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ABSTRACT
Background. Alzheimer’s Disease (AD) poses a major challenge as a neurodegenerative
disorder, and early detection is critical for effective intervention. Magnetic resonance
imaging (MRI) is a critical tool in AD research due to its availability and cost-
effectiveness in clinical settings.
Objective. This study aims to conduct a comprehensive analysis of machine learning
(ML) methods for MRI-based biomarker selection and classification to investigate
early cognitive decline in AD. The focus to discriminate between classifying healthy
control (HC) participants who remained stable and those who developedmild cognitive
impairment (MCI) within five years (unstable HC or uHC).
Methods. 3-Tesla (3T)MRI data from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) and Open Access Series of Imaging Studies 3 (OASIS-3) were used, focusing
on HC and uHC groups. Freesurfer’s recon-all and other tools were used to extract
anatomical biomarkers from subcortical and cortical brain regions. ML techniques
were applied for feature selection and classification, using the MATLAB Classification
Learner (MCL) app for initial analysis, followed by advanced methods such as nested
cross-validation and Bayesian optimization, which were evaluated within a Monte
Carlo replication analysis as implemented in our customized pipeline. Additionally,
polynomial regression-based data harmonization techniques were used to enhance ML
and statistical analysis. In our study, ML classifiers were evaluated using performance
metrics such as Accuracy (Acc), area under the receiver operating characteristic curve
(AROC), F1-score, and a normalized Matthew’s correlation coefficient (MCC′).
Results. Feature selection consistently identified biomarkers across ADNI and
OASIS-3, with the entorhinal, hippocampus, lateral ventricle, and lateral orbitofrontal
regions being the most affected. Classification results varied between balanced and
imbalanced datasets and between ADNI and OASIS-3. For ADNI balanced datasets,
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the naíve Bayes model using z-score harmonization and ReliefF feature selection
performed best (Acc = 69.17%, AROC = 77.73%, F1 = 69.21%, MCC’ = 69.28%).
For OASIS-3 balanced datasets, SVM with zscore-corrected data outperformed others
(Acc = 66.58%, AROC = 72.01%, MCC’ = 66.78%), while logistic regression had the
best F1-score (66.68%). In imbalanced data, RUSBoost showed the strongest overall
performance on ADNI (F1 = 50.60%, AROC = 81.54%) and OASIS-3 (MCC’ =
63.31%). Support vector machine (SVM) excelled on ADNI in terms of Acc (82.93%)
and MCC’ (70.21%), while naïve Bayes performed best on OASIS-3 by F1 (42.54%)
and AROC (70.33%).
Conclusion. Data harmonization significantly improved the consistency and perfor-
mance of feature selection and ML classification, with z-score harmonization yielding
the best results. This study also highlights the importance of nested cross-validation
(CV) to control overfitting and the potential of a semi-automatic pipeline for early AD
detection using MRI, with future applications integrating other neuroimaging data to
enhance prediction.

Subjects Neuroscience, Cognitive Disorders, Radiology and Medical Imaging, Statistics, Data
Mining and Machine Learning
Keywords Alzheimer’s disease, Machine learning, MRI, Neuroimaging, Nested cross validation,
Feature selection, Data harmonization

INTRODUCTION
Alzheimer’s disease (AD) is marked by the gradual accumulation of amyloid-β (amyloid
plaques) in the extracellular space and tau proteins (neurofibrillary tangles–NFT) in the
intracellular space of a neuron, leading to cognitive and motor dysfunctions and difficul-
ties in daily activities. The symptomatic onset of AD is gradual, beginning with losses in
episodic and semantic memory, progressing to aphasia, apraxia, mood disturbances, and
more severe symptoms in the advanced stages (Frisoni & Weiner, 2010; Petrella, Coleman
& Doraiswamy, 2003). Post-mortem examinations reveal patterns of neurodegeneration
in brain regions corresponding to these cognitive and behavioral changes, as delineated
by Braak’s staging (Braak et al., 2006). The medial temporal lobe (MTL), including the
hippocampus, amygdala, and entorhinal cortex, undergoes significant atrophy, which
impacts memory formation and consolidation. Interestingly, early changes are also
observed in the limbic system, encompassing the hippocampus, amygdala, cingulate, and
parahippocampal gyri, affecting emotion and memory processing. The limbic system is
connected to the entorhinal cortex via the subiculum, through which it is hypothesized
that AD pathology spreads from one region to adjacent ones (Didic et al., 2011). However,
Braak & Del Tredici (2015) reported that the very-early AD changes can be observed in the
transentorhinal region in stage I when prospective AD patients remain asymptomatic, and
from there, it spreads to the entorhinal region and the hippocampal formation in stages
II and III, respectively. Therefore, when patients have the first symptoms of AD, they may
be already in an irreversible stage. As AD advances, further anatomical changes include
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atrophy in association cortical areas and ventricular enlargement (Thompson et al., 2003;
Apostolova et al., 2007; Nestor et al., 2008).

The cascade of anatomical changes can be observed in vivo using neuroimaging and
clinical data, e.g., using positron emission tomography (PET) and cerebrospinal fluid
(CSF) analysis to detect abnormal accumulation of amyloid plaques and tau proteins
in the brain (Petrella, Coleman & Doraiswamy, 2003; Faull et al., 2014; Apostolova,
2016). Additionally, single-photon emission computed tomography (SPECT), utilizing
a ligand binding to the dopamine transporter molecule (DaTscan), aids in evaluating
Parkinsonian syndrome and distinguishing it and Lewy Body dementia from AD (De la
Fuente-Fernández, 2012; Sullivan et al., 2012; Papathanasiou et al., 2012;Magesh, Myloth &
Tom, 2020). Researchers have also explored combining multiple neuroimaging modalities,
including SPECT, PET, magnetic resonance imaging (MRI), functional MRI (fMRI),
and magneto/electro-encephalography (M/EEG) (Liu et al., 2015b; Liu et al., 2015a), and
integrating neuroimaging data with cognitive or clinical measurements (Mofrad et al.,
2021; Liu et al., 2022). However, it is essential to recognize that while PET and SPECT
provide valuable insights, they are more invasive, costlier, and less globally accessible than
MRI scans (Sullivan et al., 2012;Wernickand & Aarsvold, 2004). Essentially, used alone
or combined with other neuroimaging data, MRI remains indispensable for evaluating
suspected dementia cases, and ruling out alternative causes such as microinfarcts and
white matter lesions (Sullivan et al., 2012; Chouliaras & O’Brien, 2023; Harper et al., 2013).
Also, the enhanced resolution of MRI images allows the quantification of regional cerebral
atrophy, making it relevant for early dementia assessment despite its limitations (Sullivan
et al., 2012; Chouliaras & O’Brien, 2023; Beltrán et al., 2020; Salvatore et al., 2015; Harper et
al., 2015; Harper et al., 2016; Yue et al., 2018; Risacher et al., 2009).

On the other hand, it has been found that pathogenic infections like prions have a
significant impact on the neuronal atrophy and disruption of connectivity hubs within
the medial temporal lobe (Rábano et al., 2021), leading to the hypothesis that AD could
be triggered by the presence of a non-endogenous pathogen (Braak & Del Tredici, 2015).
This observation also relates to the AD’s disconnection syndrome hypothesis (Smailovic et
al., 2020; Delbeuck, Collette & Vander Linden, 2007). In particular, Xiaoshu et al. (2016)
identified that damage to white and gray matter within these regions disrupts limbic
system networks, correlating with memory and behavioral impairments in AD patients.
This disruption has been evidenced in neuroimaging studies using diffusion tensor
imaging (DTI), MRI, and fMRI data (Xiaoshu et al., 2016; Talwar et al., 2021; Kehoe et al.,
2015). However, minor fluctuations in behavior and emotional states can also be due to
changes in diet (Mohatar-barba & Fern, 2020), lifestyle (Tang et al., 2012) or other less
controlled factors, therefore posing a challenge in diagnosing mild cognitive impairment
(MCI), a prodromal AD stage, and its progression to AD (Moradi et al., 2015;McCombe
et al., 2022). This has led to a growing focus on developing automated diagnostic tools,
primarily leveraging ML methods with neuroimaging data, for cost-effective and less
subjective cognitive assessment (Magesh, Myloth & Tom, 2020; Liu et al., 2015b; Beltrán
et al., 2020; Salvatore et al., 2015; Harper et al., 2015;Moradi et al., 2015;McCombe et al.,
2022; Klöppel et al., 2012).
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ML is increasingly utilized in healthcare for early-stage disease diagnosis, including
cancer (Yue et al., 2018; Kourou et al., 2015; Cruz & Wishart, 2006; Amrane, 2018) and
AD (Risacher et al., 2009; Lebedeva et al., 2017; Vaghari et al., 2022; Islam & Zhang, 2018;
Li et al., 2020), reducing the possible subjectivity of diagnostic outcomes. However, AD
research often focuses on comparing AD vs. healthy control (HC) participants data or
using data from MCI participants who are already in an irreversible or progressive stage,
potentially overlooking the early AD stage (Risacher et al., 2009; Echávarri et al., 2011;
Sun et al., 2018; Albert et al., 2018; Alderson et al., 2017; Garg et al., 2022). Interestingly,
Popuri et al. (2020) trained a classifier to discriminate between HC and AD participants
using MRI data and posteriorly applied this classifier to predict MCI conversion to AD
in 6 months or more, with an area under the receiver operating characteristic curve
(AROC) of 0.81 for six months conversion and 0.73 for seven years conversion. This study
also demonstrated the advantages of using data harmonization, e.g., removing the data
variability due to nuisance variables such as age, sex, and intracranial volume (ICV), for
increasing classifier performance. Although not considered in our study,Ma et al. (2019)
also compared different data harmonization strategies, including three different methods
for ICV calculation, and their impact on classification performance. As reported in this
study, data harmonization can improve the results as variability in the post-processed data
can be more exclusively associated with changes due to AD progression.

