-top-3-transeriptionfactor families—with-the-The most down-regulated
398  expressionfamilies were C2H2, NAC, and WRKY, with 10, 9, and 8 genes down-regulated, respectively. the

399  tep3-transeriptionfactorfamiliesup-regulatedinln DvsE-, the top up-regulated transcription factor families
400  were WRKY, MYB, and bHLH, each with increases in 2, 1, and 1 genes-up-regulated, respectively;-and-the;
401 no down-regulations were observed. For GvsH, the most up-regulated transcription factor families were at
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C2H2, bHLH, and HSF, al-—up-
regulatedeach by 1 gene, andwhile the {ep%mmt down regulated transeription-factor families wereincluded
AP2/ERF-AP2, MYB, and AP2/ERF-ERF, dewn-regulated-bywith decrements of 4, 3, and 3 genes,
respectively.

3. DISCUSION

Phosphorus plays-a-eriticalrele-in-is crucial for various physiological pathways ef plant-grewth-and is
one-of the-indispensable-elementsan essential element for plant growth (Santoro V et al., 2024),-and-).
Deficiency in phosphorus deficieney-will-atfectcan significantly impact the morphological, physiological.
and biochemical characteristics;physiology,—and-biechemistry of plants. SLs have been demonstrated-to
pesitively-regulateshown to enhance plant growth indicators, partieipate-in-contribute to the stress response

of plants-(Marzec et al., 2016), and regulate-thesupport positive growth ef plants-in-adversity{under adverse
conditions (Andreo-Jimenez et al., 2015; Hong et al., 2020; HA C V L-G M A et al., 2014), fthas-alse-been

shown-that- Additionally, GR24-can-directionally, a synthetic analog of SLs, has been found to specifically
regulate the medicinal partscomponents of medicinal-plants (Cao et al., 2023; Wani K I et al., 2022). Despite
extensive research en-theinto GR24's ability ef-GR24-to mitigate plant-stress;-there-are-no-reports-on-the
alleviation-of in plants, its effects on phosphorus stress in Glycyrrhiza uralensis Fisch by-GR24have not yet
been reported.

3.1 Effect of GR24 on growth indexesindices of Glycyrrhiza uralensis Fisch at different phosphorus

concentrations

S-mee—fhe—Phosphorus in soil wﬂ-l—t-ﬁet-l&e—pheqphem%l% predommantly in a form that ean-beplants cannot
directly abs ‘ ALY ROV d - ts-tha abs
by-the plantis-the-effeetive phospherus-thatcan-be-aeccessed-by-thereetsabsorb, leading to its immobilization
and limited availability to roots, which can only access what is termed 'effective phosphorus' (Péret et al.,
2011; Lietal. 2023}—56—%}%6) Lonscgucmly root systemméaeeﬁaelﬁfﬂaﬂeng%hﬂhhepkmﬁeewd-ﬂ*e

¢ antindices «(Ding
etal2008)-Therootsystem-indicators-such as root length and absorption area ean-be-usedserve as indicators
of plant phosphorus abserptienuptake efficiency (Ding et al., 2008). —ta-thisThis study;it-wasfeund revealed
that phosphorus stress significantly impedes the growth morphology of Glycyrrhiza uralensis Fisch—was
: >; specifically. fresh weight, dry weight, root length,

basal stem_diameter, and root projected area of-the-plant-were significantly-markedly reduced compared to
those in plants supplied with that-ef-the-normal phosphorus-supplyinggreup;-and-the-decline-of the-above

J}Hd@ees—washevels\. These declines in growth indices were more ebvieus-with-the-ageravation-of pronounced

as phosphorus stress intensified. Under no-phospherusstress;-and-under-conditions of low phosphorus stress;
sprayingavailability, the application of GR24 at the G3 concentration of -GR24—significantly
inereasedenhanced the fresh weight, dry weight, root length, and root projection area of Glycyrrhiza uralensis
Fisch compared withto the G1 treatment group. Fer-instaneeSupporting this observation, Tang (2019)
reported that GR24 treatment improved the morphological indexesindices of Oryza sativa L, seedlings under
phosphorus stress;-and. Additionally, Tai et al. (2017) et-al—found that GR24 treatment could-promote
thepromoted biomass accumulation efin Panicum virgatum L, seedlings under cadmium stress, which-is
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eensistent—withcorroborating our findings;—ndieating that Sksstrigolactones can aleeatemitigate the
damagedetrimental effects of low phesphesisphosphorus stress te—plantin _plants. These results
indicatedindicate that strigelactone—couldregulatestrigolactones can enhance the growth of Glycyrrhzza
uralensis, Fisch under low phosphorus stress; and can-improve the abili :
seedlingsseedlings' adaptability to adapt-te-lew-phosphorus-envirenment- detlclem environments. Slmllarly,
Pang (2020)-found-that-the-use-of GR24-could-promete-the-inerease-of) discovered that GR24 application
promoted increases in body length and the number of lateral roots efin Astragalus membranaceus var.
mongholicus (Bunge) P.K Hsizomainroot—and-intsiao. In this study, we also feundobserved that under a
normal phosphorus supply-treatment, the G3 concentration of GR24 significantly enhanced the fresh weight,

