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ABSTRACT
Mesenchymal stromal cells (MSC) are widely used for the study of mesenchymal tissue
repair, and increasingly adopted for cell therapy, despite the lack of consensus on the
identity of these cells. In part this is due to the lack of specificity of MSC markers.
Distinguishing MSC from other stromal cells such as fibroblasts is particularly difficult
using standard analysis of surface proteins, and there is an urgent need for improved
classification approaches. Transcriptome profiling is commonly used to describe and
compare different cell types; however, efforts to identify specific markers of rare cellular
subsets may be confounded by the small sample sizes of most studies. Consequently,
it is difficult to derive reproducible, and therefore useful markers. We addressed
the question of MSC classification with a large integrative analysis of many public
MSC datasets. We derived a sparse classifier (The Rohart MSC test) that accurately
distinguishedMSC fromnon-MSC samples with >97% accuracy on an internal training
set of 635 samples from 41 studies derived on 10 different microarray platforms. The
classifier was validated on an external test set of 1,291 samples from 65 studies derived
on 15 different platforms, with >95% accuracy. The genes that contribute to the MSC
classifier formed a protein-interaction network that included known MSC markers.
Further evidence of the relevance of this new MSC panel came from the high number
of Mendelian disorders associated with mutations in more than 65% of the network.
These result in mesenchymal defects, particularly impacting on skeletal growth and
function. TheRohartMSC test is a simple in silico test that accurately discriminatesMSC
from fibroblasts, other adult stem/progenitor cell types or differentiated stromal cells.
It has been implemented in the www.stemformatics.org resource, to assist researchers
wishing to benchmark their own MSC datasets or data from the public domain. The
code is available from the CRAN repository and all data used to generate the MSC
test is available to download via the Gene Expression Omnibus or the Stemformatics
resource.
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INTRODUCTION
Adult tissues maintain the capacity to be replenished as part of the normal processes of
homeostasis and repair. The adult stem cell hypothesis proposes that multipotent cells
resident in tissues are the source of this cellular renewal, and expand in response to tissue
injury. MSC were first isolated from bone marrow, where these occupy an important
stem cell niche required for reconstitution of bone and the stromal compartments of
marrow, and also play a supportive role in haematopoiesis (Friedenstein, Piatetzky-Shapiro
& Petrakova, 1966; Pittenger et al., 1999). Subsequently, adult stromal progenitors have
been isolated and cultured from most organs including placenta, heart, adipose tissue and
kidneys although the identity of these cells remains controversial (reviewed by Phinney,
2012; Bianco et al., 2013). Specifically, the question of how similar cells isolated outside
the bone marrow niche are, and whether these could be considered bona fide MSC, or
indeed, challengingly, whether MSC isolated from different tissues share any phenotypic
or molecular characteristics at all (Bianco et al., 2013). In this light, various cells described
as MSC (whether by name or attribution) have been reported as having quite different
self-renewal capacity, immunomodulatory properties or propensity to differentiate in vivo
(Reinisch et al., 2014). It has been variously argued that MSC isolated from most stromal
tissues are derived from perivascular progenitors (Crisan et al., 2008), or recruited from
the bone marrow to distal tissue sites (Lee et al., 2010), or that resident stromal progenitors
from different tissues must have tissue-restricted phenotypes. The most stringent criterion
for MSC are in-vivo, bone-forming capacity; however, this functional standard is rarely
addressed in the majority of MSC studies reported in the literature to date (see for example
Reinisch et al., 2014; Sworder et al., 2015).

Several groups have attempted to address the demand for improved molecular
markers, for example using global proteomics methods (Li et al., 2009), epigenetic markers
(De Almeida et al., 2016), transcriptome analysis of cells capable of regenerating the bone
marrow niche (Charbord et al., 2015), or comparison of desirable properties such as
capacity to form bone (Sworder et al., 2015) and indeed the studies reporting global ‘omic’
analysis of MSC number in the hundreds. Each of these studies identifies a different set
of potential markers, but there is little consensus among them. Most human studies have
been conducted on very small numbers of donors, so it is difficult to dissect donor-donor
heterogeneity from source heterogeneity. Nevertheless, variation between MSC lines is a
major contributor to differences in MSC growth and differentiation capacity, and clonal
variation is evident even when derived from the same donor bone marrow (Samsonraj
et al., 2015; Sworder et al., 2015). MSC heterogeneity is further compounded by growth
conditions, including the density of culture, the inclusion of serum, or the substrate
on which they are grown (Liu et al., 2015). Consequently there is little agreement in the
literature on definitive molecular or cellular phenotypes of human cultured MSC, whether
from bone marrow or other sources.

There is little consensus on whether MSC from differing tissue sources share common
functional attributes. The lack of definitive markers for human MSC is a major barrier to
understanding genuine similarities, or resolving differences between various cell sources or
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subsets. Even if acknowledging that there should be functional differences between MSC
isolated from different tissues, or donor groups, it is not clear whether there should be any
over-arching commonalities that might indicate shared homeostatic roles or ontogenies.
The field requires improvedmethods for benchmarkingMSC cultures, includingmolecular
methods that lack the ambiguity of current antibody-based methods. Here we describe
a sophisticated integrative transcriptome analysis of public MSC datasets, and provide
a highly accurate in silico tool for straightforward assessment of the identity of an MSC
culture.

