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Mesenchymal Stromal Cells (MSC) are widely used for the study of mesenchymal tissue
repair, and increasingly adopted for cell therapy, despite the lack of consensus on the
identity of these cells. In part this is due to the lack of specificity of MSC markers.
Distinguishing MSC from other stromal cells such as fibroblasts is particularly difficult using
standard analysis of surface proteins, and there is an urgent need for improved
classification approaches. Transcriptome profiling is commonly used to describe and
compare different cell types, however efforts to identify specific markers of rare cellular
subsets may be confounded by the small sample sizes of most studies. Consequently, it is
difficult to derive reproducible, and therefore useful markers. We addressed the question
of MSC classification with a large integrative analysis of many public MSC datasets. We
derived a sparse classifier (The Rohart MSC test) that accurately distinguished MSC from
nonMSC samples with >97% accuracy on an internal training set of 635 samples from 41
studies derived on 10 different microarray platforms. The classifier was validated on an
external test set of 1291 samples from 65 studies derived on 15 different platforms, with
>95% accuracy. The genes that contribute to the MSC classifier formed a protein-
interaction network that included known MSC markers. Further evidence of the relevance
of this new MSC panel came from the high number of Mendelian disorders associated with
mutations in more than 65% of the network. These result in mesenchymal defects,
particularly impacting on skeletal growth and function. The Rohart MSC test is a simple in
silico test that accurately discriminates MSC from fibroblasts, other adult stem/progenitor
cell types or differentiated stromal cells. It has been implemented in the
www.stemformatics.org resource, to assist researchers wishing to benchmark their own
MSC datasets or data from the public domain. The code is available from the CRAN
repository and all data used to generate the MSC test is available to download via the
Gene Expression Omnibus or the Stemformatics resource.
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14 Introduction

15 Adult tissues maintain the capacity to be replenished as part of the normal processes of 

16 homeostasis and repair. The adult stem cell hypothesis proposes that multipotent cells 

17 resident in tissues are the source of this cellular renewal, and expand in response to 

18 tissue injury. MSC were first isolated from bone marrow, where these occupy an 

19 important stem cell niche required for reconstitution of bone and the stromal 

20 compartments of marrow, and also play a supportive role in haematopoiesis (1, 2).   

21 Subsequently adult stromal progenitors have been isolated and cultured from most 

22 organs including placenta, heart, adipose tissue and kidneys although the identity of 

23 these cells remains controversial (reviewed by (3, 4)). Specifically the question of how 

24 similar cells isolated outside the bone marrow niche are, and whether these could be 

25 considered bona fide MSC, or indeed challengingly, whether MSC isolated from 

26 different tissues share any phenotypic or molecular characteristics at all (3). In this light 

27 various cells described as MSC (whether by name or attribution) have been reported as 

28 having quite different self-renewal capacity, immunomodulatory properties or propensity 

29 to differentiate in vivo (5). It has been variously argued that MSC isolated from most 

30 stromal tissues are derived from perivascular progenitors (6), or recruited from the bone 

31 marrow to distal tissue sites (7), or that resident stromal progenitors from different 

32 tissues must have tissue-restricted phenotypes. The most stringent criteria for MSC are 

33 in-vivo, bone forming capacity, however this functional standard is rarely addressed in 

34 the majority of MSC studies reported in the literature to date (see for example (5, 8)).

35
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36 Several groups have attempted to address the demand for improved molecular 

37 markers, for example using global proteomics methods(9), transcriptome analysis of 

38 cells capable of regenerating the bone marrow niche (10), or comparison of desirable 

39 properties such as capacity to form bone (8) and indeed the studies reporting global 

40 ‘omic analysis of MSC number in the hundreds. Each of these studies identifies a 

41 different set of potential markers, but there is little consensus among them. Most human 

42 studies have been conducted on very small numbers of donors, so it is difficult to 

43 dissect donor-donor heterogeneity from source heterogeneity. Nevertheless, line-line 

44 variation is a major contributor to differences in MSC growth and differentiation capacity, 

45 and clonal variation is evident even when derived from the same donor bone marrow (8, 

46 11). MSC heterogeneity is further compounded by growth conditions, including the 

47 density of culture, the inclusion of serum, or the substrate on which they are grown(12). 

48 Consequently there is little agreement in the literature on definitive molecular or cellular 

49 phenotypes of human cultured MSC, whether from bone marrow or other sources. 

50

51 There is little consensus on whether MSC from differing tissue sources share common 

52 functional attributes. The lack of definitive markers for human MSC is a major barrier to 

53 understanding genuine similarities, or resolving differences between various cell 

54 sources or subsets. Even if acknowledging that there should be functional differences 

55 between MSC isolated from different tissues, or donor groups, it is not clear whether 

56 there should be any over-arching commonalities that might indicate shared homeostatic 

57 roles or ontogenies. The field requires improved methods for benchmarking MSC 

58 cultures, including molecular methods that lack the ambiguity of current antibody-based 
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59 methods. Here we describe a sophisticated integrative transcriptome analysis of public 

60 MSC datasets, and provide a highly accurate in silico tool for straightforward 

61 assessment of the identity of an MSC culture. 

62 Material and Methods

63 Design of test and training datasets 

64 A careful screening of all the datasets collated in www.stemformatics.org (Wells et al., 

65 2013), GEO (Barrett et al., 2011) and ArrayExpress (Parkinson et al., 2011) at the time 

66 of this analysis identified 120 possible MSC microarray datasets. These were evaluated 

67 for the availability of the primary (unprocessed) data; unambiguous replication 

68 (biological not technical); the quality control metrics of RNA quality (5’-3’ probe ratios); 

69 linear range (box-whisker plots of sample median, min and max absolute and 

70 normalized values); unambiguous sample descriptions; and sample clustering 

71 concordant with the original publication. 35/120 datasets failed these criteria and were 

72 excluded from the study. 