dry weight, root length, basal stem diameter, and —root prejectionprojected area of Glycyrrhiza uralensis
Fisch, lt-ean-be-inferredThis suggests that GR24 can alse-actfunction as a plant hormone to regulate plant
growth under non-stress free-conditions as well (Zhou, 2016). Under conditions of complete phosphorus free
stress-treatmentsprayingdeprivation, however, application of GR24 did not significantly improve the abeve
indicatorsaforementioned growth indices of licorice, indicating that spraying-GR24 can only partially
alleviate the damage-caused-byadverse impacts of stress-te-a-—certain-extent.

3.2 Effect of GR24 on chlorophyll content of Glycyrrhiza uralensis Fisch at different phosphorus
concentrations

Chlorophyll plays-a-erucial-role-in-is essential for photosynthesis-by. absorbing (Fromme-et-al;2003)
and transferring light energy for primary photochemical reactions and other processes (FREVORFromme et
al., 2003: Trevor G et al., 2009). Chlerephylt-The chlorophyll content in plant leaves can-reflectreflects the
photosynthetic capacity of plantleavesthe plants. Low phosphorus stress inhibits photosystem activity (Tang

et al., 2005) and chloroplast membrane development {-hﬂ-ﬁ—mh—lbmﬁg hereby reducing photosynthes1s (Liet
., 2018).

s is-This study, found that chlorophyll a and
b in Glycyrrhtza uralensis Fisch deel—eaﬁeddlmmlshed with increasing foerestphosphorus stress, indicating a
deereasedecline in photosynthetlc plgments and a—éeehﬁe—m—t-he—photosynthetlc performance of licorice-under
low phosphorus stress

conditions. However. the exogenous application

>

of GR24 at the G3 concentration significantly increased the content of chlorophyll a and b under low
phosphorus stress. H-has-been-Previous studies have shown that GR24 can inereaseenhance the chlorophyll
content efin Triticum aestivum L, under drought stress (Fang et al., 2021), which is-eensistentaligns with the
resultsfindings of this study. This suggests that meneceotyledoninlactone-canpartieipatestrigolactones may
play arole in the photosynthetic regulation of plants (Li et al., 2017) and exegeneusthat the addition of GR24
can ierease-theimprove chlorophyll content in plant leaves under phosphorus stress-and-ateviate, thereby
mitigating the effeetadverse effects of low phosphorus stress-on the-photosynthetic performance efplants
(Seiji et al., 2014). Additionally, the—presentthis study alse—feundobserved that thea normal supply of
phosphorus to-the plant-can-inerease-theinherently increases chlorophyll content. tn-addition;thisstudy-alse
found—that—theThe application of an appropriate concentration of GR24 (i-e-—specifically, the G3
concentration) under normal phosphorus supply—eouldconditions also inereaseclevated the centent—of
chlorophyll a and b content in Glycyrrhlza uralensis Flsch%d—%ﬁwe, enhancing the photosynthetic

performance of Ghye - 5 stie—systersthe plant. Contrarily, Tian (2018)
feundreported that el#ferem» arious concentrations of strigolactone have differenthad differing effects on the
leaves of Bambusa oldhamii Munro, andnoting that a high concentration (5 umol/{L GR24) has-an-inhibitery
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effeet-oninhibited the green content of leaves;which-is-contrary-to-this-study;-whieh. This discrepancy may
be beeausedue to the optimal concentration of GR24 isvarying among different for-differentplantsplant

species.

