Targeting squalene epoxidase in the treatment of metabolic-related diseases: current research and future directions (#103618)

Second revision

Guidance from your Editor

Please submit by 15 Oct 2024 for the benefit of the authors .

Literature review article

Please read the 'Structure and Criteria' page to understand the reviewing criteria for this Literature review article.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

- 1 Tracked changes manuscript(s)
- 1 Rebuttal letter(s)
- 3 Figure file(s)
- 2 Table file(s)

i

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. STUDY DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- 1 You can also annotate this PDF and upload it as part of your review

When ready <u>submit online</u>.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Is the review of broad and cross-disciplinary interest and within the scope of the journal?
- Has field been reviewed recently. It there a good reason for this review (different viewpoint, audience etc.)?
- Introduction adequately introduces the subject and makes audience and motivation clear.

STUDY DESIGN

- Article content is within the <u>Aims and Scope</u> of the journal.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.
- Is the Survey Methodology consistent with a comprehensive, unbiased coverage of the subject? If not, what is missing?
- Are sources adequately cited? Quoted or paraphrased as appropriate?
- Is the review organized logically into coherent paragraphs/subsections?

VALIDITY OF THE FINDINGS

- Impact and novelty is not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Conclusions are well stated, linked to original research question & limited to supporting results.
- Is there a well developed and supported argument that meets the goals set out in the Introduction?
- Does the Conclusion identify unresolved questions / gaps / future directions?

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Targeting squalene epoxidase in the treatment of metabolicrelated diseases: current research and future directions

Mingzhu Chen¹, Yongqi Yang², Shiting Chen¹, Zhigang He¹, Lian Du ^{Corresp. 1}

Corresponding Author: Lian Du Email address: DULiandl@outlook.com

Metabolic-related diseases are c hronic diseases caused by multiple factors, such as genetics and the environment. These diseases are difficult to cure and seriously affect human health. Squalene epoxidase (SQLE), the second rate-limiting enzyme in cholesterol synthesis, plays an important role in cholesterol synthesis and alters the gut microbiota and tumor immunity. Research has shown that SQLE is expressed in many tissues and organs and is involved in the occurrence and development of various metabolic-related diseases, such as cancer, nonalcoholic fatty liver disease, diabetes mellitus, and obesity. SQLE inhibitors, such as terbinafine, NB598, natural compounds, and their derivatives, can effectively ameliorate fungal infections, nonalcoholic fatty liver disease, and cancer. In this review, we provide an overview of recent research progress on the role of SQLE in metabolic-related diseases. Further research on the regulation of SQLE expression is highly important for developing drugs for the treatment of metabolic-related diseases with good pharmacological activity.

¹ Chengdu University of Chinese Medicine, Chengdu, Sichuan Province, China

² Harbin Medical University, Department of Pharmacology, College of Pharmacy,, Harbin, Heilongjiang province, China

1	
2	Targeting squalene epoxidase in the treatment of metabolic-related diseases: current
3	research and future directions
4	
5	Mingzhu Chen1, Yongqi Yang2, Shiting Chen1, Zhigang He1, Lian Du1*
6	
7	¹ School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine,
8	Chengdu, Sichuan Province, China.
9	² Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin,
10	Heilongjiang Province, China.
11	
12	Corresponding Author:
13	Lian Du
14	No.1166 Liutai Avenue, Wenjiang District, Chengdu, China
15	Email address: DULiandl@outlook.com
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35 36	
36 37	
38	
39	
40	
TU	

42

Abstract

43 Metabolic-related diseases are chronic diseases caused by multiple factors, such as genetics and 44 the environment. These diseases are difficult to cure and seriously affect human health. Squalene 45 epoxidase (SQLE), the second rate-limiting enzyme in cholesterol synthesis, plays an important role in cholesterol synthesis and alters the gut microbiota and tumor immunity. Research has 46 47 shown that SOLE is expressed in many tissues and organs and is involved in the occurrence and 48 development of various metabolic-related diseases, such as cancer, nonalcoholic fatty liver 49 disease, diabetes mellitus, and obesity. SOLE inhibitors, such as terbinafine, NB598, natural 50 compounds, and their derivatives, can effectively ameliorate fungal infections, nonalcoholic fatty liver disease, and cancer. In this review, we provide an overview of recent research progress on 51 52 the role of SQLE in metabolic-related diseases. Further research on the regulation of SQLE 53 expression is highly important for developing drugs for the treatment of metabolic-related diseases with good pharmacological activity. 54 55 **Keywords** SQLE; metabolism; cancer; drug targets

56

57

Introduction

58 Rapid economic growth, coupled with changes in people's dietary habits and lifestyles, has led to surges in mortality and morbidity associated with metabolism-related diseases, placing a 59 substantial burden on public health systems and medical resources (Saklayen 2018). The 60 currently available medications for the prevention and treatment of these diseases require long-61 term use, and there are issues of general efficacy, drug resistance, and adverse side effects. 62 Therefore, the exploration of innovative approaches to prevent and control these conditions is 63 64 important. Studies have identified squalene epoxidase (SQLE) as a key regulator of various physiological processes, including cholesterol biosynthesis(Padyana et al. 2019a; Padyana et al. 65 66 2019b; Parris et al. 2014), modulation of the gut microbiota (Li et al. 2022a; Li et al. 2022b)and 67 the regulation of tumor immunity (You et al. 2022a; You et al. 2022b). Consequently, the involvement of SQLE has been implicated in the development of various conditions, such as 68 fungal infections(Ryder 1992), nonalcoholic fatty liver disease (NAFLD)(Liu et al. 2021a), 69 70 cancer(Zhang et al. 2024), diabetes mellitus (DM)(Ge et al. 2020), and obesity(Ding et al. 2015a). Understanding the precise role of SQLE in the pathogenesis of these diseases and its potential as 71 72 a therapeutic target is essential for devising effective preventive and therapeutic strategies. By 73 elucidating the regulatory mechanisms and molecular pathways mediated by SOLE in 74 metabolism-related diseases, we can establish a solid theoretical foundation for developing 75 targeted interventions. Here, we aim to provide a comprehensive overview of SQLE, beginning 76 with its structural characteristics and pivotal role in cholesterol synthesis. We discuss the 77 regulation, functional importance, and clinical implications of SQLE in the context of 78 metabolism-related disorders. Finally, we address the latest advancements in the use of SQLE as 79 a targeted therapeutic agent, thus paying the way for future research directions and clinical 80 applications.

82 Intended audience and need for this review

- 83 SQLE is the second rate-limiting enzyme of cholesterol synthesis and plays an important role in
- 84 cholesterol synthesis, alteration of the intestinal gut microbiota, and tumor immunity. In addition,
- 85 SQLE is expressed in many tissues and organs and is involved in the occurrence and
- 86 development of a variety of metabolic-related diseases. However, current studies on its function,
- 87 expression, role in metabolic-related diseases and the development of clinical applications are
- 88 not comprehensive. This article reviews advancements in research into the role of SQLE in
- 89 metabolic-related diseases in recent years. An in-depth study of SQLE expression regulation is of
- 90 particular importance for the treatment of metabolic-related diseases with good pharmacological
- 91 activity.

92

93

Survey methodology

- 94 The authors conducted an in-depth search on PubMed, Web of Science and the Foreign Medical
- 95 Literature Retrieval Service. The search was carried out by combining subject words and free
- 96 words, and the following heading terms were used when performing the search: "squalene
- 97 epoxidase", "squalene epoxidase inhibitors", "cancer", "nonalcoholic fatty liver disease",
- 98 "diabetes mellitus", "obesity", "cholesterol synthesis", "structure", "activity regulation","
- 99 function", "transcriptional regulation"," posttranscriptional regulation" and "metabolic disease".
- This article is based on published works, which have been classified, organized, and searched by
- 101 title, abstract, and full texts.

102

103

105

Structure, activity regulation, and function of the

104 SQLE

Structure of the SQLE

- 106 SQLE was first discovered in rat liver microsomes in 1969 (Yamamoto & Bloch 1970). Like
- most cholesterol enzymes, SQLE is located in the endoplasmic reticulum or on lipid droplets,
- and the *SQLE* gene is located on human chromosome 8q24.13 (Nagai et al. 1997).
- As an essential lipid component of mammalian cell membranes, cholesterol is critical for cell
- 110 survival and proliferation and coordinates multiple membrane receptor signaling pathways by
- maintaining the stability of lipid rafts (Dang & Cyster 2019). Almost all mammals can
- synthesize cholesterol from acetyl coenzyme (acetyl-CoA) through a series of 20 enzymatic
- reactions, including the mevalonate (MVA) pathway, SQLE biosynthesis, and subsequent
- reactions (Figure 1). 3-Hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and SQLE are two

115	key rate-limiting enzymes for cholesterol synthesis(Howe et al. 2017). The HMGCR-mediated
116	mevalonate pathway is a key step in the de novo synthesis of cholesterol in the body. HMGCR-
117	like SQLE activity is precisely regulated by intracellular cholesterol levels via feedback, which
118	results in a second rate-limiting step in cholesterol synthesis (Ryder 1988; Ryder 1991). The two
119	rate-limiting enzymes, HMGCR and SQLE, are important factors in the cholesterol synthesis
120	pathway. SQLE is responsible for the first oxidative step in cholesterol synthesis; it oxidizes
121	squalene to 2,3-epoxysqualene. When the activity of the enzyme lanosterol synthase, which
122	converts 2,3-epoxysqualene to lanosterol, is low, SQLE also converts 2,3-epoxysqualene to
123	dioxidosqualene. The end product of this shunt pathway, 24(S),25-epoxycholesterol, is a ligand
124	for the hepatic X receptor (LXR), which increases ATP-binding cassette transporter protein A1
125	(ABCA1) levels to promote cholesterol efflux (Gill et al. 2011; Seiki & Frishman 2009).

Therefore, the catalytic reaction of SOLE is essential for cholesterol synthesis.

126 127

128

Regulation and function of SQLE

mRNA level, and posttranslational regulation.

