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Abstract 14 

Ctenophores (comb jellies) are emerging as important animals for investigating 15 

fundamental questions across numerous branches of biology (e.g., evodevo, neuroscience. and 16 

biogeography). Several ctenophore species including, most notably, Mnemiopsis leidyi, are 17 

known as invasive species, adding to the importance of studying the ecology of these animals. 18 

Despite the growing interest, relatively little is known about ctenophore reproduction. Like most 19 

ctenophores, M. leidyi is a simultaneous hermaphrodite capable of self-fertilization. In this study, 20 

we assess the influence of light on spawning, the effect of body size on spawning likelihood and 21 

reproductive output, and the cost of self-fertilization on egg viability in M. leidyi. Our results 22 

suggest that M. leidyi spawning is more strongly influenced by circadian rhythms than specific 23 

light clues, and that body size significantly impacts spawning and reproductive output.  We also 24 

find a lower percentage of viable embryos from M. leidyi that were spawned alone versus those 25 

that were spawned in pairs, suggesting that self-fertilization may be costly in these animals. 26 

These results provide critical insight into the reproductive ecology of these ctenophores and 27 

provide a fundamental resource for researchers working with M. leidyi in the laboratory.  28 

Introduction  29 

 Ctenophores (comb jellies) are fascinating planktonic animals most easily recognized by 30 

eight rows of cilia that they use as their primary means of locomotion. Recent work suggests 31 

ctenophores are the sister group to the rest of all animals and therefore are especially informative 32 

as to the state of the most recent common ancestor of animals (Dunn et al. 2008; Hejnol et al. 33 

2009; Ryan et al. 2013; Borowiec et al. 2015; Chang et al. 2015; Whelan et al. 2015) but see 34 

(Pisani et al. 2015). This phylogenetic position, the availability of nuclear and mitochondrial 35 
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genome sequences (Pett et al. 2011; Ryan et al. 2013), and the ease with which embryos can be 36 

collected and observed (Pang & Martindale 2008b) has made the ctenophore Mnemiopsis leidyi 37 

(Fig. 1) an emergent model system in which to study animal evolution and development (Pang & 38 

Martindale 2008a). In addition, since the invasion of M. leidyi into European waters from its 39 

native range on the Atlantic seaboard (Vinogradov et al. 1989; Reusch et al. 2010) has had 40 

profound impacts on European fisheries (Kideys 2002; Oguz, Fach & Salihoglu 2008; Finenko et 41 

al. 2013), interest is high in the biogeography and invasion dynamics of M. leidyi. Despite the 42 

growing importance and utility of M. leidyi, the reproductive ecology of these animals is not very 43 

well understood.  44 

 The reproductive biology and life-history of M. leidyi has likely played a major role in its 45 

ability to invade and establish populations in foreign waters. M. leidyi, like most ctenophores, are 46 

simultaneous hermaphrodites that have the ability to self-fertilize and have been observed to 47 

produce thousands of eggs a day (Baker & Reeve 1974; Costello et al. 2006; Lehtiniemi et al. 48 

2012). Offspring may develop from egg to reproductive adult in as few as 13 days (Baker & 49 

Reeve 1974; Costello et al. 2012). M. leidyi may even produce viable gametes as juveniles 50 

(Martindale 1987).  51 

 A number of studies have described the spawning behavior of M. leidyi (Baker & Reeve 52 

1974; Pang & Martindale 2008b). Early research suggested that M. leidyi spawns as a response 53 

to darkness (e.g., sunset) (Freeman & Reynolds 1973), while more recent protocols have stated 54 

that M. leidyi use light cues to trigger spawning, readily releasing gametes upon exposure to light 55 

after spending at least three to four hours in darkness (Pang & Martindale 2008b).  56 
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Adult M. leidyi vary dramatically in body size and this variation can affect both the 57 

likelihood to spawn and the number of eggs produced (Baker & Reeve 1974; Finenko et al. 58 

2006). Animals are more likely to spawn as they grow larger (Baker & Reeve 1974) and larger 59 

animals generally produce more eggs per day (Baker & Reeve 1974; Finenko et al. 2006). 60 

However, the threshold size before spawning begins has varied from 15mm (Finenko et al. 2006) 61 

to 32mm (Baker & Reeve 1974) across studies. It is unclear whether this wide variation in initial 62 

spawning size is due to population-specific differences, seasonal timing, or other factors.   63 