3.3 Effect of GR24 on antioxidant enzyme activities of Glycyrrhiza uralensis Fisch at different phosphorus
concentrations

Phosphorus-is, a keycritical component of cell membranes, and-the-cell-membrane-significantly
influences their structure-of plants-will-be-affeeted, particularly under conditions of low phosphorus stress
(Jiang et al., 2024). The-teTo mitigate theoxidative damage efinduced by reactive oxygen radicals(Gill-et
al;2040)species, plants will-reduceregulate the damage-of reactive-oxygenradieals-enactivities of SOD
POD. and CAT. This regulation is essential for protecting proteins, nucleic acids, and membrane systems-by
regulating-the-activities-of SOD; POD-and-CAT to-ensure-their-, thereby supporting normal growth (Wang
et al., 2022;; Foyer et al., 2013;; Wei et al., 2018). Research by Tang (2019) sheweddemonstrated that the
application of GR24 applied-under low phosphorus stress could-reduecenot only reduces the accumulation of

reactive oxygen species;-inerease in Oryza sativa L. seedlings but also enhances the activities of protective
enzymes (such as SOD, POD, €AT)-and alleviateCAT, thereby alleviating the effeetsimpacts of phosphorus

stress-on-Oryza-—sativat—seedhings;. Further studies by NI M et al. (2020) and alse-shewedLi et al. (2023
found that exogenous application-of GR24 ceould-significantly alleviate-the-effeetsmitigates oxidative stress

damage in cotton and Malus pumila Mill. seedlings under conditions of low-temperature stress-and alkali

F —, respectively, by increasing the activities
of these antioxidant enzymes. This study also feundrevealed that with-the-ageravation-ofas phosphorus stress
intensifies, the activities of SOD, POD, and CAT in the leaves of Glycyrrhiza uralensis Fisch leaves-gradually
inereasedprogressively increase, indicating that—Glyeyrihiza—uratensis—Fiseh—ean—alleviatean inherent
mechanism by which the plant alleviates the adverse effects of phosphorus stress-by-inereasing the-activity

¢ ¢ entdeficiency. Specifically, the application of GR24 at

G2, G3, and G4 concentrations can-inereaseenhances SOD activity, with the G3 concentration proving most
effective. Similarly, GR24 at the G3 concentration notably boosts the activities of both POD and CAT.

Furthermore, under normal phosphorus conditions, the application of GR24 still enhances the activity of

antioxidant enzymes in plants. At the G3 concentration, there is a notable increase in the activities of SOD
-plants—G3-treatmenthas-the-besteffeetand POD, while the-appheation-of- GR24-at-G3-concentration—cat
inerease-the-treatments at G2, G3, and G4 concentrations elevate CAT activity-ef POD-and-CAT-in-plants:
Fhis-indieates. These findings suggest that theGR24 application ef GR24-can-aleviateat the G3 concentration

optlmdlly mitigates the adverse effects of phosphorus stress—dﬂd—ﬁ—e&ﬂ—beeeﬁemded—th&t—theappmm

3.4 Effect of GR24 on the content of medicinal components of Glycyrrhiza uralensis Fisch at different
phosphorus concentrations
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Beth-triterpenoidsTriterpenoids and flavonoids areconstitute the mainprimary active components of
Glycyrrhiza uralensis Fisch-medicinalconstituents—Glyeyrrhizie aeid, with glycyrrhizic acid and glycyrrhetic
acid arebeing structurally similar triterpenoids, and liquirtigenin, liquirtin, Iseliquirtigenin;

Iseliguirtinisoliquirtigenin, isoliquirtin, and glabridin arecategorized as flavonoids (Liu et al., 2013; Sheng et
al., 2022). Phosphorus plays a pivotal role as it is an-important-element-that-constitutesinvolved in the initial
substrates of the terpenoid synthesis pathway, acetyl--CoA. and glyceraldehyde-3-phosphate (Zeng et al.,

2013y-se). Consequently, phosphorus stress wwit-affeetimpacts the production and accumulation of active
ingredients in medicinal plants. TheOur experimental results of-this-experimentrevealedindicate that the
contents of lseliquirtigeninisoliquirtigenin, liquirtigenin, glycyrrhizic acid, lseliquirtinisoliquirtin, and
liquirtin were higherclevated under low phosphorus treatment-thanconditions compared to those in the group
with-no phosphorus treatment;-and group. Moreover, the contentscontent of lseliquirtin-wereisoliquirtin was
higher than-these-in-the-group-with-ne-phespherus-stress-in both the normal supply-ef-phespherus-and low
phosphorus stress—Studieshavefound conditions than in the no phosphorus stress group. This aligns with
findings by Hu et al. (2018), who reported that the synthesis of dihydroflavone and flavonols such as
naringenin, rutin, and taxifolin;-ete—easn could be aum-f-}eam-ly otably inhibited under phosphorus-deficieney-