129 SQLE is a direct target of sterol regulatory element-binding proteins (SREBPs). There are three SREBPs, SREBP1a, SREBP1c, and SREBP2, of which SREBP2 is a transcription factor that regulates 130 genes involved in cholesterol synthesis and homeostasis in a cholesterol-dependent 131 132 manner(Bengoechea-Alonso et al. 2022). SQLE proteins contain cholesterol-sensing structural 133 domains that regulate the proteasomal degradation of SQLE. SQLE expression in cells is subject 134 to complex regulatory systems, including transcription, posttranscriptional regulation at the

135 136

137

Transcriptional regulation

- 138 The transcription factor SREBP2 directly regulates the mRNA levels of enzymes involved in cholesterol metabolism, such as SQLE, by binding to sterol regulatory element (SRE) sequences 139 in the promoters of target genes (Brown et al. 2018). When the cholesterol level in the 140 endoplasmic reticulum (ER) is less than 5% of the total intracellular lipid level, SREBPs are 141 activated, and cholesterol-sensing protein (SCAP) undergoes a conformational change to dissociate 142 from the Insig-1 protein. The SCAP-SREBP2 complex is then disassembled and detached from
- 143
- the ER membrane and transported to the Golgi complex via coat protein complex II (COPII) 144
- 145 vesicles. This protein is subsequently cleaved by site-1 protease (S1P) and site-2 protease (S2P)
- 146 protein hydrolase cleavage and converted to the activated nuclear form SREBP2 (nSREBP2).
- Immediately thereafter, nSREBP2 enters the nucleus as a homodimer and binds to SRE in the 147
- promoter of the target gene SQLE to increase SQLE mRNA levels (Griffiths & Wang 2021). In 148
- 149 addition, oxygen sterol-binding protein-like 2 (OSBPL2) deficiency promotes nuclear entry of
- 150 the specificity protein 1 (SP1) transcription factor and SREBP2 in the SQLE promoter to
- upregulate SQLE expression and increase cholesterol and cholesteryl ester accumulation through 151

153

154

155156

157

158

159

160 161

162

163

164165

166

167

inhibition of the AMP-activated protein kinase (AMPK) pathway (Zhang et al. 2019). In addition, the transcription factors nuclear factor Y (NF-Y) and SP1 act synergistically with nSREBP2 to upregulate *SREBP2* gene expression.

Oncogenes/tumor-suppressor genes are also involved in SQLE transcriptional regulation independent of SREBP2. The proto-oncogene *MYC* upregulates SQLE transcription by binding to the response original 1 (RE1) of the SQLE gene in cancer (Yang et al. 2021). The *p53* gene is a common oncogene in human cancers with a high ability to control cholesterol synthesis. Under low sterol conditions, p53 mediates SREBP2 regulation of SQLE transcription. In castration-resistant prostate cancer (CRPC), PTEN/p53-deficient tumors are dependent on cholesterol metabolism and upregulate SQLE by activating SREBP2 transcription to satisfy the cholesterol demand of tumor cells and promote the growth and progression of CRPC(Shangguan et al. 2022b). Under normal sterol conditions, p53 directly represses SQLE expression in an SREBP2-independent manner, and p53 represses SQLE transcription through direct binding to RE2 in hepatocellular carcinoma (HCC) cells. p53 deficiency increases SQLE expression even when ER membrane cholesterol levels are normal or elevated (Sun et al. 2021).

Posttranscriptional regulation

- A large body of evidence suggests that the expression profiles of long noncoding RNAs
- 169 (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) are commonly dysregulated
- in human cancers. miRNA-133b (Qin et al. 2017; Wang et al. 2022), miRNA-205 (Kalogirou et
- 171 al. 2021), miRNA-612 (Liu et al. 2020), miRNA-579-3p (Qian et al. 2023), miRNA-1179 (Li et
- al. 2023a), miRNA-584-5p (Li et al. 2022c) and miRNA-363-3p (You et al. 2022b) can interact
- 173 with SOLE mRNAs; act as negative regulators of gene expression at the posttranscriptional
- level; and play important roles in tumor cell differentiation, proliferation, and apoptosis through
- the miRNA/SQLE axis. Some lncRNAs and circRNAs act as competing endogenous RNAs
- 176 (ceRNAs) that sponge their corresponding miRNAs, thus decreasing their inhibitory effects on
- their targets (Qian et al. 2023; Tay et al. 2014). Qin et al. reported that in breast cancer, the
- 178 lncRNA lnc030 is highly expressed in cancer stem cells and is positively correlated with SQLE
- expression. Poly(rC)-binding protein 2 (PCBP2) consists of 3 K homology (KH)
- domains(Silvera et al. 1999). Lnc030 interacts with the KH 2 of PCBP2, and the 3' untranslated
- region(3'UTR) of SQLE mRNA binds to the KH3 of PCBP2. Lnc030 synergistically enhances
- the stability of SQLE mRNA with PCBP2. This leads to an increase in cholesterol synthesis,
- which, in turn, activates the PI3K/AKT signaling pathway and is involved in the regulation of
- the stemness characteristics of breast cancer stem cells (BCSCs) (Qin et al. 2021). miRNA-133b
- and miRNA-205 were reported to reduce SQLE mRNA levels more rapidly by binding to the
- 186 3'UTR of SQLE mRNA (Kalogirou et al. 2021; Qin et al. 2017; Wang et al. 2022). circ 0000182
- was shown to cause SOLE overexpression by sponging miR-579-3p. This miR then loses the
- ability to regulate SQLE and thus promotes cholesterol synthesis and proliferation in gastric
- adenocarcinoma cells (Qian et al. 2023). In summary, miRNAs, lncRNAs, and circRNAs can
- 190 exert their effects on various cancers by modulating the expression of SQLE (Table 1). Targeting

PeerJ

226

227

228

191 the interactions between miRNAs, lncRNAs, circRNAs, and SQLE holds promise for providing new strategies for the clinical treatment of patients with cancer. 192 193 Posttranslational regulation 194 195 SQLE is also posttranslationally regulated. The regulation of SQLE protein stability and activity, mainly through the cholesterol membrane-associated ring-CH-type finger 6 (MARCH6)-196 197 proteasomal degradation axis, is dependent on specific structural domains in SQLE proteins (Sharpe et al. 2020). These domains include the cholesterol-dependent amphiphilic helical 198 199 structure formed by the Gln62-Leu73 sequence (Chua et al. 2017), which can be embedded in the hydrophobic interior of membranes while interacting with the hydrophilic environment at the 200 201 membrane surface. It regulates SQLE by interacting with cholesterol molecules and plays an important role in cholesterol-dependent degradation. The first 100 amino acids of SQLE (SQLE 202 N-100) are attached to the ER membrane in the form of a re-entrant loop (Howe et al. 2015), 203 204 which senses cholesterol in the cytoplasm. When intracellular cholesterol accumulates, the 205 anchoring of the SQLE protein to the ER membrane tightens. This results in partial exposure of the amphipathic helical structure of the Gln62-Leu73 sequence to the cytoplasmic environment, 206 preventing proteasomal degradation. The ubiquitination process also requires the ubiquitin-207 208 conjugating enzyme E2 J2 (UBE2J2). MARCH6 approaches the SQLE protein and recognizes serine residues near the cholesterol-dependent amphiphilic helix in the SQLE protein. UBE2J2 209 works in concert with MARCH6 to attach the ubiquitin molecule from the E1 enzyme to the 210 211 SOLE protein to be ubiquitinated to label it as a protein to be degraded so that it becomes a ubiquitin-protease substrate of the degradation system. The valosin-containing protein (VCP) is 212 then recruited to extract the ubiquitinated SQLE substrate, where it dissociates from the ER. 213 214 VCP then cooperates with other proteins to mediate entry into the proteasomal degradation pathway. Excess cholesterol can stimulate SQLE degradation by inhibiting MARCH6 self-215 216 degradation (Sharpe et al. 2019). 217 The proteasomal degradation pathway of MARCH6-VCP can be regulated independently of cholesterol. The N-terminus of SOLE is partially degraded through a unique ubiquitination 218 219 pathway, which leads to the conversion of full-length SOLE to a truncated form. The enzyme activity of the truncated SOLE is associated with cholesterol resistance, implying that the 220 221 function of SQLE is not completely lost under high-cholesterol conditions. Thus, the function of this gene may complement cholesterol metabolism under cancer conditions (Coates et al. 2021). 222 223 In addition to cholesterol, squalene directly binds to the SQLE N-100 structural domain to change its conformation. This results in the inability of MARCH6 to ubiquitinate SQLE or label 224 225 it for degradation, thus increasing the stability of SQLE (Nathan 2020). Unsaturated fatty acids

(USFAs) can also stabilize SQLE levels via the regulatory blockade of SQLE ubiquitination by

MARCH6. Upregulation of the cancer-associated microprotein CASIMO1 increases SQLE

levels by interacting with SQLE proteins (Polycarpou-Schwarz et al. 2018).

PeerJ

To better understand the regulatory mechanisms of SQLE, its regulation at the transcriptional,
posttranscriptional, and posttranslational levels is illustrated in Figure 2 (adapted from (Zou et al.
2022)). Overall, the main mechanism of SQLE regulation is the cholesterol-dependent feedback
regulation of SQLE by the SREBP2 transcriptional and ubiquitin proteasomal degradation
pathways. SREBP2 activation in tumor tissues leads to high SQLE expression. The activation of
oncogenes, deletion of cancer suppressor genes, and deletion of miRNAs and cancer-associated
proteins directly or indirectly upregulate SQLE expression. Different tumor cells or specific
subpopulations have specific SQLE regulatory mechanisms(Du et al. 2023).

236237238

239

240

241242

243

229230231232233234235

Because of the crucial role of the 2,3-epoxysqualene derivative lanosterol in fungal membrane synthesis, SQLE has long been investigated as an antifungal target with increasing relevance to human health and disease(Astruc et al. 1977). Many studies have shown that SQLE can meet the high energy requirements for the rapid growth of diseased cells, and the dysregulation of SQLE has been found in a variety of metabolic-related diseases. This has become a hot topic in the field of targeted diagnosis and therapy(Ryder 1992).

The role and clinical significance of SQLE in metabolism-related diseases

245 metabolism-related diseas

246 NAFLD

In recent years, NAFLD has replaced viral hepatitis as the most common chronic liver disease in China, and the number of patients with NAFLD in China is expected to reach 314 million by 2030 (Nan et al. 2021). NAFLD is the hepatic manifestation of metabolic syndrome and includes simple steatosis to nonalcoholic steatohepatitis (NASH).

Liu et al. reported that SQLE was closely related to the development of NASH(Liu et al.

252 2021a) and that SQLE expression levels were significantly increased in NAFLD model mice.

253 Hepatocyte-specific overexpression of SQLE triggers spontaneous insulin resistance and

NAFLD and induces the activation of SREBP1c, acetyl coenzyme A carbohydrate (ACC), fatty

acid synthase (FASN), and stearoyl coenzyme A (SCA) through the promotion of cholesterol

256 synthesis and accumulation, and the binding of carbonic anhydrase 3 (CA3) and stearoyl

257 coenzyme A desaturase 1 (SCD1) leads to the expression of lipogenesis and triglyceride

258 biosynthesis genes, thereby inducing hepatic lipid de novo and the activation of the NF-κB

259 inflammatory pathway, which drives the pathogenesis and progression of NASH. Therefore,

SQLE and CA3 can be used as nominal markers for the diagnosis of NAFLD or NASH. Studies

261 have shown that SQLE is significantly upregulated in patients with NAFLD-HCC; mouse

262 hepatocyte-specific overexpression of SQLE drives cholesterol biosynthesis and the

NADP/NADPH ratio by promoting cholesterol biosynthesis and the NADP/NADPH ratio (Liu et

al. 2018), triggering an oxidative stress response that activates the DNA methyltransferase 3A-

mediated PTEN/PI3K/AKT/mTOR signaling pathway, driving NAFLD-HCC carcinogenesis; and the SQLE inhibitor terbinafine inhibits NAFLD-HCC cell proliferation and tumor development in a mouse model. In addition, Sun et al. (Sun et al. 2021) reported that p53 regulates cholesterol synthesis by inhibiting the transcription of SQLE, thus exerting an inhibitory effect on NAFLD-related HCC.

