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ABSTRACT
Under models of isolation-by-distance, population structure is determined by the
probability of identity-by-descent between pairs of genes according to the geographic
distance between them. Well established analytical results indicate that the relationship
between geographical and genetic distance depends mostly on the neighborhood size of
the population which represents a standardized measure of gene flow. To test this pre-
diction, wemodel local dispersal of haploid individuals on a two-dimensional landscape
using seven dispersal kernels: Rayleigh, exponential, half-normal, triangular, gamma,
Lomax and Pareto.When neighborhood size is held constant, the distributions produce
similar patterns of isolation-by-distance, confirming predictions. Considering this, we
propose that the triangular distribution is the appropriate null distribution for isolation-
by-distance studies. Under the triangular distribution, dispersal is uniform over the
neighborhood area which suggests that the common description of neighborhood size
as a measure of an effective, local panmictic population is valid for popular families
of dispersal distributions. We further show how to draw random variables from the
triangular distribution efficiently and argue that it should be utilized in other studies
in which computational efficiency is important.

Subjects Computational Biology, Evolutionary Studies, Genetics, Mathematical Biology
Keywords Identity-by-descent, Neighborhood size, Kinship coefficients, Triangular distribution,
Simulation, Individual based, Fine scale, Correlograms

INTRODUCTION
Formany populations, individuals do not exist in discrete patches or demes; instead they are
spread across a continuous landscape. Although there are no barriers separating individuals,
dispersal distances are often limited, and individuals that are near one another in space will
be more similar genetically than individuals further apart. This phenomenon is known as
isolation-by-distance and introduces a spatial component that should be considered when
studying population genetic processes (Jongejans, Skarpaas & Shea, 2008). Unfortunately,
incorporating multiple dimensions of space at fine scales into analytical models is often
analytically intractable (Epperson et al., 2010). Therefore, many researchers have turned to
spatially-explicit, individual-based computer simulations which offer amore flexible way to
incorporate spatial complexity into biological models (e.g., Barton et al., 2013; Cartwright,
2009; Epperson, 2003; Novembre & Stephens, 2008; Rousset, 2004; Slatkin, 1993).
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A dispersal kernel describes the distribution of Euclidean distances between birth site
and reproduction site. Ideally, whenmodeling dispersal, the dispersal distribution would be
selected based on how well it fits the dispersal kernel estimated from natural populations.
Classically, dispersal has been modeled as a diffusion process with Gaussian displacement;
however, the observed dispersal kernels in many species tend to be more leptokurtic with
a higher probability of short and long distance dispersal (Bateman, 1950). In plants, the
shape of the dispersal kernel near the origin depends on the mechanism of dispersal; for
example, there may be a high peak near the origin for gravity or animal dispersal whereas
there may be a minimum near the origin for wind dispersal (Barluenga et al., 2011; Clark
et al., 2005).

The shape of the dispersal kernel impacts many population processes including the rate
of population expansion (Clark, Lewis & Horvath, 2001; Kot, Lewis & Van den Driessche,
1996), responses to environmental changes (Nathan et al., 2011), local adaptation (Berdahl
et al., 2015), speciation (Hoelzer et al., 2008), and the spatial distribution of genetic
diversity (Bialozyt, Ziegenhagen & Petit, 2006; Ibrahim, Nichols & Hewitt, 1996). Fat-tailed
dispersal kernels, with a higher probability of long-distance dispersal, are a good fit to
many empirical data sets (Bullock & Clarke, 2000; Clark et al., 2005; Gonzàlez-Martìnez
et al., 2006; Martìnez & Gonzàlez-Taboada, 2009; Klein et al., 2006). Many studies have
shown that population models behave differently when fat-tailed dispersal distributions
are used instead of Gaussian dispersal.Kot, Lewis & Van den Driessche (1996) demonstrated
that population spread is sensitive to the shape of the dispersal kernel and models
using a normal distribution underestimated the rate of invasion compared to fat-tailed
distributions. Nathan et al. (2011) found that long distance dispersal plays a large role
during range shifts of wind-dispersed trees in response to projected climate changes.Houtan
et al. (2007) showed that heavy tailed dispersal kernels were a better fit for dispersal of
Amazonian birds but the shape of the dispersal kernel can change in response to forest
fragmentation.

While the shape of the dispersal kernel impacts many population processes at different
scales, it remains unclear how it effects patterns of isolation-by-distancewithin a continuous
population. It has been argued that the number of long-distance dispersal events will not
have a noticeable effect because new long-distance alleles are more likely to be lost due
to drift than become established at the new location (Epperson, 2007; Ibrahim, Nichols &
Hewitt, 1996). On the other hand, the shape of the dispersal kernel near the origin may
have a significant impact on the overall rate of migration. In plants, this could result in
a higher probability of self-fertilization and/or a reduction in the number of successful
offspring when there is density dependent regulation (Barluenga et al., 2011; Howe, Schupp
& Westley, 1985;Moyle, 2006).

Isolation-by-distance theory predicts that the probability of identity-by-descent between
two neutral genes will decrease as the geographic distance between them increases and
this pattern can help quantify spatial genetic structure. The analytical model developed
by Malécot (1969) depends on the effective population density, the mutation rate, the
spatial dimensions of the population, and the dispersal distribution. Much of the isolation-
by-distance work has focused on the lattice model which forces a constant population
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density (Malécot, 1969; Maruyama, 1970; Sawyer, 1977) but these results hold when
considering continuously distributed populations with spatial clustering (Barton et al.,
2013). In two dimensions, the relationship between the probability of identity-by-descent
and the log of distance is linear over a certain range of distances and the relationship is
proportional to 1/(Deσ

2) where De is the effective population density and 2σ 2 is the mean
squared distance of dispersal (i.e., non-central second moment of Euclidean distance;
Barton et al., 2013; Malécot, 1969; Rousset, 1997; Rousset, 2004; Wright, 1946). Over this
range, the slope of the probability of identity-by-descent function is independent of
most aspects of the dispersal distribution except for 2σ 2; however, when the distance
between individuals falls below the range, the shape of the dispersal distribution becomes
important (Rousset, 1997). This suggests that as long as 2σ 2 stays constant, any dispersal
distribution will produce similar patterns of isolation-by-distance. However, Rousset
argues that the magnitude of genetic differentiation will always depend on the shape of the
distribution (Rousset, 1997; Rousset, 2008).