Moreover, combining different techniques with classification methods has also helped
improve the prediction outcome, as demonstrated by applying graph analysis tools with
support vector machine (SVM) (Kecman, 2005) for predicting the risk of dementia among
MCI patients in an EEG study (Rossini, Miraglia & Vecchio, 2022). Nevertheless, it is
critically important to properly evaluate different methodologies to ensure reproducibility
and potential implementation for clinical applications. For example, based on a Monte
Carlo simulation data analysis, Stamate et al. (2019) introduced an ML framework to
compare multiple classification models and found that the top-performing methods for
predicting dementia and MCI were based on decision trees algorithms and the eXtreme
Gradient Boosting model with the ReliefF (Urbanowicz et al., 2018; Robnik-Šikonja &
Kononenko, 2003) method applied for feature selection. Significantly, the evaluation and
comparison among different classification methods often rely on the performance of
the classification accuracy, although this statistic may be biased for analysis involving
imbalanced data (Douzas, Bacao & Last, 2018; Chawla, Japkowicz & Kotcz, 2004). In
the medical field, imbalanced datasets are very common because of the lower number
of abnormal cases compared to normal cases. This situation leads to misclassification
for cases in the minority group, which may hamper the research on early AD detection
(Rahman & Davis, 2013).

Addressing imbalanced data, various methods have been proposed which mainly com-
bine resampling techniques with cost-sensitive classification approaches (Ling & Sheng,
2008). For example, Chawla et al. (2002) introduced an oversampling technique known
as Synthetic Minority Over-sampling Technique (SMOTE), which was demonstrated
in combination with a C4.5 decision tree and Ripper (Chawla et al., 2002; Cohen, 1995)
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and naïve Bayes classifiers. In contrast, Rahman & Davis (2013) explored different under-
sampling strategies as alternatives to SMOTE. So far, in the literature on imbalance data
classification, RUSBoost is one of the most successful classification methods, combining
under-sampling and boosting algorithms (Seiffert et al., 2010; VanHulse, Khoshgoftaar
& Napolitano, 2007). However, in general, both under-sampling and over-sampling
techniques present advantages and limitations, e.g., whereas over-sampling methods
increase the computational time and risk of overfitting due to sample duplication, mainly
for the minority class, under-sampling may incur data loss, mainly for the majority class
(Drummond & Holte, 2003).

Our study investigates early MRI-based anatomical changes linked to cognitive decline.
Essentially, we propose a ML framework combining nested cross-validation (CV) with
Bayesian optimization, as evaluated within a Monte Carlo replication analysis, to ensure
the stability and reproducibility of the findings and a comprehensive evaluation, as
demonstrated with balanced and imbalanced datasets. We used the normalized Matthew’s
correlation coefficient (MCC’) and F1-score (Boughorbel, Jarray & El-Anbari, 2017; Chicco
& Jurman, 2020), besides accuracy and AROC statistics, to more fittingly evaluate ML
classifiers performance. For analyzing the early AD anatomical changes, we assessed
the brain regional atrophy using ADNI and OASIS-3 datasets while examining a subset
of HC participants who remained stable during these respective studies, in contrast to
those participants who converted to MCI in less than 5 years. The analyzed MRI images
for both groups were recorded at baseline, where all the participants were healthy. The
Freesurfer software (Fischl, 2012) was used for the semi-automatic processing of the MRI
data. Our approach also evaluated the possible advantages of data harmonization while
comparing various feature selection and ML classification methods on different dataset
cohorts: first, using MATLAB’s Classification Learner (MCL) app, and then using our
proposed ML framework. The main findings showed anatomical changes in MTL brain
regions associated with potential cognitive decline, which align well with previous reports
and were consistently found across the application of multiple feature selection and ML
methods.

MATERIALS AND METHODS
Portions of this text were previously published as part of a preprint (https://doi.org/10.
48550/arXiv.2407.00040). Our methodology involves five key steps: (1) Data selection of
participants from ADNI and OASIS-3 datasets who remained healthy during the study
(HC) and those progressing to MCI over five years (uHC), producing imbalanced datasets
(Fig. 1A). (2) Data processing was optionally used for each data to reduce variability due
to sex, age, and ICV, using the HC group as a reference. Two different approaches are
evaluated: residual and z-score harmonization (Fig. 1B). (3) The SPSS statistical software
(Morgan et al., 2019;Morgan et al., 2004) was used to perform feature selection analyses
for uncorrected and harmonized features using the ADNI imbalanced dataset (Fig. 1C).
(4) The MCL app was used to evaluate different classification and feature selection
methods based exclusively on a randomly selected ADNI-balanced cohort to select the
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Figure 1 Workflow illustrating the proposed methodology. (A) Selection of participants data corre-
sponding to healthy controls (HC) and participants who transitioned to MCI (uHC) in a period lower or
equal than 5 years for ADNI and OASIS-3 datasets. These are imbalanced datasets as shown by the integer
values indicating the number of samples in each group. A manually balanced cohort was extracted from
ADNI dataset to be used within MCL app analysis. (B) Each data was optionally pre-processed using two
different data correction procedures: residual and z-score harmonization. (C) Uncorrected and processed
ADNI data undergone statistical analysis using SPSS software for assessing significant features. (D) The
MATLAB’s Classification Learner (MCL) app was utilized for evaluating a wide range of feature selection
and classification methods, using an ADNI-balanced cohort. The MCL app includes many popular clas-
sifiers, such as Gaussian/Kernel Naïve Bayes (GNB/KNB), support vector machine (SVM), and artificial
neural networks (ANN). Overall, we performed a preliminary selection of ‘‘best’’ classifiers and features
from the MCL app and SPSS analysis. (E) Further evaluation of selected features and classification meth-
ods was performed through our proposed customized pipeline, implementing nested cross-validation
(CV) and Bayesian optimization within a Monte Carlo replication framework. This last analysis was per-
formed for both ADNI and OASIS-3 imbalanced datasets.* MATLAB symbol derived from: https://www.
mathworks.com/?s_tid=gn_logo.

Full-size DOI: 10.7717/peerj.18490/fig-1

most appropriate approaches for posterior analyses (Fig. 1D). (5) Further evaluation of
selected features and classifiers was performed through a customized pipeline, combining
nested CV and Bayesian optimization within a Monte Carlo replication analysis (Fig. 1E).
This pipeline enabled the implementation of imbalanced and balanced data analysis for
ADNI and OASIS-3 datasets. For the latter analysis, balanced cohorts were generated
from imbalanced datasets by randomly selecting the same number of samples in the
majority as in the minority group. Lastly, performance metrics obtained from the pipeline
calculations, such as F1 and Matthew’s correlation coefficient (MCC) scores, were
submitted to N-way ANOVA and multiple comparison analyses to evaluate the selected
pipeline options.
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Participants data
We selected MRI data from two longitudinal studies: ADNI (http://adni.loni.usc.edu/)
(Jack Jr et al., 2008) and OASIS-3 (LaMontagne et al., 2019) (http://www.oasis-brains.org).
Both datasets are open source but require approval from their respective teams before
access is provided. Please note that no data was collected during the implementation of
this study. Participants data was collected in accordance with the Declaration of Helsinki
for both studies, and procedures were approved by the local institutional Review Boards
of participating centers in the ADNI study and following the guidelines of the Washington
University Human Studies Committee in the OASIS-3 study, under approval number
ADC-039.

The rationale behind using two different datasets is to compare and validate our
methods with more heterogeneous data. Even when ADNI is already a multisite project,
it follows a much stricter acquisition protocol than other studies. In summary, the
ADNI study was launched in 2003 with the primary goal to test whether neuroimaging
modalities such as MRI and PET can be analyzed independently or combined with
other clinical and neuropsychological data to find Alzheimer’s biomarkers and study the
progression from HC to AD (https://adni.loni.usc.edu/methods/documents/). The OASIS-3
is a series of neuroimaging studies for which datasets are publicly available, as collected
by the Knight Alzheimer Disease Research Center (ADRC) and its affiliated organizations
(Marcus et al., 2010). Similarly to ADNI, OASIS-3 contains longitudinal data involving
MRI and PET neuroimaging, as well as clinical, cognitive, and biomarker data from both
normal aging and AD participants (LaMontagne et al., 2019;Marcus et al., 2010).

Subjects with an unavailable 3T MRI image at the baseline were excluded from this
study. We specifically chose Magnetization Prepared RApid Gradient Echo (MP-RANGE)
MRI images without repetition. We restricted our analysis to using only 3T MRI images
from both datasets to simplify our study’s complexity and ensure our results’ consistency
and reliability. 3T MRI scanners deliver a higher signal-to-noise ratio (SNR) and better
spatial resolution than 1.5T scanners, resulting in higher image resolution (Graves, 2022).
Furthermore, we avoided combining data from 1.5T and 3T MRI scanners as it could
introduce variability due to differences in image acquisition protocols, and the differential
analysis between the results for 3T and 1.5T analysis is beyond our present objectives.
Additionally, it has been reported that changes in brain tissue texture detected by 3T MRI
can lead to earlier AD diagnosis compared to 1.5T MRI (Leandrou et al., 2020). Moreover,
we extracted essential demographic and cognitive information for our analysis from the
ADNI and OASIS-3 datasets, including participants’ sex, age, years of education, and
Mini-Mental State Examination (MMSE) scores. Specifically, the ADNI participants
selected for this study ranged in age from 60 to 86 and were either English or Spanish
speakers.

The ADNI dataset is used in this work as the primary data for evaluation of ML
classifiers during the analysis based on the MCL app. From the ADNI dataset, we
selected 97 HC participants who remained stable during the study, as reflected in the
ADNIMERGE table (downloaded from http://adni.loni.usc.edu/in June 2022), which
includes participants data for all the ADNI studies (ADNI-1, ADNI-GO, ADNI-2, and
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ADNI-3). Additionally, we selected 24 participants who were diagnosed with HC at
baseline and converted to MCI during a 5-year follow-up period after enrolling in the
study. Otherwise, from the OASIS-3 dataset, we exclusively focused on MRI images for
533 HC and 117 uHC. Subjects in the OASIS-3 dataset were categorized according to
the Clinical Dementia Rating (CDR). Participants with CDR=0 when their MRI image
was first acquired and who remained stable during the study were considered HC. In
contrast, participants who initially had a CDR of 0 but later showed an increase to a
CDR of 0.5 at a subsequent visit were labeled uHC. For both data selected from ADNI
and OASIS-3 datasets, the conversion period for uHC participants is 5 years or less from
their first visit. We divided the OASIS-3 dataset into two cohorts based on age ranges: (1)
the original participants’ age range of 43–96 years and (2) a restricted age range of 60–
86 years. The purpose of restricting the age range to 60–86 years is to match the ADNI
dataset for comparison purposes, as structural brain changes depend on age (Bethlehem
et al., 2022). Critically, MRI data for HC and uHC groups were all selected at baseline,
where the participants were regarded as healthy. Table 1 summarizes the demographic
information for selected participants in our study.