Through the above studies, we revealed the mechanism of the development of NASH and NAFLD-related HCC and confirmed the importance of SQLE as a key driver and new drug target. However, NAFLD is not a simple benign disease. According to a global data assessment in 2015, the number of deaths of patients with NAFLD-HCC in China accounted for 10.5% of the total number of HCC deaths in the same period(Nan et al. 2021). Consistent with the NAFLD mouse model (Liu et al. 2021a), SQLE overexpression also activated cholesterol and lipid biosynthesis in the human NAFLD cohort through the upregulation of hepatic sterol regulatory element-binding protein 1 (SREBF1), FASN, and SCD1 expression to drive the progression of NASH. Moreover, the application of the SQLE inhibitor terbinafine eliminated the accumulation of hepatic cholesterol, triglycerides, and free fatty acids in SQLE-overexpressing mice, normalized insulin sensitivity, and improved insulin tolerance test (ITT) and serum insulin levels. The combination of the CA3 inhibitor acetazolamide for the treatment of NASH improved the effectiveness of both drugs due to their synergistic effects, further confirming that SQLE/CA3 is a new target for the diagnosis and treatment of NASH.

Cancer

There is growing evidence that cancer is also a metabolic disease involving tumor cell proliferation, energy metabolism, and dysregulation of immune surveillance. Reprogramming of cholesterol metabolism in tumor cells involves synthesis, uptake, esterification, efflux and transformation processes (Huang et al. 2020), which promote tumorigenesis. Studies have shown that SQLE is aberrantly expressed in a variety of malignant tumors and influences tumor cell proliferation, migration or invasion through pathways such as cholesterol synthesis, tumor immune infiltration and immunotherapy, and the intestinal ecology. The level of SQLE expression may be correlated with aspects of cancerous tissue lesions, ethnicity, and disease stage (D'Arcy et al. 2015; He et al. 2021; Jun et al. 2021; Li et al. 2022a). The expression of SQLE is significantly upregulated in nasopharyngeal carcinomas (Li et al. 2023a), leukemias (Song et al. 2021), pancreatic cancer (Wang et al. 2022), and hepatocellular carcinoma (Sui et al. 2015).

As a key enzyme in cholesterol synthesis, SQLE activity determines the abundance of cholesterol and cholesterol derivatives, which promotes tumor growth through the accumulation of cholesterol/cholesterol esters and, subsequently, multiple oncogenic pathways. For example, p53 directly reduces SQLE expression in an SREBP2-independent manner, inhibiting cholesterol production in vivo and in vitro and leading to tumor growth inhibition (Sun et al. 2021). In prostate cancer cells, the involvement of SQLE in cholesterol synthesis consumes large amounts of NADPH and activates DNA methyltransferase 3A (DNMT3A). This triggers loss of function or reduced expression of the *PTEN* gene, which drives cholesteryl ester accumulation and subsequent sterol O-acyltransferase 1 (SOAT1) activation via the PTEN/PI3K/AKT/mTOR

pathway (Yue et al. 2014). These intertwined cascade reactions amplify the oncogenic effects of SQLE. Aberrant activation of the ERK signaling pathway promotes cancer cell growth and proliferation, apoptosis, invasion and metastasis, and angiogenesis and is tightly associated with cancer development. The control of cholesterol biosynthesis associated with SOLE is markedly increased in patients with colorectal cancer (CRC). He et al. revealed that SQLE deficiency in colorectal cancer reduces intracellular cholesterol levels and decreases osteotriol (the active form of vitamin D3), leading to reduced levels of cytochrome P450 family 24 subfamily a member 1 (CYP24A1), the inhibition of ERK phosphorylation and colorectal cancer cell proliferation (He et al. 2021).

In addition to the cell-intrinsic effects of SQLE, it may also play a role in tumor growth through host–microbiota interactions. The intestinal flora is a diverse and surprisingly numerous microbial community present in the human gut that is associated with inflammatory/immune diseases, metabolic disorders, and malignancies (Toya et al. 2021). In recent years, SQLE has been shown to be involved in tumor growth regulation by affecting the composition and function of gut microbes, thereby influencing metabolite production and modulating the immune response. Liet al. (Li et al. 2022a) reported that SQLE-induced dysregulation of gut microbes promotes intestinal barrier dysfunction and proliferation of the colonic epithelium in germ-free mice and that the metabolism of secondary bile acids disrupts intestinal barrier function. Additionally, these authors reported that the downregulation of the tight junction proteins Jam-c and occludin causes a "leaky gut", which ultimately induces a proinflammatory response, and that the transplantation of feces from SQLE transgenic mice into germ-free mice impairs the intestinal function and proliferation of the epithelium.

SQLE plays an important role in tumor immunomodulation, and an algorithmic analysis of databases revealed that SQLE mRNA was expressed at higher levels in head and neck squamous cell carcinoma (HNSCC) tissues than in normal tissues (Liu et al. 2021b). The expression of SQLE in patients with glioblastoma (GBM) was significantly correlated with tumor-infiltrating lymphocytes, immune stimulants, immunosuppressants, and MHC molecules (Ye et al. 2023). WU (You et al. 2022b) et al. experimentally demonstrated that SQLE expression was upregulated in patients with pancreatic adenocarcinoma (PAAD) and was negatively correlated with prognosis. SQLE can affect the immune microenvironment and immunotherapy outcome of patients with PAAD by regulating the infiltration of tumor immune cells and the expression of immune checkpoint therapy (ICT), and this type of metabolic intervention-based immunotherapy is beneficial for overcoming the bottleneck of cancer treatment.

SQLE significantly influences the development and progression of several cancers by modulating cholesterol synthesis, the gut microbiota, and the immune microenvironment. These findings provide new perspectives for clinical practice and highlight the potential value of SQLE in different cancer types. SQLE is involved in hormone signaling, and in prostate cancer, it is closely associated with high Gleason scores (Stopsack et al. 2017), correlates with metastasis, distinguishes tumors at high risk of metastasis, and is a strong predictor of fatal prostate cancer (Stopsack et al. 2016). In breast cancer, SQLE overexpression is usually associated with tumor

345 aggressiveness, recurrence, and overall survival time, and breast cancers with amplification of 8q24.11-13 (a region that includes the *SQLE* gene) imply a poorer prognosis(Parris et al. 2014). 346 The mRNA expression of SOLE has also been associated with a poorer prognosis in patients 347 with estrogen receptor-positive (ER+) phase I/II breast cancer (Helms et al. 2008). 348 349 Poor drug response to letrozole and poor progression-free survival with adjuvant tamoxifen have been reported in patients with SQLE-overexpressing breast cancer (Simigdala et al. 2016). 350 In HCC, the SQLE is an independent risk factor for overall survival, and high levels of SQLE 351 expression significantly correlate with advanced tumor histological grade and elevated levels of 352 alpha-fetoprotein (Liu et al. 2018; Shen et al. 2020). Thus, the SQLE may serve as a novel 353 354 prognostic biomarker. However, in patients with colorectal cancer, the prognostic value of SOLE is related to tumor progression. Higher levels of SOLE in tumors are associated with poorer 355 overall survival in patients with stages II and III disease, but lower levels of SOLE expression in 356 tumors with stage T4 or IV disease predict a poorer prognosis (Kim et al. 2019). In pancreatic 357 358 cancer, high expression levels of SQLE and other genes involved in cholesterol production are associated with resistance to radiotherapy (Souchek et al. 2014). For squamous cell carcinoma of 359 the lung, SOLE is closely associated with poor differentiation, clinical stage, and lymphatic 360 metastasis, which predict a poor prognosis; thus, it has become a novel molecular marker for 361 lung cancer (Zhang et al. 2014). In uveal melanoma (Xu et al. 2019) and head and neck 362 squamous cell carcinoma (Liu et al. 2021b), SQLE was associated with poor prognosis. 363 Daunorubicin-resistant leukemia cells express higher levels of SQLE than do daunorubicin-364 sensitive leukemia cells (Stäubert et al. 2016). In addition, cholesterol is a sex hormone 365 precursor; therefore, SQLE overexpression is associated with adverse effects of hormone 366 367 therapy. In conclusion, high levels of SQLE in most tumors predict poor prognosis, including tumor recurrence, tumor metastasis, and a short overall survival time(Jiang et al. 2022; Kim et al. 368 2019). The role of SOLE in tumor development and progression has been demonstrated through 369 basic research and clinical analyses, and SQLE may be a new target for cancer therapy. 370

DM

371

372

373

374

375 376

377

378

379 380

381

382

383

DM is a complex, chronic metabolic disease characterized by persistent hyperglycemia and widespread disturbances in glucose, protein, and lipid metabolism (Singh et al. 2021). In recent years, transcriptomics studies have provided a novel perspective for elucidating the molecular pathogenesis of DM; in particular, the key role of the SQLE gene in the pathogenesis of DM has attracted widespread attention.

In a mouse model of diabetes, analysis of differentially expressed genes (DEGs) in liver tissue revealed 27 significantly altered genes, with a particularly marked upregulation of SQLE (Ge et al. 2018). This finding is consistent with the findings of GE et al., who confirmed the involvement of SQLE as a core differential protein in the pathogenesis of DM. Notably, whereas the RNA-seq and qRT-PCR results from the liver revealed the downregulation of SQLE mRNA levels, Western blot analysis revealed significant upregulation of SQLE protein expression. This apparent contradiction suggests that there may be a complex posttranscriptional regulatory

 mechanism involved in SQLE expression, such as increased protein stability or increased translational efficiency, leading to a sustained increase in its protein level (Ge et al. 2020). As a rate-limiting enzyme in the cholesterol biosynthesis pathway, SQLE is a key node in the regulation of cholesterol synthesis. In the diabetic state, SQLE overexpression leads to an abnormal increase in cholesterol synthesis, promotes cholesterol deposition in vessel walls, and dramatically increases the risk of atherosclerosis. These alterations not only exacerbate the pathologic process of DM but also may lead to serious cardiovascular complications (He et al. 2020). Therefore, the precise regulation of the SQLE gene is highly important for the balance of cholesterol metabolism in patients with diabetes and is expected to be a new target for diabetes treatment, especially in the intervention of disorders of glucose and lipid metabolism and the prevention of related complications, which has potential clinical application value.