MATERIAL AND METHODS
Design of test and training datasets
A careful screening of all the datasets collated in www.stemformatics.org (Wells et al.,
2012), GEO (Barrett et al., 2011) and ArrayExpress (Parkinson et al., 2011) at the time of
this analysis identified 120 possible MSC microarray datasets. These were evaluated for
the availability of the primary (unprocessed) data; unambiguous replication (biological
not technical); the quality control metrics of RNA quality (5′–3′ probe ratios); linear range
(box-whisker plots of sample median, min and max absolute and normalized values);
unambiguous sample descriptions; and sample clustering concordant with the original
publication. 35/120 datasets failed these criteria and were excluded from the study.

As the range of phenotypes employed across the remaining 85 MSC microarray studies
was broad (Table S2), we assigned to the training group only thoseMSC datasets that met at
least the following criteria in common: Adherence, Cell surface markers CD105+, CD73+,
CD45− and differentiation to at least two of the three MSC-definitive lineages (bone,
cartilage or fat), and all training datasets included substantial phenotyping above these
minimal criteria. These minimal common criteria were hard-coded into the Stemformatics
annotation pipeline, we had a dedicated annotator responsible for the quality of these
annotations and these were reviewed independently by two additional annotators. Sixteen
MSC datasets met our ‘gold standard’ training set criteria for accompanying phenotype of
MSCs, together with 27 datasets containing cells from non-mesenchymal or non-stromal
sources, which we refer to as non-MSCs. In total, 41 datasets were included in the training
set, with two datasets containing both MSCs and non-MSCs, with a total of 125 MSC
samples and 510 non-MSC samples from 10 different microarray platforms (Table S3,
accompanies the MSC clustering in Fig. 2). The remaining MSC datasets were assigned to
the independent test set and were used only for evaluation of accuracy of the final signature.

Details on the samples, datasets and references of the experiments can be found in
Tables S2, S3 and S5. Two large datasets—5003 (211 non-MSCs) and 6063 (45 MSCs),
were subsampled prior to assigning to the training set to avoid unbalanced results. The
samples left out were included in the test set (Table S5). It consisted of 65 experiments
(1,291 samples, 213 MSCs and 499 non-MSC) profiled across 15 different platforms.
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Pre-processing of data
All data were processed using the R programming language v2.15.3 (Venables,
Smith & R Development Core Team, 2008; R Development Core Team R, 2011). The pre-
processing step involved a background correction performed with affy 1.36.1

and the affycoretools 1.30.0, gcrma 2.30.0, limma 3.14.4, lumi 2.10.0,

simpleaffy 2.34.0 (Gautier et al., 2004; Du, Kibbe & Lin, 2008; Carvalho & Irizarry,
2010) packages for processing of microarray data depending on the platform.

Specifically, Affy GeneChips were background corrected using code:

data.bgonly <-
bg.adjust.gcrma(data,affinity.info=affinity_data,fast=FALSE)

## Extract GC-RMA bg-corrected expression values without re-running
additional bg-correction

data.bgexpr <- rma(data.bgonly, background=FALSE,normalize=FALSE)

where:
‘‘data’’ is loaded raw CEL data
‘‘affinity_data’’ is precomputed probe affinity produced by ‘‘compute.affinities()’’

Affymetrix Gene ST arrays were RMA background corrected using Affymetrix Power

Tools v1.14.4.1 (‘‘apt_probeset_summarize’’ tool). Exon probe expressions were
summarised to the transcript level.

Illumina chips were background corrected using code:

lumiB(data, method = c(‘bgAdjust.affy’))

where:
‘‘data’’ is non-normalized BeadStudio / GenomeStudio expression data returned by
‘‘lumiR()’’

Agilent chips were background corrected using code:

dat <- backgroundCorrect(datraw, method=‘‘normexp’’,
normexp.method=‘‘rma’’)

datbg <- dat[ dat$ genes$ControlType==0, ]

bgave <- avereps(datbg, ID=datbg$ genes[,‘‘ProbeName’’])

where:
‘‘datraw’’ is non-normalised Agilent data returned by ‘‘read.maimages()’’

All data was subsequently log2 transformed and a YuGene transformation was applied
(Lê Cao et al., 2014). YuGene is a rescaling method using the cumulative proportion that
is applied per sample rather than per dataset or per series. This is highly advantageous as
we performed 10-fold cross-validation that would otherwise require renormalization as
datasets were added or removed.

Rohart et al. (2016), PeerJ, DOI 10.7717/peerj.1845 4/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.1845


In order to combine all the datasets described in Table S2, probes were mapped to
Ensembl gene to provide a common set of identifiers. Mapping thresholds of 98% match
were used to align microarray probes to Ensembl human v69 transcript model cDNA
and ncRNA sequences obtained from Ensembl. Transcript IDs in resulting mapping were
converted to Gene IDs using Ensembl BioMart v69 (Zhang et al., 2011). In the case of
multi-mapping (several probes mapping to the same Ensembl gene ID), the probe with the
highest average expression was chosen, on a per-dataset basis.