MRI preprocessing pipeline
The MRI images were downloaded in NIFTI format and processed using FreeSurfer
software (package version 7.3.2), with the standard cross-sectional pipeline recon-all,
https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all. In summary, this pipeline performs
operations such as automatic co-registration to the Talairach atlas, image intensity
normalization, and removal of non-brain tissue (e.g., skull stripping) by utilizing a hybrid
watershed/surface deformation procedure (Se’gonne et al., 2004), segmentation of grey
matter (GM), white matter (WM), cerebrospinal fluid (CSF) tissues, subcortical brain
regions automatic segmentation, and cortical automatic parcellation (Fischl et al., 2004;
Fischl et al., 2002). The outcomes of the recon-all pipeline were carefully inspected to
correct and ameliorate cortical and segmentation defects. Subsequently, the Freesurfer’s
asegstats2table and aparcstats2table scripts were run over this output, respectively, to
extract the subcortical volume information tables for predefined regions and the different
statistics (e.g., volume and cortical thickness) for the cortical brain regions, which were
extracted according to the Desikan atlas (Desikan et al., 2006). The ICV value was also
estimated as part of the processing pipeline. Presumably, ICV provides a metric that
resists change along aging for adults older than 50 years old, thus serving as a critical
measure to control for brain size differences, for example, between female and male
populations (Ma et al., 2019). Together with demographic information such as age and
sex, using ICV can help remove unnecessary variation in the data that is not due to the
brain degeneration process occurring in AD. In this study, we used only the brain volume
information for the brain subcortical and cortical regions as extracted by the above MRI
preprocessing pipeline. Moreover, we calculated total brain volumes by combining the
values for the left and right hemispheres. In summary, we analyzed 39 merged brain
volumes which were used as predictors in the ML analysis. Additionally, we included the
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Table 1 Demographic and clinical information for ADNI and OASIS-3 dataset’s participants. Information is provided as mean (SD), with p-values for intergroup (HC
vs uHC) difference, and percentage for the minority group (%min). This latter information is provided to highlight the unbalance in the imbalanced data analysis.

ADNI: age 60–86 OASIS-3: age 43–96 OASIS-3: age 60–86

HC uHC p-value %min HC uHC P-value %min HC uHC p-value %min

Number of subjects 97 24 NA 24.74 533 117 NA 21.95 413 106 NA 25.67
Gender (M/F) 56/41 12/12 0.686 NA 222/310 58/59 0.117 NA 175/238 53/53 0.159 NA
Age (years) 72.91 (5.96) 75.95 (5.79) 0.026 NA 66.71 (8.97) 76.43 (7.40) <0.001 NA 69.81 (5.11) 76.08 (5.48) <0.001 NA
MMSE 29.19 (1.12) 28.67 (1.47) 0.056 NA 29.20 (1.07) 28.30 (1.61) <0.001 NA 29.11 (1.11) 28.31 (1.64) <0.001 NA
Years of education 16.56 (2.39) 16.00 (2.72) 0.318 NA 16.38 (2.39) 15.62 (2.90) 0.003 NA 16.40 (2.37) 15.65 (2.97) 0.006 NA
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measurement of brain segmentation volume without ventricles (BrainSegVolNotVent),
bringing the total to 40 predictors.

Data harmonization to eliminate the effects of nuisance factors
The purpose behind employing data correction is to eliminate the uncontrolled effect of
nuisance factors on extracted brain regional measures, such as the effects of age, sex, and
ICV; therefore, harmonized data would be less dependent on these variables, and thus
we can assume that the main source of variability and differences among the HC and
uHC harmonized data are due to the AD degenerative process. For example, it has been
observed that brain structures vary across the lifespan, even in healthy aging, with non-
linear and non-monotonic trajectories, although the trajectories become more linear for
adults older than 50 years (Bethlehem et al., 2022). Typically, males have a larger average
ICV than females, and brain regional volumes are correlated to ICV. Consequently, it may
be appreciated that after controlling by ICV, sex-based differences are less noticeable (Ma
et al., 2019).

In general, applying a correction to remove the effect of these variables can increase the
performance of statistical and ML analysis (Popuri et al., 2020). Here, complementarily to
previous studies (Popuri et al., 2020;Ma et al., 2019; Ledig et al., 2018; Koikkalainen et al.,
2012), we adopted a multivariate polynomial regression approach for data harmonization,
using age, sex, and ICV as covariates and setting the HC group as reference (i.e., using
exclusively the HC data to fit the polynomial regression parameters). To illustrate the
possible advantages of this procedure, we used the whole dataset from HC, MCI, and AD
groups available in the ADNIMERGE table and the hippocampus volume as a region of
interest, which is one of the central brain regions suffering atrophy due to AD effects.

Two different harmonization approaches are discussed here. The first approach uses
the residuals after fitting the polynomial to the HC data, while the second approach relies
on the z-score transform, implemented using the following formulations:

p̃olyG= argmin
polyG

{ N∑
i=i

(
y(HC,G)i − fit

(
poly,Age(HC,G)i ,ICV (HC,G)

i

))2}
µ̂i,σ̂i= predint

(
p̃olyGi

,Agei,ICVi,
)

x(1)i = yi− µ̂i and x(2)i =
(
yi− µ̂i

)
/σ̂i

Here, the polynomials were fitted separately for each sex, G = {Male,Female}, using
the MATLAB ‘‘fit’’ function, where p̃olyG represents the best-fitted polynomial model.
y(HC,G)i , Age(HC,G)i , and ICV (HC,G)

i , represent the i− thmeasures for each participant in
the HC group, considered separately for each value of G, for the corresponding variables.
µ̂i and σ̂i are the polynomial interpolation’s mean and standard deviation estimates,
calculated with the MATLAB ‘‘predint’’ function, for each sample in the dataset. These are
required to derive the harmonized samples x(1)i and x(2)i , obtained for each corresponding
procedure, called residual and z-score harmonization, respectively.
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Statistical analysis for feature selection
We used the IBM SPSS Statistics software, version 28.0.1.1(15), to perform a statistical
analysis of all available structural volume features obtained from the feature extraction
analysis with FreeSurfer (Fig. 1C). We conducted a study of covariance (ANCOVA) only
for the uncorrected data for each brain feature while using age, sex, years of education,
and ICV as covariates (Sarica et al., 2018). Additionally, we applied both ANOVA and
the independent sample non-parametric test of Kruskal–Wallis for all uncorrected
and harmonized data while controlling for participant sex, age, and ICV variables. We
employed the Bonferroni correction to correct for multiple comparisons. For the ADNI
dataset, features that exhibited significant differences with p-value ≤ 0.05 across all three
analyses (ANCOVA, ANOVA, and Kruskal–Wallis) were selected for further classification
analysis. The same analysis was later applied to the OASIS-3 dataset, and consistency
among the selected features was evaluated.

Feature and classification model selection in the MCL app
We utilized the MCL app, a graphical user interface (GUI) that facilitates feature and
model selection through the tuning of predefined classification models based on K -fold
cross-validation, holdout, or resubstitution validation, for binary and multiclass problems
(Fig. 1D). The utilization of this app in our study is intended to simplify the process of
exploring, building, training, and evaluating classification models. Within the MCL app,
we explored all the available algorithms, including decision trees, discriminant analysis,
logistic regression (LR), naïve Bayes, support vector machines, nearest neighbors, kernel
approximation, ensemble methods, and neural networks, combined with the available
feature selection techniques. We evaluated all these methods using the default predefined
architectures and hyperparameter values. For example, the MCL app includes predefined
bilayered neural network (BNN) and wide neural network (WNN) architectures from
the neural networks’ family. The classifiers showing better performance were saved
as MATLAB scripts, which were then tailored to be used within our customized ML
pipeline for a more comprehensive analysis based on nested CV combined with Bayesian
optimization.

Although the MCL app also includes generic classification models with hyperparam-
eters, which can be tunable through Bayesian optimization, we preferred to run and
evaluate only the predefined models, as tuning the generic models can be very intensive
and make the preliminary exploration more complex. For example, the predefined
BNN model consists of two hidden layers with 10 neurons in each layer, while WNN
is predefined with a single hidden layer with 100 neurons. By default, the activation
function is ReLU in both cases. In contrast, the MCL app includes an ‘‘optimizable’’
neural network model, which selection enables to tune the number of hidden layers (up
to 3), the number of artificial neurons in each layer, and select from a subset of activation
functions (e.g., ReLU, tanh, sigmoid), among other available hyperparameters.

On the other hand, during the evaluation with the MCL app, we applied all the
available combinations between feature selection and predefined classification methods.
The feature selection procedure not only aids in reducing overfitting (Johnson & Kuhn,
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2013), but also facilitates faster training and decreases model complexity, making
interpretation easier. Due to scale differences, the scores are converted into percentages
to make feature selection more straightforward. Mainly, the available feature selection
methods in the MCL app are (https://uk.mathworks.com/help/stats/feature-selection-and-
feature-transformation.html):
•Minimum Redundancy Maximum Relevance (MRMR)
The MRMR algorithm calculates the importance of predictor variables by maximizing

the mutual information between predictor and response variables while minimizing the
mutual information between predictors.
• Chi-square (Chi2)
Ranks the features based on the p-value derived from the chi-square test. The potential

independence between each predictor variable and the response variable was assessed
through a separate chi-square test for each variable. The scores are represented as -log(p)
• ReliefF
ReliefF is particularly effective for evaluating the significance of each feature in

distance-based supervised models. It weighs the distance between observations in the
same group and different groups calculated with respect to their projection on the feature
subspace.
• ANOVA
Conducts individual one-way analysis of variance for each predictor variable, catego-

rized by class, and subsequently prioritizes features ranking based on the p-value. The
score is represented as -log(p).
• Kruskal–Wallis
Ranks the features based on the p-values derived from the Kruskal–Wallis’s test. The

scores are represented as -log(p).
Using the MCL app’s GUI options, we select the options to split the data into train

(80%) and test (20%) subsets and set K = 10 for cross-validation to train and evaluate
each classifier after using one of the available feature selection criteria separately in
successive runs. This process was repeated 10 times with different random partitions
to average the results and ensure more stable outcomes. For each process, we recorded
the classifiers that achieved the highest accuracy. This process aims to identify the best
models and features for subsequent classification analysis. Ultimately, we exported the
best-performing classifiers (those that appeared most frequently as top performers)
to corresponding implementations in MATLAB functions. This allowed for further
performance evaluation using balanced and imbalanced data analysis with our customized
ML pipeline.