deficient conditions : 5 52 . Notably, the content of
beperE isoliquirtin decreased as phosphorus stress-—Hewever-ceontrary
te—_intensified, diverging from the research-results of Winkel-Shirley (2002), it-shows—that—the-which
suggests multifaceted influences on flavonoid production efflaveneidsby-in plants-is-affected-in-many-ways-
Ha-this-. Additionally, our studysitwas-alse found that the application of GR24 could-inerease-the-content-of

under various phosphorus conditions could enhance the content of several terpenoids and flavonoids.

Specifically, under no-phosphorus stress. GR24 increased the levels of glycyrrhetic acid, glycyrrhizic acid,
glabridin,  Iseliguirtinisoliquirtin, and  liquirtin—under—no-.  Under  normal  phosphorus
stress;isoliquirtigeninsupply, the increases were noted in isoliquirtigenin, liquirtigenin, and glycyrrhizic acid,
while under nermal-low-phosphorus supply,—and1iseliquirtigeninstress, GR24 elevated the contents of
sollqulmgcmn 11qu1rt1gemn glycyrrhlzlc acid, Iseliquirtinisoliquirtin, and liquirtin-undertow-phespherus

¢ o cated. This indicates that GR24 application eeuldcan variably promote the
accumulation of terpenoid and flavonoid contents ofin Glycyrrhiza uralensis Fisch to-different degrees-at
different phosphorus concentrations. PrevieusSuch effects are consistent with previous research supports-the
ideaindicating that GR24 eaprpfemetecnhanccs the accumulation of anthocyamns 1n‘Arabzdops13 thaliana
(L) Heynh (Cao et al., 2023) i suts 5

. a t#tsand suggests that GR24 may
also modulate the productlon of terpen01ds as evidenced by its inhibition of diterpene secondary metabolites
such as regolith methylesterase and strlgolactone fe—va%ymg—degfeevm Tripterygium mlfmdu Hook. f.

suspension cells (Wu et al., 2019 . 2).

3.5 Effect of GR24 on the transcriptome of Glycyrrhiza uralensis Fisch at different phosphorus

concentrations

Plants exhibit a eemplexsophisticated response to adversity involvingthat encompasses physiological,
biochemical, and metabolic precess-thatinvelvesprocesses. This response is mediated through the synergistic
aetionactions of multiple genes and a complex mechanism of co-regulation (Li et al., 2024; PANTPant BD
et al., 2015; Sun et al., 2016). Theresults-ofln this study, we identified that12981.298, 163, and 513 DEGs
were-found-under conditions of no-phosphorus stress, low-phosphorus stress, and normal phosphorus supply
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treatments, respectively. Notably, the lowest number of DEGs was feund-inresponse-to-observed under low-
phosphorus stress-compared, aligning with the-ethertwo-treatments—which-was-consistent-with-the study-of
findings by Guan (2016). Fhe-GO enrichment resuttsindieatedanalysis revealed that the DEGs underacross
the three treatments were mainlyenriched-in-the funetions-ofpredominantly associated with cellular processes,
metabolic processes, cellular anatomical entities, and catalytic activity;-and-ameng-the DEGs... KEGG
pathway resulis-revealedanalysis showed that the no-phosphorus and low-phosphorus stress treatment-and
low-phesphorus-stress-treatmenttreatments were significantly enriched in pathways-such-as-plant-pathogen

interaction and signaling pathways, andrespectively. Conversely, the normal phosphorus supply treatment

was significantly enriched in pathways such as phenylpropanoid biosynthesis; and DNA replication;-ete-;
whereas-the-. The phenylpropanoid biosynthesis pathway-is-not-only-an-impertant-pathway, crucial for the

synthesis-efsynthesizing secondary metabolites, but-also plays an-impertanta vital role in plant growth—a-nd
development. and environmental adaptation (Zhong et al., 2009);;-whi

regtlate-the-growth-of ), thereby underscoring the regulatory effects of GR24 on Glycyrrhzza uralensis,Fisch.
In-addition—theMoreover, all three treatments were-also-enrichedshowed enrichment in thepathways related
to secondary metabolite production ; ad, indicating a positive
effect of GR24 on the synthesis of medicinal components in Ural Glycyrrhiza uralensis Fisch.
Tthas-beenshownOur findings demonstrate that transcription factersenesfactors such as bHLH, AP2,
MYB, WRKY, and NAC are responsive to phosphorus deprivation;-amens-which-the. Specifically, bHLH
(Wang et al., 2023) and AP2 (Zhao et al., 2018) transcription factors are-not only ivelvedparticipate in plant

growth and development but also respond to secondary metabolic processes and abiotic stresses ﬂﬁelzm%s
(Zhang, 2023)A