The combined training data set included the gene expression measurement of 41,185
genes mapped by at least one probe in one dataset. When a dataset had no probes mapping
to a particular gene, the expression values of the gene were arbitrarily set to zero for all
samples from that dataset. A pre-screening step was then performed to discard genes that
were not present in at least half of the samples.

Identification of the 16-gene signature and assignation of a test sample to
the MSC or non-MSC class
The MSC signature was identified using a novel implementation of the sparse variant
of Partial Least Square Discriminant Analysis (sPLS-DA) (Barker & Rayens, 2003)
implemented for multiple microarray studies using the mixOmics package (Lê Cao et al.,
2009; Lê Cao, Boitard & Philippe, 2011). Full details of the statistical model are provided
in the Supplementary methods. The underlying code for the statistical test is available
as BootsPLS in the CRAN repository, and we have also made available the d3 code for
the interactive MSC graph implemented in Stemformatics via the BioJS framework at
http://biojs.io/d/biojs-vis-rohart-msc-test.

Network analysis
Twenty-six genes selected on component 1 equated to 20 proteins with a curated interaction
in theNetworkAnalyst protein interaction database (which draws on the PPI database of the
International Molecular Exchange (IMEx) consortium, accessed July 2015 (Orchard et al.,
2012;Xia, Benner & Hancock, 2014)). These seed proteins were annotated to a shortest-path
first-order network of 36 nodes (16 seeds) and 48 PPI edges. Twenty randomised sets of
equivalent size were selected from the background (expressed) genes to demonstrate a lack
of PPI structure by chance. Gene ontology analysis was assessed using hypergeometricmean
against the Jan 2015 EBI UniProt GO library (Huntley et al., 2015) Disease annotations
were undertaken using the OMIM (Baxevanis, 2012) and MGI (Shaw, 2009) databases.
Subcellular location annotations were taken from UniProt (EMBL, SIB Swiss Institute of
Bioinformatics & Protein Information Resource (PIR), 2013).

Differential expression analysis
Individual MSC markers were assessed for differential analysis between MSC and non-
MSC groups using a standard 2-tailed t -test, with a significance threshold of 10−6. For
exploration of MSC subsets, a linear mixed model with dataset as random effect was
fitted for each gene for which both the mean of bone marrow samples and other sites
were higher than the median of all gene expression values. This retained 16,903 genes.
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P-values were obtained by ANOVA and corrected for multiple testing with the Benjamini–
Hochberg procedure (Benjamini & Hochberg, 1995).

RESULTS
Common MSC markers group MSC from bone marrow and other
tissues
The International Society for Cellular Therapy (Dominici et al., 2006) has collated a large set
of markers commonly used to immunophenotype MSC. These were used, in combination
with more recently identified markers from the current literature (Lv et al., 2014), to assess
whether a transcript-based approach might provide a useful molecular tool to identify
MSC populations (Table S1). In order to compare data generated on different microarray
platforms, we built a PLS-DA matrix using these markers and their corresponding
expression in highly verified MSC samples. The resulting scatter plot (PLS-DA, Fig.
1A) demonstrated the capacity to distinguish between most MSC and non-MSC samples
at a transcriptional level, and further showed that MSC isolated from different tissues
do cluster together using these markers. Figure 1B shows the 16 of 32 commonly used
MSC markers that were significantly differentially expressed between MSC and non-MSC
groups (P < 10−6), and these included CD73 (NTE5), CD105 (Endoglin), PDGFRB and
VCAM1. The average expression of the remaining markers is provided in Fig. S1. Despite
ISCT recommendations, most of the MSC publications reviewed herein used a small subset
of these antibodies when phenotyping MSC, and CD73+, CD105+ and CD45− were
the most consistent subset used (in combination with additional markers and phenotypic
information; Table S2). When just these three markers were used to cluster all of the
samples, 85% of MSC still grouped together (12/125 misclassified: Table 1, Fig. 1A), but
almost 12% of non-MSC samples also clustered with this group. The overall accuracy
increased to 92% when all 32 markers were used, but the rate of non-MSCmisclassification
remained high (7%, 35/510) and the majority of these (73.5%) were fibroblasts. It may
be that these markers are less stably detected at a mRNA than protein level, however this
high misclassification rate is also consistent with a large body of literature documenting
the ambiguity of these markers, which are shared with stromal fibroblasts, endothelial
progenitors and hematopoietic cells. The variable expression of all 32 markers (Fig.
1B, Fig. S1) is consistent with the reported variability of marker use in the wider MSC
research community (reviewed by Lv et al., 2014; Samsonraj et al., 2015). Nevertheless, the
capacity of these known markers to cluster MSC from different studies gave us confidence
that a transcriptome approach was a useful and simplified alternate to antibody-based
protocols, so we next took an unbiased approach to find a set of markers that could
improve on the current classification paradigm. Our goal was to find an in silicomarker set
that reproducibly identified bona fide MSC samples regardless of platform or laboratory
differences, and provide a molecular test that was simpler, and more accurate than current
methods.
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Figure 1 Evaluation of CommonMSCmarkers as transcriptional classifiers. (A) PLS-DA scatter plot of MSC (circles) and non-MSC cell types
(triangles). Red symbols indicate cells which are incorrectly classified by the PLS-DA matrix. The matrix components consisted of 32 commonly
used MSC markers. (B) Box and Whisker plots showing average expression of common MSC markers that are significantly differentially expressed
(t -test, P > 10−6) between MSC (n= 125) and non-MSC (n= 510) cell types. See also Fig. S1 and Table S1.