Moreover, combining the SPSS statistical analyses in the previous section with the
feature selection analyses in the MCL app, we ultimately proposed the following four
selection criteria (selected features under these criteria are referred to as subset A-D
features later in our analyses, denoting each subset with the corresponding letter in the
below list):
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(A) Average score percentage from the MCL app analysis
We combined the four scores calculated with the MCL app (chi-square, ANOVA,

Kruskal–Wallis, and ReliefF) to create an average score. The selected features are those
with scores at or above the median value.

(B) ReliefF
We selected only the features with positive scores from the ReliefF feature selection

method in the MCL app, as negative scores indicate features of lesser importance (Robnik-
Šikonja & Kononenko, 2003).

(C) Frequent feature appearances from all feature ranking analysis
We selected the features that consistently appeared across all the explored feature

selection approaches among those selected from the MCL app and SPSS analyses.
(D) Feature selection according to SPSS analysis
We selected the features with significant differences in the HC vs. uHC statistical

analysis performed in SPSS (e.g., combining ANOVA, ANCOVA, and Kruskal–Wallis
outcome). Note that we exclusively used an ADNI-balanced cohort for this preliminary
analysis (arrow path from Figs. 1A to 1D), randomly generated from the ADNI imbal-
anced dataset, since available MATLAB classifiers are primarily optimized for balanced
data analysis. ADNI dataset adheres to a much stricter acquisition protocol and has been
extensively used in numerous previous studies (Bethlehem et al., 2022; Ledig et al., 2018;
Feng et al., 2020; Grueso & Viejo-sobera, 2021; Pellegrini et al., 2018), offering a more
reliable basis for comparison than the OASIS-3 dataset.

Ultimately, our research emulates the case when the outcome of one study is attempted
to be replicated in other studies using different datasets. Thus, we evaluated the prelimi-
narily selected ML classifiers and features in a posterior analysis, through the application
of our customized pipeline to analyze imbalanced and randomly balanced ADNI and
OASIS-3 datasets. For the latter case, each selected classifier will be retrained for each
subset of selected features for the different datasets, as part of the application of the
pipeline.

Classification performance metrics
To evaluate the performance in binary classification problems, we calculated several
statistical scores for the different techniques in our study, such as accuracy (Acc), F1, and
Matthew’s correlation coefficient (MCC), also known as Yule’s phi coefficient. The F1
and MCC scores are essentially recommended for imbalanced classification problems.
However, the MCC score has been reported as superior in accuracy and F1 in binary
classification problems (Boughorbel, Jarray & El-Anbari, 2017; Chicco & Jurman, 2020).
For clarity and self-content reasons, we present these metrics as follows, based on the
variables represented in Table 2:
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Table 2 The contingency table illustrates the notation for the number of cases with an existing/absent
condition (CE/CA) evaluated using a generic test procedure, resulting in positive/negative examination
(EP/EN) cases. Combining the Condition and Examination labels, the cases can be partitioned as true/-
false positive (TP/FP) and true/false negative (TN/FN).

Examination

Condition Positive Negative Total =CE+CA

Existing TP FN CE
Absent FP TN CA
Total = EP+EN EP EN

Acc =
TP+TN
Total

,

F1=
2

1
PPV +

1
TPR

=
2∗PPV ∗TPR
PPV +TPR

,

MCC =
√
TPR∗TNR∗PPV ∗NPV −

√
(1−TPR)∗(1−TNR)∗(1−PPV )∗(1−NPV ),

= (TP ∗TN −FP ∗FN )/
√
CE ∗CA∗EP ∗EN

MCC
′

= 0.5∗(1+MCC),

where TPR and TNR represent the true positive and negative rate, also known as sensi-
tivity (recall) and specificity, respectively (TPR= TP/CE and TNR= TN/CA). PPV and
NPV represent the positive and negative predictive values, respectively (PPV = TP/EP
and NPV =TN/EN ). The PPV is also commonly known as precision.

The Acc and F1-scores are defined in the range [0,1], where a value near to 1 indicates
an excellent performance. Otherwise, MCC is defined in the range [−1,1], reaching 1 for
perfect classification, when TP = CE = EP , and TN = CA= EN , and reaching−1 for
a completely wrong classification when FN = CE = EN and FP = CA= EP . However,
we prefer to use the normalized MCC (MCC′) score as it is equivalent to the original but
defined in the range [0,1], which eases the visual comparison with the Acc and F1-scores.

Further validation with a customized ML pipeline
After selecting the feature and classification approaches using the MCL app and SPSS
tools for each data harmonization approach, we evaluated each method combination
further with nested CV and Bayesian optimization within a Monte Carlo replication
analysis (Fig. 1E). To implement nested CV, in the external loop, for each k = 1,...,K
(K = 10), 10% of samples are left out as the holdout subset. Then, the optimal hyper-
parameters are selected for each corresponding model using a MATLAB-based Bayesian
optimization procedure, automatically implementing an internal K − 1 fold cross-
validation. Here, the partitions were created using MATLAB’s ‘‘cvpartition’’ function,
taking into consideration the sample group information (HC or uHC). This guarantees
that each partition has similar proportions in each group (stratified partitions), which is
critical to ensure robustness in imbalanced data analysis. We replicated this procedure 20
times with a Monte Carlo analysis to obtain repeated measurements for the above metrics,
enabling a statistical comparison analysis to assess the better combination of pipeline
options.
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Moreover, for the Bayesian optimization approach, we used 200 iterations to enable the
algorithm to find the ‘‘optimal’’ configuration of hyperparameters for each corresponding
classifier. Several optimizable options were selected among the available ones as follows:

(1) Naïve Bayes (https://uk.mathworks.com/help/stats/fitcnb.html)
Data distribution assumption: ‘‘normal’’ or ‘‘kernel’’.
Kernel smoother type: ‘‘box’’, ‘‘epanechnikov’’, ‘‘normal’’, or ‘‘triangle’’.
Kernel smoothing window width: unbounded positive real number.

(2) K-nearest neighbors (https://uk.mathworks.com/help/stats/fitcknn.html)
Number of neighbors: integer number, restricted for values in the range [5, 30].
Distance function: ‘‘cityblock’’, ‘‘chebychev’’, ‘‘correlation’’, ‘‘cosine’’, ‘‘euclidean’’,
‘‘hamming’’, ‘‘jaccard’’, ‘‘mahalanobis’’, ‘‘minkowski’’, ‘‘seuclidean’’, or ‘‘spearman’’.

(3) SVM (https://uk.mathworks.com/help/stats/fitcsvm.html)
Kernel function: ‘‘gaussian’’, ‘‘rbf’’, ‘‘linear’’, or ‘‘polynomial’’.
Kernel scale parameter: positive real value constrained in the range [10 −1, 10].
Box constraint: positive real value constrained in the range [10 −1, 10].

(4) Logistic regression (https://uk.mathworks.com/help/stats/fitclinear.html)
Lambda (logistic regression implemented with Lasso regularization): positive real value
evaluated in the range [10−3, 10].
Score transformation: ‘‘none’’, ‘‘logit’’, ‘‘invlogit’’, or ‘‘doublelogit’’.

(5) RUSBoost (https://uk.mathworks.com/help/stats/fitcensemble.html)
Ensemble aggregation method: ‘‘RUSBoost’’.
Number of ensemble learning cycles: positive integer (unbounded).
Learning rate for shrinkage: positive real number defined in the range (0, 1].
Maximal number of decision splits: positive integer number (unbounded).

Firstly, our pipeline was directly applied to the imbalanced ADNI and OASIS-3 datasets
to evaluate the different option combinations. Then, a similar analysis was performed
for balanced data, which were randomly generated from the original ADNI and OASIS-
3 imbalanced datasets within each Monte Carlo replication step, i.e., by randomly
undersampling the larger group to match the same number of samples as in the smaller
group, before the evaluation of each method combination.

Finally, we performed a statistical analysis involving N-way ANOVA and pairwise
comparisons, to assess the influence of the different options in our analyses, including
the selection of harmonization, feature selection and classification combination. For
the control of spurious outcomes due to multiple comparisons, we applied both the
Bonferroni correction and the Benjamini–Hochberg method, which controls the false
discovery rate (FDR). We also used the post hoc Tukey Honestly Significant Difference
(HSD) test, assuming a significance threshold of p-value ≤ 0.05 to identify statistically
significant differences. For Benjamini–Hochberg method correction, we applied a 5%
FDR correction.
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RESULTS
Data correction to eliminate the nuisance factors
Figure 2 illustrates the data harmonization procedure using polynomial regression of
hippocampal volumes for data extracted from the ADNIMERGE table for HC, MCI, and
AD participants (see ‘Materials and Methods’’). The effect of harmonization is illustrated
for the various subgroups, obtained from the combination of the diagnostic (HC, MCI,
or AD), participants’ sex (M –male, F –female), and three artificial subdivisions of the
participants according to their ICV size (group ID= 0 for smaller ICV, ID= 1 for
medium ICV, and ID= 2 for larger ICV), as identified in the legend inset (Fig. 2C). After
harmonization, linear models were fitted for the corrected volumes for each subgroup as a
function of participants’ age to uncover the general data trends during the aging process.

As expected, the negative trend in uncorrected hippocampal volume is observed even
for aging in healthy conditions. Fig. 2A shows that hippocampal volume data points
for participants with larger ICV are primarily localized on the top (‘‘+’’ marker). In
contrast, hippocampal measures for smaller ICV are mainly localized on the bottom
(‘‘×’’ marker), which exposes the positive correlation between ICV and hippocampal
volume. It is also clear that the graphs for the linear fit of female hippocampal volume
are lower than for male data for each diagnostic subgroup, reflecting that females have
lower hippocampal volume on average. Moreover, the linear fit slopes are more similar
except for the AD participants, where the slope is less negative for females than males
(darker/brighter intensity for each color corresponds to the male/female data).