While self-fertilization may provide the benefit of allowing M. leidyi to reproduce when 64 

conspecifics are not present, it may also come with the cost of inbreeding depression. Inbreeding 65 

depression has been shown to affect the viability of offspring in many systems (Charlesworth & 66 

Charlesworth 1987; Crnokrak & Roff 1999; Herlihy & Eckert 2002). Rates of self-fertilization 67 

and inbreeding depression may be especially high in recently established populations where the 68 

population size and genetic diversity are low. Thus, establishing the degree to which self-69 

fertilization is costly in M. leidyi has particular significance for the management of areas where 70 

these ctenophores are invasive. However, to our knowledge, the costs associated with self-71 

fertilization in M. leidyi have never been thoroughly investigated. 72 

 In this study, we aim to describe the reproductive cues, effect of body size on spawning, 73 

and potential costs of self-fertilization in M. leidyi. We first investigate spawning cues by placing 74 

individuals under different light regiments. We then describe how body size influences spawning 75 

likelihood, egg production, and egg viability. Finally, we test whether self-fertilization in M. 76 

leidyi is costly by comparing the viability of eggs from ctenophores spawned individually to 77 

those spawned with a partner. If self-fertilization is costly, we predict that the offspring of M. 78 

leidyi spawning alone will have lower viability than those spawned in groups. Taken together, 79 
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this study will provide a detailed description of the reproductive ecology of M. leidyi , supply  80 

critical information for studying the invasive impact of these ctenophores, and become a pivotal 81 

resource for establishing M. leidyi as a model system in the laboratory. 82 

Materials & Methods 83 

Collection 84 

We carefully collected a total of 218 M. leidyi from the surface waters of Port Orange and 85 

St. Augustine, FL using a cteno-dipper (beaker on a stick) and transported them in buckets to the 86 

Whitney Laboratory for the Marine Biosciences in St. Augustine, FL between June and October 87 

2015. Upon arrival, the ctenophores were transferred first to a large beaker with filtered sea 88 

water and then placed in 4” diameter circular glass dishes filled with 250 mL of filtered sea 89 

water. We labeled each bowl with a unique identification number and measured the polar length 90 

of every ctenophore along the oral/aboral axis to the nearest mm using calipers. Most 91 

ctenophores were released after spawning although a few were used for DNA and RNA 92 

extraction.  93 

Light effects on spawning and egg production 94 

We tested the protocol described in Pang and Martindale (2008b) using a subset of 64 M. 95 

leidyi that we had collected that day (N = 25) or collected and kept overnight in a large kreisel 96 

aquarium (N = 39). We did not monitor animals for spawning while they were in the kreisel. 97 

Between the hours of 10:00 and 18:00, we placed these animals in dishes in the dark for three to 98 

four hours. Upon exposure to light, bowls were monitored over the next two hours for the 99 

presence of eggs.  100 
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We conducted a separate set of experiments to test the importance of light cues for 101 

spawning on a subset of the M. leidyi that we had collected from Port Orange (N=66). On the day 102 

of collection, we separated each ctenophore into individual 4” diameter bowls filled with 250 mL 103 

of filtered seawater and haphazardly assigned individuals to one of four treatments: A) constant 104 

light (N = 21), B) 11 hours of light and then four hours of darkness (N = 15), C) seven hours of 105 

light and then eight hours of darkness (N = 12), or D) constant darkness (N = 18).  All treatments 106 

began at 18:00 and ended at 9:00 the next day, at which point we exposed all of the animals to 107 

light and immediately recorded whether eggs were present in each bowl. 108 

Size effects on spawning, egg production, and egg viability 109 

In many systems, body size strongly influences reproductive output. We designed an 110 

experiment to test the effect of body size on spawning likelihood, egg production, and offspring 111 

viability.  We tested the effect of size on spawning likelihood using the ctenophores already 112 

spawned in the previous light cues experiment (N=66) and an additional 52 M. leidyi (total N = 113 