Table 1 MSC Signature improves the classification accuracy of MSC compared to a panel of 32 commonly usedMSCmarkers. Column
1 provides the comparison of the classification accuracy of the 635 training samples using (Column 2) the three markers used as the minimal
immunophenotype of the MSC training samples. (Column 3) a panel of 32 commonly used immune-markers in the MSC literature; (Column
4) using the unrefined sPLS-DA output; or (Column 5) with our final signature of 16 genes. Performance of each gene group was assessed using
200 random subsamplings of the training set. The internal classification error rate was calculated from a PLS-DA with 2 components (known
immune-markers), or was an output of our statistical model with genes selected in an unbiased manner (cf Fig. 1A).

CD45,
CD73,
CD105

32 common
MSCmarkers

sPLS-DA prior to
stable gene selection

The 16-gene
MSC signature

Overall accuracy (% of 635 samples) 87.86 92.33 97.71 97.85
MSC misclassified (% of 125 samples) 14.40 11.10 3.04 4.31
Non-MSC misclassified (% of 510 samples) 11.60 6.82 2.11 1.61

Derivation of an improved, simple and accurate in silico MSC
classifier
A careful review of the public databases identified 120 potential MSC transcriptome
studies, each comprising of a small number of donors. These were carefully curated for
source, phenotypic information and growth conditions (see ‘Methods’ for details). From
these efforts, a gold standard ‘training set’ was identified as meeting high confidence
MSC phenotype including at least the minimal common set of CD73+, CD105+, CD45−
and bilineage differentiation. The training set consisted of 125 MSC samples from 16
independently derived datasets derived predominantly from bone marrow, but also
included studies from other adult, neonatal and fetal stromal sources. MSC were compared
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Figure 2 An improved in silicoMSC signature. (A) Workflow summarizing the modified implemen-
tation of thesPLS-DA to integrate and evaluate cross-platform studies for derivation of a stable classifier;
(B) Evaluation of the stability of each gene across four components, where frequency of selection over 200
subsamplings (Y -axis) is shown per gene (ENSEMBL ID, X-axis). Labels are provided for the 16 genes
contributing to the signature across 4 components. Component 1 (green), (continued on next page. . . )
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Figure 2 (. . .continued)
Component 2 (Blue), Component 3 (Brown), Component 4 (Black). Small text gene symbols indicate a
selection of previously identified MSC markers that were excluded for poor stability. (C) Evaluation of the
contribution of each gene to the informativeness of its component. Each dot is a gene set, ordered along
the x-axis by decreasing stability (frequency of selection). The y-axis represents the−log10 (P-value) of a
one tailed t -test indicating the improvement in classification accuracy across four components. (D) PLS-
DA scatter plot showing sample clustering and classification accuracy of the training set (635 samples) in
two components (Component 1 X-axis, Component 2 Y -axis). MSC samples are shown as circles, non-
MSC as triangles, and misclassified samples are coloured red. (E) Identifying the scores that classify an
MSC or non-MSC. Distribution of the Rohart MSC Score (X-axis) and the distribution density (Y -axis)
for samples in the MSC (n = 115) or non-MSC (n = 510) classes. Arrows indicate the scores that 99% of
each class fall into. The overlap indicates the region of uncertainty, where a classification is given as ‘un-
known.’ (F) A summary of the 16-gene MSC signature colour coded to the component (as described in
1B). Gene ID is given as HUGO symbol and ENSEMBL gene ID; C is component; P is probability of selec-
tion (indicating stability); R is correlation of gene to component (as per 1D); L is predicted subcellular lo-
cation of Intracellular (I), Nucleus (N), Extracellular matrix (ECM), Secreted (S), Membrane (M) and U is
unknown. See also Fig. S2 and Tables S2, S3.

to 510 definitively non-MSC samples from primary human tissues and cell lines, including
cultured fibroblasts, haematopoietic cells and pluripotent stem cell lines (Tables S2 and
S3).

To fully integrate and interrogate these data, we derived a novel cross-study analysis
framework. Our approach, described in Fig. 2A, included a cross-platform normalisation
step (Lê Cao et al., 2014), and a modified variable (gene) selection methodology. The first
part of the protocol identified hundreds of potential MSC markers, which in combination
greatly improved the classification accuracy of 97.7% (Table 1). This included many of the
known MSC markers. Each gene was further evaluated for stability by subsampling the
datasets to ensure that its inclusion was not reliant on one dominant source or platform.
Stability is indicated by the probability of selection over 200 iterations in Fig. 2B, and was
the step that excluded most of the commonly used MSC markers. For example, PDGFRB
and VCAM1 were identified as potential component 1 genes but their inclusion was highly
variable (0.76 and 0.59 probability of selection respectively).