Despite the increase in the use of spatially explicit simulations in studies of spatial genetic
structure, it remains unclear whether the shape of the dispersal kernel should be considered.
There has not been a clear comparison of how the shape of different dispersal kernels affect
observable patterns of isolation-by-distance in these simulations. Here we attempt to offer
such a comparison using a spatially-explicit, individual-based model to simulate local
dispersal in a continuous population to determine if patterns of isolation-by-distance
vary based on the shape of several different dispersal distributions: Rayleigh, half-normal,
exponential, triangular, gamma, Lomax, and Pareto. Each dispersal distribution has a
different shape, but they can be parameterized such that their non-central second moment
is 2σ 2. If the simulations reveal a similar pattern of isolation-by-distance across all dispersal
distributions, we can conclude that, for a wide range of dispersal distributions, 2σ 2 is the
main determining factor of how genetic similarity declines with increasing distance in a
continuous population. Consequently, when designing isolation-by-distance simulations,
researchers may choose a dispersal distribution based on computational needs instead of
biological fit.

Wright (1946) uses the term ‘‘neighborhood’’ to describe a local population from which
parents are randomly drawn. He measures the magnitude of the effective size of the
neighborhood, Nb, as the inverse of the probability that two gametes at the same location
came from the same parent. Assuming dispersal is normally distributed along each axis,
he calculated that Nb= 4πσ 2De , where De is the effective density of individuals, and 2σ 2

is the mean squared distance of dispersal. In his model this captures 86.5% of parents of
central individuals. Although Wright assumed Gaussian dispersal, his formula can be used
to calculate Nb for many different dispersal models at equilibrium due to the central-limit
theorem. Nb is important because it helps define the rate of decay of genetic similarity over
spatial distance, i.e., the amount of isolation-by-distance in a population (Barton et al.,
2013; Rousset, 1997; Rousset, 2000).

If a neighborhood is supposed to represent a local panmictic unit, then in the ideal
model parents should be chosen uniformly from within a circle of radius 2σ centered on
an offspring, and the Euclidean distance between parents and offspring should follow a
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triangular distribution: f (r;σ )= r/(2σ 2), where 2σ 2 is again the non-central second
moment. This type of neighborhood is similar to the neighborhood defined in the
spatially continuous 3-Fleming-Voit disc model in which a number of parents, v , are
chosen uniformly at random from a disc with radius r to replace a fraction u of the
population (Barton et al., 2013). In this model, neighborhood size is defined by the ratio
v/u and the individuals occupying the disc constitute a panmictic population. If 100%
of the population is replaced (u= 1), the definition of neighborhood size reduces to the
number of individuals competing for the central location.

Below, we demonstrate that patterns of isolation-by-distance are equivalent for different
dispersal kernels with the same second moment, and discuss the use of the triangular
distribution to model dispersal in a continuous population.

METHODS
Simulation
In our individual-based simulation, a population exists on a 100× 100 rectangular
lattice (cf. Epperson, 1995; Epperson & Li, 1997; Epperson, 2007; Hardy & Vekemans, 1999).
Individuals are uniformly spaced with a single individual per cell. Each individual contains
one haploid locus. The initial population of 10,000 individuals each carry a unique allele.
Generations are discrete, and individuals reproduce by generating 15 clonal offspring that
experience mutations according to the infinite alleles model at rate µ. All starting and
mutant alleles are selectively neutral.

The offspring disperse from the parent cell following a given dispersal distribution.
The landscape boundaries are absorbing, and when offspring disperse off of the lattice
they are lost. Offspring that land in the same cell will compete to become a parent in the
next generation. Because all alleles are selectively neutral, a single successful offspring is
uniformly selected for each cell. To avoid storing all the offspring in memory until dispersal
is completed, we use a reservoir sampling method to immediately accept or reject offspring
when they land on a cell (Vitter, 1985). Thismethod allows us to keep track of two randomly
chosen offspring per cell. The first offspring becomes a parent in the next generation and
the second individual is recorded to measure the probability of identity-by-descent for
offspring competing for the same cell. While it is possible for a cell to remain empty after
dispersal, we determined that when each parent generates 15 offspring the number of
empty cells per generation is negligible so we assume a constant homogeneous population
density.

Modeling Dispersal
The simulation is spatially-explicit with space represented on a rectangular lattice. Due to
the discrete nature of the lattice, the dispersal kernels will be discretized approximations
of continuous distributions (Chesson & Lee, 2005; Chipperfield et al., 2011). The dispersal
kernel function, f (r,θ;σ ), takes a parameter σ and returns continuous polar coordinates.
The σ parameter is the square root of one-half the secondmoment of dispersal distance. The
polar coordinates include the angle, θ ∈ [0,2π ], which is uniformly distributed to ensure
isotropic dispersal and distance, r > 0, which is drawn from a continuous distribution.
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Once the angle and distance are drawn, the final position is determined by converting
the polar coordinates into rectangular coordinates and adding them to the parent’s
position. The new coordinates are then rounded to determine the integer coordinates of
the destination cell. This dispersal scheme is similar to the centroid-to-area approximation
of continuous dispersal kernels described by Chipperfield et al. (2011), which showed
minimal deviation from expectations especially when cell length is less than the expected
distance.