118) that we collected. We measured the length of every ctenophore along the oral/aboral axis to 114 

the nearest mm using calipers and then placed each in their own bowl with 250 mL of filtered 115 

seawater. We left the additional 52 animals that had not already been spawned overnight in either 116 

constant darkness (N = 26) or in a room with no artificial lights and an uncovered window to 117 

experience natural changes in light (N = 26). We immediately recorded whether eggs were 118 

present in each bowl on the following morning at 9:00. Since M. leidyi typically spawn hundreds 119 

of eggs, we only considered bowls with at least 15 eggs as having a true spawn. We calculated 120 

the effect of size on spawning likelihood using logistic regression and visualized the data with a 121 

cubic spline.  122 
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 To collect the eggs of the ctenophores that spawned, we poured the water and eggs from 123 

each bowl through a 70-µm filter. The eggs of each ctenophore were then pipetted into separate 124 

2” diameter bowls filled with filtered seawater. Eggs were allowed to settle in the bowl before 125 

we counted eggs.  126 

 A number of the ctenophores produced thousands of eggs, making a direct count of all 127 

eggs difficult. To address this challenge, we developed a protocol to allow us to estimate the 128 

number of eggs in each 2” bowl. We drew a 2” diameter circle and placed a square within the 129 

circle so that each point on the square touched the edge of the circle (Fig. 2). Finally, we divided 130 

the square into eight equal sized triangles that we labeled 1 – 8. For each ctenophore, we counted 131 

the number of eggs in two randomly selected triangles. Two triangles comprise 15.91% of the 132 

total area of the circle, and so to estimate the total number of eggs in the dish we multiplied the 133 

combined egg count by 6.285. Estimated egg production was log-transformed to increase 134 

normality. We then evaluated the correlation between body size and estimated egg production 135 

using linear regression for the individuals that spawned (N = 30). The reason the eggs from more 136 

M. leidyi spawns were not counted is because we developed the counting method halfway 137 

through the study.  138 

To determine egg viability, we recounted the number of eggs in each dish after 24 hours. 139 

M. leidyi typically develop into juvenile cydippids within 18-24 hours after fertilization 140 

(Martindale & Henry 2015). Juveniles can easily be distinguished from undeveloped eggs due to 141 

ciliary movement, and since viable embryos can swim away from their original triangle into the 142 

water column, we counted the number of undeveloped eggs in the same triangles as in the egg 143 

production assay.  We then estimated the number of undeveloped eggs in the entire dish using 144 

the method described above. Using this estimate we calculated the percent of undeveloped eggs 145 
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(estimated undeveloped eggs / estimated total eggs) and subtracted that number from one to 146 

determine the percentage of viable eggs. We used linear regression to assess the effect of body 147 

size on egg viability (N = 30). 148 

Costs of self-fertilization 149 

If self-fertilization is costly, we would expect M. leidyi that were spawned alone to have 150 

reduced offspring viability compared to those that were spawned in pairs. To test for such a cost, 151 

80 M. leidyi were randomly placed by themselves or with another individual in a 4” diameter 152 

bowl with 250 mL of filtered seawater. Individuals were spawned overnight and the next day we 153 

estimated the number of eggs present in each bowl and the percent of viable offspring 24 hours 154 

later (see above). We compared estimated egg production and egg viability from ctenophores 155 

spawned alone (N = 30 for egg production, N = 29 for egg viability) to ctenophores spawned in 156 

pairs (N = 25) using Student’s t-test.  157 

All statistical analyses were run in JMP 11.0 (SAS Institute, Cary, NC).  158 

Results 159 

Spawning cues 160 

Following the recent spawning protocol (Pang & Martindale 2008b), we placed M. leidyi 161 

in the dark for three to four hours between the hours of 10:00 and 18:00 before exposing them to 162 

light. After two hours in light, only five of 39 (12.8%) animals had produced any eggs. 163 

Furthermore, the few ctenophores that did spawn often released only a few eggs (median = 18 164 

eggs, range 12 – 177 eggs). 165 

 We next tested the role of light cues in M. leidyi spawning. We kept ctenophores in 166 

individual bowls overnight in four treatments with varied light cycles and checked each bowl for 167 
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eggs the following morning. Almost every ctenophore spawned overnight; we found no 168 

difference between ctenophores kept in constant light (20/21 [95%] spawned), four hours of 169 

darkness (15/15 [100%] spawned), eight hours of darkness (12/12 [100%] spawned), or constant 170 

darkness (17/18 [94%] spawned).  171 

Size effects on spawning and egg viability 172 

As M. leidyi grow larger, the likelihood of spawning significantly increases (Fig. 3, 173 

