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ABSTRACT

Background. Acute myeloid leukemia (AML) is highly prevalent and heterogeneous
among adult acute leukemias. Current chemotherapeutic approaches for AML often
face the challenge of drug resistance, and AML immune cells play an important role
in the regulation of AML drug resistance. Thus, it is of key significance to explore the
regulatory mechanisms of immune cells in AML to alleviate chemotherapy resistance
in AML.

Methods. Based on AML single-cell transcriptomic data, this study revealed the
differences in the expression of immune cell subpopulations and marker genes in
AML patients in the complete remission group (CR) compared to AML patients in the
non-complete remission group (non-CR) after chemotherapy. Functional enrichment
by clusterprofiler revealed the regulatory functions of differentially expressed genes
(DEGs) in AML. AUCell enrichment scores were used to assess the immunoregulatory
functions of immune cells. Pseudotime analysis was used to construct immune cell
differentiation trajectories. CellChat was used for cellular communication analysis to
elucidate the interactions between immune cells. Survival analysis with the R package
“survival” revealed the role of immune cell marker genes on AML prognosis. Finally,
the wound healing and trans-well assay were performed.

Results. Single-cell clustering analysis revealed that NK/T cells and macrophage cells
subpopulations were significantly higher in non-CR AML patients than in CR AML.
AUCell enrichment analysis revealed that FCAR+ and FCGR3A+ macrophages were
significantly more active in the non-CR group and correlated with processes regulating
cellular energy metabolism and immune cell activity. Differentially expressed NK
cell marker genes between CR and non-CR groups mainly included HBAI, S100AS,
and SI00A9, which were associated with cancer drug resistance regulation, these
marker genes of (FCAR, FCGR3A, PREX1, S100A8 and S100A9) were upregulated
in human chronic myeloid leukemia cells (HAP1) and silencing of SI00A8 affected
migration and invasion of HAP1 cells. In particular, the differentiation pathways
of macrophages and NK cells in non-CR differed from those of patients in the CR
group. Cellular communication analyses showed that ligand-receptor pairs between NK
cells and macrophage cells mainly included HLA-E-KLRK1, HLA-E-KLRC1, HLA-E-
CD94:NKG2A, CLEC2B-KLRBI. In addition, LGALS9-CD45, CCL3L1- CCR1, CCL3-
CCRI1 between these two immune cells mainly regulate secreted signaling to mediate
AML progression. Marker genes in NK/T cells and macrophage cells were significantly
associated with AML prognosis.
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Conclusion. This study reveals the potential role of NK cells and macrophages in AML
chemoresistance through the analysis of single-cell RNA sequencing data. This provides
new ideas and insights into the key mechanisms of immune cells in AML treatment.

Subjects Cell Biology, Hematology, Immunology

Keywords Single cell RNA-seq, Acute myeloid leukemia, Chemotherapy resistance, Natural killer
cells, Macrophage cells

INTRODUCTION

Leukemia is a malignant clonal disease originating in the hematopoietic system
characterized by abnormal proliferation and impaired differentiation of leukemic

cells, resulting in suppressed production of normal blood cells (Whiteley et al., 2021;
Park et al., 2021). Acute myeloid leukemia (AML) is a highly heterogeneous malignant
hematologic disease caused by uncontrolled clonal proliferation of hematopoietic stem
cells (Hasserjian et al., 2020). AML has the highest incidence of acute leukemia in adults,
is highly heterogeneous, progresses rapidly, and has an extremely poor prognosis (Liu,
2021). Currently, the treatment of AML is based on chemotherapy, in which the “7+3”
chemotherapy regimen involves three consecutive days of treatment with seven drugs
(including cyclophosphamide, adriamycin, vincristine, methotrexate, dexamethasone,
levamonase, and rituximab) followed by four days of rest before the next round of treatment
(Estey, 20165 Shimony, Stahl & Stone, 2023). This regimen has achieved remarkable results
in the treatment of AML and is considered one of the standard chemotherapy regimens
for AML. However, due to the heterogeneity and drug resistance of leukemia cells, as well
as individual differences of patients, some patients still cannot achieve complete remission
after “7+3” chemotherapy, and the tumors are not completely eliminated, leading to
recurrence and metastasis (Othus et al., 2023). Therefore, new perspectives are needed to
find therapeutic options to alleviate chemotherapy tolerance in leukemia.