We looked at seven different dispersal distance kernels (Fig. S1): Rayleigh, exponential,
half-normal, triangular, gamma, Pareto, and Lomax. We chose these distributions because
they provide a range of shapes for short, intermediate, and long distance dispersal.

The Rayleigh is a distribution of Euclidean distances that result from bivariate normal
displacement along the x and y axis. The Rayleigh distribution follows the assumptions
ofWright (1946)’s two-dimensional isolation-by-distance model.

The exponential distribution is more leptokurtic with higher probability of dispersal
at short and long distances and less at intermediate distances. The exponential tail is the
boundary that separates truly heavy-tailed distributions with potentially infinite higher
moments from distributions with all moments finite. The distinction is important because
leptokurtic, heavy-tailed dispersal kernels are typically a better fit to observed dispersal in
nature (Clark, 1998).

The half-normal distribution is equivalent to a normal distribution that has been folded
over the y-axis. In this case, Euclidean distance is simply the absolute value of normally
distributed random variables. The half-normal is a monotonically decreasing distribution
with a convex shoulder near zero. This distribution has a higher probability of dispersal at
intermediate distances compared to the exponential.

The triangular distribution is typically defined using three points: a lower limit, a, an
upper limit, b, and a mode, c . Here we use a special case of the triangular distribution where
a= 0 and b= c = 2σ . We chose this special case of the triangular distribution because in
our dispersal function it will return polar coordinates that are uniformly sampled from
within a circle with area 4πσ 2 which is the same as the neighborhood area (see proof in
Appendix A). The triangular distribution is also the only one of our distributions that has
a finite range, r ∈ [0,2σ ].

Unlike the previous single parameter distributions, the final three distributions have an
additional α shape parameter. The gamma distribution is equivalent to the exponential
distribution when α= 1, and as α increases the distribution becomes more symmetrical
with a higher probability for intermediate distances and a lower probability for short
distances.

The Lomax and Pareto distributions are both heavy-tailed power-law distributions.
The n-th moments are finite only when α > n. The support for the Pareto distribution,
r ∈ [xmin,+∞), begins at a parameter xmin > 0. The Lomax distribution is a Pareto
distribution that has been shifted so that the support begins at zero. We chose values of α
between 2 and 3 so that the second moment of the distribution would be finite but higher
moments are infinite.
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The dispersal function is executed over 100-billion times per simulation, and thus it
is important to make the implementation as efficient as possible. With this aim, we used
an xorshift algorithm for uniform pseudo-random number generation and the ziggurat
rejection sampling algorithm when applicable (Marsaglia & Tsang, 2000b; Marsaglia,
2003). We used two different versions of the ziggurat algorithm to draw distances from the
exponential and half-normal distribution. For the gamma distribution we used a rejection
sampling method that uses the ziggurat algorithm to draw normal variates (Marsaglia &
Tsang, 2000a). Random variables from the Pareto distribution are generated by xmineX/a

where X is an exponentially distributed random variable that we draw using the ziggurat
algorithm. The Lomax distribution is sampled similarly: xmineX/a−xmin.

In addition to generating random distances, the dispersal function requires costly
conversions from polar to Cartesian coordinates. We were able to avoid this conversion
for the Rayleigh and triangular distributions. We simulated the Rayleigh distribution
by drawing vertical and horizontal offsets from independent normal distributions using
the ziggurat algorithm. For the triangular distribution, we developed a discrete sampling
algorithm using the alias method that allows us to draw the vertical and horizontal offsets
simultaneously in constant time (Vose, 1991). See Appendix D for a description of the
algorithm, and Appendix E for an analysis of its superior efficiency compared to the other
distributions we used.

Analysis
A simulation was run for each of the seven types of dispersal distributions under 4 levels
of dispersal (σ = 1, 1.5, 2 and 4) with a mutation rate of µ= 10−4. Each simulation
was run for a burn-in period of 10,000 generations to allow the population to reach a
mutation-drift equilibrium. After the burn-in, data was collected from populations that
were 1,000 generations apart to decrease the correlation between them for a total of
2,000 replicate populations per simulation. In each population, a straight transect of 50
individuals was sampled from the center of the landscape to avoid measuring edge effects.

From the transect, all possible pairs of individuals were placed into distance classes
based on the geographical distance between the pair. The number of pairs that shared an
identical allele was determined and recorded as a proportion of the total number of pairs
in the distance class. The probabilities for each distance class were then averaged over all
sampled populations. Under this sampling scheme, the number of pairs per distance class
decreases as distance increases so in distance class 50 there is only one pair sampled per
population.

The parameters for each dispersal distribution were calculated so that E[X 2
] = 2σ 2;

the calculations are reflected in the probability distribution functions in Fig. S1. Due to
the discrete nature of the lattice, some parameters values were adjusted slightly until the
simulations produced an average, observed, squared distance between parent and offspring,
s2, that was within 5% of the expected value, σ 2. Three of the distributions require a second
α parameter. For the gamma distribution we used α= 1,2,4,8. For the Lomax and Pareto
distributions we used α= 2.4,2.6,2.8,3.0 all of which are infinite in the 3rd and higher
moments.
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Under isolation-by-distance, individuals geographically near one another will tend
to be genetically similar, and this similarity will decrease as the distance between pairs
of individuals increases. Therefore, isolation-by-distance is described by constructing
correlograms of genetic similarity between individuals versus the distance between them.
Genetic similarity can bemeasured using identity-by-descent, identity-by-state, relatedness,
conditional kinship, or F-coefficients and can be based on coalescent times, an ancestral
population, or the current population (Hardy & Vekemans, 1999; Hardy, 2003; Malécot,
1969; Rousset, 1997; Rousset, 2002;Wang, 2014). For two-dimensional populations, genetic
similarity is often plotted against the log-distance separating pairs because theory predicts
that this relationship is approximately linear (Barton et al., 2013;Hardy & Vekemans, 1999;
Rousset, 2000).