We reasoned that if themajority of genes discriminating betweenMSC and non-MSC are
describing a common biology and are highly correlated, then a subset of these genes could
be identified that would represent the entire network. Therefore, we iteratively assessed
how the inclusion of each gene contributed to the overall accuracy of the signature. This
found the subset of variables that were most stable and least redundant at a statistical
level, and that would represent the greater network of MSC-related measurements (Fig.
2C). Sixteen genes were identified, collectively forming a ‘signature,’ which provided a
high degree of discrimination between MSC and non-MSC cell types, without any loss of
accuracy in accurately identifyingMSC (>95% correctMSC call or 4/125misclassifiedMSC
samples, Table 1) and with improved discrimination from fibroblasts and other non-MSC
cell types (1.61% false positive, Table 1). We confirmed that this clustering was agnostic to
technology platform or manufacturer (Fig. S2).

Cells derived from bone marrow were reliably grouped together with this method (Fig.
2D, Fig. S2E), and MSC from other tissue sources, including adipose tissue, skin, lung,
placenta and cord blood shared this signature. Each gene in the signature made an additive
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contribution across four vectors (components), such that the absolute expression of any
one gene might differ from sample to sample but the combination of gene expression was
highly predictive. High expression of component 1 genes was most likely to be a positive
predictor of an MSC classification (Fig. 2 and Fig. S3A), as indicated by the correlation of
expression of each gene with its component. Note that the components are linear vectors,
and so a negative correlation (as for component 1 genes) simply indicates the contribution
of the genes to clustering MSC on the positive or negative region of that component.
The inclusion of components 2–4 provided higher discrimination for subsets of MSC and
non-MSC, particularly differentiating MSC and fibroblasts derived from various tissues.
These latter components included stress-related genes (heat shock proteins) and early
indicators of lineage commitment (osteomodulin). Importantly, this multicomponent
based approach, in contrast to a typical differential expression analysis, allowed for a
common MSC phenotype that is also permissive of tissue-specific differences in the wider
MSC gene network.

The implementation in www.stemformatics.org assessed the MSC score across 200
iterative predictions, where a sample must have a 95% pass rate to be classed as an MSC.
The distribution of the training sample scores was used to determine high confidence
scores (Fig. 2E). By using 200 subsamplings of the training set, 200 scores were recorded
for each sample, which enabled us to derive an individual 95% Confidence Interval (CI).
A sample was assigned to the MSC class if the lower bound of its 95% CI is strictly higher
than 0.5169. Similarly, a non-MSC classification is given if the upper bound of the 95% CI
was lower than 0.4337. Samples failing to meet these criteria were assigned to an ‘unknown’
category. Accordingly, the four misclassified MSC in the training set included one adult
bone marrow MSC sample (predicted 1/200 times as MSC), and the remaining from two
fetal studies, the first consisting of 10-week chorionic villi (predicted 29/200 times as MSC)
and 12-week chorionic membrane preparation (2/200 MSC predictions), the second from
a neonatal lung aspirate (0/200 positive MSC predictions).

The MSC signature genes form a cohesive network implicated in
healthy mesenchymal development and function
To assess possible functional relationships between MSC signature genes, we used a
curated set of protein-protein interactions from the BioGrid database using the genes
selected from component 1 that showed a high discriminating power between MSC
and non-MSC. These formed a network of 36 interacting proteins (Fig. 3A). The higher
expression of these genes in MSC samples is confirmed in Fig. 3B. If the statistical tool
had identified a random set of genes, then the network would have little connectivity
and there would be no relevant functional annotations. This was confirmed by random
subsampling from the background datasets, which failed to form any PPI network. To
assess whether the highly connected MSC network also shared any cohesive functional
annotations, we examined mutation databases for evidence of human diseases associated
with network members. A high proportion of the MSC network (30/43) are represented in
Mendelian disorders of mesenchymal development by virtue of their mutation spectrum
in facial or musculo-skeletal dysmorphologies in man, or evidence of mesodermal defects
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in KO mouse models (Described in detail in Table S4). These included the paired-
related homeobox-1 (PRRX1), a transcription factor important for early embryonic
skeletal and facial development, and with a de novo mutation spectrum in the embryonic
dysmorphology syndrome Agnathia-otocephaly (Çelik et al., 2012). Likewise, mutations in
bone morphogenetic protein 14 (BMP14/GDF5) lead to developmental abnormalities
in chondrogenesis and skeletal bone (Degenkolbe et al., 2013). Mutations in DDR2
cause limb defects, including spondylo-epiphyseal-metaphyseal dysplasia (Ali et al.,
2010) and mice over-expressing DDR2 have increased body size and atypical body fat
(Kawai et al., 2014). In humans, Polymorphisms in ABI3BP are associated with increased
risk of osteochondropathy (Zhang et al., 2014), and mice lacking Abi3bp have profound
defects in MSC differentiation to bone and fat (Hodgkinson et al., 2013).