73 As the range of phenotypes employed across the remaining 85 MSC microarray studies 

74 was broad, we assigned to the training group only those MSC datasets that met at least 

75 the following criteria in common: Adherence, Cell surface markers CD105+, CD73+, 

76 CD45- and differentiation to at least 2 of the three MSC-definitive lineages (bone, 

77 cartilage or fat). As can be seen in supplementary table S2, all training datasets 

78 included substantial phenotyping above these minimal criteria. These minimal common 

79 criteria were hard-coded into the Stemformatics annotation pipeline, we had a dedicated 

80 annotator responsible for the quality of these annotations and these were reviewed 
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81 independently by two additional annotators. Sixteen MSC datasets met our ‘gold 

82 standard’ training set criteria for accompanying phenotype of MSCs, together with 27 

83 datasets containing cells from non-mesenchymal or non-stromal sources, which we 

84 refer to as non-MSCs. In total, 41 datasets were included in the training set, with two 

85 datasets containing both MSCs and non-MSCs, with a total of 125 MSC samples and 

86 510 non-MSC samples from 10 different microarray platforms (Table S3, accompanies 

87 the MSC clustering in Figure 2). The remaining MSC datasets were assigned to the 

88 independent test set and were used only for evaluation of accuracy of the final 

89 signature.

90 Details on the samples, datasets and references of the experiments can be found in 

91 Tables S2, S3 and S5. Two large datasets – 5003 (211 non-MSCs) and 6063 (45 

92 MSCs), were subsampled prior to assigning to the training set to avoid unbalanced 

93 results. The samples left out were included in the test set (Table S5). It consisted of 65 

94 experiments (1291 samples, 213 MSCs and 499 non-MSC) profiled across 15 different 

95 platforms.

96 Pre-processing of the data

97 All data were processed using the R programming language (R Development Core 

98 Team, 2011; Venables and Smith, 2008). The pre-processing step involved a 

99 background correction performed with affy(Gautier et al., 2004), oligo(Carvalho and 

100 Irizarry, 2010) or lumi(Du et al., 2008) packages for processing of microarray data 

101 depending on the platform, a log2 transformation of the raw values and a YuGene 

102 transformation(Lê Cao et al., 2014). YuGene is a rescaling method using the cumulative 
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103 proportion that is applied per sample rather than per dataset or per series. This is highly 

104 advantageous as we performed 10-fold cross-validation that would otherwise require 

105 renormalization as datasets were added or removed.  

106 In order to combine all the datasets described in Table S2, probes were mapped to 

107 Ensembl gene to provide a common set of identifiers. Mapping thresholds of 98% match 

108 were used to align microarray probes to Ensembl human v69 transcript model cDNA 

109 and ncRNA sequences obtained from Ensembl. Transcript IDs in resulting mapping 

110 were converted to Gene IDs using EnsemblBiomart v69(Zhang et al., 2011). In the case 

111 of multi-mapping (several probes mapping to the same Ensembl gene ID), the probe 

112 with the highest average expression was chosen, on a per-dataset basis. 

113 The combined training data set included the gene expression measurement of 41,185 

114 genes mapped by at least one probe in one dataset. When a dataset had no probes 

115 mapping to a particular gene, the expression values of the gene were arbitrarily set to 

116 zero for all samples from that dataset. A pre-screening step was then performed to 

117 discard genes that were not present in at least half of the samples.

118 Identification of the 16-gene signature and assignation of a test sample to the 

119 MSC or non-MSC class 

120 The MSC signature was identified using a novel implementation of the sparse variant of 

121 Partial Least Square Discriminant Analysis (sPLS-DA) (Barker and Rayens, 2003) 

122 implemented for multiple microarray studies using the mixOmics package (Lê Cao et al., 

123 2009, 2011). Full details of the statistical model are provided in the Supplementary 

124 methods. The underlying code for the statistical test is available as BootsPLS in the 
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125 CRAN repository, and we have also made available the d3 code for the interactive MSC 

126 graph implemented in Stemformatics via the BioJS framework at http://biojs.io/d/biojs-

127 vis-rohart-msc-test

128

129 Network analysis 

130 Twenty-six genes selected on component 1 equated to 18 proteins with a curated 

131 interaction in the Networkanalyst protein interaction database (which draws on the PPI 

132 database of the International Molecular Exchange (IMEx) consortium (Orchard et al., 

133 2012; Xia et al., 2014) These seed proteins were annotated to a shortest-path first-order 

134 network of 42 nodes and 52 PPI edges. Randomised sets of equivalent size were 

135 selected from the background (expressed) genes to demonstrate a lack of PPI structure 

136 by chance. Gene ontology analysis was assessed using hypergeometric mean against 

137 the Jan 2015 EBI UniProt GO library (Huntley et al., 2015). Disease annotations were 

138 undertaken using the OMIM (Baxevanis, 2012) and MGI (Shaw, 2009) databases. 

139 Subcellular location annotations were taken from UniProt (EMBL et al., 2013). 

140

141 Differential expression analysis: 

142 Individual MSC markers were assessed for differential analysis between MSC and non-

143 MSC groups using a standard 2-tailed t-test, with a significance threshold of 10-6. For 

144 exploration of MSC subsets, a linear mixed model with dataset as random effect was 

145 fitted for each gene for which both the mean of bone marrow samples and other sites 

146 were higher than the median of all gene expression values. This retained 16,903 genes. 
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147 P-values were obtained by ANOVA and corrected for multiple testing with the 

148 Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995). 

