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Background. Agastache mexicana Linton & Epling subsp. mexicana (Lamiaceae) is an
aromatic medicinal plant, characterized by high concentration of tilianin, a flavonoid with
therapeutic potential in cardiovascular diseases. In this study, we have explored the use of
colchicine for to obtain autotetraploid lines of A. mexicana and analyze their morphological
characteristics. In addition, we aimed to identify polyploid plants with high content of
tilianin. Methods. In vitro seedlings at the stage of cotyledon emergence were dipped in
colchicine solution at 0.0 %, 0.1 %, 0.3 %, and 0.5 % (w/v) for 6, 12 and 24 hours.
Seedlings were cultured on half-strength basal Murashige and Skoog medium
supplemented with 20 g/L sucrose. After two months, the newly regenerated shoots from
surviving seedlings were excised and grown individually in the same medium for
multiplication and rooting. The ploidy level of all materials was verified through flow
cytometry and chromosome counting before acclimatization and transfer to the
greenhouse. The investigated characteristics included length, density and stomatal index,
leaf area, chlorophyll content, flower size and color, and tilianin content measured by high
performance liquid chromatography. Results. The most efficient production of tetraploid
in terms of percentage was achieved with 0.1 % colchicine for 6 hours resulting in no
generation of mixoploids. Tetraploid plants had twice the number of chromosomes (2n =
4x = 36) and nearly twice the total DNA content (2.660 = 0.236 pg) of diploids. Most of the
tetraploid A. mexicana plants showed variations in flower and leaf characteristics, when
compared to the diploid controls. High-performance liquid chromatography analysis

showed that tetraploid plants with small leaves produced the greatest amount of tilianin;
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up to 32.964 + 0.004 mg/g dry weight (DW), compared to diploid plants with 6.388 %
0.005 mg/g DW. Conclusion. In vitro polyploidization using colchicine has the potential to
improvement of medicinal constituents of A. mexicana. Its application has been shown to
be effective in the production of elite tetraploid lines with increased tilianin production.
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48

49 Abstract

50 Background. Agastache mexicana Linton & Epling subsp. mexicana (Lamiaceae) is an aromatic
51 medicinal plant, characterized by a high concentration of tilianin, a flavonoid with therapeutic
52 potential in cardiovascular diseases. In this study, we have explored the use of colchicine to

53 obtain autotetraploid lines of A. mexicana and analyze their morphological characteristics. In

54  addition, we aimed to identify polyploid plants with a high content of tilianin.

55 Methods. /n vitro seedlings at the stage of cotyledon emergence were dipped in colchicine

56 solution at 0.0 %, 0.1 %, 0.3 %, and 0.5 % (w/v) for 6, 12, and 24 hours. Seedlings were cultured
57  on half-strength basal Murashige and Skoog medium supplemented with 20 g/L sucrose. After
58 two months, the newly regenerated shoots from surviving seedlings were excised and grown

59 individually in the same medium for multiplication and rooting. The ploidy level of all materials
60 was verified through flow cytometry and chromosome counting before acclimatization and

61 transfer to the greenhouse. The investigated characteristics included length, density and stomatal
62 index, leaf area, chlorophyll content, flower size and color, and tilianin content measured by

63 high-performance liquid chromatography.

64 Results. The most efficient production of tetraploid in terms of percentage was achieved with 0.1
65 % colchicine for 6 hours resulting in no generation of mixoploids. Tetraploid plants had twice
66 the number of chromosomes (2n = 4x = 36) and nearly twice the total DNA content (2.660 +

67 0.236 pg) of diploids. Most of the tetraploid A. mexicana plants showed variations in flower and
68 leaf characteristics when compared to the diploid controls. High-performance liquid

69 chromatography analysis showed that tetraploid plants with small leaves produced the greatest
70 amount of tilianin; up to 32.964 + 0.004 mg/g dry weight (DW), compared to diploid plants with
71 6.388 +£0.005 mg/g DW.

72 Conclusion. /n vitro polyploidization using colchicine has the potential to improve of medicinal
73 constituents of 4. mexicana. Its application is effective in the production of elite tetraploid lines
74  with increased tilianin production.