From an epidemiological perspective, the latest data from the International Diabetes Federation (IDF) highlight the global public health challenge of diabetes: the number of people with DM in the world will reach 537 million in 2021 and is projected to increase to 643 million by 2030, reaching 783 million by 2045 (Einarson et al. 2018). This alarming trend highlights the urgency of delving into the mechanisms of diabetes pathogenesis and developing novel therapeutic strategies. Further transcriptomic studies have revealed the crosscutting role of SOLE in the pathological processes of diabetes, obesity, and cardiovascular disease. The upregulation of SOLE expression in peripheral monocytes from patients with atherosclerosis reveals molecular links between obesity, chronic inflammation, type 2 diabetes mellitus (T2DM), and cardiovascular disease (Ding et al. 2015a). Interestingly, weight loss induces remodeling of cholesterol metabolism pathways in monocytes, including the downregulation of SQLE expression, suggesting that SQLE may be a potential therapeutic target for obesity-associated T2DM (Ding et al. 2022). The Multi-Ethnic Study of Atherosclerosis (MESA) cohort study further confirmed that the expression pattern of the cholesterol metabolism gene network in circulating monocytes is a remarkable feature of obesity and chronic inflammatory states. This gene network is strongly associated with obesity and is also associated with T2DM and coronary artery calcification (CAC). In this network, SQLE is significantly upregulated, suggesting that it may influence the pathological associations among obesity, T2DM and CAC by regulating lipid metabolism (Ding et al. 2015a).

In terms of therapeutic strategies, the SQLE inhibitor terbinafine has promising therapeutic potential. In a mouse model of SQLE overexpression, terbinafine markedly improved insulin sensitivity, optimizing the ITT results and serum insulin levels(Liu et al. 2021a). More importantly, treatment with terbinafine in combination with acetazolamide effectively inhibited high-fat high-cholesterol (HFHC) or methionine- and choline-deficient (MCD) diet-induced lipid accumulation, including accumulations in triglycerides, free fatty acids, and serum triglycerides, resulting in marked improvements in insulin tolerance and glucose tolerance.

In summary, SQLE plays a pivotal role in the pathogenesis of DM and NASH. Therapeutic strategies targeting SQLE, especially SQLE inhibitors such as terbinafine, show promising therapeutic potential. These findings open new research directions for the precision treatment of

DM, obesity and their related metabolic disorders and are expected to play an influential role in future clinical practice. However, more prospective randomized controlled trials are still needed to validate the long-term efficacy and safety from basic research to clinical application, as well as to explore the specific effects of SQLE in different tissues and cell types in depth to optimize targeted therapeutic strategies.

429

430

431 432

433

434

435

436

437 438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453 454

455

456 457

458

459

460

461

Obesity

Obesity is a multifactorial chronic metabolic disease characterized by excessive accumulation and abnormal distribution of white adipose tissue (Calcaterra et al. 2021). As a stand-alone disease entity, obesity is also a major risk factor for many chronic diseases, such as type 2 diabetes and cardiovascular diseases(La Sala & Pontiroli 2020). The exponential growth of obesity-related healthcare costs globally, with the latest meta-analysis showing that their management accounts for 3% to 21% of national health budgets (Ahmed & Konje 2023), underscores the urgency of developing effective prevention and treatment strategies.

In a molecular genetics study, the Fob3b obesity quantitative trait locus (QTL) was identified as one of the key regions affecting obesity-related phenotypes in mice. Among these contributors, the *SQLE* gene has attracted attention for its key role in cholesterol biosynthesis. Functional genomics studies revealed significant differences in SQLE expression levels between high-fat diet (HFD)-induced obese mice and homozygous recombinant mice harboring the Fob3b QTL region in low-fat diet-fed mice, suggesting an important role in the regulation of energy homeostasis and the maintenance of metabolic homeostasis. In-depth studies suggest that Fob3b allele variants may activate cholesterol biosynthesis by increasing SOLE expression or its enzymatic activity, leading to increased cholesterol deposition in adipocytes, promoting cellular hypertrophy and proliferation, and exacerbating obesity (Stylianou et al. 2005). Translational medicine research further supports the importance of SQLE in the pathogenesis of human obesity. Multiomics analysis revealed significant upregulation of SQLE expression in the adipose tissue of patients with obesity. In a 5-month weight loss intervention trial, participants lost an average of $6.7 \pm 1.1\%$ of their body weight and experienced a $33 \pm 8\%$ decrease in the homeostasis model assessment of insulin resistance (HOMA-IR) index, along with a marked decrease in SQLE expression levels (Ding et al. 2015a; Ding et al. 2015b). These findings reveal that an imbalance in cholesterol homeostasis in the obese state may be an important mechanism for metabolic disorders and that weight loss rebalances cholesterol metabolism gene network expression.

In exploring natural product strategies for the treatment of obesity, extracts of Polygala tenuifolia have received attention for their potential SQLE-modulating effects. In vitro studies have shown that some of the active components of these extracts directly inhibit SQLE enzyme activities. In the HFD-induced obese mouse model, a Polygala tenuifolia extract showed a marked antiobesity effect by regulating SQLE-mediated cholesterol biosynthesis, significantly

462	lowering the cholesterol content in adipose tissue and inhibiting adipocyte differentiation and
463	hypertrophy (Wang et al. 2017). These findings offer prospects for the development of novel
464	natural product-based obesity treatment strategies, but in-depth studies are still needed to
465	elucidate the underlying molecular mechanisms and assess long-term safety and clinical efficacy.
466	Future research directions should include identifying the active components in the extracts of
467	Polygala tenuifolia that specifically target SQLE, validating the metabolic regulation of SQLE in
468	different tissues using conditional knockout models, and designing large-scale clinical trials to
469	evaluate the effects of intervention strategies targeting SQLE.

SQLE-targeted therapeutic strategies

SQLE has been reported to act as an oncogene in various cancers. Moreover, the dysregulation of SQLE has been associated with the inhibition of apoptosis and increased cell proliferation and invasiveness, and a high abundance of SQLE in tumors indicates a poorer prognosis. As a novel and attractive therapeutic target for anticancer treatment, SQLE has been increasingly used in preclinical studies to reveal its antitumor effects and related mechanisms. The first SQLE-targeted inhibitors disrupted the synthesis of ergosterol in antifungal bodies, thereby killing or inhibiting the fungus (Barrett-Bee & Dixon 1995). Currently, SQLE inhibitors are mainly classified as allylamines, natural compounds, or their derivatives(Abe et al. 2000; Zhang et al. 2024). Research on the novel use of established SQLE inhibitors is increasing, and targeting SQLE is considered a new and promising therapy for metabolic diseases (Table 2).

Allylamine

Since Georgopoulos et al. discovered that naftifine has high broad-spectrum antifungal activity(Petranyi et al. 1981), it has become the cornerstone for the commercialization of next-generation inhibitor drugs, such as butenafine and tolnaftate. Terbinafine is a common antifungal agent that has been proposed as a new therapeutic strategy for human cancers (Chua et al. 2018). The main SQLE inhibitor used in preclinical antitumor studies is terbinafine, which inhibits cell proliferation; induces G0/G1 cell cycle arrest, apoptosis, and autophagy by inhibiting SQLE or SOLE-independent inhibition; and slows tumor growth in vivo in a dose-dependent manner(Xu et al. 2023). In addition to the presence of neurological and dermal toxicity (Nagaraja et al. 2020; Padyana et al. 2019b), poor drug resistance(Brown et al. 2019) and IC50 values in the range of 10---60 nM were detected for SQLE compared with NB-598 or Cmpd-4". The IC50 was determined to be 7.7 µM, with a maximum inhibition of 65% at an inhibitor concentration of 100 μM, suggesting that SQLE is not the best SQLE inhibitor(Padyana et al. 2019b). The compound NB598, obtained by modifying the aromatic moiety of terbinafine, is another

highly specific inhibitor of mammalian SOLE, with the best responses in neuroblastoma and

499 lung cancer and good drug sensitivity and high efficacy in small-cell lung cancer cell lines (Mahoney et al. 2019; Padyana et al. 2019b). Further modification of NB598 yielded silyl 500 derivatives that are also able to inhibit the enzymatic activity of SOLE. However, preclinical 501 studies revealed that gastrointestinal and dermal toxicities were not tolerated by dogs and 502 503 monkeys treated with a gavage of allylamine inhibitors (NB-598 and Cmpd-4") for small cell lung cancer treatment (Nagaraja et al. 2020). Cmpd-4" has been reported to share the same high 504 potency as NB-598 for the time-dependent inhibition of SQLE(Padyana et al. 2019a; Padyana et 505 al. 2019b)but suffers from the same gastrointestinal and dermal toxicities. Naftifine and 506 terbinafine, which are used as antifungal agents, cause similar adverse effects, and this toxicity 507 508 may limit the potential therapeutic benefit of metabolic disease treatment. This toxicity is attributed to the fact that the site of action of both terbinafine and NB-598 is Y195, and the 509 tertiary amine group in the inhibitor structure forms a hydrogen bond with Y195. This prevents 510 511 Y195 from interacting with glutamine (Q168) at position 168, inhibiting the conversion of SQLE 512 to the active state. Thus, all the catalytic reactions of SQLE are inhibited, resulting in greater neurological and dermal toxicity (Nagaraja et al. 2020; Padyana et al. 2019b). The IC50 values 513 of allylamine inhibitors in mammalian cells are several orders of magnitude greater than those in 514 fungi, and large doses are often required to achieve therapeutic efficacy, such as antitumor 515 effects. Hence, there is a need for careful assessments of the tolerance to adverse effects (Ryder 516 1988). NB-598 is a preclinical drug without much safety or pharmacological data. FR194738 is 517 derived from NB-598 and has an IC50 of only 2.1 nM, making it one of the most potent 518 inhibitors. Compared with NB-598, FR194738 has a similar potency to NB-598 in terms of its 519 ability to inhibit cholesterol synthesis, but it has improved lipophilic and pharmacokinetic 520 521 properties(Sawada et al. 2004; Zhang et al. 2024). As a specific SQLE inhibitor, FR194738 has little effect on cholesterol upstream or downstream (Sawada et al. 2001). The SQLE-specific inhibitor 522 FR194738 attenuates the growth of desmoplasia-resistant prostate cancer in vitro in PC3 cells 523 and in vivo in a mouse xenograft model harboring PC3 cells(Shangguan et al. 2022a). Like its 524 525 parent compound, FR194738 is a preclinical drug with limited safety and pharmacologic data that require additional basic and clinical studies. 526

527

528

529 530

531532

533534

535

536

537

Natural compounds and their derivatives

Many natural compounds and their derivatives may be clinically safe SQLE inhibitors that can effectively and selectively inhibit SQLE enzyme activity. For example, Abe et al. (Abe et al. 2000) reported that green tea polyphenols, the main component of which is galloyl-containing epigallocatechin gallate (EGCG), noncompetitively inhibit SQLE by scavenging reactive oxygen species from the active site of the enzyme. The team synthesized galloyl groups, such as dodecyl ester and gallate dodecyl ester, as SQLE inhibitors, which are widely used in food additives for antioxidant purposes. The metabolites of EGCG are also inhibitory, and other plant extracts, such as beta-carotene, anthocyanins, tannins, fo-ti, and rhubarb, are also rich in galloyl groups. Grape skins and red wine are rich in the galloyl polyphenolic compound resveratrol, which reversibly

 and noncompetitively inhibits SQLE enzyme activity, with cholesterol-lowering and cardiovascular disease-preventive effects. Although EGCG still has few side effects when consumed at high doses, it has low bioavailability and a short half-life to reach effective therapeutic concentrations.