We next examined functions that had been specifically validated in MSC biology,
specifically, whether any members of the signature had been used to prospectively isolate
MSC from tissue sources. ITGA11 was a member of the core signature that has been
used to prospectively enrich MSC from bone marrow with enhanced colony forming
capacity (Kaltz et al., 2010), and independently shown to be enriched more than 3 fold at
protein level in bone marrow MSC compared to dermal fibroblasts or perivascular cells
(Holley et al., 2015). Although several of the known and commonly used MSC markers
were indeed captured in the large initial set of potential classifiers, but rejected by our
statistical method on the grounds of poor selection stability, these were ‘rescued’ in the
protein interaction network. That is, the behavior of these markers was variable across
laboratories and between microarray platforms, and often high expressed on non-MSC
cell types. Nevertheless, the interaction network demonstrated some cohesive biology with
these known markers. The most highly connected member of the extended network was
VCAM1, which was identified in the large prospective marker set but with a low frequency
of selection (0.6 on component 1), which eliminated it from the final classifier. VCAM1,
together with STRO-1, has been used for the prospective isolation of human bone marrow
MSC (Gronthos, 2003). VCAM1 is an adhesion molecule that is induced by inflammatory
stimuli to regulate leukocyte adhesion to the endothelium (Dansky et al., 2001); however,
in cardiac precursors its expression demarcates commitment to mesenchymal rather than
endothelial lineages (Skelton et al., 2014).

Other members of our network that have been previously described in human or
mouse MSC biology, and used to prospectively isolate cells or have been validated at the
protein level include PDGFRβ (Koide et al., 2007), SPINT2 (Roversi et al., 2014), CCDC80
(Charbord et al., 2015), FAP (Bae et al., 2008), BGN (Holley et al., 2015),and TM4SF1 (Bae
et al., 2011). SPINT2 is a serine protease inhibitorwhose activity is required in bone-marrow
MSC, and its loss alters hematopoietic stem cell function in myelo-dysplastic disorders
(Roversi et al., 2014). In mice, CCDC80 is also necessary for reconstitution of bone marrow
and support of haematopoiesis (Charbord et al., 2015).

The network included a high proportion of extracellular proteins (54%) with
demonstrated roles in the modification of extracellular matrix proteins including
proteoglycans, as well as regulators of growth factor and cytokine signalling. This
included the cell migration inducing protein (KIAA1199/CEMIP), which is secreted
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Figure 3 TheMSC signature forms part of a network of extracellular proteins and discriminates
between differentiating or related adult stem cell types. (A) An extended protein-protein network
diagram of the Rohart MSC signature genes demonstrating a role for VCAM1 and PDGFRB as part of
a functionally interconnected set of glycoproteins, integrins, growth factors and extracellular matrix
proteins. Green nodes are seed network members from component (continued on next page. . . )
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Figure 3 (. . .continued)
1 genes, white nodes are inferred network members, and edges are protein-protein interactions. (B) Box
and Whisker plots showing average expression of the genes making up the MSC signature component
1 genes in MSC (n = 115) and non-MSC (n = 510). Note, PRRX1, GDF5, ITGA11 and ABI3BP also
form seeds in the network. KIAA1199 lacks PPI data and is not annotated in the network. (C) Classifi-
cation of bone marrow MSC over a time course of differentiation to cartilage; y-axis gives the Rohart
score, x-axis orders the samples from each experimental series. Three differentiation series from three
donors are shown. The uncertainty region stands between the MSC and non-MSC prediction regions. (D)
Classification of perivascular-derived stem cells from skeletal muscle mesangioblasts (HMAB), or iPSC-
derived mesangioblasts (HIDEM) from donors with muscular dystrophy (MD) or healthy donors (WT).
Error bars around each prediction score represent the CI boundaries. A sample is classified as ‘unsure’
(indicated in grey) if its prediction score or its CI overlapped the uncertainty region. (E) Classification of
pericytes derived from three distinct datasets: from Left–Right neonatal foreskin (Antigen HD-1 dim or
bright); placental pericytes; perivascular endometrial stem cells (CD146+/PDGRFB+). Stemformatics
dataset identifiers provided for each experimental series. Error bars around each prediction score repre-
sent the CI boundaries. (F) Distribution of expression of common MSC/Pericyte markers. X-axis is Gene
expression ranked by the YuGene cumulative proportion, Y -axis is the density distribution of MSC (or-
ange plot, n= 115) or pericytes (black plot, n= 16). See also Fig. S3 and Tables S4, S5 and S6.