We recorded the probability of identity-by-descent for pairs of individuals in each
distance class. Under the infinite alleles model, pairs of individuals were considered
identical-by-descent if they shared the same allele. The probability of identity-by-descent
in each distance class depends on the mutation rate; the probability will be greater when
there are fewer alleles. For more consistent results that are nearly independent of mutation
rate, the probability of identity is often calculated as a ratio that measures genetic similarity
(or differentiation) relative to a particular reference group. We calculated the kinship
coefficient which measures the correlation of genetic similarity between pairs of individuals
a certain distance apart relative to the genetic similarity in the whole sample.

Fr =
pij− p̄
1− p̄

≈
E[T ]−Eij[T ]

E[T ]
. (1)

Here pij is the probability of identity-by-descent between haploid individuals i and
j at distance r and p̄ is the probability of identity-by-descent between random haploid
individuals in the current sample (Hardy & Vekemans, 1999). The kinship coefficient
is related to differences in the expected coalescent times, T , between a specific pair of
individuals and a random pair in the population (Barton et al., 2013). Kinship coefficients
were calculated for each transect and then averaged across transects for each distance class.
Since this statistic is highly dependent on the sampling scheme, we sampled the same
transect in all simulations.

We also calculated the ar parameter of Rousset (2000):

ar =
p0−pij
1−p0

(2)

which measures genetic differentiation over distance relative to the probability of identity-
by-descent within a location. The ar parameter is independent of sampling scheme, but
it does depend on the level of local identity-by-descent, p0, in the population such that
ar approaches infinity as p0 approaches one (Vekemans & Hardy, 2004). Typically, p0 is
estimated from the amount of autozygosity in the population; however, we estimated p0 as
the probability that an individual shared an allele with one of the offspring that it competed
with for the cell, which is suitable for haploid organisms and better fits its definition
(Vekemans & Hardy, 2004).

Furstenau and Cartwright (2016), PeerJ, DOI 10.7717/peerj.1848 7/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.1848


For each simulation,we calculated the average number of unique alleles in a 50-individual
transect (k̄) and the average squared distance between parents and offspring (2s2). Using
k̄, we estimated the population-level diversity, θ̂k (Ewens, 2004 eq. 9.32) and estimated
effective haploid population size as N̂e = θ̂k/2µ and effective density as D̂e = N̂e/A, where
A= 10,000.

Finally, we estimated neighborhood size using two different methods. First we used
our estimated demographic parameters to calculate neighborhood size as the product
N̂b= 4π s2D̂e . We calculated an estimate from samples from each population and calculated
an average over all populations. We then estimated neighborhood size using the regressions
of both Fr and ar on the log of distance. The slope of the ar regression is an estimate of
1/2πσ 2De and the slope of Fr regression is an estimate of−(1−F0)/2πσ 2De (Barton et al.,
2013; Hardy & Vekemans, 1999; Rousset, 2000). We performed the regression for distance
classes between 5 and 35. We estimated the slope from each population sample then pooled
the data from all the samples to get a combined slope estimate.

RESULTS
Behavior of dispersal distributions
The more leptokurtic distributions (exponential, gamma-1 and Lomax) with a high
probability peak near zero have a much higher probability of not dispersing from the
original cell, especially when σ is low. The Pareto distribution, which has a fat tail but has
been shifted so it does not have a peak at zero, has a very low probability of not dispersing.
Under the gamma distribution as the α parameter increases, the probability of remaining
at the origin decreases; when α= 8 the probability is nearly zero for all values of σ . Figure
S2 shows the empirical cumulative distributions generated from 10,000 simulated dispersal
events from each distribution. The probability of not dispersing from the original cell is
indicated by the height of the left-most horizontal line for each distribution.

The average squared parent–offspring dispersal distance, s2, observed for each
distribution was very similar with a relative error of less than 5% from the expected
σ 2 value (Table 1); however, the distribution of these values over sampled generations
varied (Fig. S3A). Expectedly, the thin tailed or no-tail (triangular) dispersal distributions
have the smallest variance because their properties are easier to represent with a small
number of samples. The Lomax distribution has the highest variance with the median
falling slightly below the expected value.

Figure S3B shows the distribution of the average cubed parent–offspring dispersal
distances, s3, for each transect. The theoretical third moment of the Lomax and Pareto
distributions is infinite, while it is not possible to simulate this on a finite landscape, we
do observe values of s3 that are several orders of magnitude larger than distributions with
finite third moments. The distribution of s2 and s3 for the Lomax and Pareto distributions
both have a large positive skew.

Allelic diversity
The distribution of the number of unique alleles is similar for most of the dispersal
kernels with the median falling near the expected value under the infinite alleles model
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Table 1 Estimated neighborhood sizes are similar across all dispersal distributions. Estimates of allele
diversity, θ̂k , effective population density, D̂e , dispersal, s2, and neighborhood size. Neighborhood size is
estimated two different ways. N̂b(θ) is 4π s2D̂e where D̂e is estimated from θ̂k . N̂b(ar ) is twice the inverse of
the slope of ar and the log of distance. The expected neighborhood size (4πσ 2

· 1) is 12.56, 28.28, 50.26,
and 201.06 for σ = 1, 1.5, 2, and 4, respectively.