75

76 Introduction

77

78 Agastache mexicana Linton & Epling subsp. mexicana (Lamiaceae) is an aromatic plant, native
79 to North America and widely cultivated in central Mexico for its medicinal and ornamental
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properties (Palma-Tenango et al., 2021). The aerial parts of 4. mexicana have been used in
Mexican traditional medicine to treat a range of ailments, including insomnia, anxiety,
rheumatism, stomach pain, gastrointestinal disorders, and cardiovascular disease (Gonzalez-
Ramirez et al., 2012; Flores-Flores et al. 2016). The medicinal properties of 4. mexicana are
predominantly attributed to the presence of terpenes and phenolic compounds, particularly
tilianin (acacetin-7-glucoside), which is the most abundant flavonoid (9.77 mg/g dry weight) in
this plant (Carmona-Castro et al., 2019). Tilianin is a bioactive compound derived from plant
secondary metabolism that manifests various biological activities beneficial to human health,
including neuroprotective, anti-atherogenic, anti-hypertensive, cardioprotective, anti-
inflammatory, antioxidant, and anti-depressant effects, among others (Akanda et al., 2019).
According to the pharmacological findings, tilianin could lead to the development of new drugs
for the treatment of cardiovascular diseases (Khattulanuar et al., 2022; Cruz-Torres et al., 2023;
Du et al., 2023). However, similar to other medicinal and aromatic plants, few efforts have been
applied to increase the valuable secondary metabolites and ornamental characteristics of 4.
mexicana. One of the remarkable breeding strategies to improve plant desirable traits is artificial
polyploidization or chromosome doubling by application of mitotic spindle inhibitors on somatic
cells that results in morphological changes and has often been associated with increased
production of bioactive secondary metabolites (Niazian, 2019; Niazian & Nalousi 2020).
Colchicine is a plant alkaloid, known for its antimitotic activity and widely used in plant
polyploidization. This compound has been successfully used for tetraploidy induction in the case
of several genera from the Lamiaceae family, registering a significant effect on the content and
composition of bioactive compounds in species of Agastache (Tabeli et al., 2017),
Dracocephalum (Yavari et al., 2011), Lavandula (Urwin et al., 2007; Urwin, 2014), Ocimum
(Omidbaigi et al., 2010), Salvia (Estaji et al., 2017), and Thymus (Tavan et al., 2015). In the case
of the Agastache genus, few studies have been published, which evaluate the effect of
polyploidization on the qualitative and quantitative production of bioactive compounds. For
instance, in A. foeniculum, the variation in ploidy level, significantly affected the
physicochemical and morphological characteristics of the tetraploid plants. The polyploidy
plants showed an increase in essential oil content and chemical composition, as well as an
increased tolerance to salt stress (Talebi et al., 2016; 2017; 2021). Therefore, in the present
study, we hypothesized that artificial chromosome doubling using colchicine could be an
effective approach to obtaining new genotypes with high tilianin content. Hence, the aim was to
obtain autotetraploid A. mexicana plants and to determine whether the manipulation of the ploidy
level could be used to produce plant variants with higher tilianin content. This study also aimed
to investigate the effect of polyploidization events on chlorophyll content, and some leaf and
flower morphological characteristics in ten autotetraploid lines of A. mexicana.

Materials & Methods

Polyploid induction
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A. mexicana seeds were surface sterilized using 98 % ethanol for 5 min, rinsed with sterile water
and then with 1.5 % of commercial sodium hypochlorite (Cloralex®) for 2 min. Subsequently,
the seeds were rinsed five times in sterile water and germinated on half-strength basal Murashige
and Skoog medium (MS 50 %), containing 50 mg/L myo-inositol and 3.0 g/L Phytagel®. All
media were adjusted to pH 5.8 + 0.1 and autoclaved at 121 °C for 25 min. The cultures were
maintained at 25 + 1 °C under a light regime of 16/8 h (light/dark) photoperiod with a light
intensity of 2000 lux.

After eleven days of culture, the seedlings at the stage of cotyledon emergence were dipped in
0.0, 0.1, 0.3, and 0.5 % (w/v) colchicine solution for 6, 12 and, 24 h. Colchicine was sterilized by
filtration through a 0.22 um Millipore syringe filter. Each treatment consisted of 12 seedlings
that were incubated with constant shaking at 100 rpm, in the dark at 25 °C to avoid deterioration
of the antimitotic agent under light (Eng et al., 2021). Dimethyl sulfoxide (DMSO) was added at
a non-toxic concentration of 2 % to help the colchicine penetrate through cell walls (Glowacka et
al., 2009; Salma et al., 2017). At the end of each treatment, the seedlings were rinsed eight times
with sterile water and then transferred to the same medium, supplemented with 20 g/L sucrose.
After two months, the newly regenerated shoots (10 cm length) from surviving seedlings were
individually excised and cultured for multiplication and rooting into 250 mL glass jars,
containing 50 mL of MS 50 % medium and subcultures, every 20 days. The jars were sealed
with aluminum foil caps with tiny holes covered with a piece of 3M Micropore™ tape that
enables reducing humidity in the jars, while increasing gas exchange to minimize the effect
caused by hyperhydricity or vitrification (Zarate-Salazar et al., 2020). The cultures were
incubated under the same conditions as described previously. Plantlets obtained by in vitro
culture of single shoots from colchicine-treated and untreated seedlings were identified as
putative polyploid lines (Amx) and diploid control, respectively. After 8 weeks of culture, the
length, density, and stomatal index of micropropagated plantlets were assessed.