Immune escape of AML cells in the microenvironment of myeloid immunosuppression
is an important factor in disease recurrence and refractoriness, and adjuvant therapies
targeting immune cells have a potential role in alleviating AML chemotherapy resistance
(Daver et al., 20205 Ladikou et al., 2020). For example, major histocompatibility antigen
(MHC) class I and II molecules on the surface of tumor cells have been identified in a
variety of human cancers, especially recurrent AML, by mediating T cell recognition and
killing of tumor cells, suggesting that AML cells can evade the body’s immune surveillance
by decreasing their immunogenicity (Del Campo et al., 2012; Stolzel et al., 2012). In AML,
aberrant activation of PI3K/AKT and NF-xB pathways mediates chemoresistance in this
disease, and the activation of these pathways is closely related to the differentiation of
T cells and cell cycle regulation (Evangelisti et al., 20205 Kodous, Balaiah & Ramanathan,
2023). Expression of the T-cell surface co-stimulatory molecule, CD28, is involved in the
activation of the PI3K/AKT pathway by enhancing the signaling of the T-cell receptor,
which affects chemoresistance in AML (Parry ef al., 2005). The NF-kB pathway regulated
by T cells participates in the drug resistance process by up-regulating the expression of genes
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related to multi-drug resistance in leukemia cells, such as p-protein and anti-apoptotic
protein Bcl-2 (Song et al., 2019). In addition, it has been shown that regulatory T cells
(Tregs) are significantly increased in number in the peripheral blood and bone marrow
of AML patients, and restoration of normal immune system function by inhibiting Tregs
cells has been demonstrated in AML mice as an important means of fighting leukemia
progression (Zhou et al., 2009; Shenghui et al., 2011). Thus, the modulatory effect of Tregs
on chemoresistance of cancer cells is mainly due to their suppression of the immune
response to tumor antigens, which reduces the killing effect of other immune cells on
leukemia cells by releasing immunosuppressive factors such as TGF-f and IL-10 (Yan,
Zhang & Sun, 2019). At the same time, the cells also delay the recovery of the hematopoietic
system by inhibiting the regeneration and differentiation of hematopoietic stem cells, which
in turn enhances the formation of chemotherapeutic toxicity and leukemia cell resistance
(Riether, 2022; Fang et al., 2023). In conclusion, it is of great significance to explore the
regulatory mechanisms of immune cells in leukemia samples to alleviate chemotherapy
resistance in leukemia patients in the context of chemotherapy tolerance.

Lately, single-cell RNA sequencing (scRNA-seq) has emerged as a groundbreaking
method for examining the transcriptomic features of various cell types (Zulibiya et al.,
2023; Chen et al., 2020). This approach utilizes advanced next-generation sequencing
technologies to delineate the overall gene expression patterns of individual cells, thereby
enabling the exploration of previously obscured heterogeneity within cellular populations
(Liang et al., 2021). In this study, we analyzed bone marrow single-cell sequencing data
from patients with complete remission (CR) and incomplete remission (non-CR) of AML
after chemotherapy to reveal the tangible regulatory roles and modulatory functions of
immune cells in AML chemotherapy resistance. We also revealed the differentiation process
and ligand-receptor interaction relationship of chemotherapy-resistant cell lines through
the proposed time-series joint cell communication analysis. Finally, the regulatory role of
immune cell subpopulations and their key marker genes in AML prognosis revealed in this
study was elucidated by survival analysis. The revelation of the molecular mechanisms of
immune cells in AML in this study is expected to target and improve the clinical treatment
strategy of AML and provide guidance for alleviating chemotherapy resistance in AML.