Ellagitannin analogs of pedunculin and eugenol also showed significant inhibitory efficacy. Gupta et al. (Gupta & Porter 2001) reported that garlic and five of its compounds—S-allylcysteine, alliin, diallyl disulfide, selenocystine, and diallyl trisulfide—were effective in inhibiting SQLE. Unlike the mechanism of inhibition by tea polyphenols, the inhibitory effect of garlic extract on SQLE is irreversible. This is because the arylcysteine in garlic binds to the active site of the SQLE enzyme, leading to its inactivation. Additionally, telluride, which is present at high levels in garlic, is not highly selective for SQLE. Instead, it can interact with other proteins and inhibit SQLE enzyme activity in Schwann cells via the blood—brain barrier. This interaction leads to the inhibition of cholesterol synthesis and the accumulation of squalene, which can adversely affect myelin sheath formation and severely impede neurotransmission. This ultimately results in peripheral ganglionic neural degeneration, segmental demyelination, and paralysis of peripheral nerves (Laden & Porter 2001; Wagner et al. 1995). Moreover, different types of SQLE inhibitors offer diverse frameworks for creating novel compounds that mitigate side effects and enhance affinity. However, further investigations are needed to determine their therapeutic potential in treating metabolic diseases.

Conclusions

In summary, SQLE plays key roles in various metabolic-related diseases, including NAFLD, cancer, DM, and obesity, through the regulation of cholesterol synthesis, intestinal microbes, and tumor immunity pathways. SQLE has been shown to be a key driver in the pathogenesis of these diseases; therefore, SQLE can be used as a potential therapeutic target for the treatment of metabolic-related diseases. However, studies on SQLE inhibitors, such as NB-598, Cmpd-4" and FR194738, are incomplete, and there are still some limitations in the application of SQLE inhibitors that require further development.

In addition, SQLE has demonstrated potential in livestock husbandry and drug discovery, where it has been shown to regulate muscle growth and improve beef production by inhibiting the proliferation and promoting the differentiation and apoptosis of skeletal muscle-derived mesenchymal stem/stromal cells(Zhang et al. 2020), and ultimately affects lactation yield and quality through the promotion of proliferation, the cell cycle and the apoptosis of mammary gland epithelial cells. PPI, as the main active ingredient in the herbal medicine polyphyllin I (PPI), is able to impair the SREBP2/HMGCR/SQLE/lanosterol synthase pathway, thereby disrupting cholesterol production and inducing hepatotoxicity(Li et al. 2023b). Moreover, PPI is also the main raw material for the synthesis of steroid hormone drugs (Zhang et al. 2018). Thus, the critical role of SQLE as a potential target of drug-induced hepatotoxicity could provide a

Manuscript to be reviewed

therapeutic strategy for preventing the toxic effects of drugs with similar structures in the future. These findings lay the foundation for further research and application of SQLE in several fields.

Overall, this study systematically integrates the multilevel regulatory mechanisms of SQLE in metabolism-related diseases and elucidates the potential of SQLE as a diagnostic marker and therapeutic target. These findings provide new perspectives for understanding the molecular pathology of metabolism-related diseases and lay the theoretical foundation for the development of precise therapeutic strategies against SQLE. However, many key issues still need to be further explored, such as the tissue specificity and spatiotemporal dynamics of the SQLE regulatory network and how to develop novel SQLE inhibitors with improved targeting and safety profiles. Future studies should focus on these aspects to promote the leap of SQLE research from basic science to clinical translation and ultimately bring new therapeutic hope to patients with metabolism-related diseases.

Acknowledgments

Thank you to every member of the lab.

617

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637 638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

References

- Abe I, Seki T, Umehara K, Miyase T, Noguchi H, Sakakibara J, and Ono T. 2000. Green tea polyphenols: novel and potent inhibitors of squalene epoxidase. *Biochem Biophys Res Commun* 268:767-771. 10.1006/bbrc.2000.2217
 - Ahmed B, and Konje JC. 2023. The epidemiology of obesity in reproduction. *Best Pract Res Clin Obstet Gynaecol* 89:102342. 10.1016/j.bpobgyn.2023.102342
 - Astruc M, Tabacik C, Descomps B, and de Paulet AC. 1977. Squalene epoxidase and oxidosqualene lanosterol-cyclase activities in cholesterogenic and non-cholesterogenic tissues. *Biochim Biophys Acta* 487:204-211. 10.1016/0005-2760(77)90056-x
 - Barrett-Bee K, and Dixon G. 1995. Ergosterol biosynthesis inhibition: a target for antifungal agents. *Acta Biochim Pol* 42:465-479.
 - Bengoechea-Alonso MT, Aldaalis A, and Ericsson J. 2022. Loss of the Fbw7 tumor suppressor rewires cholesterol metabolism in cancer cells leading to activation of the PI3K-AKT signalling axis. *Frontiers in Oncology* 12. 10.3389/fonc.2022.990672
 - Brown AJ, Chua NK, and Yan N. 2019. The shape of human squalene epoxidase expands the arsenal against cancer. *Nature Communications* 10. 10.1038/s41467-019-08866-y
 - Brown MS, Radhakrishnan A, and Goldstein JL. 2018. Retrospective on Cholesterol Homeostasis: The Central Role of Scap. *Annu Rev Biochem* 87:783-807. 10.1146/annurev-biochem-062917-011852
 - Calcaterra V, Verduci E, Pascuzzi MC, Magenes VC, Fiore G, Di Profio E, Tenuta E, Bosetti A, Todisco CF, D'Auria E, and Zuccotti G. 2021. Metabolic Derangement in Pediatric Patient with Obesity: The Role of Ketogenic Diet as Therapeutic Tool. *Nutrients* 13. 10.3390/nu13082805
 - Chua NK, Coates HW, and Brown AJ. 2018. Cholesterol, cancer, and rebooting a treatment for athlete's foot. *Science Translational Medicine* 10. 10.1126/scitranslmed.aat3741
 - Chua NK, Howe V, Jatana N, Thukral L, and Brown AJ. 2017. A conserved degron containing an amphipathic helix regulates the cholesterol-mediated turnover of human squalene monooxygenase, a rate-limiting enzyme in cholesterol synthesis. *J Biol Chem* 292:19959-19973. 10.1074/jbc.M117.794230
 - Coates HW, Capell-Hattam IM, and Brown AJ. 2021. The mammalian cholesterol synthesis enzyme squalene monooxygenase is proteasomally truncated to a constitutively active form. *J Biol Chem* 296:100731. 10.1016/j.jbc.2021.100731
 - D'Arcy M, Fleming J, Robinson WR, Kirk EL, Perou CM, and Troester MA. 2015. Race-associated biological differences among Luminal A breast tumors. *Breast Cancer Res Treat* 152:437-448. 10.1007/s10549-015-3474-4
 - Dang EV, and Cyster JG. 2019. Loss of sterol metabolic homeostasis triggers inflammasomes how and why. *Curr Opin Immunol* 56:1-9. 10.1016/j.coi.2018.08.001
 - Ding J, Lohman K, Kritchevsky SB, Parks JS, Hoeschele INA, Nicklas BJ, Demons J, and Liu Y. 2022. 1428-P: Monocyte Cholesterol Metabolism during Weight Loss and Glycemic Improvement. *Diabetes* 71. 10.2337/db22-1428-P
- Ding J, Reynolds LM, Zeller T, Müller C, Lohman K, Nicklas BJ, Kritchevsky SB, Huang Z, de la Fuente A, Soranzo N, Settlage RE, Chuang C-C, Howard T, Xu N, Goodarzi MO, Chen YDI, Rotter JI, Siscovick DS, Parks JS, Murphy S, Jacobs DR, Post W, Tracy RP, Wild PS, Blankenberg S, Hoeschele I, Herrington D, McCall CE, and Liu Y. 2015a. Alterations of a Cellular Cholesterol Metabolism Network Are a Molecular Feature of Obesity-Related Type 2 Diabetes and Cardiovascular Disease. *Diabetes* 64:3464-3474.
- 663 10.2337/db14-1314

- Ding J, Reynolds LM, Zeller T, Muller C, Lohman K, Nicklas BJ, Kritchevsky SB, Huang Z, de la
 Fuente A, Soranzo N, Settlage RE, Chuang CC, Howard T, Xu N, Goodarzi MO, Chen
 YD, Rotter JI, Siscovick DS, Parks JS, Murphy S, Jacobs DR, Jr., Post W, Tracy RP,
 Wild PS, Blankenberg S, Hoeschele I, Herrington D, McCall CE, and Liu Y. 2015b.
 Alterations of a Cellular Cholesterol Metabolism Network Are a Molecular Feature of
 Obesity-Related Type 2 Diabetes and Cardiovascular Disease. *Diabetes* 64:3464-3474.
 10.2337/db14-1314
- Du Y, Rokavec M, and Hermeking H. 2023. Squalene epoxidase/SQLE is a candidate target for treatment of colorectal cancers with p53 mutation and elevated c-MYC expression. *Int J Biol Sci* 19:4103-4122. 10.7150/ijbs.85724

 Einarson TR, Acs A, Ludwig C, and Panton UH. 2018. Prevalence of cardiovascular disease in
 - Einarson TR, Acs A, Ludwig C, and Panton UH. 2018. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007-2017. *Cardiovasc Diabetol* 17:83. 10.1186/s12933-018-0728-6
 - Ge Q, Feng F, Liu L, Chen L, Lv P, Ma S, Chen K, and Yao Q. 2020. RNA-Seq analysis of the pathogenesis of STZ-induced male diabetic mouse liver. *Journal of Diabetes and its Complications* 34. 10.1016/j.jdiacomp.2019.107444
 - Ge Q, Zhang S, Chen L, Tang M, Liu L, Kang M, Gao L, Ma S, Yang Y, Lv P, Kong M, Yao Q, Feng F, and Chen K. 2018. Mulberry Leaf Regulates Differentially Expressed Genes in Diabetic Mice Liver Based on RNA-Seq Analysis. *Frontiers in Physiology* 9. 10.3389/fphys.2018.01051
 - Gill S, Stevenson J, Kristiana I, and Brown AJ. 2011. Cholesterol-dependent degradation of squalene monooxygenase, a control point in cholesterol synthesis beyond HMG-CoA reductase. *Cell Metab* 13:260-273. 10.1016/j.cmet.2011.01.015
 - Griffiths WJ, and Wang Y. 2021. Sterols, Oxysterols, and Accessible Cholesterol: Signalling for Homeostasis, in Immunity and During Development. *Front Physiol* 12:723224. 10.3389/fphys.2021.723224
 - Gupta N, and Porter TD. 2001. Garlic and garlic-derived compounds inhibit human squalene monooxygenase. *J Nutr* 131:1662-1667. 10.1093/jn/131.6.1662
 - He L, Li H, Pan C, Hua Y, Peng J, Zhou Z, Zhao Y, and Lin M. 2021. Squalene epoxidase promotes colorectal cancer cell proliferation through accumulating calcitriol and activating CYP24A1-mediated MAPK signaling. *Cancer Commun (Lond)* 41:726-746. 10.1002/cac2.12187
 - He R, Zhao Z, Yang Y, and Liang X. 2020. Using bioinformatics and metabolomics to identify altered granulosa cells in patients with diminished ovarian reserve. *PeerJ* 8. 10.7717/peerj.9812
 - Helms MW, Kemming D, Pospisil H, Vogt U, Buerger H, Korsching E, Liedtke C, Schlotter CM, Wang A, Chan SY, and Brandt BH. 2008. Squalene epoxidase, located on chromosome 8q24.1, is upregulated in 8q+ breast cancer and indicates poor clinical outcome in stage I and II disease. *British Journal of Cancer* 99:774-780. 10.1038/sj.bjc.6604556
 - Howe V, Chua NK, Stevenson J, and Brown AJ. 2015. The Regulatory Domain of Squalene Monooxygenase Contains a Re-entrant Loop and Senses Cholesterol via a Conformational Change. *J Biol Chem* 290:27533-27544. 10.1074/jbc.M115.675181
 - Howe V, Sharpe LJ, Prabhu AV, and Brown AJ. 2017. New insights into cellular cholesterol acquisition: promoter analysis of human HMGCR and SQLE, two key control enzymes in cholesterol synthesis. *Biochimica et Biophysica Acta (BBA) Molecular and Cell Biology of Lipids* 1862:647-657. 10.1016/j.bbalip.2017.03.009
- Huang B, Song BL, and Xu C. 2020. Cholesterol metabolism in cancer: mechanisms and therapeutic opportunities. *Nat Metab* 2:132-141. 10.1038/s42255-020-0174-0
- Jiang H, Tang E, Chen Y, Liu H, Zhao Y, Lin M, and He L. 2022. Squalene synthase predicts poor prognosis in stage I-III colon adenocarcinoma and synergizes squalene epoxidase to promote tumor progression. *Cancer Sci* 113:971-985. 10.1111/cas.15248