Chromosome duplication was confirmed by chromosome counts in young root tips and flow
cytometry of leaf nuclei. After 15 months of successive subcultures and confirmed the ploidy
level, diploid controls and tetraploid lines were transferred to soil and grown under greenhouse
conditions, as described by Carmona-Castro et al. (2019). At least five plants per line were
grown and subsequently leaf area, chlorophyll content, flower characteristics and tilianin content
were analyzed.

Stomatal characteristics

Five fully expanded leaves were excised at node position 3 from the shoots of diploid control and
from five randomly selected putative polyploid lines of the in vitro cultures. The abaxial leaf
surfaces were coated with a thin layer of nail polish. After 10 min, the dried polish was removed
by applying a strip of transparent one-sided adhesive tape. The dry polish samples, along with
the adhered sticky tape were mounted permanently on glass microscope slides, and the stomata
length, stomata density (number of stomata per visual field, PVF), and stomata index were
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recorded using a Leica DM500 optical microscope (Leica Microsystems, Germany). Images
were analyzed using image J software (https://imagej.nih.gov/ij/). The fields of view were
located in the middle portion of leaf lamina, and three fields of vision were investigated for each
leaf. The stomatal index was determined from the formula: SI = [S/(S+E)] x 100, where S is the
number of stomata in the microscopic field and E is the number of epidermal cells per unit leaf
area (Mishra 1997). Data is presented as the mean of 15 observations for length, density and
stomatal index.

Chromosome count

Mitotic chromosomes were prepared from young root meristems, following the method
described by Las Pefias et al. (2008), with minor modifications. In vitro root tips (~0.5-1 cm)
were excised from putative polyploid lines and diploid controls between 7 and 8 o'clock in the
morning and pretreated with 0.002 mM 8-hydroxyquinoline (8-HQ) for 24 h at 4 °C in the dark
and rinsed with distilled water for 5 min to remove 8-HQ. The root tips were then fixed in
Farmer's solution (ethyl alcohol: acetic acid, 3:1 v/v) for 24 h at room temperature and rinsed
with distilled water. Subsequently, samples were hydrolyzed in 1N HCl at 60 °C for 10 min and
stained with Schiff's reagent for 1 h in the dark. Finally, each hydrolyzed root was crushed in a
drop of 45 % (w/v) acetocarmine and 45 % (w/v) acetic acid, and the number of chromosomes in
mitotic cells was determined using a light microscope at 100x magnification (DM500®, Leica
Microsystems, Germany). A total of 10 representative photomicrographs were analyzed from
three root tips from each line, including the control.

Flow cytometry

Fresh apical leaves from the selected in vitro lines, including the control, were chopped in 1.5
mL Galbraith's modified buffer (45 mM MgCl,, 30 mM sodium citrate, 20 mM 4-morpholine
propane sulfonate (MOPS) and 0.5 % (v/v) TritonX-100, pH 7.0) (Galbraith et al., 1983). After
filtration through a 30 um nylon mesh, crude nuclear samples were stained with 10 mg of
propidium iodide. Nuclear DNA content was determined, using the method described by
Arumuganathan and Earle (1991), which employs an Attune® Acoustic Focusing Flow
Cytometer blue/violet (Applied Biosystems, United States of America). Fresh leaves from
Solanum lycopersicum (2C = 1.96 pg DNA) were used as an internal standard (Dolezel et al.,
2007) and more than 5000 nuclei per sample were analyzed. Three independent replicates were
performed for each analysis.

Floral characteristics

To study the effect of polyploidy on some floral characteristics, the size of the flower, as well as
the color were assessed in ten tetraploid lines and a control. One inflorescence at peak bloom
was randomly selected from each line for measurements. Eighteen individual, fully opened
flowers from the top, middle, and bottom of the inflorescence were selected for flower length
and maximum calyx length, using a digital vernier caliper. Color coordinates were performed
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using a sprectrophotometer (X-Rite SP64, USA) (McGuire, 1992). The X-Rite SP64 was
positioned with minimal pressure, perpendicular to the lower lip of each flower and the data were
reported in the L* (luminosity 0 = black, 100 = white), C* (chromaticity, saturation level of /)
and 4 (tone angle: 0° = red, 90° = yellow, 180° = green, 270° = blue, 300° magenta) colorimetric
system according to Commission Internationale De L’eleirage (CIE) (Commission Internationale
De L’ecleirage, 2004). For accuracy comparison Royal Horticultural Society (RHS) Colour
Charts were used to compare with the X-Rite SP64 sensor readings. Data reported represent the
averages for three measurements per flower.