149

150 Results

151 Common MSC markers group MSC from bone marrow and other tissues.

152 The International Society for Cellular Therapy (Dominici et al., 2006) has collated a 

153 large set of markers commonly used to immunophenotype MSC. These were used, in 

154 combination with more recently identified markers from the current literature (Lv et al., 

155 2014), to assess whether a transcript-based approach might provide a useful molecular 

156 tool to identify MSC populations (Supplementary Table S1). In order to compare data 

157 generated on different microarray platforms, we built a PLS-DA matrix using these 

158 markers and their corresponding expression in highly verified MSC samples.  The 

159 resulting scatter plot (PLS-DA, Figure 1A) demonstrated the capacity to distinguish 

160 between most MSC and non-MSC samples at a transcriptional level, and further 

161 showed that MSC isolated from different tissues do cluster together using these 

162 markers. Figure 1B shows the 16 of 32 commonly used MSC markers that were 

163 significantly differentially expressed between MSC and non-MSC groups (P<10-6), and 

164 these included CD73 (NTE5), CD105 (Endoglin), PDGFRB and VCAM1. The average 

165 expression of the remaining markers is provided in Supplementary Figure 1. Despite 

166 ISCT recommendations, most of the MSC publications reviewed herein used a small 

167 subset of these antibodies when phenotyping MSC, and CD73+, CD105+ and CD45- 

168 were the most consistent subset used (in combination with additional markers and 

169 phenotypic information, Supplementary Table 2). When just these three markers were 
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170 used to cluster all of the samples, 85% of MSC still grouped together (12/125 

171 misclassified, Table 1, Figure 1A), but almost 12% of non-MSC samples also clustered 

172 with this group. The overall accuracy increased to 92% when all 32 markers were used, 

173 but the rate of non-MSC misclassification remained high (7%, 35/510) and the majority 

174 of these (73.5%) were fibroblasts. It may be that these markers are less stably detected 

175 at a mRNA than protein level, however this high misclassification rate is also consistent 

176 with a large body of literature documenting the ambiguity of these markers, which are 

177 shared with stromal fibroblasts, endothelial progenitors and hematopoietic cells. The 

178 variable expression of all 32 markers (Figure 1B, Supplementary Figure S1) is 

179 consistent with the reported variability of marker use in the wider MSC research 

180 community (reviewed by (Lv et al., 2014; Samsonraj et al., 2015)).  Nevertheless, the 

181 capacity of these known markers to cluster MSC from different studies gave us 

182 confidence that a transcriptome approach was a useful and simplified alternate to 

183 antibody-based protocols, so we next took an unbiased approach to find a set of 

184 markers that could improve on the current classification paradigm. Our goal was to find 

185 an in silico marker set that reproducibly identified bona fide MSC samples regardless of 

186 platform or laboratory differences, and provide a molecular test that was simpler, and 

187 more accurate than current methods. 

188
189 Derivation of an improved, simple and accurate in silico MSC classifier.
190

191 A careful review of the public databases identified 120 potential MSC transcriptome 

192 studies, each comprising of a small number of donors. These were carefully curated for 

193 source, phenotypic information and growth conditions (see methods for details). From 
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194 these efforts, a gold standard ‘training set’ was identified as meeting high confidence 

195 MSC phenotype including at least the minimal common set of CD73+, CD105+, CD45- 

196 and bilineage differentiation. The training set consisted of 125 MSC samples from 16 

197 independently derived datasets derived predominantly from bone marrow, but also 

198 included studies from other adult, neonatal and fetal stromal sources. MSC were 

199 compared to 510 definitively non-MSC samples from primary human tissues and cell 

200 lines, including cultured fibroblasts, haematopoietic cells and pluripotent stem cell lines 

201 (Supplementary Tables S2, S3). 

202 To fully integrate and interrogate this data, we derived a novel cross-study analysis 

203 framework. Our approach, described in Figure 2A, included a cross-platform 

204 normalisation step (Lê Cao et al., 2014), and a modified variable (gene) selection 

205 methodology. The first part of the protocol identified hundreds of potential MSC 

206 markers, which in combination greatly improved the classification accuracy of 97.7% 

207 (Table 1). This included many of the known MSC markers. Each gene was further 

208 evaluated for stability by subsampling the datasets to ensure that its inclusion was not 

209 reliant on one dominant source or platform. Stability is indicated by the probability of 

210 selection over 200 iterations in Figure 2B, and was the step that excluded most of the 

211 commonly used MSC markers. For example, PDGFRB and VCAM1 were identified as 

212 potential component 1 genes but their inclusion was highly variable (0.76 and 0.59 

213 probability of selection respectively). 

214

215 We reasoned that if the majority of genes discriminating between MSC and non-MSC 

216 are describing a common biology and are highly correlated, then a subset of these 
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217 genes could be identified that would represent the entire network. Therefore we 

218 iteratively assessed how the inclusion of each gene contributed to the overall accuracy 

219 of the signature. This found the subset of variables that were most stable and least 

220 redundant at a statistical level, and that would represent the greater network of MSC-

221 related measurements (Figure 2C). Sixteen genes were identified, collectively forming a 

222 ‘signature’, which provided a high degree of discrimination between MSC and non-MSC 

223 cell types, without any loss of accuracy in accurately identifying MSC (>95% correct 

224 MSC call or 4/125 misclassified MSC samples, Table 1) and with improved 

225 discrimination from fibroblasts and other non-MSC cell types (1.61% false positive, 

226 Table 1). We confirmed that this clustering was agnostic to technology platform or 

227 manufacturer (Supplementary Figure S2). 