Figure 2B shows the differences among the combined subgroups for the harmonized
data derived with the residual-data correction approach, equivalent to using the residuals
from fitting the polynomial models for each sex separately (Fig. 2D). Similarly, Fig. 2C
illustrates the changes observed from the second proposed harmonization procedure
with the z-score-data correction, which uses the estimated mean and standard deviation
at each interpolation point to calculate the z-scores (see ‘Materials and Methods’’).
Data harmonization was utilized to remove the effects of sex, ICV, and age over the
harmonized data. For both corrections, we observed that the slopes of the a-posteriori
fitted linear models are near zero for each combined subgroup. At the same time, the dif-
ferences between the males and females are more minor within each diagnostic subgroup.
Noticeably, we can more easily appreciate that female AD participants at older ages have
relatively larger hippocampal volumes than males after data harmonization. For male
participants, the differences are more stable between diagnostic subgroups, i.e., the slopes
nearly remain the same regardless of the group. Figure 2D illustrates the polynomial
interpolation surfaces, separately per sex, which are primarily linear except in the borders,
where interpolation errors may increase due to scarcer points (more female/male data
points for smaller/larger ICV and fewer points for the age range extremes). However, it
can also be appreciated that there are apparent nonlinear local changes in the surfaces and
slightly more curvature for males than females for the hippocampal volumes (Figs. 2D–
2E).
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Figure 2 Data harmonization procedure illustrated for hippocampal volume variable in ADNIMERGE
dataset.Healthy Control (HC): females= 306, males= 213. Mild cognitive impairment (MCI): females
= 219, males= 284. Alzheimer’s disease (AD), females= 56, males= 76. (A) Original/uncorrected vol-
ume data as a function of age. (B) Data correction using linear regression fit’s residuals (residual harmo-
nization) with HC data as reference, calculated separately for female/male subgroups using age and in-
tracranial volume (ICV) as covariates. (C) z-score correction using polynomial fit of degree (2,2) for inter-
actions between age and ICV covariates, calculated separately for HC female/male subgroups. The mean
and standard deviation of the polynomial fit in every point of the age-ICV subspace is used to calculate the
z-score. (D) Illustration of the polynomial fitting procedure, separately for HC female/male subgroups.
Two different views are illustrated in the top and bottom plots, same between the adjacent female and
male plots. (E) Illustration of the polynomial fitting procedure for hippocampal volume for HC female
and male subgroups data plotted together with the overlaid interpolating surface. The view is the same as
in (D) top.

Full-size DOI: 10.7717/peerj.18490/fig-2

The calculated harmonized data (Figs. 2B–2C) can be used for statistical or classi-
fication analysis. For example, data harmonization may help to increase the statistical
power necessary for variable selection to reduce dimensions before the classification
analysis. Moreover, using higher-order polynomial regression may be advantageous
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in better fitting the nonlinearity in the data. However, this may be an advantage only
for larger datasets. In scenarios with a small amount of data, it is advisable to use linear
interpolation, especially as the data fitting can be biased at the borders. We used polyno-
mial fit (MATLAB script: ‘poly22’) only for illustrative purposes (based on hippocampal
volume data). In the following analyses, we used linear interpolation (MATLAB script:
‘poly11’) to calculate both residual and z-score harmonization, considering all the
features extracted from the Freesurfer’s pipeline.

Statistical analysis
Initially, we investigated early anatomical changes of AD based on the volumes of the
Freesurfer-extracted brain regions for the uncorrected data, using ANOVA, Kruskal–
Wallis, and ANCOVA tests in the SPSS statistical software. Whereas the ANCOVA
analysis was performed for the uncorrected data for each brain feature, using age, sex,
years of education, and ICV as nuisance variables, ANOVA and Kruskal–Wallis were
directly applied to all the uncorrected and harmonized data. Table 3 shows that results are
more significant for the harmonized data than the uncorrected data. From these analyses,
eight features were consistently found to significantly differ between the HC and uHC
groups for the ADNI imbalanced dataset. These eight features were selected for posterior
analyses. In contrast, highlighted here only for comparison purposes, sixteen and twelve
features were significantly different for the analyses involving the imbalanced OASIS-
3 dataset for the original age range and ADNI age-matched participants, respectively.
As expected, more significant results were obtained as the OASIS-3 datasets have a
larger sample size (Table 1). Interestingly, the results demonstrate consistency across
the datasets as the eight features found significant with the ADNI data analysis also
showed significant results for the OASIS-3 cohorts. Overall, these analyses revealed
some advantages of data harmonization, as the corresponding outcomes showed more
substantial differences.

Comparison between data harmonization approaches using the MCL
app
Here, we performed a preliminary analysis to assess which harmonization procedure
could offer superior performance for classification analysis using the MCL app for
the ADNI-balanced cohort. Table 4 and Fig. 3 display the average performance of the
different data harmonization procedures for top-performance classification methods.
The best results were achieved for the residual harmonization procedure, with Kernel
Naïve Bayes achieving an accuracy of 76.95% and AROC of 84.0% with comparable
superior sensitivity and specificity results to other methods. Similarly, the results for
the other classification methods were superior for this harmonization procedure except
for Coarse Tree. Different classification methods, including SVM and LR, were also
evaluated, but their results were inferior. This analysis produced better results for
residual-corrected data. This may be because, for z-score harmonization, a smaller sample
size may negatively impact the calculation of the z-scores, particularly at the borders of
the data space.
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Table 3 List of features that showed significant differences while controlling for multiple comparison using the Bonferroni’s correction (p ≤ 0.05), for ADNI and
OASIS-3 imbalanced datasets. Volumes are reported as mean (SD) values for the original (uncorrected) measurements. From left to right, volume information is pre-
sented for the significant features, followed by the results for ANOVA, Kruskal Wallis and ANCOVA tests, all for the uncorrected data, followed by the first two tests’ re-
sults for the residual and z-score-harmonized data. For ANCOVA test for uncorrected data, the covariates were age, gender, years of education and ICV.

Features Uncorrected data Residual Z -score

HC
(original
volumes,
mm3)
(SD)

uHC
(original
volumes,
mm3)
(SD)

ANOVA
p-value

Kruskal
Wallis
p-value

ANCOVA
p-value

ANOVA
p-value

Kruskal
Wallis
p-value

ANOVA
p-value

Kruskal
Wallis
p-value

ADNI: age 60–86
Lateral Ventricle 32,077.74

(15,998.18)
50,914.57
(26,158.63)

<0.001 <0.001 0.001 <0.001 0.003 <0.001 0.002

Inf-Lat-Vent 1,165.48
(672.08)

2,163.08
(1,471.34)

<0.001 <0.001 <0.001 <0.001 0.002 <0.001 0.002

Hippocampus 7,592.62
(837.74)

7,213.36
(829.68)

*0.051 *0.092 0.010 0.005 0.015 0.005 0.014

Accumbens-area 900.29
(165.10)

761.66
(186.26)

<0.001 0.005 0.004 0.003 0.011 0.002 0.011

Entorhinal 3,582.20
(648.10)

3,378.46
(719.29)

*0.191 *0.246 0.010 0.007 0.010 0.007 0.011

Lateral orbitofrontal 13,717.41
(1,373.75)

13,239.04
(1,379.935)

*0.140 *0.123 0.002 0.002 0.003 0.002 0.002

Middle temporal 20,807.65
(2,386.15)

20,222.25
(2,563.62)

*0.303 *0.349 0.015 0.012 0.027 0.011 0.021

BrainSegVolNotVent 1,025,466.82
(103,015.64)

1,011,076.79
(94,271.69)

*0.567 *0.626 0.002 <0.001 0.002 <0.001 0.002

OASIS-3: age 43–96
Lateral Ventricle 27,870.93

(16,230.48)
43,413.22
(23,753.60)

<0.001 <0.001 0.006 <0.001 0.032 <0.001 0.032

Inf-Lat-Vent 1,103.52
(665.42)

2,062.28
(1,464.24)

<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Hippocampus 7,763.43
(868.24)

6,996.65
(879.65)

<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Amygdala 3,166.92
(464.77)

2,821.13
(529.46)

<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Accumbens-area 965.69
(192.28)

806.29
(192.31)

<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
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Table 3 (continued)

Features Uncorrected data Residual Z -score

HC
(original
volumes,
mm3)
(SD)

uHC
(original
volumes,
mm3)
(SD)

ANOVA
p-value

Kruskal
Wallis
p-value

ANCOVA
p-value

ANOVA
p-value

Kruskal
Wallis
p-value

ANOVA
p-value

Kruskal
Wallis
p-value

Entorhinal 3,691.79
(689.42)

3,401.94
(781.46)

<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Fusiform 17,639.88
(2282.77)

16,793.58
(2,541.72)

<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Inferior temporal 19,586.25
(2,783.38)

18,433.00
(2,929.76)

<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Isthmus cingulate 4,657.37
(687.63)

4,570.60
(685.20)

*0.217 *0.180 0.049 0.014 0.020 0.013 0.018

Lateral orbitofrontal 13,572.41
(1,565.69)

13,221.11
(1,591.28)

0.029 0.026 0.040 0.005 0.008 0.006 0.009

Medial orbitofrontal 10,136.71
(1,151.98)

9,957.09
(1,243.07)

*0.133 *0.098 0.004 <0.001 0.001 <0.001 0.002

Middle temporal 20,397.11
(2,793.42)

19,323.31
(2,741.79)

<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Para hippocampal 2,830.92
(526.19)

3,628.37
(556.32)

<0.001 <0.001 0.004 <0.001 <0.001 <0.001 <0.001

Superior temporal 21,659.54
(2,508.39)

20,609.39
(2,840.67)

<0.001 <0.001 0.007 <0.001 <0.001 <0.001 <0.001

Insula 13,042.72
(1,545.59)

12,915.63
(1,673.89)

*0.428 *0.583 0.020 0.004 0.006 0.004 0.007

BrainSegVolNotVent 1,042,137.77
(109,896.64)

1,006,024.23
(109,950.49)

0.001 0.003 <0.001 <0.001 <0.001 <0.001 <0.001

OASIS-3: age 60–86
Inf-Lat-Vent 1,181.78

(681.07)
2,062.96
(1,463.92)

<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Hippocampus 7,639.15
(801.46)

7,013.75
(825.28)

<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Amygdala 3,122.47
(430.58)

2,825.05
(480.07)

<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Accumbens-area 936.00
(173.92)

805.50
(185.47)

<0.001 <0.001 0.003 <0.001 <0.001 <0.001 <0.001

Entorhinal 3,673.07
(689.16)

3,425.49
(785.00)

0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

(continued on next page)
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Table 3 (continued)

Features Uncorrected data Residual Z -score

HC
(original
volumes,
mm3)
(SD)

uHC
(original
volumes,
mm3)
(SD)

ANOVA
p-value

Kruskal
Wallis
p-value

ANCOVA
p-value

ANOVA
p-value

Kruskal
Wallis
p-value

ANOVA
p-value

Kruskal
Wallis
p-value

Fusiform 17,451.08
(2,175.02)

16,908.48
(2,423.70)

0.026 0.032 0.017 <0.001 <0.001 <0.001 <0.001

Inferior temporal 19,404.56
(2,752.38)

18,550.90
(2,845.48)

0.005 0.008 <0.001 <0.001 <0.001 <0.001 <0.001

Medial orbitofrontal 10,102.50
(1,158.77)

10,012.27
(1,198.65)

0.478* 0.453* 0.019 <0.001 0.004 <0.001 0.004

Middle temporal 20,153.47
(2,723.91)

19,491.38
(2,551.67)

0.024 0.033 0.013 <0.001 <0.001 <0.001 <0.001

Para hippocampal 3,791.19
(516.83)

3,639.69
(545.66)

0.008 0.004 0.027 0.001 0.001 0.002 0.002

Superior temporal 21,337.81
(2,289.95)

20,739.03
(2,575.37)

0.020 0.014 0.051 0.002 0.003 0.003 0.004

BrainSegVolNotVent 1,031,148.72
(103,676.92)

1,011,836.22
(104,411.90)

0.088* 0.153* <0.001 <0.001 <0.001 <0.001 <0.001

Notes.
*An asterisk (*) denotes that the accompanying p-value is not significant.
From top to bottom, results are presented for ADNI and OASIS-3 datasets. Note that only the significant features obtained using the ADNI dataset were considered in posterior analyses. The results for
the OASIS-3 datasets are only illustrated for comparison purposes.
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Table 4 Performance comparison between residual and z-score harmonization. The results are presented for some of the ‘‘top’’ classifiers as ob-
served in the MCL app analysis for evaluated performance metrics: accuracy (Acc), sensitivity (Sen), specificity (Spec), and area under receiver oper-
ating characteristic curve (AROC). See Fig. 3 for complementary information.