σ

θ̂k D̂e s2 N̂b(θk ) N̂b(ar ) θ̂k D̂e s2 N̂b(θk ) N̂b(ar )

1 1.5
Ray 1.82 0.91 0.99 11.31 13.07 1.83 0.91 2.33 26.79 31.16
Exp 2.09 1.04 1.04 13.70 14.32 2.04 1.02 2.26 29.04 29.00
Nor 1.94 0.97 0.98 11.94 13.49 1.91 0.95 2.31 27.69 30.61
Tri 1.82 0.91 1.00 11.37 13.58 1.83 0.92 2.36 27.18 31.02
Gam 1 2.07 1.04 1.05 13.63 14.41 2.01 1.00 2.32 29.22 30.07
Gam 2 1.89 0.94 0.98 11.62 12.80 1.85 0.92 2.32 26.98 30.13
Gam 4 1.83 0.92 1.00 11.49 12.88 1.87 0.94 2.32 27.31 28.27
Gam 8 1.80 0.90 1.01 11.45 13.31 1.79 0.90 2.32 26.16 29.91
Lom 2.4 2.97 1.49 1.06 19.70 13.41 2.62 1.31 2.16 35.53 26.65
Lom 2.6 2.88 1.44 0.97 17.61 13.23 2.47 1.24 2.34 36.25 26.11
Lom 2.8 2.73 1.36 1.04 17.78 12.82 2.41 1.21 2.22 33.66 25.30
Lom 3 2.72 1.36 1.00 17.07 14.28 2.36 1.18 2.34 34.71 28.50
Par 2.4 1.98 0.99 0.98 12.18 11.71 1.93 0.97 2.19 26.56 27.12
Par 2.6 1.95 0.98 1.04 12.74 13.82 1.81 0.91 2.28 25.98 27.95
Par 2.8 1.90 0.95 0.97 11.57 12.25 1.85 0.93 2.25 26.16 30.85
Par 3 1.89 0.95 0.99 11.80 13.56 1.89 0.94 2.24 26.54 29.79

2 4
Ray 1.97 0.99 4.07 50.39 58.81 2.02 1.01 16.11 204.93 236.23
Exp 2.02 1.01 4.08 51.88 49.60 2.09 1.05 16.16 212.48 154.94
Nor 1.95 0.97 4.08 49.87 55.00 2.04 1.02 16.04 205.76 189.69
Tri 1.94 0.97 4.11 50.13 54.57 2.09 1.04 16.09 210.87 245.02
Gam 1 2.03 1.01 4.06 51.74 52.25 2.16 1.08 16.15 218.67 257.28
Gam 2 1.89 0.95 4.12 48.88 54.39 2.02 1.01 16.08 204.41 214.04
Gam 4 1.94 0.97 4.08 49.80 55.60 1.98 0.99 15.94 197.97 191.02
Gam 8 1.89 0.94 4.06 48.21 52.47 2.02 1.01 16.11 203.96 231.04
Lom 2.4 2.48 1.24 3.98 62.01 47.94 2.19 1.09 16.06 220.82 180.03
Lom 2.6 2.36 1.18 3.94 58.49 48.10 2.15 1.07 15.45 208.62 219.14
Lom 2.8 2.27 1.13 4.16 59.23 51.08 2.14 1.07 15.81 212.44 241.05
Lom 3 2.24 1.12 3.97 56.05 47.23 2.07 1.04 16.55 215.21 211.19
Par 2.4 1.93 0.97 4.13 50.12 48.20 2.03 1.02 16.04 204.74 192.65
Par 2.6 1.95 0.97 4.11 50.29 51.74 2.03 1.02 15.91 203.23 189.19
Par 2.8 1.98 0.99 4.02 49.95 47.73 1.95 0.97 15.53 189.90 219.90
Par 3 1.98 0.99 4.10 50.92 49.58 2.01 1.00 16.30 205.48 169.53
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(Fig. S4). The expected number of alleles under the infinite alleles model is equal to∑n−1
i=0 θ/(θ+ i)= 7.03 where n= 50 is the number of individuals in the sampled transect.

The Lomax distributions have a higher median number of alleles at lower values of σ but
this gets closer to the expected value when σ > 2. The average diversity is also slightly
elevated for the exponential and gamma-1 simulations.

Differences in effective population size between simulations can be measured by
comparing the number of unique alleles observed in the transects. Different dispersal
kernels produce similar levels of diversity, except for the Lomax distributions which have
a higher θk and consequently a larger effective population size (Table 1).

Spatial autocorrelation and isolation-by-distance
To describe the patterns of isolation-by-distance, we first measured the average probability
of identity-by-descent for each sampled population as a function of distance. All dispersal
kernels produced very similar patterns of isolation-by-distance especially for larger distance
classes (Fig. 1). The probability of identity-by-descent is higher at small distance when σ
is small but the relationship flattens out when σ = 4. Differences between the different
dispersal distributions become apparent when the distance between individuals is small.
The more leptokurtic dispersal distributions have a steeper incline as distance decreases
and they have a higher probability of autozygosity at distance class zero. The plots for the
triangular distribution nearly perfectly overlap the plots for the Rayleigh distribution in all
cases.

Because the probability of identity-by-descent is sensitive to differences in the number
of alleles present in the sample, we also calculated the pairwise-kinship coefficient over the
log of distance (Fig. 2). The kinship coefficient shows how much more or less similar pairs
of individuals in a given distance class are compared to the sample as a whole. The kinship
coefficient is nearly independent of differences in allele number and there is much better
overlap of the plots for the different dispersal distributions. When the kinship coefficient
is plotted against the log of distance there is a negative linear relationship over a certain
range of distances (Hardy & Vekemans, 1999). The slope of this linear range is also similar
across distributions for each value of σ .

Finally, we plot Rousset (2000)’s ar parameter against the log of distance. There is a
positive linear relationship between ar and the log of distance (Fig. 3). The slope of ar is
fairly similar among the dispersal distributions for a given value of σ . However, there is
less overlap in the plots for the different dispersal distributions because the overall amount
of differentiation varies.