228

229 Cells derived from bone marrow were reliably grouped together with this method (Figure 

230 2D, Supplementary Figure S2E), and MSC from other tissue sources, including adipose 

231 tissue, skin, lung, placenta and cord blood shared this signature. Each gene in the 

232 signature made an additive contribution across 4 vectors (components), such that the 

233 absolute expression of any one gene might differ from sample to sample but the 

234 combination of gene expression was highly predictive. High expression of component 1 

235 genes was most likely to be a positive predictor of an MSC classification (Figure 2 and 

236 Supplementary Figure S3A), as indicated by the correlation of expression of each gene 

237 with its component. Note that the components are linear vectors, and so a negative 

238 correlation (as for component 1 genes) simply indicates the contribution of the genes to 

239 clustering MSC on the positive or negative region of that component. The inclusion of 
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240 components 2-4 provided higher discrimination for subsets of MSC and non-MSC, 

241 particularly differentiating MSC and fibroblasts derived from various tissues. These latter 

242 components included stress-related genes (heat shock proteins) and early indicators of 

243 lineage commitment (osteomodulin). Importantly, this multicomponent based approach, 

244 in contrast to a typical differential expression analysis, allowed for a common MSC 

245 phenotype that is also permissive of tissue-specific differences in the wider MSC gene 

246 network. 

247

248 The implementation in www.stemformatics.org assessed the MSC score across 200 

249 iterative predictions, where a sample must have a 95% pass rate to be classed as an 

250 MSC. The distribution of the training sample scores was used to determine high 

251 confidence scores (Figure 2E). By using 200 subsamplings of the training set, 200 

252 scores were recorded for each sample, which enabled us to derive an individual 95% 

253 Confidence Interval (CI). A sample was assigned to the MSC class if the lower bound of 

254 its 95%CI is strictly higher than 0.5169. Similarly, a non-MSC classification is given if 

255 the upper bound of the 95% CI was lower than 0.4337. Samples failing to meet these 

256 criteria were assigned to an ‘unknown’ category. Accordingly, the four misclassified 

257 MSC in the training set included one adult bone marrow MSC sample (predicted 1/200 

258 times as MSC), and the remaining from two fetal studies, the first consisting of 10 week 

259 chorionic villi (predicted 29/200 times as MSC) and 12-week chorionic membrane 

260 preparation (2/200 MSC predictions), the second from a neonatal lung aspirate (0/200 

261 positive MSC predictions). 

262
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263 The MSC signature genes form a cohesive network implicated in healthy 

264 mesenchymal development and function.

265 To assess possible functional relationships between MSC signature genes, we used a 

266 curated set of protein-protein interactions from the BioGrid database using the genes 

267 selected from component 1 that showed a high discriminating power between MSC and 

268 non-MSC. These formed a network of 43 interacting proteins (Figure 3A). The higher 

269 expression of these genes in MSC samples is confirmed in Fig 3B. If the statistical tool 

270 had identified a random set of genes, then the network would have little connectivity and 

271 there would be no relevant functional annotations. This was confirmed by random 

272 subsampling from the background datasets, which failed to form any PPI network. To 

273 assess whether the highly connected MSC network also shared any cohesive functional 

274 annotations, we examined mutation databases for evidence of human diseases 

275 associated with network members. A high proportion of the MSC network (30/43) are 

276 represented in Mendelian disorders of mesenchymal development by virtue of their 

277 mutation spectrum in facial or musculo-skeletal dysmorphologies in man, or evidence of 

278 mesodermal defects in KO mouse models (Supplementary Table S4). These included 

279 the paired-related homeobox-1 (PRRX1), a transcription factor important for early 

280 embryonic skeletal and facial development, and with a de novo mutation spectrum in 

281 the embryonic dysmorphology syndrome Agnathia-otocephaly (Çelik et al., 2012). 

282 Likewise, mutations in bone morphogenetic protein 14 (BMP14/GDF5) lead to 

283 developmental abnormalities in chondrogenesis and skeletal bone (Degenkolbe et al., 

284 2013). Mutations in DDR2 cause limb defects, including spondylo-epiphyseal-

285 metaphyseal dysplasia (Ali et al., 2010) and mice over-expressing DDR2 have 
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286 increased body size and atypical body fat (Kawai et al., 2014). In humans, 

287 Polymorphisms in ABI3BP are associated with increased risk of osteochondropathy 

288 (Zhang et al., 2014), and mice lacking Abi3bp have profound defects in MSC 

289 differentiation to bone and fat (Hodgkinson et al., 2013). 

290

291 We next examined functions that had been specifically validated in MSC biology, 

292 specifically, whether any members of the signature had been used to prospectively 

293 isolate MSC from tissue sources.  ITGA11 was a member of the core signature that has 

294 been used to prospectively enrich MSC from bone marrow with enhanced colony 

295 forming capacity (Kaltz et al., 2010), and independently shown to be enriched more than 

296 3 fold at protein level in bone marrow MSC compared to dermal fibroblasts or 

297 perivascular cells (Holley et al., 2015). Although several of the known and commonly 

298 used MSC markers were indeed captured in the large initial set of potential classifiers, 

299 but rejected by our statistical method on the grounds of poor selection stability, these 

300 were ‘rescued’ in the protein interaction network. That is, the behavior of these markers 

301 was variable across laboratories and between microarray platforms, and often high 

302 expressed on non-MSC cell types. Nevertheless, the interaction network demonstrated 

303 some cohesive biology with these known markers. The most highly connected member 

304 of the extended network was VCAM1, which was identified in the large prospective 

305 marker set but with a low frequency of selection (0.6 on component 1), which eliminated 

306 it from the final classifier. VCAM1, together with STRO-1, has been used for the 

307 prospective isolation of human bone marrow MSC (Gronthos, 2003). VCAM1 is an 

308 adhesion molecule that is induced by inflammatory stimuli to regulate leukocyte 
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309 adhesion to the endothelium (Dansky et al., 2001); however, in cardiac precursors its 

310 expression demarcates commitment to mesenchymal rather than endothelial lineages 

311 (Skelton et al., 2014).