In-this-study,—we-found-that under-Under no phosphorus stress, the highest-number-of-most dlfferentlally
expressed transcription factors identified-was-were from the C2H2 family, followed by the NAC family, and

all of themwhich were down-regulated-suggesting. This suggest s that GR24 apphcatlon could-imprevemay
enhance tolerance to phosphorus deficiency tolers alby;in Glvevrrhiza

uralensis_Fisch. Under low phosphorus stress, the highest—n&mber—oﬂNRKY family was the most
differentially expressed s¢ amily-and waspredominantly up-
regulated{, consistent with observations by Huang et al--. (2012).-Showed) that the WRKY famlly was
weprexsed—m&hﬁfereﬁﬂxhlblts varied expression patterns in response to various S é

i)

i&eensistent—with%hepfeseﬁ%s%ﬁd%different abiotic stresses. Under normal phosphorus supply-treatment;,

the AP2/ERF-ERF family was the most dlfferentlally expressed transcrlptlon factor ﬁmﬂﬂygroup and was
down-regulated.
%W%ﬂm%&eﬁgﬂ%Thls%%@—@u%kﬂ%@H@ﬂg&ekﬂ%H—mMe down-

regulation might be attributed to the effect

of GR24 affected-theon growth hormone regulatlon ofin Glycyrrhzza uralensis, Fisch, impacting associated

signaling pathways (Feng et al., 2020; Gu et al., 2017; Ritonga et al., resultingin-down-regulationof-the
B e I

CONCLUSIONS

{ Formatted: Font: Not Italic

{ Formatted: Not Superscript/ Subscript

[ Formatted: Font: Not Italic




604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624

625

626
627

628

629
630
631
632
633
634
635
636
637
638

In-generalspraying-Overall, the application of GR24 maﬁm&edamellol ates the negativeadverse effects

of phosphoru% stress in Glycyrrhzza uralensis Fisch by increasing
biomass-of Glyeyriti F : eﬂh&neeeH—hephotosynthetlceapaeﬂy

%ﬂ—%e%eﬂkeﬂahe%ﬁy}%heﬂ&mgmeﬁﬁ%e%@mphy”mkb}—m%e&] pigment levels, and while

reducing the content of antioxidant enzymes decreased.—and merea%edenhancmg the accumulation of

semecertain triterpenoids and flavonoids— : . Differential expression
genes (DEGs) were mam%yprlmanl enriched in pathways conduetvefavorable to the growth—and,
development -, and secondary metabelites;-and-alse
tq%egﬂ-lﬂ%eémembollte accumulation in Glycyrrhiza uralensis Fisch, with the upregulation of the WRKY
family related to phosphorus stress;—with— response. The G3 concentration being-the-bestwas found to be
most effective, indicating that theGR24 application ef GR24-imprevedimproves the phosphorus deficiency
tolerance of Glycyrrhiza uralensis Fisch. In-addition,—the-application-of-GR24-Moreover, under normal

phosphorus %prly—&&mﬂeﬁt—eaﬂ—pfemefe—ﬂ&econdmons GR24 promotes plant growth and development-of
ase-its, increases biomass; and-aceumulation;, elevates chlorophyll content,

feéuec—th%emem—e#durmscs antioxidant enzymesenzyme levels, and #mproveenhances the accumulation
of seme-medicinal ingredientscomponents. DEGs in this context are mainly enriched in the-pathways related
to plant growth regulation, and upregulateclevate the AP2 family of transcription factors related-te-associated
with the plant growth hormone 51gnahng pathway, indieatingdemonstrating that gr24-eanGR24 not only
improve-theimproves growth ef-& . +is-Fiseh-under low phosphorus; conditions but also have
a-pesitive—impaet-enpositively ungact s the growth and development of Glycyrrhiza uralensis, Fisch under

normal phosphorus nutrition.
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