Leaf area and chlorophyll content

Ten tetraploid lines were evaluated under greenhouse conditions to assess the effect of
polyploidy on leaf area and chlorophyll content. Leaf area was determined with a leaf area meter
(LI-3100C AREA METER, LI-COR® Bio Sciences Instrument, USA) and chlorophyll content
(Chl a, b and total) using a portable chlorophyllmeter ClorofiLOG (model CFL 1030, Falker,
Brazil). For each line and control (diploid), five plants were selected at random, and triplicate
measurements were performed on two fully developed leaves, taken from the middle section of
the shoots.

Quantification of Tilianin by HPLC

The quantification of tilianin from tetraploid and diploid lines was based on the method
established by Hernandez-Abreu et al. (2009). For each line, 10 g of finely ground dried aerial
part plant material was subjected to continuous maceration (1:10 w/v) with hexane (C¢H,4),
dichloromethane (CH,Cl,), and methanol (CH3;0H) three times for 72 h at room temperature. The
tilianin content was determined in the methanolic extract using Waters HPLC equipment with a
photodiode array detector, Zorbax C18 SB-CN (4.6 mm x 250 mm, 5-um particle size,
Agilent®), and data analysis was performed using Empower 2002 software. The mobile phase
consisted of methanol-water at a ratio of 61:39 (v/v) at a flow rate of 0.7 ml/min and a
wavelength of 260 nm. The quantification of tilianin was defined according to the corresponding
calibration curve at concentrations of 103.258, 34.264, 27.693, 20.173, 13.027, and 6.442
ng/mL, using highly purified tilianin as reference. All samples were assayed in triplicate.

Statistical analysis

The effect of different concentration of colchicine (0.0, 0.1, 0.3, 0.5 %) and exposure time (6, 12,
24 h) on seedling survival rate was analyzed by applying a multiple linear regression (Rossi,
2022). To determine possible phenotypic differences between ten polyploid lines (genotypes)
and diploid control, we performed One-way Analysis of Variance (ANOVA) to define stomata
length, stomata density, stomata index, leaf area, chlorophyll a, chlorophyll b, total chlorophyll
and tilianin content. Differences were analyzed by applying the Tukey multiple comparisons test
(P <0.05). Principal Component Analysis (PCA) was carried out to determine potential
relationships between genome size and phenotypic traits, previously mentioned. All analyses
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240 were performed in R version 4.2.3 (R Core Team, 2023) using ade4 (PCA, Dray, S. & Dufour
241 2007) and ggplot2 (Wickham, 2016) libraries, which were used to generate graphs.

242

243 Results

244  Identification of tetraploids and ploidy stability

245 The first visible effect of colchicine was reflected in the browning and delayed growth rate of
246 treated seedlings. Significant differences between treatments were observed after 2 weeks of
247  culture, and multiple linear regression analysis [y = 1.278-colchicine (2.279)-time exposure

248 (0.005)] revealed a strong negative correlation between seedling survival and colchicine dosage
249  (p =0.003), but no significant correlation was found with exposure time. The second effect of
250 colchicine observed was the inhibition of shoot multiplication and in vitro rooting. The number
251 of shoots per seedling decreased with increasing colchicine dosage, so the mean value of

252  regenerated shoots on colchicine-treated and untreated (diploid control) by explant was 0.40 +
253 0.329 and 1.79 £ 0.318, respectively. Overall, the higher the colchicine dose, the lower the

254  survival rate and number of regenerated plantlets (lines) (Table 1).

255

256 In this study, 29 putative polyploid lines of 4. mexicana were obtained from colchicine

257 treatments. Generally, after 8 weeks of in vitro culture, the newly regenerated plantlets showed
258 markedly different morphological characteristics from the diploid controls, manifesting smaller
259  or larger leaves, often with a rolled structure, and ranging in color from purple to dark green

260 color. Significant differences were observed between the stomatal characteristics of the in vitro
261 diploid control and tetraploid lines. As shown in Figure 1, the leaves from tetraploid lines

262 exhibited large stomata, with significantly higher stomatal lengths than leaves from diploid

263 control (Fsy4=4.613,p <0.01; 4x =37.94 £ 7.81 pm; 2x = 31.46 + 4.00 um), as well as, a lower
264  stomatal density (Fsp4=21.82, p <0.001; 4x = 117.5+60.26 PVF; 2x = 161.24 + 19.43 PVF)
265 and stomatal index (Fsp4 = 18.47, p <0.001; 4x = 10.25 £ 2.22 %; 2x = 16.23 £ 1.85 %).