Estimated neighborhood size
The N̂b(θk ) estimates are shown in Table 1 and Fig. 4A. Table 1 shows the average estimate
over all population samples. The colored dots in Fig. 4A show this same average relative
to the expected values and the bars represent the middle 50% of the individual sample
estimates. As mentioned previously, the populations with Lomax dispersal tend to have a
greater number of unique alleles and this translates to higher θ̂k , higher effective population
size, and ultimately higher effective density. The estimates for s2 were highly variable but
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Figure 1 Identity-by-descent is similar between different dispersal models. Each plot shows the average
probability of identity-by-descent for pairs of individuals in each distance class. Each panel represents sim-
ulations run with different σ parameters (gray box) for different groups of dispersal distributions.

skewed towards lower values. As a result, the estimates of N̂b(θk ) for the Lomax distribution
appear to be higher on average but the estimates are skewed. Otherwise, the estimates for
the other dispersal distributions are similar and close to the expected values.

Table 1 shows the N̂b(ar ) estimates calculated as the twice the inverse of the regression of
ar and the log of distance for the pooled sample data. Estimates using the slope of the Fr
statistics were identical so they are not shown. The colored dots in Fig. 4B show the slope
estimate of the combined data relative to the expected slope and the bars represent the
middle 50% of the slopes from individual populations. All of the dispersal distributions
have similar slopes. When σ = 4, the actual spread of the slope values is smaller than the
the spread of the slopes for the other values of σ (not shown), but in Fig. 4 the values are
relative so the middle 50% is wider.
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Figure 2 Kinship coefficients are similar between different dispersal models. Each plot shows the aver-
age kinship coefficient for pairs of individuals over the log of the distance between them. Each panel rep-
resents simulations run with different σ parameters (gray box) for different groups of dispersal distribu-
tions. The gray dashed line is at zero so values above the line are more similar than the sample as a whole
while values below the line are less similar than the population as a whole.

DISCUSSION
Approximating continuous dispersal on a discrete lattice will introduce obvious biases
when the dispersal distance is small compared to the scale of the lattice nodes (Chipperfield
et al., 2011). This bias can be seen in Fig. S2 by the jagged nature of the empirical cumulative
distribution (ECDF) (especially when σ is small) compared to the CDF of the continuous
distribution. In the simulation, the distance between nodes is one lattice unit so dispersal
has to exceed at least a distance of 0.5 lattice units to leave the original cell. For Lomax
simulations with small σ , the high probability density near zero falls rapidly before a
distance of 0.5 lattice units has been reached. This means that the majority of dispersal
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Figure 3 Slopes of genetic differentiation are similar between different dispersal models. Each plot
shows the average differentiation, ar , for pairs of individuals over the log of the distance between them.
Each panel represents simulations run with different σ parameters (gray box) for different groups of dis-
persal distributions.

events do not leave the parent cell. The Pareto and Lomax distributions share a similar shape
and a wide tail, but unlike the Lomax distribution, the mode of the Pareto is greater than
zero and almost all dispersal events leave the original cell. We refer back to the differences
between the Lomax and the Pareto when we discuss whether we can differentiate results
that are specific to dispersal with a high peak at zero or are more general to wide-tailed
dispersal.

Allelic diversity is near the expected value predicted by the infinite alleles model for
most distributions. The Lomax distributions tend to have a higher number of alleles up
until σ = 4. This appears to be in agreement with Maruyama (1972) which showed that
the effective population size is larger than the census size when σ < 1 which is the case in
many of the Lomax simulations (Fig. S3). Because the median allele number for the Pareto
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Figure 4 Estimated neighborhood sizes are similar across all dispersal distributions.Neighborhood
size is estimated two different ways. (A) Nb(θk ) is 4π s

2D̂e where D̂e is estimated from θ̂k . The dot is the av-
erage from all populations samples and the bars represent the middle 50% of estimates from individual
samples. (B) The slope estimates, 2

Nb(ar)
, of ar and the log of distance. The dots represent the slope estimate

from the combined data from all samples and the bars represent the middle 50% of slopes from individual
samples.

simulations falls near the expected value, it seems likely that the higher allelic diversity in
the Lomax simulations is due to the high probability of not dispersing. This is supported by
the fact that the average diversity is slightly higher for the exponential and gamma-1 as well.
When dispersal is unlikely to occur outside of the original cell, the number of migrants is
low and the pool of offspring before competition will consist mostly of offspring from the
same parent. It is unlikely that migrants will become established at their new location after
competition and thus more alleles will be maintained.

Much of the theory of isolation-by-distance in continuous populations is based on
infinite or periodic lattice models. Here we simulated dispersal in a continuous population
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occupying a finite lattice with absorbing boundaries to better understand the effect of
the dispersal kernel on isolation-by-distance models on a more natural landscape. As
expected under isolation-by-distance, the probability of identity-by-descent between
neutral alleles in pairs of individuals decreases as the distance between them increases.
When neighborhood size is small, the relationship is very pronounced with a high initial
probability that quickly declines. As neighborhood size increases (σ = 4), this relationship
nearly disappears. This is similar to two-dimensional stepping stone models that show
strong differentiation between populations when Nm� 1 and little differentiation when
Nm> 4 (Kimura & Maruyama, 1971).

Simulations with our different dispersal kernels show a strikingly similar pattern of
isolation-by-distance. However, theory predicts that when distance is small, deviation
in the shape of the dispersal kernel relative to the Rayleigh distribution will become
important (Rousset, 1997; Rousset, 2000). This is evident in our results when we compare
the probabilities of identity-by-descent at small distances between the different dispersal
kernels. When the dispersal kernel is leptokurtic, the probability is higher between
individuals occupying the same location and it is slightly lower for short distances compared
to the Rayleigh results. The pattern of identity-by-descent in other distributions, including
the triangular are nearly identical to the Rayleigh. The situation is similar for the pairwise
kinship except there is even greater similarity between the different dispersal kernels.