Logistic regression, N = 118, χ
2
 = 62.0, p < 0.0001). All but three ctenophores larger than 30mm 174 

spawned overnight, while only one ctenophore smaller than 26mm produced eggs. 175 

We saw large variation in the number of estimated eggs spawned (range = 25-3934 eggs, 176 

median = 484 eggs).  Larger individuals generally produced more eggs (Fig. 4, N = 30, r
2
 = .38, 177 

p < 0.001). We also found a weak but insignificant positive correlation between body size and 178 

egg viability (Fig. 5, N = 29, r
2
 = 0.12, p = 0.07).  179 

Costs of self-fertilization 180 

We compared the egg production between M. leidyi that spawned alone (N = 30) with M. 181 

leidyi that spawned in pairs (N = 25). We found no difference between treatments in the 182 

estimated number of eggs produced (Fig. 6, Student’s t-test, t-ratio = 0.005, p = 1.0). However, 183 

we did find that a higher percentage of offspring from individuals that spawned in pairs (N = 25) 184 

had developed after 24 hours when compared with individuals that spawned by themselves (N = 185 

29, Fig. 7, Student’s t-test, t-ratio = 2.3, df = 52, p = 0.025).  186 

Discussion  187 
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The ctenophore Mnemiopsis leidyi has become an emerging model from which to study 188 

evolution and development, especially for understanding early animal evolution (Pang & 189 

Martindale 2008a). Additionally, the invasion of M. leidyi in European waters has had 190 

devastating impacts on fisheries (Shiganova 1998; Kideys 2002; Finenko et al. 2013) and has led 191 

to strong interest in these animals. Understanding M. leidyi reproductive ecology is a necessary 192 

step in establishing it as an important model in the laboratory and may allow for improved 193 

management of these animals in afflicted areas.  194 

Previous work has suggested that M. leidyi uses light cues to induce spawning (Freeman 195 

& Reynolds 1973; Pang & Martindale 2008b; Martindale & Henry 2015); however, our attempts 196 

at replicating this spawning cue failed. Instead, we found that almost every M. leidyi over a 197 

certain size spawned overnight regardless of the light/dark cycle; even those individuals that 198 

were placed under constant light consistently spawned. This result suggests that M. leidyi spawns 199 

using a circadian rhythm rather than specific light cues, at least when initially brought into the 200 

lab. Sequencing data indicate that the M. leidyi genome contains a number of orthologs involved 201 

in animal circadian rhythm including Clock and ARNTL. These and other circadian rhythm 202 

genes have been associated with reproduction and reproductive timing in a number of systems 203 

(Boden & Kennaway 2006; Leder, Danzmann & Ferguson 2006; Liedvogel et al. 2009). 204 

Functional genomic analyses into how these circadian-rhythm genes affect spawning could 205 

potentially provide solid evidence linking circadian rhythms and M. leidyi spawning. Given the 206 

phylogenetic position of ctenophores as the sister lineage to the rest of animals (Dunn et al. 207 

2008; Ryan et al. 2013; Borowiec et al. 2015; Chang et al. 2015; Whelan et al. 2015), such a 208 

study would also address to what extent the genetic circuitry underlying animal circadian rhythm 209 

was present in the last common animal ancestor. 210 
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 Previous spawning protocols were described for M. leidyi populations near Woods Hole, 211 

Massachusetts (Pang & Martindale 2008b). To our knowledge, spawning protocols have not 212 

previously been described for M. leidyi in the Atlantic waters of northern Florida. While these 213 

two Mnemiopsis populations had previously been classified as a separate species (Massachusetts 214 

= Mnemiopsis leidyi, Agassiz 1865, northern Florida = Mnemiopsis mccradyi Mayer, 1900), they 215 

are now generally considered to be separate populations of the same species (Pang & Martindale 216 

2008a; Bayha et al. 2015), although this has yet to be extensively tested genetically. Populations 217 

within species may differ in their reproductive timing or cues (e.g. Partecke, Van't Hof & 218 

Gwinner 2004; Moore, Bonier & Wingfield 2005) and so it could be that the spawning behavior 219 

we observed is unique to the northern Florida population of M. leidyi. Alternatively, spawning 220 

behavior could change across seasons with changes to day length or water temperature.  221 