- Jun SY, Brown AJ, Chua NK, Yoon JY, Lee JJ, Yang JO, Jang I, Jeon SJ, Choi TI, Kim CH, and
 Kim NS. 2021. Reduction of Squalene Epoxidase by Cholesterol Accumulation
 Accelerates Colorectal Cancer Progression and Metastasis. *Gastroenterology* 160:1194-1207.e1128. 10.1053/j.gastro.2020.09.009
- Kalogirou C, Linxweiler J, Schmucker P, Snaebjornsson MT, Schmitz W, Wach S, Krebs M,
 Hartmann E, Puhr M, Müller A, Spahn M, Seitz AK, Frank T, Marouf H, Büchel G,
 Eckstein M, Kübler H, Eilers M, Saar M, Junker K, Röhrig F, Kneitz B, Rosenfeldt MT,
 and Schulze A. 2021. MiR-205-driven downregulation of cholesterol biosynthesis
 through SQLE-inhibition identifies therapeutic vulnerability in aggressive prostate cancer.
 Nat Commun 12:5066. 10.1038/s41467-021-25325-9
 - Kim JH, Kim CN, and Kang DW. 2019. Squalene Epoxidase Correlates E-Cadherin Expression and Overall Survival in Colorectal Cancer Patients: The Impact on Prognosis and Correlation to Clinicopathologic Features. *J Clin Med* 8. 10.3390/jcm8050632
 - La Sala L, and Pontiroli AE. 2020. Prevention of Diabetes and Cardiovascular Disease in Obesity. *International Journal of Molecular Sciences* 21. 10.3390/ijms21218178
 - Laden BP, and Porter TD. 2001. Inhibition of human squalene monooxygenase by tellurium compounds: evidence of interaction with vicinal sulfhydryls. *Journal of Lipid Research* 42:235-240. 10.1016/s0022-2275(20)31684-9
 - Li C, Wang Y, Liu D, Wong CC, Coker OO, Zhang X, Liu C, Zhou Y, Liu Y, Kang W, To KF, Sung JJ, and Yu J. 2022a. Squalene epoxidase drives cancer cell proliferation and promotes gut dysbiosis to accelerate colorectal carcinogenesis. *Gut* 71:2253-2265. 10.1136/gutinl-2021-325851
 - Li C, Wang Y, Liu D, Wong CC, Coker OO, Zhang X, Liu C, Zhou Y, Liu Y, Kang W, To KF, Sung JJY, and Yu J. 2022b. Squalene epoxidase drives cancer cell proliferation and promotes gut dysbiosis to accelerate colorectal carcinogenesis. *Gut* 71:2253-2265. 10.1136/gutjnl-2021-325851
 - Li J, Yang T, Wang Q, Li Y, Wu H, Zhang M, Qi H, Zhang H, and Li J. 2022c. Upregulation of SQLE Contributes to Poor Survival in Head and Neck Squamous Cell Carcinoma. *Int J Biol Sci* 18:3576-3591. 10.7150/ijbs.68216
 - Li W, Jiang X, and Zhao L. 2023a. Hsa_circ_0028007 regulates the progression of nasopharyngeal carcinoma through the miR-1179/SQLE axis. *Open Med (Wars)* 18:20230632. 10.1515/med-2023-0632
 - Li Z, Fan Q, Chen M, Dong Y, Li F, Wang M, Gu Y, Guo S, Ye X, Wu J, Dai S, Lin R, and Zhao C. 2023b. The interaction between polyphyllin I and SQLE protein induces hepatotoxicity through SREBP-2/HMGCR/SQLE/LSS pathway. *Journal of Pharmaceutical Analysis* 13:39-54. 10.1016/j.jpha.2022.11.005
- Liu D, Wong CC, Fu L, Chen H, Zhao L, Li C, Zhou Y, Zhang Y, Xu W, Yang Y, Wu B, Cheng G,
 Lai PB, Wong N, Sung JJY, and Yu J. 2018. Squalene epoxidase drives NAFLD-induced
 hepatocellular carcinoma and is a pharmaceutical target. *Sci Transl Med* 10.
 10.1126/scitranslmed.aap9840
- Liu D, Wong CC, Zhou Y, Li C, Chen H, Ji F, Go MYY, Wang F, Su H, Wei H, Cai Z, Wong N,
 Wong VWS, and Yu J. 2021a. Squalene Epoxidase Induces Nonalcoholic
 Steatohepatitis Via Binding to Carbonic Anhydrase III and is a Therapeutic Target.
 Gastroenterology 160:2467-2482.e2463. 10.1053/j.gastro.2021.02.051
- Liu Y, Fang L, and Liu W. 2021b. High SQLE Expression and Gene Amplification Correlates
 with Poor Prognosis in Head and Neck Squamous Cell Carcinoma. *Cancer Manag Res* 13:4709-4723. 10.2147/cmar.S305719
- Liu Y, Lu LL, Wen D, Liu DL, Dong LL, Gao DM, Bian XY, Zhou J, Fan J, and Wu WZ. 2020.
 MiR-612 regulates invadopodia of hepatocellular carcinoma by HADHA-mediated lipid reprogramming. *J Hematol Oncol* 13:12. 10.1186/s13045-019-0841-3

- Mahoney CE, Pirman D, Chubukov V, Sleger T, Hayes S, Fan ZP, Allen EL, Chen Y, Huang L,
 Liu M, Zhang Y, McDonald G, Narayanaswamy R, Choe S, Chen Y, Gross S, Cianchetta
 G, Padyana AK, Murray S, Liu W, Marks KM, Murtie J, Dorsch M, Jin S, Nagaraja N,
 Biller SA, Roddy T, Popovici-Muller J, and Smolen GA. 2019. A chemical biology screen
 identifies a vulnerability of neuroendocrine cancer cells to SQLE inhibition. *Nat Commun* 10:96. 10.1038/s41467-018-07959-4
- Nagai M, Sakakibara J, Wakui K, Fukushima Y, Igarashi S, Tsuji S, Arakawa M, and Ono T.
 1997. Localization of the Squalene Epoxidase Gene (SQLE) to Human Chromosome
 Region 8q24.1. *Genomics* 44:141-143. 10.1006/geno.1997.4825
 - Nagaraja R, Olaharski A, Narayanaswamy R, Mahoney C, Pirman D, Gross S, Roddy TP, Popovici-Muller J, Smolen GA, and Silverman L. 2020. Preclinical toxicology profile of squalene epoxidase inhibitors. *Toxicol Appl Pharmacol* 401:115103. 10.1016/j.taap.2020.115103
 - Nan Y, An J, Bao J, Chen H, Chen Y, Ding H, Dou X, Duan Z, Fan J, Gao Y, Han T, Han Y, Hu P, Huang Y, Huang Y, Jia J, Jiang J, Jiang Y, Li J, Li J, Li R, Li S, Li W, Li Y, Lin S, Liu J, Liu S, Lu L, Lu Q, Luo X, Ma X, Rao H, Ren H, Ren W, Shang J, Shi L, Su M, Wang B, Wang R, Wei L, Wen Z, Wu B, Wu J, Xin S, Xing H, Xu J, Yan M, Yang J, Yang J, Yang L, Yang Y, Yu Y, Zhang L, Zhang L, Zhang X, Zhang Y, Zhao J, Zhao S, Zheng H, Zhou Y, Zhou Y, Zhuang H, Zuo W, Xu X, and Qiao L. 2021. The Chinese Society of Hepatology position statement on the redefinition of fatty liver disease. *J Hepatol* 75:454-461. 10.1016/j.jhep.2021.05.003
 - Nathan JA. 2020. Squalene and cholesterol in the balance at the ER membrane. *Proc Natl Acad Sci U S A* 117:8228-8230. 10.1073/pnas.2003388117
 - Padyana AK, Gross S, Jin L, Cianchetta G, Narayanaswamy R, Wang F, Wang R, Fang C, Lv X, Biller SA, Dang L, Mahoney CE, Nagaraja N, Pirman D, Sui Z, Popovici-Muller J, and Smolen GA. 2019a. Structure and inhibition mechanism of the catalytic domain of human squalene epoxidase. *Nature Communications* 10. 10.1038/s41467-018-07928-x
 - Padyana AK, Gross S, Jin L, Cianchetta G, Narayanaswamy R, Wang F, Wang R, Fang C, Lv X, Biller SA, Dang L, Mahoney CE, Nagaraja N, Pirman D, Sui Z, Popovici-Muller J, and Smolen GA. 2019b. Structure and inhibition mechanism of the catalytic domain of human squalene epoxidase. *Nat Commun* 10:97. 10.1038/s41467-018-07928-x
 - Parris TZ, Kovacs A, Hajizadeh S, Nemes S, Semaan M, Levin M, Karlsson P, and Helou K. 2014. Frequent MYC coamplification and DNA hypomethylation of multiple genes on 8q in 8p11-p12-amplified breast carcinomas. *Oncogenesis* 3:e95. 10.1038/oncsis.2014.8
 - Petranyi G, Georgopoulos A, and Mieth H. 1981. In vivo antimycotic activity of naftifine. Antimicrob Agents Chemother 19:390-392. 10.1128/AAC.19.3.390
 - Polycarpou-Schwarz M, Groß M, Mestdagh P, Schott J, Grund SE, Hildenbrand C, Rom J, Aulmann S, Sinn HP, Vandesompele J, and Diederichs S. 2018. The cancer-associated microprotein CASIMO1 controls cell proliferation and interacts with squalene epoxidase modulating lipid droplet formation. *Oncogene* 37:4750-4768. 10.1038/s41388-018-0281-5
 - Qian CJ, Zhou YX, Wu LK, Wang YC, Teng XS, and Yao J. 2023. Circ_0000182 promotes cholesterol synthesis and proliferation of stomach adenocarcinoma cells by targeting miR-579-3p/SQLE axis. *Discov Oncol* 14:22. 10.1007/s12672-023-00630-5
 - Qin Y, Hou Y, Liu S, Zhu P, Wan X, Zhao M, Peng M, Zeng H, Li Q, Jin T, Cui X, and Liu M. 2021. A Novel Long Non-Coding RNA Inc030 Maintains Breast Cancer Stem Cell Stemness by Stabilizing SQLE mRNA and Increasing Cholesterol Synthesis. *Adv Sci* (Weinh) 8:2002232. 10.1002/advs.202002232
- Qin Y, Zhang Ý, Tang Q, Jin L, and Chen Y. 2017. SQLE induces epithelial-to-mesenchymal transition by regulating of miR-133b in esophageal squamous cell carcinoma. *Acta Biochim Biophys Sin (Shanghai)* 49:138-148. 10.1093/abbs/gmw127