MATERIALS AND METHODS

Single-cell RNA-seq data acquisition and processing

The scRNA-seq dataset GSE198681 of AML and its control samples was downloaded
from the GEO official website (https:/www.ncbi.nlm.nih.gov/geo/), which contains 3
complete remission (CR) samples of AML, and two non-complete remission (non-
CR) samples of AML. The subsequent AML sample data for survival analysis in this
study, the FPKM dataset of TCGA-AML, was obtained from the TCGA database
(https:/www.cancer.gov/ccg/fresearch/genome-sequencing/tcga) and included 151 patients.
For scRNA-seq, we used the Read10X function of the Seurat package to read down the data,
retaining cells with mitochondria in the 10% and gene counts between 200—6,000 (Stuart
et al., 2019). After PCA downscaling, we used the harmony package to remove batch effects
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between samples (max.iter.harmony =20, lambda =0.5) (Korsunsky et al., 2019). Next, we
performed UMAP downscaling based on the first 30 principal components, and finally
clustered the cells into groups using the FindNeighbors and FindClusters functions.

Screening for differentially expressed genes among cellular
subpopulations

To explore the heterogeneity of gene expression patterns among cell subpopulations,
we used the FindAllMarkers function to calculate the highly expressed genes in each
cell subpopulation (only.pos = T, min.pct = 0.25, logfc.threshold = 0.25), followed by
differentially expressed genes among subgroups using FindMarkers (Song et al., 2023), with
P <0.05, [logFC| > 1 as the screening criteria. In addition, for the calculation of the average
gene expression values, we used the log-normalization method and transformed the raw
expression values (UMI counts) for each gene into standardized log expression values
(loglp transformed values). The calculation formula is as follows: Normalized expression
= log2 (UMI counts per gene +1). The average expression value for each cell type is the
mean of the gene expression values across all cells within that type.

Functional enrichment analysis

We performed functional enrichment of DEGs using the clusterprofiler package (set
parameters: keyType = “SYMBOL”, pvalueCutoff = 0.05, qvalueCutoff = 0.1). Similarity
between the differential gene functional enrichment analysis and KEGG enrichment
analysis between subgroups was calculated using the simplifyEnrichment package (Gu ¢
Hubschmann, 2023).

Pseudotime analysis

We used Monocle for pseudotime analysis and the FindMarkers function to construct the set
of differentially expressed genes between groups (|log2FC|>0.25, min.pct =0.25). The cds
object was constructed using newCellDataSet, low-quality cells were filtered, and the data
were downscaled using the DDRTree algorithm with the reduceDimension function. The
cells were sorted using the orderCells function and plotted using the plot_cell_trajectory
function, plot_genes_in_pseudotime to plot trajectories and scatter plots of genes as a
function of pseudotime, respectively.

Cellular communication analysis

To explore ligand-receptor interactions among immune cell populations, we used the
CellChat software package (Jin et al., 2021) to calculate the probability of ligand—-receptor
interactions occurring between cell subpopulations and to classify interaction types into
Secreted Signaling and CellCell contact categories.

AUCell score of immune cell subpopulations for gene sets

We used the org.Hs.eg.db and GO.db packages to obtain the gene sets in the GO term
about the gene sets in macrophages and NK/T cells, and calculated the gene set enrichment
scores in the intracellular GO term using the AUCell package.
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Table 1 The specific primers for qPCR.

Genes Forward (5'-3') Reverse (5'-3')

FCAR AAATACAAAAAAATTAGCCAGGCG AAAATCAAGCTTCCATTTCCAACC
FCGR3A  CATTCTGGCTTTGAGGCTCCC GTCTGGCACCTGTACTCTCCACTG
PREX1 GTGAGGCTTAAATGAGATACTATATTGCT AGGCGCTCAGTCTCACAAGTTAA
S100A8 ATAGCCCATCTTACACACTGCTGC CTCGCAGGTAATGGAGTAGTTTGTT
S100A9 AACACCTGCTATTTGTCGGGC TGAGTGCTGTGCAGGTGCTC
B-actin CTCCATCCTGGCCTCGCTGT GCTGTCACCTTCACCGTTCC