in its mature form. It regulates Wnt and TGFβ3 signalling by depolarising hyaluronan,
and may alter trafficking of cytokines and growth factors to the extracellular milieu
(Yoshida et al., 2014). DDR2 is a receptor tyrosine kinase that interacts directly with
collagens. It stabilises the transcription factor SNAIL, and has been implicated in epithelial-
mesenchyme transitions in epithelial cancers (Zhang et al., 2013). CCDC80 binds syndecan-
heparin sulphate containing proteoglycans, has been shown to inhibit WNT/beta-catenin
signalling and has a regulatory role in adipogenesis (Tremblay et al., 2009; Walczak et al.,
2014). SRPX2 is a secreted chondroitin sulfate proteoglycan involved in endothelial cell
migration, tissue remodelling and vascular sprouting (Royer-Zemmour et al., 2008). The
chaperonins HSPB5/CRYAB and HSPB6 stabilise protein complexes, and may assist in
delivery of growth factor complexes where these are present in high concentrations. In
transplantation paradigms it is likely that the therapeutic benefit derived from MSC is
via local immunomodulatory, anti-inflammatory, and/or trophic effects during the acute
phase of cell therapy. The network of genes identified here as enriched in MSC suggests
an over-arching role for these cells in modifying the extracellular environment, functions
important in development as well as in homeostatic regulation of adult tissues.

MSC differentiation, dedifferentiation and the MSC signature
The majority of public microarray datasets available to us had limited phenotypic data
available, so these were not used to derive our MSC signature. Nevertheless we annotated
each of these samples as presumptive MSC (213 samples) or presumptive non-MSC (499
samples) based on their origin and use in the source publication (Table S5). Where
MSC were profiled during in vitro lineage differentiation, we assigned the samples taken at
intermediate time points to an ‘unknown’ category (579 samples) prior to testing these with
the signature. Implementation of the Rohart Test in the www.stemformatics.org resource
allowed us to evaluate a wide range of different experimental paradigms. Despite the
lack of phenotypic information associated with these datasets, the agreement between
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publication status and our classification was high. Five percent of the presumptive non-
MSC (27/499) were misclassified by the signature as MSC, and around half of these
(>13) were neonatal or fetal dermal fibroblasts (Table S5). Others have reported MSC
fractions derived from dermal tissues (reviewed in Vaculik et al., 2012) and certainly
fibroblasts from other sources were not classified as MSC. Furthermore, the signature
could discriminate between MSC and differentiating cultures. Figure 3C demonstrates loss
of the MSC score during chondrogenic differentiation with the addition of TGFβ (Dataset
6119; Mrugala et al., 2009) and this pattern was recapitulated for cells differentiating to
mineralising bone (Data not shown, but the reader is referred to the Stemformatics resource,
see: https://www.stemformatics.org/workbench/rohart_msc_graph?ds_id=6206#) or
to adipose-like cells (https://www.stemformatics.org/workbench/rohart_msc_graph?
ds_id=6208#) or when undergoing reprogramming of an adipose-tissue derived iPSC
(https://www.stemformatics.org/workbench/rohart_msc_graph?ds_id=5018).

Comparison of MSC and adult stem/progenitor cell types
The limbal cell niche hosts both limbal epithelial and stromal progenitors (Lim et al.,
2012), and the stromal progenitors were also classified as MSC by our tool (Dataset
6450). Some MSC subsets are likely to be derived from a perivascular progenitor. In our
hands, primary skeletal-muscle mesoangioblasts thought to be a subset of perivascular
cells in skeletal and smooth muscle (Dataset 6265: Tedesco et al., 2012), defined as alkaline-
phosphatase+ CD146+ CD31/Epcam− CD56/Ncam− with demonstrated skeletal muscle
differentiation, were classified as MSC (Fig. 3D). In contrast, the majority of cells derived
from a perivascular location (and confirmed as such with tissues imaged in the source
publication) were not classified as MSC (Fig. 3E). On examining putative markers of
perivascular progenitors in these samples, we could demonstrate that the majority of
perivascular progenitors expressed higher levels of Nestin than the majority of MSC
(Fig. 3F). MCAM+ and MCAM− cells were apparent in both MSC and pericyte groups,
although a higher proportion of perivascular progenitor expressed MCAM RNA. In
contrast, PDGFRA was highly expressed in MSC but not informative in perivascular cells,
and PDGFRB was highly expressed in both populations. Others have shown that high
expression of PDGFRA is associated with highly proliferative MSC colonies, suggesting
that its expression is associated with expansion in culture (Samsonraj et al., 2015). These
data are consistent with a classification hierarchy determined by mouse and human lineage
studies, where multipotent adult cells are quiescent in a perivascular location (Crisan et
al., 2008; Acar et al., 2015). Thus perivascular progenitor cells with MSC differentiation
capacity are defined as Rohart test negative, Nestin positive in our test, and as such are
distinct from a Rohart test positive MSC. Cells differentiating to osteoblast, chondrocyte,
adipocyte or fibroblast exit the MSC state and rapidly become negative for the Rohart MSC
score. Given that a proportion of Rohart test positive MSC express MCAM or Nestin, the
classification tool may detect a phenotypic spectrum that spans the intermediates across
the perivascular-MSC-fibroblast hierarchy.
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Tissue clustering of MSC is confounded by sex and MHC-1 haplotype
The capacity to group MSC-like cells is consistent with the general assumption that MSC
from different tissue share some common molecular properties. Many of the individual
studies in this reanalysis describe tissue-specific differences in MSC populations. We
were not able to recapitulate any of these specific differences on the integrated dataset.
Nevertheless, MSC from different tissues did form subclusters (Figs. S2 and S3), and the
majority of bone marrow MSC clustered together (Fig. S2E). We therefore examined more
broadly the genes that were significantly different between bonemarrowMSC and other cell
types at the whole transcriptome level. This analysis confirmed the observed clustering of
bone marrow derived MSC, distinguished by differential expression of 425 genes (adjusted
P < 0.01, Table S6). The genes that were most differentially expressed between the different
MSC sources in our combined analysis were MHC class I genes, and these accounted for
>40% of the top 100 differentially expressed genes in the bone-marrow comparisons
(Table S6). The HLA isotypes were generally, but not exclusively, expressed at lower levels
in bone marrowMSC (Hierarchical Cluster, Fig. S3). Estrogen and progesterone receptors,
and a network of associated target genes were also significantly different between tissue
sources (Table S6), and this may reflect a bias in the sex of the donors from which tissue
was sampled; although the sex of the donors was not available for a majority of samples,
some tissues (such as decidual sources) will be entirely female in origin. Further molecular
sub-classifications of MSC will therefore require much larger studies that address specific
clinical or differentiation properties of the cells, and must also consider ascertainment
biases that may introduce confounding variables such as HLA subtypes or sex.