Rousset (2008) makes it clear that the increase of genetic differentiation with distance
is robust to the shape of the dispersal kernel but the overall magnitude of differentiation
will depend on the shape of the kernel. Looking at the relationship between ar and the log
of distance for our simulations, we can see that the slope for each distribution is similar
for larger distance values but the plots are shifted up or down depending on kurtosis.
Compared to the other wide tailed distributions, the Pareto distribution is not shifted
upward due to the lack of dispersal at the origin. The ar statistic is a ratio that compares the
amount genetic differentiation between individuals at certain distance to the differentiation
within a single individual. When the probability of identity-by-descent within an individual
is high, the differentiation between neighbors will appear much higher due to a steep initial
drop in identity. As a result, the ar statistic will be greater for leptokurtic distributions even
if the actual probability of identity is similar to other distributions.

As expected, the neighborhood-size estimates are similar to the expected value for
all simulations. Neighborhood size was slightly higher for the Lomax simulations when
using allele diversity to estimate effective density. Otherwise, the slopes of the regression
methods were similar and thus predicted similar neighborhood sizes. This reconfirms that
neighborhood size is a robust descriptor of the decrease of genetic identity with distance.
It also seems clear that fat-tailed dispersal kernels do not have much of an effect in isolated
continuous populations.

The triangular distribution has not been considered a reasonable distribution to use
for modeling biological dispersal. However, as discussed previously, it arises from the
simple assumption that dispersal is locally panmictic, making it potentially useful. When
we compared the triangular distribution against more popular dispersal models, there were
no qualitative differences between the resulting patterns of isolation-by-distance.
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Table 2 Triangular dispersal algorithm is the most efficient. Execution time and relative time for 109

dispersal events from different dispersal functions ordered from most to least efficient.

Dispersal function CPU seconds Relative time

Triangular 21.853 1
Rayleigh 27.713 1.268
Exponential 106.434 4.870
Half Normal 106.771 4.886
Gamma 119.357 5.462
Pareto 127.218 5.822
Lomax 127.376 5.829

The triangular dispersal model can serve as a null model for the probability that two
lineages will meet and coalesce in a previous generation. Identity-by-descentmay be defined
as the total probability of coalescence between the current generation, t0, and a generation
at some time t in the past (Rousset, 2002). When a population is not panmictic due to
limited dispersal, the time to coalescence depends on the probability that the two lineages
will move close enough together so that there is some probability that they shared a parent
in the previous generation. When the dispersal kernel has an infinite tail, there is always
some small probability that two individuals coalesce even if they are very far apart. Because
the triangular distribution is finite with a maximum distance of 2σ , the probability that
two individuals coalesce in the previous generation is 1/(4πσ 2D) if they are separated by
a distance less than 2σ and zero otherwise.

The triangular distribution allows us to simulate dispersal more efficiently than
other dispersal kernels because it is uniform over a finite area. It allows us to easily
pre-compute probabilities of dispersal to neighboring cells and use an efficient discrete
sampling algorithm to sample dispersal positions. A similar approach is possible for other
dispersal distributions. For distributions with infinite tails this would require defining a
truncated distribution which captures the bulk of the dispersal probabilities. Then, for two
dimensions, double integrals would need to be calculated to determine the probabilities
of dispersal to locations on the lattice. These pre-computations are laborious because
in addition to the double integrals, many cells will have non-zero probabilities. For the
triangular distribution, only cells in a radius of 2σ will have non-zero probability and since
the distribution is uniform, the probabilities are easy to calculate.

Our results suggest that the relationship between probability of identity-by-descent
and distance is similar for a wide range of dispersal kernels in a continuous population,
and both theoretical and computational concerns suggest that triangular distributions
should be included in the molecular ecologist’s toolkit. However, these results should
not be taken to mean that it is always safe to ignore the shape of the dispersal kernel.
As we demonstrate here, the high number of extremely limited dispersal events under
the Lomax distribution increases the probability of identity-by-descent within a cell. In
a hermaphroditic plant this could translate into a higher rate of self-fertilization. The
shape of the tail can impact the number of long distance dispersal events which may affect
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the rate of population expansion, colonization, responses to climate change, population
fragmentation and the movement of genes between locally adapted populations. Each of
these processes will be affected by the dispersal distribution chosen for the simulation.
However, when simulating a population structured by isolation-by-distance, the shape of
the dispersal kernel does not appear to have a strong effect in a finite, isolated population.
Because speed is an important factor in deploying isolation-by-distance simulations in
analytical contexts, e.g., approximate Bayesian computation, we recommend using the
triangular distribution when long distance dispersal and other features of the dispersal
kernel can safely be ignored.
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APPENDIX A. TRIANGULAR DISTRIBUTED DISTANCES CAN
PRODUCE A UNIFORM DISTRIBUTION ON A DISK
Proof
The probability density of a uniform distribution over a finite two-dimensional shape is
defined as:

f (x,y)=


1

area of S
if (x,y)∈ S

0 otherwise

where (x,y) are coordinates on the Cartesian plane and S is the set of all points within
the shape. A uniform distribution on the region bounded by a circle is defined by 1

πR2

where R is the radius of the circle. We are interested in a circle with radius R= 2σ and area
A= 4πσ 2 so the non-zero part of the joint probability distribution is given by:

f (x,y;σ )=
1

4πσ 2 when x2+y2≤ 4σ 2.

Using the change of variables theorem for polar coordinates, (r,θ), we have:∫∫
D
f (x,y) dx dy =

∫∫
D∗
f (r cosθ,r sinθ)r dr dθ

=

∫∫
D∗

r
4πσ 2 dr dθ

=

∫∫
D∗

1
2π

r
2σ 2 dr dθ.