266

267  Studies of mitotic cells in actively growing root tips clearly indicated that the polyploidy of the
268 samples was due to chromosome doubling in diploid seedlings induced by colchicine treatments.
269 Figure 2 shows that the number of chromosomes in the polyploid plantlets is 2n = 4x = 36,

270 whereas the number of chromosomes in the diploid plantlets (controls) is 2n = 2x = 18. Of the 29
271 lines evaluated; 23 (79.3 %) were tetraploids, 5 (17.3 %) diploids, and 1 (3.4 %) mixoploid,

272 containing a mixture of diploid and tetraploid cells. In order to confirm the ploidy level of

273 regenerated plantlets using flow cytometry, as there have been no reports to date that estimate
274 genome size of A. mexicana, it was necessary to determine the genomic content, by comparing
275 the mean position of the GO/G1 peak of the internal standard of S. lycopersicum with the mean
276 position of the peak of the diploid sample of 4. mexicana. Eight independent measurements were
277 performed to conclude that diploid control plants (2n = 18) have an average genomic content of
278 1.433 £0.025 pg. Flow cytometry DNA histograms of the polyploid lines revealed that the peak
279 position was twice that of the genome DNA of diploid (Figure 3). It was thus concluded that the
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DNA content of the tetraploid cells (2.660 £ 0.236 pg) equals twice i1  t diploid cells. The three
groups of ploidy levels: diploid, tetraploid, and mixoploid plantlets vased on flow cytometry,
fully concurred with the results obtained from counting chromosomes. The highest percentage of
tetraploid production efficiency (91.66 %) was achieved with 0.1 % colchicine for 6 hours,
without generating any mixoploids (Table 1). Chromosome counting and flow cytometry
analysis indicated that DNA ploidy levels remain stable in all tetraploid lines after 15 months of
in vitro culture.

During the in vitro culture, the mixoploid line and several tetraploid 1 1ic s showed(symptoms of
hyperhydricity, low growth capacity, and reduced root development. However, after
acclimatization to greenhouse conditions, ten tetraploid lines exhibited accelerated growth and
development, compared to the diploid control. These lines were selected to evaluate the effect of
ploidy on leaf and flower traits, and on tilianin content in 4. mexicana.

Flower and leaf characteristics of A. mexicana grown under greenhouse condition
Inflorescence emergence began earlier in the tetraploid plants; after only 3 months in the
greenhouse, compared to 4 months for diploid control. All tetraploid lines, except for line Amx2,
exhibited significantly increased flower and calyx lengths compared to the diploid control (Table
2). In tetraploid lines, the mean lengths of flowers and calyxes were 30.659 + 2.401 mm and
11.732 £ 0.801 mm, respectively, so significantly greater than those in diploid lines (25.252 +
2.947 mm and 11.271 £ 2.334 mm, respectively; p < 0.0001). Also, there were significant
differences in the color components of flowers of tetraploids and diploid control (Table 2).
However, in both tetraploid lines and diploids, the value of L* tends to be neutral, the color tends
to be magenta and slightly more opaque (C*= less than 30) in the tetraploid lines, compared to
the diploid control, which tends to be violet. This resembles the visual evaluation provided by
the RHS, which identified the color of the diploid flowers as deep strong reddish purple C
(NN78) and the tetraploid flowers as light reddish purple D (NN78).

Differences in leaf area were observed between the diploid and the tetraploid lines Amx3, Amx7,
and Amx10, with the tetraploids manifesting a higher chlorophyll content and smaller leaf area
(Figure 1, Table 3). Tetraploid plants presented a dark green leaf color.

Tilianin content

Statistically significant differences in tilianin content were found between the tetraploid lines and
diploid control in methanolic extract (Fyo, 22 =23806, p < 0.0001). The diploid control produced
an average of 6.388 = 0.005 mg of tilianin per gram of dry weight (mg/g DW). Out of the
tetraploid lines, the greatest tilianin accumulation was recorded in Amx3 (32.964 + 0.004 mg/g
DW) and Amx7 (32.392 + 0.110 mg/g DW). Compared to the control (as shown in Figure 4),
Amx8 (3.195 £ 0.005 mg/g DW) exhibited less accumulation of tilianin.

Principal component analysis
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Principal component analysis (PCA) was performed to investigate how the patterns of variance
of morphological traits and tilianin content correlated with ploidy level. This was also used to
determine their possible contribution to the content of tilianin and to identify particular traits that
distinguish diploid from tetraploid plants. Two principal components, PC1 and PC2, were
determined, based on their degree of contribution. The first two components accounted for 57.05
% of total variance, with 33.88 % relating to PC1 and 23.17 % relating to PC2 (Figure 5). PC1
correlated positively with C* (0.711) and negatively with calyx length (-0.805), DNA (-0.796),
flower length (-0.760) and /4 (-0.498). PC2 showed a positive correlation with tilianin (0.714),
and negative correlation with L (-0.748) and leaf area (-0.589). The control group is separated
from the tetraploid lines in Figure 5b.