312 Other members of our network that have been previously described in human or mouse 

313 MSC biology, and used to prospectively isolate cells or have been validated at the 

314 protein level include PDGFR (Koide et al., 2007), SPINT2 (Roversi et al., 2014), 

315 CCDC80 (Charbord et al., 2015), FAP (Bae et al., 2008), BGN (Holley et al., 2015), and 

316 TM4SF1 (Bae et al., 2011). SPINT2 is a serine protease inhibitor whose activity is 

317 required in bone-marrow MSC, and its loss alters hematopoietic stem cell function in 

318 myelo-dysplastic disorders (Roversi et al., 2014). In mouse, CCDC80 is also necessary 

319 for reconstitution of bone marrow and support of haematopoiesis (Charbord et al., 

320 2015). 

321

322 The network included a high proportion of extracellular proteins (54%) with 

323 demonstrated roles in the modification of extracellular matrix proteins including 

324 proteoglycans, as well as regulators of growth factor and cytokine signalling. This 

325 included the cell migration inducing protein (KIAA1199/ CEMIP), which is secreted in its 

326 mature form. It regulates Wnt and TGF3 signalling by depolarising hyaluronan, and 

327 may alter trafficking of cytokines and growth factors to the extracellular milieu (Yoshida 

328 et al., 2013). DDR2 is a receptor tyrosine kinase that interacts directly with collagens. It 

329 stabilises the transcription factor SNAIL, and has been implicated in epithelial-

330 mesenchyme transitions in epithelial cancers (Zhang et al., 2013). CCDC80 binds 

331 syndecan-heparin sulphate containing proteoglycans, has been shown to inhibit 
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332 WNT/beta-catenin signalling and has a regulatory role in adipogenesis (Tremblay et al., 

333 2009; Walczak et al., 2014). SRPX2 is a secreted chondroitin sulfate proteoglycan 

334 involved in endothelial cell migration, tissue remodelling and vascular sprouting (Royer-

335 Zemmour et al., 2008). The chaperonins HSPB5/CRYAB and HSPB6 stabilise protein 

336 complexes, and may assist in delivery of growth factor complexes where these are 

337 present in high concentrations. In transplantation paradigms it is likely that the 

338 therapeutic benefit derived from MSC is via local immunomodulatory, anti-inflammatory, 

339 and/or trophic effects during the acute phase of cell therapy. The network of genes 

340 identified here as enriched in MSC suggests an over-arching role for these cells in 

341 modifying the extracellular environment, functions important in development as well as 

342 in homeostatic regulation of adult tissues. 

343  

344 MSC differentiation, dedifferentiation and the MSC signature

345 The majority of public microarray datasets available to us had limited phenotypic data 

346 available, so these were not used to derive our MSC signature. Nevertheless we 

347 annotated each of these samples as presumptive MSC (213 samples) or presumptive 

348 non-MSC (499 samples) based on their origin and use in the source publication 

349 (Supplementary Table S5). Where MSC were profiled during in vitro lineage 

350 differentiation, we assigned the samples taken at intermediate time points to an 

351 ‘unknown’ category (579 samples) prior to testing these with the signature. 

352 Implementation of the Rohart Test in the www.stemformatics.org resource allowed us to 

353 evaluate a wide range of different experimental paradigms. Despite the lack of 

354 phenotypic information associated with these datasets, the agreement between 
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355 publication status and our classification was high.  Five percent of the presumptive non-

356 MSC (27/499) were misclassified by the signature as MSC, and around half of these 

357 (>13) were neonatal or fetal dermal fibroblasts (Supplementary Table S5. Others have 

358 reported MSC fractions derived from dermal tissues (reviewed in (Vaculik et al., 2012)) 

359 and certainly fibroblasts from other sources were not classified as MSC. Furthermore, 

360 the signature could discriminate between MSC and differentiating cultures. Figure 3C 

361 demonstrates loss of the MSC score during chondrogenic differentiation with the 

362 addition of TGF (Dataset 6119 (Mrugala et al., 2009)) and this pattern was 

363 recapitulated for cells differentiating to mineralising bone or to adipose-like cells or when 

364 undergoing reprogramming of an adipose-tissue derived iPSC (data not shown, but 

365 available in the Stemformatics resource).

366

367 Comparison of MSC and adult stem/progenitor cell types

368 The limbal cell niche hosts both limbal epithelial and stromal progenitors (Lim et al., 

369 2012), and the stromal progenitors were also classified as MSC by our tool (Dataset 

370 6450). Some MSC subsets are likely to be derived from a perivascular progenitor. In our 

371 hands, primary skeletal-muscle mesoangioblasts thought to be a subset of perivascular 

372 cells in skeletal and smooth muscle (Dataset 6265 (Tedesco et al., 2012), defined as 

373 alkaline-phosphatase+ CD146+ CD31/Epcam- CD56/Ncam- with demonstrated skeletal 

374 muscle differentiation, were classified as MSC (Figure 3D). In contrast, the majority of 

375 cells derived from a perivascular location (and confirmed as such with tissue imaging in 

376 the source publication) were not classified as MSC (Figure 3E). On examining putative 

377 markers of perivascular progenitors in these samples, we could demonstrate that the 
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378 majority of perivascular progenitors expressed higher levels of Nestin than the majority 

379 of MSC (Figure 3F).  MCAM+ and MCAM- cells were apparent in both MSC and 

380 pericyte groups, although a higher proportion of perivascular progenitor expressed 

381 MCAM RNA. In contrast, PDGFRA was highly expressed in MSC but not informative in 

382 perivascular cells, and PDGFRB was highly expressed in both populations. Others have 

383 shown that high expression of PDGFRA is associated with highly proliferative MSC 

384 colonies, suggesting that its expression is associated with expansion in culture 

385 (Samsonraj et al., 2015). These data are consistent with a classification hierarchy 

386 determined by mouse and human lineage studies, where multipotent adult cells are 

387 quiescent in a perivascular location (Acar et al., 2015; Crisan et al., 2008).  Thus 