Cell line and quantitative PCR (qPCR) assay

Human bone marrow stromal cells (HS-5) and human chronic myeloid leukemia cells
(HAP1) were obtained from the Wanwu Biotech Co. (Hefei, China). The HS-5 cells were
cultured by the high glucose Dulbecco’s Modified Eagle’s medium (DEME), and the HAP1
cells were cultured by the complete medium (GIBCO, USA). The medium was added with
10% fetal bovine serum (FBS) and 1% antibiotics of streptomycin-penicillin and incubated
the cells at 37 °C with 5% CO, atmosphere. Then, we obtained the total RNA of cells by
using the Trizol reagent (Sigma-Aldrich, St. Louis, MO, USA) and the cDNA by using the
Reverse Transcription Kit (Vazyme, Nanjing, China), and qPCR was conducted by the
SYBR Green Master Mix (Vazyme) according to specification with the cycling condition of
denaturation (95 °C, 3 min), anneal (60 °C, 30 s) and extension (72 °C, 5 min), and each

sample conducted three repetitions and the specific primers were listed in (Table 1).

Wound healing and trans-well assay

We purchased the small interfering RNA reagent of si-S100A8 from Sangon Biotech
(Shanghai, China) to create the HAP1 cells with S1I00AS8 silencing, the sequences of
si-S100A8 included the sense (5'-AUGGAAAUUCCCCUUUAUCAG-3’) and anti-sense
(5'-GAUAAAGGGGAAUUUCCAUGC-3'), its working concentration and Lipofectamine
3000 (Invitrogen) were applied for cell transfection. The wound healing for cell migration
were performed, the 6-well plates (Corning, Corning, NY, USA) containing complete
medium and 10% FBS was plated with 4 x 10° cells. When the cells reached the 90%
confluency, a 20 L pipette tip was used to create a rectilinear scratch and the cells
washed by PBS after 48 h incubation and imagined by an inverted microscope (Leica)
were performed. For trans-well assay, the 24-well plates containing chamber inserts (8-pm
pore) were seeded with 4 x10* cells in the upper chamber (300 WL serum-free medium)
and the lower chamber was supplemented with 700 pL medium with 10% FBS. Followed
by 48 h incubation, the 4% paraformaldehyde and 0.1% crystal violet were used for cell
processing, and the cells imaging and counting were conducted by an inverted microscope
(Leica).

Survival analysis

We performed Cox analysis on the TCGA-AML dataset using the R package “survival” to
assess the prognostic role of marker genes screened by macrophage mapping and NK/T
cells mapping.
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Statistical analysis

The student’s test was used to compare the differences in continuous variables between the
two groups. All calculations were performed by the R language (version 4.3.1). p < 0.05 was
considered statistically significant. (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001)

RESULTS
Single-cell mapping of AML

In this study, the AML single-cell dataset was pre-processed by normalization,
dimensionality reduction, and clustering, and a total of 3,627 cells were screened for
subsequent analysis, and six major cell subpopulations were obtained, including Mast cells,
Macrophage cells, NKT cells, blood cells, and B cells, Megakaryocyte (Fig. 1A). Mast cells
highly expressed CTSG, HPGD, IGLL1, SMYD3; Macrophage cells highly expressed CD86,
MS4A7, CD163; NKT cells highly expressed NKG7, GZMA, CCL5, GZMB, GZMH, GZMK,
CD3D, CD3G, CD3E, CD2; Blood cells highly expressed ALAS2, GYPA, RHCE; B cells
highly expressed CD79A, MS4A1; Megakaryocyte highly expressed ITGA2B, PF4, TUBBI,
GP9 (Figs. 1B, 1C). Follow-up analyses revealed the cell subpopulations in each sample
and the proportions of each cell subpopulation in different subgroups, and we found that
macrophage cells and NK/T cells showed a significant up-regulation in non-CR AML
samples (Figs. 1D, 1E). This further reveals that these two cell types may have potentially
important regulatory roles in the disease progression of AML.