Discussion

Antimitotic agents such as colchicine have been used in medicinal plant breeding for artificial in
vitro polyploidy induction and the development of varieties with improved agronomic traits,
enhanced abiotic stress tolerance, and high levels of bioactive secondary metabolites. However,
the phenotypic and genetic changes in plants that occur due to the artificial chromosome
doubling are often unpredictable and can differ significantly between species (Niazian & Nalousi
2020; Tavan et al., 2022). In this study, the feasibility and efficacy of colchicine for
polyploidization of 4. mexicana and the generation of polyploid lines with high tilianin
production were investigated. For this purpose, we follow the techniques previously applied to
other plant species, such as Platanus aceriolia (Liu et al., 2007), Arabidopsis thaliana (Yu et al.,
2009), and Agastache foeniculum (Talebi et al., 2017). In vitro-cultured young seedlings of A.
mexicana were directly treated with one of four colchicine concentrations (0.0, 0.1, 0.3, and 0.5
%, w/v) for 6, 12 and, 24 h. The results from the present study revealed that the survival of
seedlings and the efficiency of tetraploid lines recovery were affected by the concentration of
this antimitotic agent but not by the duration of exposure (Table 1). Some studies suggest that
colchicine has a low affinity for plant tubulin, requiring relatively high concentrations to disrupt
microtubule formation and consequently promote polyploidization (Hailu et al., 2021). However,
high concentrations of colchicine have been shown to alter gene expression, including genes
related to the phenylpropanoid biosynthetic pathways and plant hormone signaling. This
alteration may contribute to explant mortality during chromosome doubling and low plantlet
regeneration ability caused by the death of meristematic cells (Temel & Gozukirmizi, 2015;
Zhou et al., 2017). It is therefore paramount to carefully select a suitable colchicine
concentration to achieve a high polyploid induction rate. Indeed, some research suggests that
factors, such as plant genotype, ecotypes, type and age of explants are also important for
improving artificial polyploidy induction efficiency (Salma et al., 2017; Niazian & Nalousi,
2020). In this study, the most efficient treatment for tetraploid induction of 4. mexicana was
observed to be 0.1 % colchicine for 6 hours, with a 91.66 % explant survival rate and 58.33 %
tetraploidy induction. These results concur with previous studies showing that colchicine
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concentrations used for the induction of polyploid plants usually range from 0.005 % to 1.0 %
(w/v), and the duration of treatment takes from hours to weeks, depending on application
methods (Eng & Ho, 2019; Ahmandi & Ebrahimzadeh, 2020).

Microscopy examination of meristematic cells showed that the diploid plants of 4. mexicana
have a chromosome number of 2n = 18, whereas the tetraploid lines plants have 4n = 36. This
result concurred with the previous report of a haploid number n = 9 for A. mexicana (Sander
1987). Polyploidy was confirmed using flow cytometry, a method which proved to be fast and
accurate for estimating the increase in DNA content in A. mexicana. The DNA content estimated
for diploid plants (2C = 1.433 £+ 0.025 pg) and tetraploid plants (2.660 + 0.236 pg) of A.
mexicana was similar to that reported for 4. foeniculum. As far as we know, among the
Agastache genus, A. foeniculum is the only species for which the genome sizes have been
reported; with means of 1.06 £+ 0.02 pg for diploid 2C value and 2.15 + 0.001 pg for tetraploid
plants (Talebi et al., 2016).

Studies on several species suggest that the extra set of chromosomes in polyploid plants will
often, though not always, lead to increased biomass or content of bioactive secondary
metabolites, by means of changes in gene transcription, epigenetic modifications, and
morphological and physiological alterations (Osbor et al., 2003; Lavania 2013; Iannicell et al.,
2020); therefore, the phenotypic variations generated by the polyploidization may help
distinguish diploid from polyploid plants. In this study, under in vitro conditions, the results
indicated that an initial screening on the basis of stomata size might be effective for identifying
putative polyploids. According to Beaulieu et al. (2008) there is a positive correlation between
genome size and guard cell length and a negative correlation between stomatal size and stomatal
density. This concurs with the results presented here, indicating that an increase in ploidy level
increases stomatal length and decreases stomatal density and stomatal index in 4. mexicana
autotetraploid plants. Similar to previous studies reported in tetraploid plants of Hibiscus
syriacus (Lattier et al., 2019) and A. foeniculum (Talebi et al., 2017).

The diploid control, tetraploid, and mixoploid lines showed slight symptoms of hyperhydricity, a
common problem for in vitro cultures (Gao et al., 2017), which may have affected rooting an
greenhouse acclimatization. Hyperhydricity also resulted in delayed development of the only
mixoploid line obtained, which then ceased to grow after a brief period of time. Consequently,
only the stable tetraploid plants, confirmed by flow cytometry after 15 months of successive in
vitro subcultures were selected for transfer to the greenhouse to determine leaf area, chlorophyll
content, flower characteristics, and tilianin content.