- Ryder NS. 1988. Mechanism of action and biochemical selectivity of allylamine antimycotic agents. *Ann N Y Acad Sci* 544:208-220. 10.1111/j.1749-6632.1988.tb40405.x
- Ryder NS. 1991. Squalene epoxidase as a target for the allylamines. *Biochem Soc Trans* 19:774-777. 10.1042/bst0190774
 - Ryder NS. 1992. Terbinafine: Mode of action and properties of the squalene epoxidase inhibition. *British Journal of Dermatology* 126:2-7. 10.1111/j.1365-2133.1992.tb00001.x
 - Saklayen MG. 2018. The Global Epidemic of the Metabolic Syndrome. *Curr Hypertens Rep* 20:12. 10.1007/s11906-018-0812-z
 - Sawada M, Matsuo M, Hagihara H, Tenda N, Nagayoshi A, Okumura H, Washizuka K-i, Seki J, and Goto T. 2001. Effect of FR194738, a potent inhibitor of squalene epoxidase, on cholesterol metabolism in HepG2 cells. *European Journal of Pharmacology* 431:11-16. 10.1016/s0014-2999(01)01411-x
 - Sawada M, Washizuka K-i, and Okumura H. 2004. Synthesis and biological activity of a novel squalene epoxidase inhibitor, FR194738. *Bioorganic & Medicinal Chemistry Letters* 14:633-637. 10.1016/j.bmcl.2003.11.072
 - Seiki S, and Frishman WH. 2009. Pharmacologic inhibition of squalene synthase and other downstream enzymes of the cholesterol synthesis pathway: a new therapeutic approach to treatment of hypercholesterolemia. *Cardiol Rev* 17:70-76. 10.1097/CRD.0b013e3181885905
 - Shangguan X, Ma Z, Yu M, Ding J, Xue W, and Qi J. 2022a. Squalene Epoxidase Metabolic Dependency Is a Targetable Vulnerability in Castration-Resistant Prostate Cancer. *Cancer Research* 82:3032-3044. 10.1158/0008-5472.Can-21-3822
 - Shangguan X, Ma Z, Yu M, Ding J, Xue W, and Qi J. 2022b. Squalene Epoxidase Metabolic Dependency Is a Targetable Vulnerability in Castration-Resistant Prostate Cancer. *Cancer Res* 82:3032-3044. 10.1158/0008-5472.CAN-21-3822
 - Sharpe LJ, Coates HW, and Brown AJ. 2020. Post-translational control of the long and winding road to cholesterol. *J Biol Chem* 295:17549-17559. 10.1074/jbc.REV120.010723
 - Sharpe LJ, Howe V, Scott NA, Luu W, Phan L, Berk JM, Hochstrasser M, and Brown AJ. 2019. Cholesterol increases protein levels of the E3 ligase MARCH6 and thereby stimulates protein degradation. *J Biol Chem* 294:2436-2448. 10.1074/jbc.RA118.005069
 - Shen T, Lu Y, and Zhang Q. 2020. High Squalene Epoxidase in Tumors Predicts Worse Survival in Patients With Hepatocellular Carcinoma: Integrated Bioinformatic Analysis on NAFLD and HCC. *Cancer Control* 27:1073274820914663. 10.1177/1073274820914663
 - Silvera D, Gamarnik AV, and Andino R. 1999. The N-terminal K Homology Domain of the Poly(rC)-binding Protein Is a Major Determinant for Binding to the Poliovirus 5' Untranslated Region and Acts as an Inhibitor of Viral Translation. *Journal of Biological Chemistry* 274:38163-38170. 10.1074/jbc.274.53.38163
 - Simigdala N, Gao Q, Pancholi S, Roberg-Larsen H, Zvelebil M, Ribas R, Folkerd E, Thompson A, Bhamra A, Dowsett M, and Martin L-A. 2016. Cholesterol biosynthesis pathway as a novel mechanism of resistance to estrogen deprivation in estrogen receptor-positive breast cancer. *Breast Cancer Research* 18. 10.1186/s13058-016-0713-5
 - Singh A-K, Yadav D, Sharma N, and Jin J-O. 2021. Dipeptidyl Peptidase (DPP)-IV Inhibitors with Antioxidant Potential Isolated from Natural Sources: A Novel Approach for the Management of Diabetes. *Pharmaceuticals* 14. 10.3390/ph14060586
 - Song Y, Tian S, Zhang P, Zhang N, Shen Y, and Deng J. 2021. Construction and Validation of a Novel Ferroptosis-Related Prognostic Model for Acute Myeloid Leukemia. *Front Genet* 12:708699. 10.3389/fgene.2021.708699
- Souchek JJ, Baine MJ, Lin C, Rachagani S, Gupta S, Kaur S, Lester K, Zheng D, Chen S, Smith L, Lazenby A, Johansson SL, Jain M, and Batra SK. 2014. Unbiased analysis of pancreatic cancer radiation resistance reveals cholesterol biosynthesis as a novel target for radiosensitisation. *Br J Cancer* 111:1139-1149. 10.1038/bjc.2014.385

- Stäubert C, Krakowsky R, Bhuiyan H, Witek B, Lindahl A, Broom O, and Nordström A. 2016.
 Increased lanosterol turnover: a metabolic burden for daunorubicin-resistant leukemia cells. *Med Oncol* 33:6. 10.1007/s12032-015-0717-5
- Stopsack KH, Gerke TA, Andrén O, Andersson SO, Giovannucci EL, Mucci LA, and Rider JR.
 2017. Cholesterol uptake and regulation in high-grade and lethal prostate cancers.
 Carcinogenesis 38:806-811. 10.1093/carcin/bgx058
 - Stopsack KH, Gerke TA, Sinnott JA, Penney KL, Tyekucheva S, Sesso HD, Andersson SO, Andrén O, Cerhan JR, Giovannucci EL, Mucci LA, and Rider JR. 2016. Cholesterol Metabolism and Prostate Cancer Lethality. *Cancer Res* 76:4785-4790. 10.1158/0008-5472.Can-16-0903
 - Stylianou IM, Clinton M, Keightley PD, Pritchard C, Tymowska-Lalanne Z, Bünger L, and Horvat S. 2005. Microarray gene expression analysis of theFob3bobesity QTL identifies positional candidate geneSqleand perturbed cholesterol and glycolysis pathways. *Physiological Genomics* 20:224-232. 10.1152/physiolgenomics.00183.2004
 - Sui Z, Zhou J, Cheng Z, and Lu P. 2015. Squalene epoxidase (SQLE) promotes the growth and migration of the hepatocellular carcinoma cells. *Tumour Biol* 36:6173-6179. 10.1007/s13277-015-3301-x
 - Sun H, Li L, Li W, Yang F, Zhang Z, Liu Z, and Du W. 2021. p53 transcriptionally regulates SQLE to repress cholesterol synthesis and tumor growth. *EMBO Rep* 22:e52537. 10.15252/embr.202152537
 - Tay Y, Rinn J, and Pandolfi PP. 2014. The multilayered complexity of ceRNA crosstalk and competition. *Nature* 505:344-352. 10.1038/nature12986
 - Toya T, Ozcan I, Corban MT, Sara JD, Marietta EV, Ahmad A, Horwath IE, Loeffler DL, Murray JA, Lerman LO, and Lerman A. 2021. Compositional change of gut microbiome and osteocalcin expressing endothelial progenitor cells in patients with coronary artery disease. *PLoS One* 16:e0249187. 10.1371/journal.pone.0249187
 - Wagner M, Toews AD, and Morell P. 1995. Tellurite specifically affects squalene epoxidase: investigations examining the mechanism of tellurium-induced neuropathy. *J Neurochem* 64:2169-2176. 10.1046/j.1471-4159.1995.64052169.x
 - Wang C-C, Yen J-H, Cheng Y-C, Lin C-Y, Hsieh C-T, Gau R-J, Chiou S-J, and Chang H-Y. 2017. Polygala tenuifolia extract inhibits lipid accumulation in 3T3-L1 adipocytes and high-fat diet–induced obese mouse model and affects hepatic transcriptome and gut microbiota profiles. *Food & Nutrition Research* 61. 10.1080/16546628.2017.1379861
 - Wang S, Dong L, Ma L, Yang S, Zheng Y, Zhang J, Wu C, Zhao Y, Hou Y, Li H, and Wang T. 2022. SQLE facilitates the pancreatic cancer progression via the IncRNA-TTN-AS1/miR-133b/SQLE axis. *J Cell Mol Med* 26:3636-3647. 10.1111/jcmm.17347
 - Xu R, Song J, Ruze R, Chen Y, Yin X, Wang C, and Zhao Y. 2023. SQLE promotes pancreatic cancer growth by attenuating ER stress and activating lipid rafts-regulated Src/PI3K/Akt signaling pathway. *Cell Death Dis* 14:497. 10.1038/s41419-023-05987-7
- Xu Y, Han W, Xu WH, Wang Y, Yang XL, Nie HL, Yao J, Shen GL, and Zhang XF. 2019.
 Identification of differentially expressed genes and functional annotations associated with metastases of the uveal melanoma. *J Cell Biochem* 120:19202-19214.
 10.1002/jcb.29250
 - Yamamoto S, and Bloch K. 1970. Studies on Squalene Epoxidase of Rat Liver. *Journal of Biological Chemistry* 245:1670-1674. 10.1016/s0021-9258(19)77144-0
- Yang F, Kou J, Liu Z, Li W, and Du W. 2021. MYC Enhances Cholesterol Biosynthesis and
 Supports Cell Proliferation Through SQLE. Front Cell Dev Biol 9:655889.
 10.3389/fcell.2021.655889
- 915 Ye Z, Ai X, Yang K, Yang Z, Fei F, Liao X, Qiu Z, Gimple RC, Yuan H, Huang H, Gong Y, Xiao C, Yue J, Huang L, Saulnier O, Wang W, Zhang P, Dai L, Wang X, Wang X, Ahn YH, You C, Xu J, Wan X, Taylor MD, Zhao L, Rich JN, and Zhou S. 2023. Targeting