Heterogeneity of macrophage cells in AML

In this study, macrophage cells were further clustered and four subpopulations of
macrophage cells were obtained: FCAR+ macrophage cells, IL32+ macrophage cells,
ELANE+ macrophage cells, FCGR3A+ macrophage cells (Fig. 2A). The expression of
FCAR, IL32, ELANE and FCGR3A is shown in Figs. 2B and 2C. The proportions of each cell
subpopulation were next calculated, and the results showed that FCAR+ macrophage cells
and FCGR3A+ macrophage cells were elevated in the AML group with non-CR (Fig. 2D).
Next, enrichment analysis of biological functions was performed to explore the functions
of each cell subpopulation. The results showed that ELANE+ macrophage cells were mainly
enriched for processes such as cytoplasmic translation, ribose phosphate metabolic process,
ATP metabolic process, oxidative phosphorylation, positive regulation of cell adhesion,
electron transport chain, humoral immune response; FCAR+ macrophage cells were mainly
enriched for processes such as positive regulation of cytokine production, activation of
immune response, positive regulation of MAPK cascade, I-kappaB kinase/NF-kappaB
signaling, ERK1 and ERK2 cascade; FCGR3A+ macrophage cells were mainly enriched for
processes such as actin filament organization, positive regulation of cytokine production,
immune response-regulating signaling pathway; IL32+ macrophage cells were mainly
enriched for processes such as cytoplasmic translation, positive regulation of leukocyte
activation, positive regulation of cell activation, positive regulation of lymphocyte activation
(Fig. 2E). These results suggest that FCAR+ macrophages and FCGR3A+ macrophages
may have a key role in chemoresistance and disease progression in AML.
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Figure 1 Single-cell mapping of AML. (A) UMAP downscaling plot after AML clustering annotation.
(B) Bubble plot of cell subpopulation marker gene expression. (C) Violin plot of cell subpopulation
marker gene expression. (D) Proportion of cell subpopulations within AML samples. (E) Difference in cell
subpopulation infiltration in CR-AML samples compared to non-CR-AML samples.
Full-size G DOI: 10.7717/peerj.18521/fig-1
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tion of macrophage cells. (D) Differences in the infiltration ratios of each subpopulation of macrophage
cells. (E) Functional enrichment analysis of marker genes in each subpopulation of macrophage cells.
Full-size Gl DOI: 10.7717/peer;j.18521/fig-2

Differentiation trajectories of macrophage cells

Based on the results of previous analyses, the present study was conducted to analyze the
proposed time series of FCAR+ macrophage cells and FCGR3A+ macrophage cells cell
subpopulations. The results showed that macrophage cells differentiated into two clusters of
cells: cell fate 1 and cell fate 2 (Fig. 3A). The results of the changes of differentiation process
genes showed that the genes that were gradually down-regulated were mainly enriched in the
processes of protein targeting, ATP metabolic process, and T cell activation, while the genes
that were gradually up-regulated were mainly enriched in the processes of regulation of cell
cycle phase transition, regulation of mitotic cell cycle phase transition, position regulation
of cell cycle, etc. (Fig. 3B). Changes in cellular marker genes within each branch showed
that genes that were progressively up-regulated were mainly enriched in processes such as
T cell activation, oxidative phosphorylation, ERK1 and ERK2 cascade, whereas genes that
were progressively down-regulated were enriched in processes such as Ras protein signal
transduction and other processes (Fig. 3C). The gene expression results among different
cell clusters showed that FCGR3A and BTG2 genes were gradually increased in cell fate2,
while ARHGEF40, FCAR, MYO9B, ATM, PREX1, RAB27A, ROCK1, ATRX, KAT6A, and
PRKAG?2 genes were progressively up-regulated in the Cell fatel branch (Fig. 3D).

Heterogeneity of NK/T cells in AML

In this study, NK/T cells were further clustered into three cell subpopulations: Native
CD8+ T cells, natural killer cells and Treg cells (Fig. 4A). Among these cell subpopulations,
native CD8+ T cells up-regulated the expression of TRABD2A, MAL, FAMI102A, SH3YLI;
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Natural killer cells highly expressed CLIC3, TRDC, KLRGI; Treg cells up-regulated
MBOAT7, SOX4, CAPG, GRN, CD82, HLA-DMA, HLA-DMA, HLA-DMA, HLA-DMA,
HLA-DMA, and HLA-DMA, CD82, HLA-DMA (Figs. 4B, 4C). The results of the percentage
of infiltration of each cell subpopulation showed that Natural killer cells were elevated in
the non-CR AML group compared to the CR AML group (Fig. 4D). This implies that NK
cells may also play an important regulatory role in the development and progression of
AML.