388 perivascular progenitor cells with MSC differentiation capacity are defined as Rohart 

389 test negative, Nestin positive in our test, and as such are distinct from a Rohart test 

390 positive MSC. Cells differentiating to osteoblast, chondrocyte, adipocyte or fibroblast 

391 exit the MSC state and rapidly become negative for the Rohart MSC score.  Given that 

392 a proportion of Rohart test positive MSC express MCAM or Nestin, the classification tool 

393 may detect a phenotypic spectrum that spans the intermediates across the perivascular-

394 MSC-fibroblast hierarchy. 

395

396 Tssue clustering of MSC is confounded by gender and MHC-1 haplotype. 

397 The capacity to group MSC-like cells is consistent with the general assumption that 

398 MSC from different tissue share some common molecular properties.  Many of the 

399 individual studies in this reanalysis describe tissue-specific differences in MSC 

400 populations. We were not able to recapitulate any of these specific differences on the 
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401 integrated dataset. Nevertheless, MSC from different tissues did form subclusters 

402 (Supplementary Figures S2, S3), and the majority of bone marrow MSC clustered 

403 together (Figure S2E). We therefore examined more broadly the genes that were 

404 significantly different between bone marrow MSC and other cell types at the whole 

405 transcriptome level. This analysis confirmed the observed clustering of bone marrow 

406 derived MSC, distinguished by differential expression of 425 genes (adjusted P<0.01, 

407 Supplementary Table S6). The genes that were most differentially expressed between 

408 the different MSC sources in our combined analysis were MHC class I genes, and these 

409 accounted for >40% of the top 100 differentially expressed genes in the bone-marrow 

410 comparisons (Supplementary Table S6). The HLA isotypes were generally, but not 

411 exclusively, expressed at lower levels in bone marrow MSC (Hierarchical Cluster, 

412 Supplementary Figure S3). Estrogen and progesterone receptors, and a network of 

413 associated target genes were also significantly different between tissue sources 

414 (Supplementary Table S6), and this may reflect a gender bias in tissue sampling; 

415 although the gender of the donors was not available for a majority of samples, some 

416 tissues (such as decidual sources) will be entirely female in origin. Further molecular 

417 sub-classifications of MSC will therefore require much larger studies that address 

418 specific clinical or differentiation properties of the cells, and must also consider 

419 ascertainment biases that may introduce confounding variables such as HLA subtypes 

420 or gender. 

421  

422 Discussion
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423 Modern molecular classification tools are needed for the characterisation of MSC ex 

424 vivo and in vivo. Antibody based methods currently rely on a subset of cell surface 

425 proteins that are widely acknowledged to lack specificity, and the reliability of these 

426 assays is dependant on operator expertise. Our study set out to provide an alternate 

427 test that had better discrimination power than current assays, was robust and easy to 

428 generate. In doing so we developed a specific gene signature that is shared by a wide-

429 variety of MSC. The “Rohart MSC test” is an in silico tool that has been implemented as 

430 a simple online test that will be useful in standardisation or improvement of current bulk 

431 isolation methods. This classification tool is available in the Stemformatics.org platform, 

432 together with all the primary data used in derivation of the signature. Details on 

433 submitting proprietary data to the Rohart test are available on the stemformatics.org 

434 site. 

435

436 All together we curated more than 120 MSC-related gene expression datasets in the 

437 www.stemformatics.org resource (Wells et al., 2012); the datasets can be queried here 

438 using key word, dataset ID or author, together with an implementation of the Rohart 

439 MSC test. 

440

441 Our approach highlights the potential robustness of biological signatures when 

442 combining data from many different sources, where experimental variables such as 

443 platform or batch can be reduced (Figure S2). The methods we used for derivation of a 

444 common MSC classifier could be applied to the meta-analysis of any cell subset or 

445 phenotype where sufficient samples can be drawn from public expression databases. 
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446

447 The Rohart test provides a snap shot of the current state of play in MSC biology. As an 

448 in silico test it reflects all of the ambiguities existing in current nomenclature and culture 

449 practise. We anticipate that a computational classifier will evolve as the field of MSC 

450 biology evolves, and as isolation methods improve. Indeed, the question of what is an 

451 MSC, and whether these are a distinct stem cell population recruited from the bone 

452 marrow, as suggested by mouse studies of fetomaternal microchimerism (Seppanen et 

453 al., 2013) or from perivasculature, as suggested by immunotagging of MSC-like cells 

454 from perivascular regions in human tissues (Crisan et al., 2008), or are resident 

455 progenitor populations specific to each organ cannot be resolved in the current study. 

456 The signature itself is dependent on the quality of the MSC used in the training set. As 

457 rare adult stem/progenitor cell types were under-represented in the current test or 

458 training datasets, we anticipate that functional classification of MSC subtypes will 

459 improve as newer sampling methods provide the means to identify and replicate these 

460 cells. To highlight this point, the signature distinguishes perivascular progenitors from 

461 MSC, however resolving a perivascular progenitor signature would require substantially 

462 more data on this population than is currently available in the public domain. We expect 

463 that further refinements in the isolation or culture of purer MSC or more precisely 

464 defined functional subsets will also result in future evolutions of this in silico signature. 

465

466 In summary, we set out to systematically review the current state of play in MSC biology 

467 using a meta-analysis of transcriptome studies, and in doing so were able robustly to 

468 identify a general MSC phenotype that could distinguish MSC from other cell types. The 

PeerJ reviewing PDF | (2016:02:9002:0:0:NEW 8 Feb 2016)

Manuscript to be reviewed



469 resulting signature could also identify points of transition as MSC underwent 

470 differentiation or reprogramming studies. Furthermore, we demonstrated that, at least at 

471 a gene expression level, our de novo derived signature outperformed the classification 

472 accuracy of the combined set of traditional MSC cell surface markers. While a signature 

473 approach such as ours is not able to resolve the ontogeny or in vivo function of MSC, it 

474 does provide a tool for better benchmarking and comparison of the cells grown ex vivo, 

475 and will assist with comparison of cells derived for clinical purposes. The methods that 

476 we describe here, and the resulting molecular classifier represent an important step 

477 towards addressing the more intractable questions of MSC identity, ontogenic 

478 relationships and function.