Model Residual Z -score

Acc (%) Sen (%) Spec (%) AROC (%) Acc (%) Sen (%) Spec (%) AROC (%)

Kernel Naïve Bayes 76.95 76.84 77.11 84.0 71.80 67.43 76.05 76.0
Cosine KNN 75.23 70.17 80.00 78.0 64.10 47.37 80.00 65.0
Coarse Tree 74.40 75.00 73.68 74.0 76.90 80.00 73.68 77.0
Ensemble: Bagged Trees 76.90 73.68 80.00 77.0 66.65 63.16 70.00 67.0

Features and classification methods evaluation
Using the MCL app, we also performed an exhaustive analysis to complement the
previous analyses by evaluating and selecting the ‘‘best’’ feature selection and classification
methods using the ADNI-balanced cohort. First, we calculated the percentages for the 40
features using all the feature selection methods available in the app. Then, we ignored the
MRMR outcome, as only one feature (Inf-Lat-Vent volume) exhibited a score greater
than 0. Table 5 reveals that the chi-square provides lower scores when compared to
ANOVA and Kruskal–Wallis. Conversely, ANOVA and Kruskal–Wallis exhibited minimal
discrepancies in their scores. This is the primary reason we converted the scores into
percentages to enhance visual comparison and selection of the most relevant features. We
also ranked the features based on how frequently each feature selection criteria selected
them, combining the MCL app and SPSS analysis. As shown in Table 6, we found five
features selected by all selection criteria. These features are BrainSegVolNotVent, Inf-Lat-
Vent, entorhinal, lateral orbitofrontal, and lateral ventricle. Then, with a slightly lower
rank, the parahippocampal and hippocampus regions were selected by 6/5 of the selection
criteria.

Subsequently, we calculated the average for classification accuracy, sensitivity, speci-
ficity, and AROC statistics for each classifier and feature selection method for ten random
replications. Table 7 reveals that Kernel Naïve Bayes was selected 34% of the time as the
best-performance classifier, and its average accuracy was 77.3% by pooling together all the
corresponding outcomes from the feature selection methods. Gaussian Naïve Bayes and
Cosine KNN were tied up in second place, selected 7% of the time as the top performer,
and with average accuracy performance of 73.05% and 71.5%, respectively. Among the
other classifiers, the LR achieved an average accuracy of 75.65% with an AROC of 0.7592
when using the ReliefF method. However, it did not perform well for the other feature
selection criteria. Regarding the best feature selection methods in the MCL app, ReliefF
outperformed other methods (Fig. 4). It is important to emphasize that the outcomes
from Tables 3–7 and Figs. 3–4 were derived from evaluation exclusively on the ADNI
dataset. In the next section, we evaluate the generalization of these results using both
ADNI and OASIS-3 datasets with our customized pipeline.
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Table 5 Score rating with percentage as calculated for the different feature selection methods as available in the MCL app.

Features Chi-square ANOVA Kruskal–Wallis ReliefF Average
score (%)
Median= 1.79

Score %Median= 1.94 Score %Median= 2.13 Score %Median= 1.94 Score %

entorhinal 2.28 3.80 5.48 6.07 5.48 6.35 0.04 13.50 7.43

fusiform 1.44 2.40 1.22 1.35 1.68 1.94 0.03 10.51 4.05

Inf-Lat-Vent 2.83 4.72 4.13 4.58 4.49 5.20 0.03 9.88 6.09

temporalpole 3.48 5.80 0.44 0.48 2.06 2.39 0.03 8.89 4.39

posteriorcingulate 1.44 2.40 0.68 0.75 0.92 1.07 0.02 7.11 2.83

isthmuscingulate 1.54 2.57 1.30 1.44 2.27 2.63 0.02 7.02 3.42

Hippocampus 1.14 1.90 4.29 4.75 4.14 4.80 0.02 6.70 4.54

parahippocampal 4.09 6.82 3.27 3.62 2.71 3.14 0.02 5.84 4.86

parsopercularis 1.34 2.23 1.79 1.99 1.75 2.03 0.02 5.62 2.97

Lateral-Ventricle 2.83 4.72 4.57 5.07 5.42 6.28 0.02 4.92 5.25

transversetemporal 0.63 1.05 0.02 0.02 0.26 0.30 0.01 4.70 1.52

precentral 0.70 1.17 3.81 4.22 3.81 4.42 0.01 4.45 3.56

insula 3.55 5.91 2.04 2.26 2.14 2.49 0.01 4.16 3.70

frontalpole 0.20 0.34 1.49 1.65 0.73 0.84 0.01 2.70 1.38

superiortemporal 1.39 2.32 0.28 0.31 0.36 0.42 0.00 1.52 1.14

Amygdala 2.77 4.61 0.87 0.95 1.16 1.35 0.00 1.17 2.02

lateralorbitofrontal 2.22 3.70 4.93 5.46 4.79 5.55 0.00 0.60 3.83

lingual 0.42 0.70 0.37 0.41 0.12 0.14 0.00 0.57 0.46

BrainSegVolNotVent 5.45 9.08 9.80 10.86 9.76 11.30 0.00 0.13 7.84

parstriangularis 0.48 0.81 0.22 0.25 0.30 0.35 −0.00 0.35

middletemporal 1.14 1.90 4.01 4.44 3.19 3.70 −0.00 2.51

paracentral 1.34 2.23 2.48 2.75 1.60 1.87 −0.01 1.71

precuneus 0.83 1.38 2.21 2.45 1.50 1.73 −0.01 1.39

Accumbens-area 1.44 2.40 4.12 4.56 3.65 4.23 −0.01 2.80

medialorbitofrontal 0.16 0.27 0.86 0.95 0.81 0.94 −0.01 0.54

inferiorparietal 0.42 0.70 1.61 1.78 1.20 1.39 −0.01 0.97

superiorfrontal 1.05 1.75 1.93 2.14 1.68 1.94 −0.02 1.46

postcentral 0.27 0.46 1.77 1.96 1.26 1.46 −0.02 0.97

caudalmiddlefrontal 0.48 0.81 1.97 2.18 1.98 2.30 −0.02 1.32

lateraloccipital 1.60 2.66 1.92 2.13 1.68 1.94 −0.02 1.68

cuneus 0.05 0.08 0.10 0.11 0.26 0.30 −0.21 0.12

bankssts 0.70 1.17 2.34 2.59 2.36 2.73 −0.02 1.62

caudalanteriorcingulate 1.19 1.98 1.17 1.30 1.01 1.17 −0.02 1.11

parsorbitalis 1.99 3.31 2.02 2.23 1.64 1.90 −0.03 1.86

superiorparietal 0.20 0.34 0.29 0.32 0.34 0.40 −0.03 0.26

inferiortemporal 1.00 1.67 2.49 2.76 1.64 1.90 −0.03 1.58

rostralmiddlefrontal 2.77 4.61 3.16 3.49 2.40 2.78 −0.03 2.72

rostralanteriorcingulate 1.05 1.75 3.43 3.80 2.86 3.30 −0.03 2.21

pericalcarine 1.14 1.90 0.35 0.39 0.22 0.25 −0.03 0.64

supramarginal 0.96 1.60 1.08 1.20 0.67 0.78 −0.04 0.89
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Table 6 Feature selection according to different selection criteria fromMCL app and SPSS analysis.

Features Chi-square ReliefF ANOVA Kruskal–Wallis Average score
(MCL app):
chi-square,
ReliefF, ANOVA
&Kruskal–Wallis

Statistical
analysis
(SPSS): ANOVA,
ANCOVA
&Kruskal–Wallis

Total

BrainSegVolNotVent / / / / / / 6
Inf-Lat-Vent / / / / / / 6
Entorhinal / / / / / / 6
Lateral orbitofrontal / / / / / / 6
Lateral Ventricle / / / / / / 6
Parahippocampal / / / / / 5
Hippocampus / / / / / 5
Accumbens-area / / / / 4
Middle temporal / / / / 4
Precentral / / / / 4
Insula / / / 3
Temporal pole / / / 3
Rostral middle frontal / / / 3
Rostral anterior cingulate / / / 3
Amygdala / / / 2
Fusiform / / 2
Posterior cingulate / / 2
Isthmuscingulate / / 2
Parsopercularis / / 2
Parsorbitalis / / 2
Transverse temporal / 1
Frontal pole / 1
Superior temporal / 1
Lingual / 1

Balanced data analysis with customized pipeline
In the present and following sections, we further evaluate the selected ‘‘best’’ combination
for classification methods, selected features, and data harmonization procedures with our
customized pipeline for balanced and imbalance datasets, respectively. Five classifiers are
compared in these analyses: naïve Bayes, KNN, SVM, LR, and RUSBoost. The purpose
is to further evaluate the ‘‘best’’ candidates selected mainly from the above MCL app
analysis, compared against RUSBoost, which is expected to show superior performance
for imbalanced datasets. In contrast to the MCL app and feature selection analyses above,
which could have had some bias due to the MCL app analysis being restricted to use a
single balanced ADNI cohort, the current analyses are extended to include both the whole
ADNI and OASIS-3 (original and ADNI-age matched) imbalanced datasets to evaluate
the selected method combinations. Moreover, in this section, we performed randomly
undersampling to balance these datasets within a Monte Carlo replication analysis,
which subsequently runs our customized pipeline for each of the combined choices
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Table 7 Selection frequency as top performer for each classification method under different feature selection criteria. The results for the classifi-
cation methods are presented across the rows, whereas the columns present the outcome for the different feature selection strategies.