Differentiation trajectories of natural killer cells

We performed functional enrichment analysis of highly expressed genes in natural killer
cells, and the results showed that the highly expressed genes in natural killer cells were
mainly enriched in negatively regulating immune responses (Fig. 5A), which suggests
that natural killer cells may be dysfunctional or have developed chemotherapy tolerance.
To explore this phenomenon, we performed a mimetic chronological analysis of natural
killer cells (Fig. 5B). We further investigated the genes that play key roles in cell evolution,
and the results showed that genes such as HBB, HBA1, CXCR4, RPS3A and VIM were
expressed at a higher level in the CR group, while genes such as RPS26, IFITM1, IER2, ID3,
S100A8 and SI00A9 were expressed at a higher level in the non-CR group (Figs. 5C, 5D).
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It is worth mentioning that HBA1, S100A8 and SI00A9 play important roles in mediating
drug resistance in cancer cells, which also provides insights into the mechanism of drug

resistance in AML.

Interactions between macrophage cells and natural killer cells
Macrophage cells usually function as antigen presenters to activate T cells or B cells

when an immune response occurs in the body. Therefore, we investigated the cell

communication process between macrophage cells and natural killer cells. The results
showed that NK cells and macrophage cells interacted via HLA-E-KLRK1, HLA-E-KLRCI,
HLA-E-CD94:NKG2A, CLEC2B-KLRB1 ligand-receptor pairs during Cell-Cell Contact
communication (Fig. 6A). The ligand—receptor pairs that play a key role in the regulation
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of secreted signaling mainly include LGALS9-CD45, CCL3L1-CCR1, CCL3-CCR1 (Fig.

6B).

Immunoreactivity and prognostic analysis of macrophage cells and

natural killer cells in AML

To verify the activity of macrophages and NK cells, we performed AUCell analysis, and

in NK cells activation, there was higher activity in the non-CR group, while in NK cells

proliferation, there was no significant difference between the CR and non-CR groups in

NK/T cells activity was not significantly different (Figs. 7A, 7B). In macrophage activation,
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FCG3A+ macrophage cells and FCAR+ macrophage cells had higher activities, while in
macrophage migration, FCAR+ macrophage cells had higher activities (Figs. 7C, 7D). These
results suggest that NK cells and FCAR+ macrophage cells may be involved in non-CR in
chemotherapy-resistant organisms in AML. We next performed survival analysis, which
showed that patients in the AML group with high expression of HBA1 had a better
prognosis, whereas patients in the AML group with high expression of PREXI, S100A8 and
S100A9 had a worse prognosis (Figs. 8A—8D). The expression profiles of these genes may
serve as potential biomarkers of AML prognosis and inform the individualized treatment
of AML.

Upregulation of marker genes in leukemia cells affected AML
progression

Finally, we detected the expression of marker genes of macrophage and NK cells, and
found that five genes of FCAR, FCGR3A, PREX1, S100A8 and S100A9 all were significantly
overexpressed in the leukemia cells of HAP1 compared with that in the normal stroma
cells of HS-5 (p < 0.05, Fig. 9A). The wound healing assay revealed that the wound closure
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rate of HAP1 cells with si-SI100A8 silencing was significant reduced (p < 0.05, Figs. 9B, 9C)
and the cell numbers of HAP1 cells with si-SI100A8 silencing in the trans-well assay was
also significantly decreased (p < 0.05, Figs. 9D, 9E), indicating the S100A8 may be involved
in the leukemia migration and invasion.

DISCUSSION

The treatment of AML is based on chemotherapy, but given the heterogeneity of the
disease, clinically targeted chemotherapy regimens often face the challenge of leukemic cell
resistance (Ediriwickrema, Gentles & Majeti, 2023). Immune cells are potential regulators
of AML progression and play a role in the regulation of AML chemoresistance (Mohamed
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Jiffry et al., 2023). Thus, this study focuses on the revelation of immune cell profiles in
AML single-cell transcriptomic data and elucidation of key immune cells and their marker
genes affecting AML chemoresistance to elucidate the regulatory mechanisms of key
marker genes of immune cells on AML chemoresistance with functional enrichment,
differentiation trajectory construction and prognostic analysis.