479
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663 Figure 1. Evaluation of Common MSC markers as transcriptional classifiers.   

664 A) PLS-DA scatter plot of MSC (circles) and non-MSC cell types (triangles). Red 

665 symbols indicate cells which are incorrectly classified by the PLS-DA matrix. The matrix 

666 components consisted of 32 commonly used MSC markers. 

667 B) Box and Whisker plots showing average expression of common MSC markers that 

668 are significantly differentially expressed (t-test, P>10-6) between MSC (n=125) and non-

669 MSC (n=510) cell types. See also Figure S1 and Table S1.

670

671 Figure 2. An improved in silico MSC signature. 

672 A) Workflow summarizing the modified implementation of the sPLS-DA to integrate and 

673 evaluate cross-platform studies for derivation of a stable classifier; 

674 B) Evaluation of the stability of each gene across four components, where frequency of 

675 selection over 200 subsamplings (Y-axis) is shown per gene (ENSEMBL ID, X-axis). 

676 Labels are provided for the 16 genes contributing to the signature across 4 components. 

677 Component 1 (green), Component 2 (Blue), Component 3 (Brown), Component 4 

678 (Black). Small text gene symbols indicate a selection of previously identified MSC 

679 markers that were excluded for poor stability. 

680 C) Evaluation of the contribution of each gene to the informativeness of its component. 

681 Each dot is a gene set, ordered along the x-axis by decreasing stability (frequency of 

682 selection). The y-axis represents the -log10(P-value) of a one tailed t-test indicating the 

683 improvement in classification accuracy across 4 components.  

684 D) PLS-DA scatter plot showing sample clustering and classification accuracy of the 

685 training set (635 samples) in two components (Component 1 X axis, Component 2 Y-
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686 axis). MSC samples are shown as circles, non-MSC as triangles, and misclassified 

687 samples are coloured red. 

688 E) Identifying the scores that classify an MSC or non-MSC. Distribution of the Rohart 

689 MSC Score (X-axis) and the distribution density (Y-axis) for samples in the MSC 

690 (n=115) or non-MSC (n=510) classes. Arrows indicate the scores that 99% of each 

691 class fall into. The overlap indicates the region of uncertainty, where a classification is 

692 given as ‘unknown’.  

693 F) A summary of the 16-gene MSC signature colour coded to the component (as 

694 described in 1B). Gene ID is given as HUGO symbol and ENSEMBL gene ID; C is 

695 component; P is probability of selection (indicating stability); R is correlation of gene to 

696 component (as per 1D); L is predicted subcellular location of Intracellular (I), Nucleus 

697 (N), Extracellular matrix (ECM), Secreted (S), Membrane (M) and U is unknown. See 

698 also Supplementary Figure S2 and Supplemental Tables S2, S3.

699

700 Figure 3: The MSC signature forms part of a network of extracellular proteins and 

701 discriminates between differentiating or related adult stem cell types.

702 A) An extended protein-protein network diagram of the Rohart MSC signature genes 

703 demonstrating a role for VCAM1 and PDGFRB as part of a functionally interconnected 

704 set of glycoproteins, integrins, growth factors and extracellular matrix proteins. Green 

705 nodes are seed network members from component 1 genes, white nodes are inferred 

706 network members, and edges are protein-protein interactions.

707 B) Box and Whisker plots showing average expression of the genes making up the 

708 MSC signature component 1 genes in MSC (n=115) and non-MSC (n=510).
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709 C) Classification of bone marrow MSC over a time course of differentiation to cartilage; 

710 y-axis gives the Rohart score, x-axis orders the samples from each experimental series. 

711 Three differentiation series from three donors are shown. The uncertainty region stands 

712 between the MSC and non-MSC prediction regions.

713 D) Classification of perivascular-derived stem cells from skeletal muscle mesangioblasts 

714 (HMAB), or iPSC-derived mesangioblasts (HIDEM) from donors with muscular 

715 dystrophy (MD) or healthy donors (WT). Error bars around each prediction score 

716 represent the CI boundaries. A sample is classified as ‘unsure’ (indicated in grey) if its 

717 prediction score or its CI overlapped the uncertainty region. 

718 E) Classification of pericytes derived from three distinct datasets: from Left-Right 

719 neonatal foreskin (Antigen HD-1 dim or bright); placental pericytes; perivascular 

720 endometrial stem cells (CD146+/PDGRFB+). Stemformatics dataset identifiers provided 

721 for each experimental series. Error bars around each prediction score represent the CI 

722 boundaries. 

723 F) Distribution of expression of common MSC/Pericyte markers. X-axis is Gene 

724 expression ranked by the YuGene cumulative proportion, Y-axis is the density 

725 distribution of MSC (orange plot, n=115) or pericytes (black plot, n= 16).