 Body size plays an essential role in ctenophore reproduction. Spawning occurs almost 222 

exclusively in larger M. leidyi (>30mm), although a few individuals smaller than 30mm spawned 223 

and a few animals larger than 40mm did not spawn (Fig. 3). Interestingly, this result differs from 224 

M. leidyi reproduction in the Caspian Sea where individuals begin spawning at 15 mm and the 225 

most common size of spawning individuals is between 20 and 30 mm (Finenko et al. 2006). Why 226 

these populations differ in size of reproduction is unclear, but they may be influenced by water 227 

temperature, resource abundance, or the low salinity of the Caspian Sea (Finenko et al. 2006). 228 

The differences in the non-native M. leidyi might also be a result of selection for body size or age 229 

of reproductive maturity due to selective pressures imposed by ship-ballast transport.  230 

Not surprisingly, larger individuals in our study produced more eggs than smaller 231 

individuals (Fig. 4). Body size may correspond to nutritional status rather than age (Reeve, Syms 232 

& Kremer 1989) and so larger ctenophores may simply be those well fed enough to produce 233 
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gametes. The production of gametes is costly (Hayward & Gillooly 2011) and smaller 234 

ctenophores preferentially allocate resources to somatic growth rather than gamete production 235 

(Reeve, Syms & Kremer 1989). Since larger individuals consume more prey (Bishop 1967; 236 

Finenko et al. 2006) they likely have more resources available to produce eggs than smaller 237 

individuals.  238 

Body size may also affect offspring viability. We found that the percentage of developed 239 

eggs after 24 hours increased as individuals grew larger (Fig. 5), although this result was 240 

marginally not significant. If body size truly does affect offspring viability it may be due to 241 

sperm volume. If sperm are limited, especially in small individuals, larger animals may simply 242 

have more sperm available to fertilize eggs. Alternatively, larger animals may provision more 243 

resources to their eggs than smaller animals, which may increase egg viability or development 244 

speed. This possibility could be tested by comparing the size of eggs across body sizes.  245 

 Most ctenophores are simultaneous hermaphrodites with the ability to self-fertilize 246 

(Martindale & Henry 2015), but it is unknown whether self-fertilization is costly in these 247 

animals. Self-fertilization may lead to inbreeding depression which has been shown to have a 248 

suite of negative effects, such as reduced fecundity or viability, in many systems (Charlesworth 249 

& Charlesworth 1987; Crnokrak & Roff 1999; Herlihy & Eckert 2002). We have shown that M. 250 

leidyi individuals spawning alone had a lower percentage of developed offspring after 24 hours 251 

than ctenophores that spawned in pairs (Fig. 7). What contributes to this apparent cost to self-252 

fertilization is unclear. It could be that spawning pairs simply fertilize more eggs than individuals 253 

spawning alone, which could occur if sperm are limited. Another possibility could be that the 254 

percentage of eggs fertilized did not differ between treatments but that fewer fertilized eggs 255 

developed for individuals spawning alone. Although we did not differentiate between 256 
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unfertilized eggs and non-developing embryos in this study, we did commonly observe embryos 257 

that appeared to have arrested development after only a few stages of cell division. This 258 

possibility is consistent with a reduction in offspring viability due to inbreeding depression.  259 

Interestingly, ctenophores in pairs did not produce more eggs than those spawning alone 260 

(Fig. 6). The average size of the ctenophores did not differ between treatments, suggesting that, 261 

when paired, ctenophores either reduce the number of eggs spawned or only one of the two 262 

ctenophores spawned eggs. This latter option, referred to as egg-trading, may indicate the 263 

intriguing possibility that ctenophores alternate between releasing sperm and eggs when in pairs 264 

or groups. Egg-trading has been reported in other simultaneously hermaphroditic systems 265 

including sea slugs, tobacco fish, and polychaetes (Leonard & Lukowiak 1984; Sella 1985; 266 