We then integrate out the angle θ to isolate the distribution of distance, f (r;σ ):

f (r;σ )=
∫ 2π

0

r
4πσ 2 dθ =

r
4πσ 2 θ

∣∣∣2π
0
=

r
2σ 2 for 0≤ r ≤ 2σ .
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The distribution of distances is equivalent to a special case of the triangular distribution.
The probability density function for the triangular distribution is

f (r;a,b,c)=



0 for r < a

2(r−a)
(b−a)(c−a)

for a≤ r ≤ c

2(b− r)
(b−a)(b− c)

for c ≤ r ≤ b

0 for r > b

where a is the lower limit, b is the upper limit, and c is the mode. In the special case, we set
a= 0 and b= c = 2σ . The probability density function for the special case of the triangular
distribution simplifies to

f (r;σ )=

{ r
2σ 2 for 0≤ r ≤ 2σ

0 otherwise

APPENDIX B. XORSHIFT RANDOM NUMBER GENERATOR
Xorshift is a type of pseudo-random number generator that relies on exclusive-or and
bitshift operators (Marsaglia, 2003). Xorshift is one of the most efficient, high-quality
random-number generators known. Our implementation is a 64-bit xorshift with shift
parameters (5, 15, 27) added to a Weyl series to decrease bit correlations (Brent, 2007). It
passes the BigCrush tests in the TestU01 suite (L’Ecuyer & Simard, 2007).

APPENDIX C. GENERATING FROM A CONTINUOUS
TRIANGULAR DISTRIBUTION
Inverse sampling can be used to generate values from a triangular distribution. Note
that we are only working with monotonically increasing triangular distributions and not
more general formulations. If u is uniformly distributed in (0,1), the value d = 2s

√
u

has a triangular distribution with parameter s. However, a modified rejection sampling
algorithm is faster. If u1 and u2 are independent and uniformly distributed in (0,1), then
d = 2smax(u1,u2) also has a triangular distribution. Because we can generate 32-bit values
for both u1 and u2 from a single 64-bit random number, this second algorithm is more
efficient than the first. While it is possible to construct a ziggurat algorithm (Marsaglia &
Tsang, 2000b) for a triangular distribution, our second algorithm is more efficient because
it involves fewer steps and never rejects.

We compared the speed of these algorithms and a naive rejection sampler using the
medium Crush tests (L’Ecuyer & Simard, 2007). This allowed us to compare the speeds
of these algorithms in a data-intensive application as well as verify that the algorithms
produced independent and identically distributed values from the correct distribution.
The ‘maximum’ algorithm took 1,656 s to complete, while the ‘sqrt’ took 1,700 s and the
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rejection sampler took 1,911 s. The maximum algorithm produced faster execution, but
only sped up the tests by 3% over sqrt.

APPENDIX D. GENERATING DISCRETE TWO-DIMENSIONAL
DISPERSAL FROM A TRIANGULAR DISTRIBUTION
We can use the maximum algorithm above to generate the values in polar coordinates
and convert them to Cartesian coordinates; however, this requires calculating sine and
cosine functions, which we would rather not do. When modeling dispersal on a lattice, the
bounded nature of the triangular distribution allows dispersal to be modeled discretely. To
discretize this distribution on a rectangular lattice we must determine the probabilities for
each cell which are proportional to the area of the cell that is covered by a disk of radius
r = 2σ (centered on a focal cell). The algorithm described here produces probability tables
by calculating the appropriate area for each cell and dividing by the total area. We assume
that cells are squares with unit area.

Since the disk is symmetrical, this algorithm may be simplified by calculating areas
for quadrant I of the disk and mirroring those values to the other quadrants. We further
simplify by calculating approximately half of the areas for quadrant I and mirroring those
as well. Note that this results in cells along the x and y axes having an area of 1/2. Starting at
the center of the focal cell (y0= 0), we record the top/bottom boundary of each cell along
the y-axis up to the radius: y1= 0.5, y2= 1.5,..., yn= n−0.5 where n= supn∈Zyn≤ r .

Next we calculate the area of the first column of cells which has a left boundary at x0= 0
and a right boundary at x1=min(0.5,r):

A=
∫ x1

x0

√
r2−x2dx.

Starting with the bottom cell, we check if the area of a cell is less than the area of the
column. If so, the cell is completely contained in the disk, and the cell is assigned a weight
equal to its area. Its area is then subtracted from the area of the column. We continue this
procedure until the the area of last cell is less than the remaining area of the column and
assign the final cell a weight equal to the remaining area in the column.

We then move to the next column by setting x0= 0.5 and x1= 1.5. However, before we
calculate the area, we must check if the edge of the disk passes through the bottom of the
top cell. This occurs if x21 + y2> r2, where y is the value of the bottom boundary of the
cell. When this occurs, we split the column into two smaller columns and each column is
processed just like before. We continue calculating the area of subsequent columns until
we reach the column that contains the point {x,y} =

{
r/
√
2,r/
√
2
}
, which marks the

point where the edge of the disk intersects the diagonal. After this column is processed,
the weights for these cells can be copied symmetrically. The weight of each cell is divided
by the total area of the disk and becomes a probability. These probabilities are then copied
symmetrically to the other three quadrants. The completed table of probabilities can then
be passed into the alias algorithm for discrete sampling (Vose, 1991).
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Our implementation of a discretized triangular kernel can be found in src/disk.h
and src/disk.cpp in the source code. Code for generating an alias table can be found in
src/aliastable.h.

APPENDIX E. RELATIVE EXECUTION TIME OF DISPERSAL
FUNCTIONS
To compare the run time for the different dispersal functions we simulated one dispersal
event from each cell on a 100×100 landscape 100,000 times for a total of 109 dispersal
events. For each simulation σ = 1, and α= 3 for the two parameter distributions. The CPU
time was averaged over 5 different runs (Table 2). Our implementation of the triangular
distribution was the most efficient followed by the Rayleigh which took about 26.8% longer
on average. The half-normal and the exponential functions had similar execution times but
took nearly 5 times longer than the triangular function. The gamma, Pareto, and Lomax
were the least efficient functions running over 5 times longer than the triangular function.
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