In this study, single-cell transcriptomic analysis revealed that Macrophage cells and
NK/T cells showed significant up-regulation in non-CR-AML samples relative to CR-AML
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samples, which also implies that these two types of cells play a role in the regulation of
chemotherapeutic resistance in AML. Macrophages play a tangible regulatory role in AML
progression, e.g., M2 polarization of macrophages synergizes with the inhibition of lipid
peroxidation in AML, which promotes the progression of this disease (Liu et al., 2022). In
contrast, M2 macrophages produce a variety of cytokines, chemokines and peptide growth
factors to remodel the microenvironment and mediate the release of histone B to enhance
chemotherapeutic drug resistance in cancer cells (Shree et al., 2011; Bruchard et al., 2013).
In contrast, M1 macrophages mediate cancer cell drug sensitization by inhibiting bone
marrow cell recruitment and activating immune cell killing activity (Wang et al., 2024).
NK cell-based overt therapy is a novel therapeutic option for palliation of hematologic
malignancies, given the targeted and persistent characteristics of NK cells in the tumor
microenvironment (Merino, Maakaron ¢ Bachanova, 2023; Meng et al., 2024). Binding of
the NKG2D receptor on the surface of this cell line to the MICA/B ligand on the surface
of AML cells promotes NK cell activation and AML cell killing, thus indirectly affecting
the drug sensitivity of AML cell lines (Xing ¢ Ferrari de Andrade, 20205 Baragano Raneros
et al., 2015).

Given the important role of macrophages in the regulation of AML drug resistance,
this study revealed an elevated proportion of FCAR+ macrophage cells and FCGR3A+
macrophage cells in the non-CR AML group by further clustering. FCAR encodes an
immunoglobulin that is widely expressed on the surface of neutrophils, monocytes, and
macrophages, among other immune cell surfaces, mediating anticancer phagocytosis and
stimulation of inflammatory mediators. This gene affects AML progression by activating
the anti-cancer immune response in macrophages (Ke et al., 2024; Kelley et al., 2011,
Shahrajabian ¢ Sun, 2023). FCGR3A mediates antibody-dependent cytotoxicity, and
thus overexpression of this gene on the surface of immune cells mediates the release of
cytotoxins and cytokines to kill target cells, and it is its immune activation that makes it
potentially valuable for immunotherapy in AML (Li et al., 2022; De Taeye et al., 2020). The
present study reveals that the genes gradually down-regulated during the differentiation
of Macrophage cells are enriched in the ATP metabolic process, T cell activation and
other processes related to the regulation of cellular energy metabolism and immune cell
activity, while the genes gradually up-regulated are enriched in the pathways related to the
regulation of the cell cycle. Both cellular energy metabolism and cell cycle dynamics are
inextricably linked to the mediation of drug resistance in cancer cells. For example, the
polarization state of macrophages is regulated by the level of glycolysis, and metabolites
such as pyruvate and lactate released by cells via glycolytic metabolism directly affect the
chemotherapeutic resistance of cells (Yuan et al., 2022; Li et al., 2023). Regarding cell cycle
regulation, inactivation of cell cycle inhibitors such as p53, p21 and p27 released by cells in
G1/S and G2/M phases can allow cancer cells to continue dividing in the presence of DNA
damage or replication errors, a phenomenon that can lead to resistance of cancer cells to
DNA-damaging drugs (Clay ¢» Fox, 2021).