726 See also Supplemental Figure S3 and supplemental tables S4, S5 and S6.

727

PeerJ reviewing PDF | (2016:02:9002:0:0:NEW 8 Feb 2016)

Manuscript to be reviewed



Table 1(on next page)

Table 1

Table 1: MSC Signature improves the classification accuracy of MSC compared to a

panel of 32 commonly used MSC markers. Column 1 provides the comparison of the

classification accuracy of the 635 training samples using (Column 2) the 3 markers used as

the minimal immunophenotype of the MSC training samples. (Column 3) a panel of 32

commonly used immune-markers in the MSC literature; (Column 4) using the unrefined sPLS-

DA output; or (Column 5) with our final signature of 16 genes. Performance of each gene

group was assessed using 200 random subsamplings of the training set. The internal

classification error rate was calculated from a PLS-DA with 2 components (known immune-

markers), or was an output of our statistical model with genes selected in an unbiased

manner (cf Figure 1A).
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1 Table 1: MSC Signature improves the classification accuracy of MSC compared to 

2 a panel of 32 commonly used MSC markers. Column 1 provides the comparison of 

3 the classification accuracy of the 635 training samples using (Column 2) the 3 markers 

4 used as the minimal immunophenotype of the MSC training samples. (Column 3) a 

5 panel of 32 commonly used immune-markers in the MSC literature; (Column 4) using 

6 the unrefined sPLS-DA output; or (Column 5) with our final signature of 16 genes. 

7 Performance of each gene group was assessed using 200 random subsamplings of the 

8 training set. The internal classification error rate was calculated from a PLS-DA with 2 

9 components (known immune-markers), or was an output of our statistical model with 

10 genes selected in an unbiased manner (cf Figure 1A).

CD45, 

CD73, 

CD105

32 common

MSC 

markers

sPLS-DA prior 

to stable gene 

selection

The 16-gene MSC 

signature

Overall accuracy

(% of 635 samples) 87.86 92.33 97.71 97.85

MSC misclassified

(% of 125 samples) 14.40 11.10 3.04 4.31

Non-MSC 

misclassified

(% of 510 samples)
11.60 6.82 2.11 1.61

11
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Figure 1.Evaluation of Common MSC markers as transcriptional classifiers.

A) PLS-DA scatter plot of MSC (circles) and non-MSC cell types (triangles). Red symbols

indicate cells which are incorrectly classified by the PLS-DA matrix. The matrix components

consisted of 32 commonly used MSC markers. B) Box and Whisker plots showing average

expression of common MSC markers that are significantly differentially expressed (t-test,

P>10-6) between MSC (n=125) and non-MSC (n=510) cell types. See also Figure S1 and Table

S1.
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Figure 2.An improved in silico MSC signature.

A) Workflow summarizing the modified implementation of thesPLS-DA to integrate and

evaluate cross-platform studies for derivation of a stable classifier; B) Evaluation of the

stability of each gene across four components, where frequency of selection over 200

subsamplings (Y-axis) is shown per gene (ENSEMBL ID, X-axis). Labels are provided for the 16

genes contributing to the signature across 4 components. Component 1 (green), Component

2 (Blue), Component 3 (Brown), Component 4 (Black). Small text gene symbols indicate a

selection of previously identified MSC markers that were excluded for poor stability. C)

Evaluation of the contribution of each gene to the informativeness of its component. Each dot

is a gene set, ordered along the x-axis by decreasing stability (frequency of selection). The y-

axis represents the -log10(P-value) of a one tailed t-test indicating the improvement in

classification accuracy across 4 components. D) PLS-DA scatter plot showing sample

clustering and classification accuracy of the training set (635 samples) in two components

(Component 1 X axis, Component 2 Y-axis). MSC samples are shown as circles, non-MSC as

triangles, and misclassified samples are coloured red. E) Identifying the scores that classify

an MSC or non-MSC. Distribution of the Rohart MSC Score (X-axis) and the distribution

density (Y-axis) for samples in the MSC (n=115) or non-MSC (n=510) classes. Arrows indicate

the scores that 99% of each class fall into. The overlap indicates the region of uncertainty,

where a classification is given as ‘unknown’. F) A summary of the 16-gene MSC signature

colour coded to the component (as described in 1B). Gene ID is given as HUGO symbol and

ENSEMBL gene ID; C is component; P is probability of selection (indicating stability); R is

correlation of gene to component (as per 1D); L is predicted subcellular location of

Intracellular (I), Nucleus (N), Extracellular matrix (ECM), Secreted (S), Membrane (M) and U is

unknown. See also Supplementary Figure S2 and Supplemental Tables S2, S3.
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Figure 3: The MSC signature forms part of a network of extracellular proteins and
discriminates between differentiating or related adult stem cell types.

A) An extended protein-protein network diagram of the Rohart MSC signature genes

demonstrating a role for VCAM1 and PDGFRB as part of a functionally interconnected set of

glycoproteins, integrins, growth factors and extracellular matrix proteins.Green nodes are

seed network members from component 1 genes, white nodes are inferred network

members, and edges are protein-protein interactions. B) Box and Whisker plots showing

average expression of the genes making up the MSC signature component 1 genes in MSC

(n=115) and non-MSC (n=510). C) Classification of bone marrow MSC over a time course of

differentiation to cartilage; y-axis gives the Rohart score, x-axis orders the samples from

each experimental series. Three differentiation series from three donors are shown. The

uncertainty region stands between the MSC and non-MSC prediction regions. D) Classification

of perivascular-derived stem cells from skeletal muscle mesangioblasts (HMAB), or iPSC-

derived mesangioblasts (HIDEM) from donors with muscular dystrophy (MD) or healthy

donors (WT). Error bars around each prediction score represent the CI boundaries. A sample

is classified as ‘unsure’ (indicated in grey) if its prediction score or its CI overlapped the

uncertainty region. E) Classification of pericytes derived from three distinct datasets: from

Left-Right neonatal foreskin (Antigen HD-1 dim or bright); placental pericytes; perivascular

endometrial stem cells (CD146+/PDGRFB+). Stemformatics dataset identifiers provided for

each experimental series. Error bars around each prediction score represent the CI

boundaries. F) Distribution of expression of common MSC/Pericyte markers. X-axis is Gene

expression ranked by the YuGene cumulative proportion, Y-axis is the density distribution of

MSC (orange plot, n=115) or pericytes (black plot, n= 16). See also Supplemental Figure S3

and supplemental tables S4, S5 and S6.
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