The PCA analysis indicates a positive correlation between flower size and DNA content of
tetraploid plants under greenhouse conditions. 4. mexicana tetraploid plants exhibited larger
flowers than their diploid counterparts. Flowers from diploids plants were smaller and tended to
be purple compared to tetraploid plants, which tended to be magenta. Previous findings reported
flower color modifications among tetraploid plants of Rosa centifolia, Impatiens walleriana and,
Gladiolus grandiflorus probably, resulting from alterations in the biosynthesis pathway of
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pigments (e.g. anthocyanin) and increased size of cells due to chromosome doubling effect
(Osborn et al., 2003; Manzoor et al., 2018; Ghanbari et al., 2019). It is generally accepted that
the cells in polyploid plants tend to be larger than those in their corresponding diploid plants,
resulting in thicker and bigger leaves, as well as larger flowers and fruits (Hu et al. 2021).
Increase in flower size has been observed in the autopolyploid plants of several species,
including Crocosmia aurea (Hannweg 2013), Gerbera jamesonii Bolus cv. Sciella (Gantait et al.,
2011), Hemerocallis x hybrida ‘Blink of an Eye” (Podwyszynska et al., 2015) and, Vicia villosa
(Tulay & Unal, 2010). However, in most tetraploid lines of 4. mexicana with large flowers, there
was a tendency for the leaf area to decrease, as shown by PCA analysis (Figure 5). Previous
studies have noted that among certain species, including Rhododendron furtunei (Mo et al.,
2020), Escallonia rosea (Denaeghel et al., 2018), Gladiolus grandiflorus (Manzoor et al., 2018),
and Arabidopsis thaliana, the leaf area of tetraploid and octoploid variants decreases as their
ploidy level increases. According to lannicelli et al. (2020), the polyploid cells may expand to
maintain the balance between cytoplasmic and nuclear volume, which is necessary for efficient
cellular machinery function, due to an increased DNA content in the nucleus. This results in a
delay in the growth of tissues and organs due to higher energy expenditure and a decrease in the
surface area to volume ratio of polyploid cells, thereby reducing growth and cell division
(Tsukaya 2008; Agafarini et al., 2019).

On the other hand, a large number of studies have demonstrated that changes in plant ploidy
affect the gene transcripts, protein synthesis, and photosynthetic elements, which often result in
beneficial impact to secondary metabolite biosynthesis pathways (Lavania et al., 2012; Gantait &
Mukherjee, 2021). Interestingly, PCA analysis revealed that DNA content did not correlate with
the total chlorophyll and tilianin content in 4. mexicana. However, this statistical analysis
demonstrated a significant negative correlation between the accumulation of tilianin and leaf area
(Figure 5). The tetraploid lines Amx3, Amx7 and Amx10, which have the smallest leaf area,
showed higher tilianin content than diploid plants. In contrast, plants with larger leaves had
lower tilianin accumulation than the diploid controls (Table 3). Therefore, the measurement of
leaf area is an essential selection criterion for high content tilianin content in tetraploid plants of
A. mexicana. Powell et al. (2015) reported that biomass changes in biosynthetic tissues of
polyploid plants may either increase or decrease flavonoid production. Both qualitative and
quantitative variations in flavonoids levels have been detected in various autotetraploid plants,
including, Chamomilla recutita, Isatis indigotica, and Polemonium caeruleum (Repak 2000;
Zhang et al., 2021; Samatadze et al., 2022). However, the molecular mechanisms that explain the
association between polyploidy and flavonoid metabolism remain undefined. Polyploidy
involves more than jusi« hromosome doubling and/always results in changes to genome structure
and gene expression: 1i1ormation about the morphological traits of polyploid plants of Agastache
genus and their effect on phenolic and flavonoid compounds remains limited. In the future, the
study of genetic variation in the expression of gene encoding enzymes involved in the tilianin
pathways will shed light on the regulatory mechanism by which the ploidy level affects the
flavonoids content in 4. mexicana.
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Conclusions

This study demonstrated that ploidy manipulation via in vitro chromosome doubling represents a
workable approach for the improvement of 4. mexicana, and its application shows potential for
the production of elite tetraploid lines with increased tilianin production.
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Figure 1

Comparison of the leaf and stomata characteristics between diploid and induced
tetraploid plants. Diploid (a,c) and tetraploid plant (b,d).
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Figure 2

Chromosome counts of A. mexicana

(A) Diploid cell with 18 chromosomes and (B) tetraploid cell of A. mexicana with 36

chromosomes.
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Figure 4

Total tilianin content in control and induced polyploidy (Amx 1-10) lines of A. mexicana.

Different letters on the vertical bars differ significantly (Tukey HSD Test, P < 0.05).
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Figure 5

Principal component analysis of tetraploid and diploid control of A. mexicana.

a) Separation of the variables as a function of tetraploid and control lines. b) PC1 vs. PC2,
with 57.05% variance. DNA,; tilianin; Chlo T, total chlorophyll; LA, leaf area; FL, flower length;

CL, calyx length; L, lightness; C*, chromaticity; h, hue angle.
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Table 1l(on next page)

Survival rate and polyploidy level of Agastache mexicana lines obtained after
polyploidization treatments.