The results of the infiltration ratio of each subpopulation of NK/T cells showed that the
percentage of NK cells was significantly higher in the AML group with non-CR compared
to the AML group with CR, and the NK cell marker genes that were differentially expressed
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between the CR and non-CR groups mainly included HBA1, PREX1, S100A8 and SI00A9.
The HBAI gene is mainly involved in the regulation of hematopoiesis, promotes the
differentiation and maturation of erythrocytes, and affects the synthesis and stability of
hemoglobin, which directly regulates AML progression (Luo et al., 2022). PREX1 gene is
able to regulate the process of cell cycle, and can affect the function of cell cycle checkpoints,
and is involved in the process of apoptosis, and repair of damaged DNA (Liu et al., 2016
Stadler ¢ Richly, 2017). The repair of cellular DNA damage can regulate the development of
chemoresistance in cancer cells, and has a practical role in the regulation of drug resistance
in AML patients (Salehan ¢ Morse, 2013). The SI00A8 and SI00A9 genes, on the other
hand, are mainly involved in the process of immune response, and they can regulate the
function of T and B cells in the bone marrow microenvironment of AML patients, affecting
the production of antibodies and the process of antigen presentation (Mondet, Chevalier ¢
Mossuz, 2021). Notably, the SI00A8 and SI00A9 genes mediate oxidative stress, activation
of apoptotic pathways, and promotion of cellular autophagy in AML cells to affect survival
and sensitivity to chemotherapy in AML patients (Mondet, Chevalier & Mossuz, 2021,
Bottcher et al., 2022). In vitro assay, we also observed that these genes were upregulated in
the leukemia cells affected AML progression. Taken together, the NK cell gene marker genes
revealed in this study may be important factors in the regulation of AML chemosensitivity.

In this study, the interaction mechanism between NK cells and Macrophage cells
was mined by cell communication analysis, and the results showed that NK cells and
Macrophage cells interacted through ligand-receptor pairs such as HLA-E-KLRK1,
HLA-E-KLRC1, and HLA-E-CD94:NKG2A. Among them, HLA-E is a member of the
non-classical human leukocyte antigen family that modulates the killing activity of NK
cells and regulates the intensity and duration of the immune response by binding to MHC-
I-like molecules and transmitting inhibitory signals to immune cells such as NK cells,
macrophages and CD8+ T cells (Ravindranath et al., 2019; He et al., 2023). Meanwhile,
the highly expression of HLA-E as a ligand for KLRC1, KLRK1, and NKG2A/CD9%4 on
the surface of NK cells can help cancer cells evade immune killing by NK cells (Liu ef
al., 2023; Mac Donald et al., 2023). In Secreted Signaling, NK cells and macrophage cells
play a major role with ligand-receptor pairs such as LGALS9-CD45, CCL3-CCRl1, etc.
LGALS9, a member of the galactoglucan lectin family and an emerging target for cancer
immunotherapy, exerts anti-tumor immune responses by regulating the homeostasis of the
immune microenvironment and Tim-3 signaling to exert anti-tumor immune responses
(Lvetal., 2023). CDA45 targeted by LGALS9 has been demonstrated by animal experiments
to have a role in promoting cell stemness and resistance to radiotherapy in cancer cells,
and a related study revealed that up-regulated expression of CD45 promotes cancer cell
survival in mice (Park et al., 2021). This has implications for the present study on the
mechanism of drug resistance in AML, i.e., LGALS9 targeting and inhibiting CDA45 affects
AML chemoresistance through the regulation of immune cell activity in the bone marrow
microenvironment. These results suggest that there may be immune dysregulation in
AML patients who develop chemotherapy resistance during AML receiving chemotherapy,
leading to non-CR.
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In summary, we analyzed single-cell transcriptomic data of AML to reveal the potential
regulatory role of NK cells and macrophages in AML chemoresistance. Functional
enrichment analysis further elucidated the regulatory functions of the two immune cells
in the regulation of AML chemoresistance. Pseudotime analysis combined with cellular
communication analysis revealed the differentiation process of chemotherapy-resistant
NK cells and macrophages as well as the ligand—receptor pairs of their interactions. The
revelation of the molecular mechanisms of immune cells in AML in this study is expected
to provide guidance for alleviating chemotherapy resistance in AML. However, limitations
of this study remain. The data in this study were mainly derived from public databases
and lacked certain experimental samples and cellular experimental data. Follow-up cell
or tissue sample experiments are needed to further validate the regulatory mechanisms of
immune cell marker genes in AML on disease chemoresistance.
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