929

930

931

932

933

934

935

936

937

938

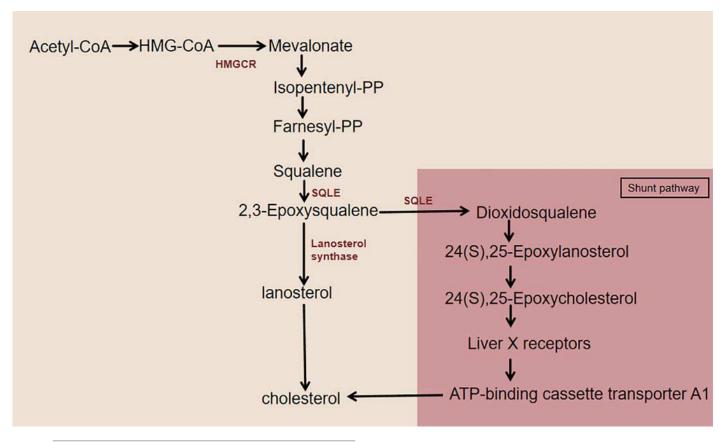
939

940

941

942

943


944

- 918 Microglial Metabolic Rewiring Synergizes with Immune-Checkpoint Blockade Therapy for Glioblastoma. *Cancer Discov* 13:974-1001. 10.1158/2159-8290.Cd-22-0455
- You W, Ke J, Chen Y, Cai Z, Huang Z-p, Hu P, and Wu X. 2022a. SQLE, A Key Enzyme in
 Cholesterol Metabolism, Correlates With Tumor Immune Infiltration and Immunotherapy
 Outcome of Pancreatic Adenocarcinoma. *Frontiers in Immunology* 13.
 10.3389/fimmu.2022.864244
- You W, Ke J, Chen Y, Cai Z, Huang ZP, Hu P, and Wu X. 2022b. SQLE, A Key Enzyme in
 Cholesterol Metabolism, Correlates With Tumor Immune Infiltration and Immunotherapy
 Outcome of Pancreatic Adenocarcinoma. *Front Immunol* 13:864244.
 10.3389/fimmu.2022.864244
 - Yue S, Li J, Lee SY, Lee HJ, Shao T, Song B, Cheng L, Masterson TA, Liu X, Ratliff TL, and Cheng JX. 2014. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. *Cell Metab* 19:393-406. 10.1016/j.cmet.2014.01.019
 - Zhang C, Zhang H, Zhang M, Lin C, Wang H, Yao J, Wei Q, Lu Y, Chen Z, Xing G, and Cao X. 2019. OSBPL2 deficiency upregulate SQLE expression increasing intracellular cholesterol and cholesteryl ester by AMPK/SP1 and SREBF2 signalling pathway. *Exp Cell Res* 383:111512. 10.1016/j.yexcr.2019.111512
 - Zhang HY, Li HM, Yu Z, Yu XY, and Guo K. 2014. Expression and significance of squalene epoxidase in squamous lung cancerous tissues and pericarcinoma tissues. *Thorac Cancer* 5:275-280. 10.1111/1759-7714.12087
 - Zhang L, Cao Z, Hong Y, He H, Chen L, Yu Z, and Gao Y. 2024. Squalene Epoxidase: Its Regulations and Links with Cancers. *International Journal of Molecular Sciences* 25. 10.3390/ijms25073874
 - Zhang R, Deng Y, Lv Q, Xing Q, Pan Y, Liang J, Jiang M, Wei Y, Shi D, Xie B, and Yang S. 2020. SQLE Promotes Differentiation and Apoptosis of Bovine Skeletal Muscle-Derived Mesenchymal Stem Cells. *Cell Reprogram* 22:22-29. 10.1089/cell.2019.0077
- Zhang T, Zhong S, Li T, and Zhang J. 2018. Saponins as modulators of nuclear receptors.
 Critical Reviews in Food Science and Nutrition 60:94-107.
 10.1080/10408398.2018.1514580
- Zou Y, Zhang H, Bi F, Tang Q, and Xu H. 2022. Targeting the key cholesterol biosynthesis
 enzyme squalene monooxygenasefor cancer therapy. *Frontiers in Oncology* 12.
 10.3389/fonc.2022.938502

Figure 1

Figure 1 Cholesterol synthesis pathway centered on SQLE

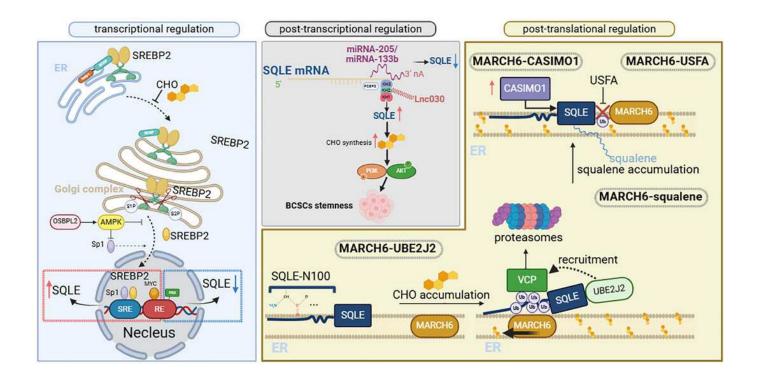

This figure illustrates the simplified cholesterol biosynthesis pathway with a focus on squalene SQLE. The pathway features key rate-limiting enzymes, including HMGCR and SQLE. HMGCR catalyzes the conversion of HMG-CoA to MVA. SQLE first converts squalene to 2,3-epoxysqualene. This intermediate then undergoes further enzymatic reactions to eventually produce cholesterol. When lanosterol synthase activity is low, SQLE diverts 2,3-epoxysqualene to dioxidosqualene, which is then converted to 24(S),25-epoxylanosterol and subsequently to 24(S),25-epoxycholesterol. 24(S),25-Epoxycholesterol binds to the liver X receptor, activating LXR and leading to the upregulation of ABCA1, which enhances cholesterol efflux. This activation leads to the upregulation of ABCA1 and enhances cholesterol efflux.

Figure 2

Figure 2. Transcriptional, posttranscriptional, and posttranslational regulation of SQLE

SQLE can be regulated at the transcriptional level by SREBP2, which is a transcription factor involved in cholesterol synthesis and homeostasis. At the posttranscriptional level, gene expression is regulated through interactions between miRNAs/IncRNAs and SQLE mRNAs. At the posttranslational level, SQLE is regulated through cholesterol-dependent feedback mechanisms. The figure is adapted from Zou et al. (2022) with modifications.

Table 1(on next page)

Table 1. Interactions of miRNAs, IncRNAs, and circRNAs with SQLE and their effects on cancer cells

miRNAs, IncRNAs, and circRNAscan all exert their effects on various cancers by influencing the expression of SQLE. SQLE is highly expressed in multiple types of cancer cells and promotes tumor progression. miRNA-205, miRNA-133b, miRNA-579-3p, miRNA-584-5p, miRNA-1179, miRNA-363-3p, and miRNA-612 are downregulated in cancers and negatively correlated with SQLE expression. Conversely, IncRNA 030 and circRNA are downregulated in cancers and are positively correlated with SQLE expression.

RNA type	RNA identifi er	Cancer cells	miRNA expression level SQLE expression level	Function	Overexpress ed	Ref
miRNA	miRNA -205	Prostate cancer	Downregulated	Overexpressed	Promotion of cell proliferation and androgen receptor	(Kalogirou et al. 2021)
miRNA	miRNA -133b	Pancreatic cancer	Downregulated	Overexpressed	Promotion of cell proliferation, migration, and invasion	(Wang et al. 2022b)
miRNA	miRNA -133b	Esophageal squamous cell carcinoma	Downregulated	Overexpressed	Promotion of cell proliferation, migration, invasion	(Qin et al. 2017b)
miRNA	miRNA -579-3p	Gastric adenocarcin oma	Downregulated	Overexpressed	Promotion of cell proliferation	(Qian et al. 2023)
miRNA	miRNA -584-5p	Head and neck squamous cell carcinomas	Downregulated	Overexpressed	Promotion of cell proliferation, migration, and invasion	(Li et al. 2022c)
miRNA	miRNA -1179	Nasopharyn geal carcinoma	Downregulated	Overexpressed	Promotion of cell proliferation and inhibition of apoptosis Promotion of	(Li et al. 2023a)
miRNA	miRNA -363-3p	Pancreatic Cancer	Downregulated	Overexpressed	cell proliferation, regulation of tumor immune cell infiltration and expression of immune checkpoints	(You et al. 2022b)

PeerJ

miRNA	miRNA -612	Hepatocellu lar carcinoma	Downregulated	Overexpressed	Promotion of cell invadopodia, epithelial-me senchymal transition, migration, and invasion	(Liu et al. 2020)
lncRN A	lnc RNA 030	Breast cancer	Upregulated	Overexpressed	Maintains BCSCs Stemness	(Qin et al. 2021)
circRN A	circ_00 00182	Gastric adenocarcin oma	Upregulated	Overexpressed	Promotion of cell proliferation	(Qian et al. 2023)

Table 2(on next page)

Table 2. Characteristics of different SQLE inhibitors

This table summarizes the characteristics of various SQLE inhibitors, categorized by category, and includes their names, advantages, and limitations. The advantages and limitations of each inhibitor provide a detailed comparison of their usage and effectiveness. References are provided to support the data sources.

Catego ry	Name	Advantages	Limitations	Ref
Allyla mine inhibito r	Terbinafine	Wide clinical application of antifungal drugs	Neurotoxicity, skin toxicity, poor resistance	(Brown et al. 2019; Nagaraja et al. 2020a; Padyana et al. 2019a)
Allyla mine inhibito r	NB-598	Highly specific to mammalian SQLE	High potency, time- dependent inhibition, competitive inhibition Neurotoxicity, gastrointestinal and skin toxicity	(Nagaraja et al. 2020a; Padyana et al. 2019a)
Allyla mine inhibito r	Cmpd-4"	High potency, time-dependent inhibition, competitive inhibition	Gastrointestinal and skin toxicity	(Nagaraja et al. 2020b; Padyana et al. 2019b)
Allyla mine inhibito r	FR194738	Lipophilicity, favorable pharmacokineti cs	Lack of clinical trials, safety and efficacy unknown	(Sawada et al. 2004; Zhang et al. 2024)
Natural Compou nds and Derivati ves	EGCG	Few side effects	Low bioavailability, short half-life	(Abe et al. 2000)
Natural Compou nds and Derivati ves	Garlic and Its derivatives	Antimicrobial and antioxidant properties	Slow, irreversible, low specificity	(Gupta & Porter 2001; Laden & Porter 2001; Wagner et al. 1995)