Models Chi-square ReliefF ANOVA Kruskal–
Wallis

Average score
(MCL app):
chi-square,
ReliefF, ANOVA
&Kruskal–Wallis

Statistical
analysis
(SPSS): ANOVA,
ANCOVA&
Kruskal–Wallis

Total
appearances

Total
(%)

Kernel Naïve Bayes 7 7 6 6 6 2 34 34
Gaussian Naïve Bayes 1 2 1 1 2 7 7
Cosine KNN 1 1 1 1 3 7 7
Logistic Regression Kernel 1 2 2 1 6 6
Weighted KNN 1 3 4 4
Subspace Discriminant 3 1 4 4
Subspace KNN 1 1 1 3 3
Medium KNN 1 1 1 3 3
SVM Kernel 1 1 1 3 3
Linear SVM 1 1 1 3 3
Fine tree 1 1 1 3 3
Medium tree 1 1 1 3 3
Coarse tree 1 1 1 3 3
Linear Discriminant 2 1 3 3
Quadratic SVM 1 1 2 2
Trilayered Neural Network 1 1 2 2
Cubic KNN 2 2 2
Fine KNN 1 1 2 2
Logistic Regression 1 1 1
Ensemble: Subspace
Discriminant

1 1 1

Cubic SVM 1 1 1
Medium Gaussian SVM 1 1 1
Bagged Trees 1 1 1
Ensemble: Bagged Trees 1 1 1

among four different groups of selected features (subsets A-D as shown in Table S13),
five classifiers, three datasets, and two harmonization procedures. This last analysis may
favor classifiers that perform better in balanced data scenarios, which can be compared
against the following section results, where the same analysis will be applied without
undersampling, i.e., for the original imbalanced datasets. Evaluations are based on these
performance metrics: Acc, AROC, F1, and MCC’. Interestingly, for balanced data analysis,
metrics such as Acc and AROC serve as standards to evaluate the ‘‘best’’ classification
performances, but this may not be the case for imbalanced data analysis, where F1 and
MCC’ are recommended (Boughorbel, Jarray & El-Anbari, 2017; Chicco & Jurman, 2020).

Figure 5 shows the results of the balanced data analysis. The best outcome for ADNI
balanced cohorts was achieved using a Naïve Bayes classifier based on the ReliefF feature
selection (subset B) and z-score data harmonization, achieving Acc= 69.17± 6.54%,
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Figure 3 Comparison in classification between data harmonization procedures using linear regres-
sion based centered data (residual harmonization) and z-score harmonization. The columns present
the results for the top evaluated models, left-to-right order, according to the MCL app analysis, and col-
umn groups correspond to the different assessed performance metrics: accuracy (Acc), sensitivity (Sen),
specificity (Spec), and area under curve of the ROC graph (AUC).

Full-size DOI: 10.7717/peerj.18490/fig-3

Figure 4 Average classification in model selection analysis. Some bar plots do not display the standard
error since the model was selected only once throughout the analysis.

Full-size DOI: 10.7717/peerj.18490/fig-4

AROC= 77.73± 7.08%, F1= 69.21± 7.90%, and MCC’= 69.28± 6.56% (FDR-
adjusted p-value pFDR < 0.05 for all multiple comparisons of Naïve Bayes vs other
classifiers for each metric). However, this result was not replicated for the OASIS-3
cohorts, possibly revealing a selection bias as an individual balanced ADNI cohort was
utilized in the previous MCL analysis for feature selection. For the OASIS-3 age-matched
dataset, the best performance was obtained for the SVM classifier using the features

Ahmad et al. (2024), PeerJ, DOI 10.7717/peerj.18490 26/42

https://peerj.com
https://doi.org/10.7717/peerj.18490/fig-3
https://doi.org/10.7717/peerj.18490/fig-4
http://dx.doi.org/10.7717/peerj.18490


Figure 5 Comparison amongmultiple classification pipeline options, involving five classifiers, four
feature selection and two harmonization techniques. Performance is measured for randomly balanced co-
horts extracted from ADNI and OASIS-3 imbalanced datasets within a Monte Carlo replication analysis.
Results are presented for naïve Bayes, KNN, SVM, Logistic and RusBoost, residual and z-score harmoniza-
tion procedures, as represented in the x-axis and legend labels. Bar groups denoted by letters A-D indicate
the outcomes corresponding to the different feature subsets that were selected after the MCL app analy-
sis: (A) Features selected using the average scores; (B) Features selected based on the ReliefF criterion; (C)
Features selected according to the combination of all evaluated feature selection algorithms; (D) Features
selected within the SPSS statistical analysis. Table columns: Acc, accuracy; AROC, area under receiver op-
erating curve; F1, F1-score; MCC’, Matthew’s correlation coefficient (linearly projected into range [0,1]).
Performance metrics are all normalized into the range [0,1] and plotted with a fixed y-axis range to en-
hance visual comparison.

Full-size DOI: 10.7717/peerj.18490/fig-5

selected in subset D and z-score data harmonization, with Acc= 66.58± 2.91%, AROC
= 72.01± 2.40%, and MCC’= 66.78± 2.96%. LR performed best according to the F1-
score of 66.68± 1.21% for ReliefF features and residual harmonization.

When pooling together measures calculated for the four feature subsets for the F1-
score, ANOVA with multiple comparison analysis revealed that LR was the best classifier,
significantly superior to all the other classifiers for all three datasets using the residual
harmonization approach (see Fig. S7 and Table S9). A similar analysis for the MCC’ score
revealed that naïve Bayes using z-score harmonization for the ADNI dataset was superior
to the other approaches except for SVM for all three datasets and z-score harmonization
(see Fig. S8 and Table S10).

Imbalanced data analysis with customized pipeline
Analogous to the above analysis, Fig. 6 shows the results of the imbalanced data analysis.
Here, the divergence among performance metrics is clear. Although the accuracy indicates
that SVMmay be the best classifier, F1 and MCC’ significantly favor RUSBoost at least
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Figure 6 Comparison amongmultiple classification pipeline options, involving five classifiers, four
feature selection, and two harmonization techniques. Performance is measured directly for ADNI and
OASIS-3 imbalanced datasets within a Monte Carlo replication analysis. The ‘‘dotted line’’ clips highlight
that for ADNI dataset and ReliefF features only, it seems that RUSBoost has a clear advantage over the
other classifiers for imbalanced data analysis.

Full-size DOI: 10.7717/peerj.18490/fig-6

for the ADNI data analysis. With a detailed inspection, we may realize that the accuracy
could be biased in this case as the SVM tends to favor the majority group (HC) at the
expense of poor classification for the minority group (uHC). Apart from being reflected
by the corresponding F1 and MCC scores, this is more clearly visible by inspecting the
corresponding true positive rate (TPR) and positive predictive value (PPV) scores, which
highlights an overall instability of the SVM classifier in imbalanced data analysis (see
Fig. S2 and Tables S3–S4).

For the ADNI imbalanced cohort, RUSBoost achieved the best performance according
to two metrics: F1= 50.60± 5.20% (based on ReliefF features and residual harmoniza-
tion) and AROC= 81.54± 2.92% (based on ReliefF features and z-score harmonization).
SVM performed best according to the other metrics for subset C features and z-score
harmonization in both cases: Acc= 82.93± 1.59% and MCC’= 70.21± 3.16%. For
the OASIS-3 age-matched dataset, naïve Bayes showed the best performance according
to F1 (42.54± 1.71%, pFDR < 0.05) and AROC (70.33± 1.00%; pFDR < 0.05), for subset
D features and residual harmonization in both cases, with RUSBoost dominating for the
MCC’ score (63.31± 1.43%), for subset C features and residual harmonization. Here, the
accuracy performance was dominated by SVM (79.58± 0.00), but this result is invalid, as
suspected from the zero-valued error bar. We corroborated that it matches this dataset’s
percentage of the majority class, i.e., 413÷ (413 + 106)×100% (Table 1).
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Interestingly, although we employed the default cost error matrix (i.e., [01;10] in
order following MATLAB matrix notation) in the balanced data analysis above, we
compensated the other classifiers (except RUSBoost) with a customized cost matrix for
the imbalanced analysis, penalizing the error committed for classifying a sample in the
majority class when the actual class is the critical one: [01;δ0] where δ is the ratio between
the cardinalities of the majority and minority groups. When this correction is ignored, the
other methods show very poor results. As confirmed by our evaluations, this correction is
unnecessary for RUSBoost as it is implemented based on random undersampling (RUS).

For the imbalanced data analysis, when pooling together measures calculated for the
four feature subsets for the F1-score, ANOVA with multiple comparison analysis revealed
that naïve Bayes using z-score harmonization for the ADNI dataset was superior to the
other approaches except for SVM for the same combination (see Fig. S9 and Table S11).
In contrast, for the MCC’ score, the roles were reversed with SVM followed by Naïve
Bayes as superior to the rest, also for z-score harmonization of ADNI data (see Fig. S10
and Table S12). Remarkably, results for imbalanced were significantly worse than the
corresponding ones for balanced analysis, and results were also inferior for the OASIS-3
compared to the ADNI dataset.

DISCUSSION
In this paper, our primary objective was to develop an MRI-based methodology for
early AD prediction, motivated by the fact that MRI is a well-established and widely
used technique, providing detailed images for assessing brain regional integrity. This
approach enables tracking anatomical changes in the brain during healthy aging and
disease progression. In summary, we target the detection of brain changes associated with
early cognitive decline by comparing MRI-based features between elders who remained
healthy (HC group) and other initially healthy elders who were later diagnosed with mild
cognitive impairment (MCI) within 5 years (uHC group), with data provided by ADNI
and OASIS-3 longitudinal studies. We presented a ML approach to evaluate multiple
feature selection and classification methods. Notably, combining feature selection and
statistical analysis approaches, we found that six out of eight significantly detected brain
regions in our analyses are consistently reported in the literature as related to early AD
anatomical changes: entorhinal, hippocampus, lateral ventricle, lateral orbitofrontal,
accumbens area, and middle temporal (see Tables 3–6).