Petersen 1995). This behavior could be used to reduce the chance of self-fertilization in M. 267 

leidyi. However, the underlying assumption of egg-trading is that individuals spawn with the 268 

same partners multiple times; we would not expect this to be the case in M. leidyi under natural 269 

circumstances since movement is largely governed by water flow. 270 

Our results also suggest that individuals may be more efficient when spawning alone than 271 

with others. Despite the reduced percentage of developing eggs, more viable offspring were 272 

produced per individual when spawned alone than when paired. However, we only spawned each 273 

ctenophore once. Individuals spawning alone may require a longer refractory period for 274 

gametogenesis before spawning again than paired individuals that alternate between releasing 275 

eggs and sperm. Comparing the reproductive output and viability between paired and single 276 

individuals over multiple days could provide more resolution on the costs associated with self-277 

fertilization.  278 
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The ability to self-fertilize almost certainly enhances the capability of ctenophores to 279 

spread when invading new areas. However, the costs to self-fertilization that we’ve demonstrated 280 

may at least slow down their invasive capabilities. These costs may be especially high at the 281 

initial stages of an invasion when population numbers and genetic diversity are low. Our self-282 

fertilization experiment only examined one stage of development (i.e., 24 hours after spawning) 283 

in one generation and yet we still found evidence that self-fertilization is costly. Additional costs 284 

likely do not appear until later in life or after multiple generations of self-fertilized offspring. An 285 

experiment investigating the multi-generational effects of self-fertilization may provide a clearer 286 

picture of the hurdles, or lack of hurdles, Mnemiopsis faces when initially invading a new area.  287 

Conclusions 288 

Due to their evolutionary position as sister taxa to all other animals (Ryan et al. 2013), 289 

ctenophores in general, and M. leidyi in particular, are quickly emerging as new model systems 290 

from which to understand evolution, development, regeneration, and even human disease (Pang 291 

& Martindale 2008a; Maxwell et al. 2014). Understanding the reproductive ecology of 292 

ctenophores is a necessary step in establishing these animals as tractable models for these areas 293 

of research. This study has reinforced the importance of body size in M. leidyi reproduction and 294 

has provided the first suggestions that self-fertilization may be costly in ctenophores. However, 295 

ctenophore reproduction in natural systems is still very much a mystery. For example, little is 296 

known about how common it is for M. leidyi to self-fertilize in the wild. We have shown that 297 

spawning likely follows a circadian rhythm, which may be a mechanism to increase the odds of 298 

out-crossing if all animals spawn simultaneously. If self-fertilization is indeed costly, additional 299 

adaptions to increase the chance of out-crossing are likely. This work provides a fundamental 300 



resource for researchers working with M. leidyi in their laboratory, as well as, a jumping-off 301 

point from which future studies of M. leidyi reproductive biology can be launched.  302 
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Fig. 1 Mnemiopsis leidyi 



 411 

  412 
Fig. 2 The diagram used to estimate egg numbers. 

Each triangle (labeled 1 – 8) represents 7.96% of 

the total area of the circle. We counted the eggs in 

two triangles and then multiplied the total by 

6.285 to estimate the total number of eggs in the 

dish. Scaled to actual size used for 2” bowls. 
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Fig. 3 Cubic spline showing the effect of body size on the likelihood to spawn. 

Individuals smaller than 26mm rarely spawned while those larger than 30mm 

almost always spawned. Lambda value of cubic spline set to 1.  

Comment [R244]: Here, I would also 
like to see the specimens which didn’t span 
(marked with another symbol) 
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  416 
Fig. 4 The effect of body size on egg production. Larger individuals 

generally produced more eggs than smaller individuals (N = 30, r
2
 = .38, p < 

0.001). Only those animals that spawned 15 or more eggs are included in the 

analysis and figure.  
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  418 
Fig. 5 Correlation between body size and egg viability. Body size positively 

correlated the percentage of eggs that developed after 24 hours, although the 

result was marginally not significant (N = 29, r
2
 = 0.12, p = 0.07). 
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  420 
Fig. 6 The estimated number of eggs spawned for individuals spawning alone (N 

= 29) and in pairs (N = 25). Surprisingly, two M. leidyi spawning together did 

not produce more eggs than individuals spawning alone (Student’s t-test, t-ratio 

= 0.005, p = 1.0). The data point above the Alone box plot indicates an 

individual that spawned an estimated 3,934 eggs. Removing that data point does 

not change the overall findings of the analysis.   

Comment [R245]: Is the number of 
eggs per individual or per two Mnemiopsis 
when spawning together?  
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Fig. 7 The percentage of eggs developed after 24 hours for individuals 

spawning alone (N = 29) and in pairs (N = 25). A higher percentage of 

eggs developed for M. leidyi in pairs, possibility suggesting a cost to self-

fertilization (Student’s t-test, t-ratio = 2.3, df = 52, p = 0.025). Asterisk 

indicates significant difference across treatments. 