* Efficiency of polyploidization. Twelve seedlings were used per treatment.
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Treatment Ploidy level determined by flow
Survival rljgglzf; tgcfi cytometry
Colchicine Time rate No. of No. of No. of
% (h) (%) plantlets diploid tetraploid lines  mixoploid
(Lines) lines (%)* lines (%)*

0 6 100 19 19 0 0
0 12 100 19 19 0 0
0 24 100 21 21 0 0

0.1 6 58.33 12 1 11 (91.66) 0

0.1 12 50.00 7 2 4(57.14) 1 (14.28)

0.1 24 8.33 7 1 6 (85.71) 0

0.3 6 8.33 0 0 0 0

0.3 12 0 0 0 0 0

0.3 24 16.66 0 0 0 0

0.5 6 8.33 3 1 2 (66.66) 0

0.5 12 8.33 0 0 0 0

0.5 24 8.33 0 0 0 0
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Table 2(on next page)

Petal color and flower size of 10 tetraploid lines and a diploid control grown in the
greenhouse.

Different letters indicate significant statistical differences between samples, defined by one-
way ANOVA followed by Tukey's test for multiple comparisons at p < 0.05, with results

referring to the mean of three observations + SD.
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Line Flower Calyx Petal color

length length

L* Cc* h

Control 25252429479 1127142334« 45735+2831¢ 32336+1.909° 319.822+1.481°
Amx 1 29.967+ 1.759 % 11.294+0.596 ¢ 50.962+2.356% 26.864+2.154¢  321.572+2.616
Amx 2 25216+3.5999¢ 10.624+0.925¢ 50224+4.043%® 2747243719 323.039 £ 1.806°
Amx 3 30.842+2.588% 11.092+0.716%¢ 46.126+1.661¢  31.033+1.745%  323.238+1.291¢
Amx 4 30.555+3.873 % 11.486+0.819¢ 49.639+4.141b% 30.579 +£2.877 ¢ 322.366+2.870
Amx 5 31622+ 1.987 % 12.609+0.484% 51238+2.573% 28915+1.765%¢ 323933 +1.258°
Amx 6 31.006+2.631 % 13347+0.843%  50.878 £3.685% 27.984+2.133 % 322.306+2.870
Amx 7 32,466+ 0.832% 12,026+ 1.0485 51.124+3.532% 27.047+£3.4219 322.85+ 1.657¢
Amx 8 34.094+1.598° 11.894+0.449% 52871+14512 26573+£2.291¢ 324.094 +6.688°
Amx 9 32.076+£3.609 % 11.842+0.697% 51.519+2.175% 28.642+1.4%  321.483 +1.637
Amx 10 28.751+2.134° 11.113£0.553% 46.721£1.559% 31.182+1.321® 324.006 + 0.803 *
ANOVA Fios=19.89, Fio15=10.86,  Fio15=12.59,  Fio1s=11.89,  Fig 5= 3.993,

P<0.0001 P<0.0001 P<0.0001 P<0.0001 P<0.0001
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Table 3(on next page)

Leaf area and chlorophyll content in mature leaves from 10 tetraploid lines and a diploid
control grown in the greenhouse.
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1

Line Leaf area Total Chlorophyll a Chlorophyll b
chlorophyll
Control 8.561 £ 1.4332%  363.7 +35.78bc 278.6 +22.657 b¢ 85.1£15.807"
Amx 1 8.596 £3.999%®  363.5+21.072°% 271.8+26.317°% 91.7+ 12.074
Amx 2 9.32+£3.377* 414.1 £24.269 2  296.1 + 25.339 abc 118.0+13.2412
Amx 3 4152+ 14134 390.8 + 87.152 8¢ 297.9 + 47.082 abc 92.9+43.193 @
Amx 4 8.205 £ 1.548 3 3456+29.349¢  258.6 £22.061 ° 87.0£9.428 b
Amx 5 8.282 +£3.4653d 391,94+ 38.1553¢ 2959 + 30.555 abc 95.8+11.849 @
Amx 6 5712+ 1.238 b4 421.8+39.2022 319.2 +35.266 102.6 £9.901 2
Amx 7 4570 + 1.3074 443.5+73.971*  333.4+70.298° 110.1 + 15.058 2
Amx 8 10.833 £3.066 @ 383.7+£21.638 3¢ 2941+ 11.551 abe 89.6 + 11.568 @
Amx 9 8.675+£2.921%  385.6+33.731 ¢ 296.4+21.593 abc 89.2 £12.951
Amx 10 493+1.216¢ 411.5+49.365%c 314.6+23.324 % 96.9 + 34.027 @
Fio,115=8.793, Fio,90=3.915, Fio,99=3.929, Fio,99=2.575,

ANOVA p 2 0.50001 p 2909.001 p 298.001 p 2?)9.01

2
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