These regions are central to the limbic system’s functioning and pivotal in regulating
emotions, memory, executive functions, and behavior (Patestas & Gartner, 2006).
Therefore, anatomical and functional alterations observed in these regions could be
critically associated with the early progression of neurodegenerative disorders (RajMohan
& Mohandas, 2007;Mori & Aggarwal, 2014). Notably, the hippocampus and entorhinal
cortex (De Toledo-Morrell et al., 2004; Pennanen et al., 2004) are frequently observed
to be affected to a significant degree during the early MCI stage (Tapiola et al., 2008).
Additionally, changes in the lateral ventricle’s size or shape can indicate certain neuro-
logical conditions, including neurodegenerative disease, as previously observed in AD

Ahmad et al. (2024), PeerJ, DOI 10.7717/peerj.18490 29/42

https://peerj.com
http://dx.doi.org/10.7717/peerj.18490#supp-2
http://dx.doi.org/10.7717/peerj.18490#supp-2
http://dx.doi.org/10.7717/peerj.18490#supp-2
http://dx.doi.org/10.7717/peerj.18490#supp-2
http://dx.doi.org/10.7717/peerj.18490


(Nestor et al., 2008). Moreover, the orbitofrontal cortex is critical in decision-making,
impulse control, and evaluating reward and punishment stimuli. Damage or dysfunction
in this area can lead to impairment in these functions and changes in behavior, which
are the most common observed symptoms in AD patients, but even in individuals
who may receive an MCI diagnosis, as demonstrated by a post-mortem analysis (Van
Hoesen, Parvizi & Chu, 2000). Moreover, consistent with our results, previous studies
have found that the entorhinal cortex is one of the earliest brain regions affected by AD,
leading to gradual memory deficits (De Toledo-Morrell et al., 2004; Pennanen et al., 2004;
Tapiola et al., 2008). The entorhinal cortex is closely connected to the hippocampus via
the subiculum, and it is a critical brain region involved in memory formation, spatial
navigation, and the processing of associations between different pieces of information.

Our proposed methodology also evaluated the performance of different ML ap-
proaches for balanced and imbalanced data analyses using ADNI and OASIS-3 datasets.
First, mainly using the MCL app for an accelerated exploration and discovery of ‘‘best’’
method candidates for further analysis, among a vast number of available techniques. This
preliminary analysis evaluated the consistency of selected features and classifiers’ perfor-
mance in different conditions. In this analysis, we found that ReliefF (Robnik-Šikonja &
Kononenko, 2003) consistently outperformed other feature selection techniques, although
this superiority was not observed in different scenarios (Tables S1–S4). Interestingly, the
stable selection of the same group of brain regions by the different techniques highlighted
the importance of the regions mentioned above and our methodology to uncover early
AD-linked brain changes.

Although our primary goal is to discover MRI-based biomarkers associated with
AD, this should be implemented by exploring and analyzing a wide range of available
techniques, as some may be more appropriate than others to reveal important features. In
this sense, the MCL app helped to reduce our preselection efforts considerably. This app
includes many popular algorithms, such as decision trees, discriminant analysis, logistic
regression, naïve Bayes, support vector machines, nearest neighbors, ensemble methods,
and neural networks, with predefined and ‘‘optimizable’’ templates. The latter enables
selection between different model hyperparameter options and automatic hyperparameter
tuning through Bayesian optimization. For example, in the case of neural networks,
these options are for the number of layers, number of neurons per layer, and activation
function type, among others. Apart from the intensive computational reason, we decided
to evaluate ‘‘only’’ all the predefined MCL models since we also assessed in our study a
more advanced ML pipeline implementing nested CV with Bayesian optimization for
model selection and evaluation, within a Monte Carlo replication framework.

Note also that MCL’s above features and classifiers selection analyses may be limited.
We exclusively used a unique, randomly balanced cohort extracted from the ADNI dataset
since the MCL app’s algorithms are optimized for balanced data analysis. However, this is
compensated in our study as we selected a wide range of options and used our customized
ML pipeline after this preliminary analysis to evaluate selected options further using the
original imbalanced ADNI and OASIS-3 datasets. This enabled a more robust evalua-
tion of the combination of five popular techniques (including naïve Bayes, SVM, and
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RUSBoost), four feature selection criteria, and two harmonization techniques based on
the implementation of nested CV with Bayesian optimization in our pipeline, evaluated
within a Monte Carlo replication analysis designed to produce more stable results. The
same pipeline was used for balanced and imbalanced data analyses for the same ADNI and
OASIS-3 datasets. The unique difference is the implementation of random rebalancing
(generating random subsets from the original HC and uHC groups with the same number
of samples) within the Monte Carlo analysis before evaluating classification models
with the balanced cohorts, as performed for the balanced data analysis. We included
RUSBoost in these analyses since it has been reported as one of the best algorithms for
imbalanced data analysis (Seiffert et al., 2010; VanHulse, Khoshgoftaar & Napolitano,
2007). We also implemented a rich set of evaluation metrics, including the F1-score and
Matthew’s correlation coefficient (MCC), in addition to the traditional accuracy (Acc)
and area under receiver operating characteristic curve (AROC) measures because they are
deemed more appropriate for imbalanced classification analysis (Boughorbel, Jarray & El-
Anbari, 2017; Chicco & Jurman, 2020). Overall, our study suggests that popular algorithms
such as naïve Bayes and LR could be very competitive even for imbalanced data analysis
when the algorithm’s cost matrix is set conveniently, as in our case, or when random
undersampling is considered, as shown with our pipeline implementation (see Figs. 5–6
and discussion therein).

As a warning for future research in this area, all the performance metrics in our study
(e.g., Acc, F1, and MCC) showed overfitting (see Figs. S3–S6, in contrast with see Figs. S7–
S10), and incorrectly addressing this issue could have negatively impacted our observa-
tions. In our case, the use of nested CV helped us to better understand the overfitting
effects and achieve more robust outcomes, as noted in the literature (Varoquaux et al.,
2017; Varoquaux, 2018). On the negative side, RUSBoost outcome seems more affected by
overfitting as it shows superior performance for imbalanced data analysis based on direct
CV measurements (Figs. S5 and S6, for F1 and MCC’ scores, respectively). However, this
advantage completely disappeared when using the nested-CV (holdout) measurements
(see Figs. S9 and S10, respectively, for corresponding score comparisons). This may
question the validity of previous results based on RUSBoost for imbalanced data analysis
if these studies did not implement a more cautious strategy, like in our case, based on
nested cross-validation.

Not least relevant, when comparing directly the balanced analysis vs. their imbalanced
counterparts for nested-CV measurements (see Figs. S7 vs. S9 for visual comparison
based on the F1-score and Figs. S8 vs. S10 for visual comparison based on the MCC
score), it is thought-provoking that balanced analysis produced significantly superior
performance results than imbalanced (note the difference in x-axis tick range). This
observation takes into consideration that both analyses used the same nested-CV pipeline
for the same datasets, with the only difference being that balanced analysis applied the
nested-CV pipeline for randomly balanced cohorts extracted from the same imbalanced
datasets within a Monte Carlo replication analysis (see ‘Material and Methods’’ for more
information; see also Tables 13–14 for more details). This suggests that the rebalancing
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approach, evaluated here with our customized pipeline, could improve imbalanced data
analysis.

LIMITATIONS
It is essential to acknowledge the limitations of our study. Primarily, for the balanced
data analysis using the ADNI dataset, a smaller sample size can be used to argue for the
possible unreliability of the presented results. This small number was mainly due to our
consideration of data acquired only with the 3T MRI technique. However, it can also be
attributed to the challenge of studying very early AD-linked brain changes. Notice that
ADNI also provides data for 1.5T acquired for the very early participants in this study,
which we did not consider avoiding this additional confounding factor. However, we can
increase the sample size in future studies by including 1.5T and robustly controlling for
the possible heterogeneity between 1.5T and 3T MRI images. Additionally, as ADNI is
a still ongoing longitudinal study, we can access more data in the future or possibly use
different search criteria and methodology to increase the sample size. Another explicit
limitation is that the balanced ADNI cohort used in the MCL app analysis may have
been selected arbitrarily. We performed a random selection to exclude subjective bias,
though a unique ADNI-balanced cohort was mainly used for the feature and classifier
selection process. However, this issue appears in many studies that are limited by a
small sample size. We compensated for this by selecting a wide range of top-performing
options and performing more robust analyses based on the whole ADNI and OASIS-3
imbalanced datasets using our customized ML pipeline. This pipeline enabled balanced
and imbalanced data analysis using the same statistical framework combining nested
CV and Bayesian optimization. Another explicit limitation is restricting our research
to MRI-based AD biomarkers, which we currently address in an ongoing study that
includes magneto-electroencephalographic (MEG/EEG) features. Using our pipeline and
the findings reported in our study could be valid for more complex analyses involving
multimodal neuroimaging features. Lastly, the current research is still far from the goal
of developing a quasi-automatic procedure to predict early Alzheimer’s disease cases.

CONCLUSIONS
This study comprehensively compared multiple strategies to identify the most effective
AD anatomical biomarkers/features and optimize classifier models for early cognitive
decline prediction from MRI data. We identified the predictors through a comprehensive
statistical analysis conducted on uncorrected and harmonized data using three different
analytical approaches: one-way ANOVA, ANCOVA, and Kruskal–Wallis. Moreover,
using the MCL app, we analyzed four feature ranking methods (Chi-square, ANOVA,
Kruskal–Wallis, and ReliefF) and multiple classification methods to reduce the number of
selected features and classification models for posterior analyses. Subsequently, we used
a customized pipeline implementing nested CV and Bayesian optimization to further
evaluate the chosen features and classification models within a Monte Carlo replication
framework. We enhanced our assessment of the ‘‘best’’ features and models by analyzing
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this pipeline’s outcome using N-way ANOVA and multiple comparison, along with
the Benjamini and Hochberg method to control the false discovery rate methods for
assessed performance metrics (e.g., accuracy, F1, and MCC). To ensure the robustness
and reproducibility of our results, we validated our methodology using both ADNI
and OASIS-3 datasets. Overall, we corroborated that using harmonization approaches
improves the evaluation and selection of biomarkers and classification algorithms and
that imbalanced data analysis could be improved with ideas such as random rebalancing
and nested cross-validation, as implemented with our customized pipeline. Extending our
pipeline for use with other multimodal neuroimaging and improving its automatization
could be critical for the early detection of Alzheimer’s disease and related brain disorders.
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