DISCUSSION
Modern molecular classification tools are needed for the characterisation of MSC ex vivo
and in vivo. Antibody based methods currently rely on a subset of cell surface proteins
that are widely acknowledged to lack specificity, and the reliability of these assays is
dependant on operator expertise. Our study set out to provide an alternate test that had
better discrimination power than current assays, was robust and easy to generate. In doing
so we developed a specific gene signature that is shared by a wide-variety of MSC. The
‘‘Rohart MSC test’’ is an in silico tool that has been implemented as a simple online test
that will be useful in standardisation or improvement of current bulk isolation methods.
This classification tool is available in the www.stemformatics.org platform, together with
all the primary data used in derivation of the signature. Details on submitting proprietary
data to the Rohart test are available on the www.stemformatics.org site.

All together we curated more than 120 MSC-related gene expression datasets in the
www.stemformatics.org resource (Wells et al., 2012); the datasets can be queried here using
key word, dataset ID or author, together with an implementation of the Rohart MSC test.

Our approach highlights the potential robustness of biological signatures when
combining data frommany different sources, where experimental variables such as platform
or batch can be reduced (Fig. S2). The methods we used for derivation of a common MSC
classifier could be applied to the meta-analysis of any cell subset or phenotype where
sufficient samples can be drawn from public expression databases.
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The Rohart test provides a snap shot of the current state of play in MSC biology.
As an in silico test it reflects all of the ambiguities existing in current nomenclature and
culture practise. We anticipate that a computational classifier will evolve as the field ofMSC
biology evolves, and as isolation methods improve. Indeed, the question of what is anMSC,
and whether these are a distinct stem cell population recruited from the bone marrow, as
suggested bymouse studies of fetomaternalmicrochimerism (Seppanen et al., 2013) or from
perivasculature, as suggested by immunotagging ofMSC-like cells fromperivascular regions
in human tissues (Crisan et al., 2008), or are resident progenitor populations specific to
each organ cannot be resolved in the current study. The signature itself is dependent on the
quality of the MSC used in the training set. As rare adult stem/progenitor cell types were
under-represented in the current test or training datasets, we anticipate that functional
classification of MSC subtypes will improve as newer sampling methods provide the means
to identify and replicate these cells. To highlight this point, the signature distinguishes
perivascular progenitors fromMSC, however resolving a perivascular progenitor signature
would require substantially more data on this population than is currently available in
the public domain. We expect that further refinements in the isolation or culture of purer
MSC or more precisely defined functional subsets will also result in future evolutions of
this in silico signature.

In summary, we set out to systematically review the current state of play in MSC biology
using a meta-analysis of transcriptome studies, and in doing so were able robustly to
identify a general MSC phenotype that could distinguish MSC from other cell types.
The resulting signature could also identify points of transition as MSC underwent
differentiation or reprogramming studies. Furthermore, we demonstrated that, at least
at a gene expression level, our de novo derived signature outperformed the classification
accuracy of the combined set of traditional MSC cell surface markers. While a signature
approach such as ours is not able to resolve the ontogeny or in vivo function of MSC, it
does provide a tool for better benchmarking and comparison of the cells grown ex vivo,
and will assist with comparison of cells derived for clinical purposes. The methods that we
describe here, and the resulting molecular classifier, represent an important step towards
addressing the more intractable questions of MSC identity, ontogenic relationships and
function.
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A further 12 microarray samples from diverse MSC sources was deposited at
Array Express E-TABM-880 (http://www.ebi.ac.uk/arrayexpress/experiments/E-TABM-
880/) and the processed data used in this meta-analysis is also available at http:
//www.stemformatics.org/datasets/search?ds_id=6064.
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ds_id=6306

The code described in this manuscript is available in the CRAN repository under the
bootsPLS package (https://cran.r-project.org/web/packages/bootsPLS/index.html).
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