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ABSTRACT

There is an ongoing debate about the internal systematics of today’s group of
hamsters (Cricetinae), following new insights that are gained based on molecular
data. Regarding the closely related fossil cricetids, however, most studies deal with
only a limited number of genera and statements about their possible relationships are
rare. In this study, 41 fossil species from the Late Miocene to the Pliocene, belonging
to seven extinct cricetine genera, Collimys, Rotundomys, Neocricetodon,
Pseudocricetus, Cricetulodon, Apocricetus and Hattomys are analysed in a
phylogenetic framework using traditional maximum parsimony and Bayesian
inference approaches. Following thorough model testing, a relaxed-clock Bayesian
inference analysis is performed under tip-dating to estimate divergence times
simultaneously. Furthermore, so-called ‘rogue’ taxa are identified and excluded from
the final trees to improve the informative value of the shown relationships. Based on
these resulting trees, the fit of the topologies to the stratigraphy is assessed and the
ancestral states of the characters are reconstructed under a parsimonious approach
and stochastic character mapping. The overall topologies resulting from Bayesian
and parsimonious approaches are largely congruent to each other and confirm the
monophyly of most of the genera. Additionally, synapomorphies can be identified for
each of these genera based on the ancestral state reconstructions. Only Cricetulodon
turns out to be paraphyletic, while ‘Cricetulodon’ complicidens is a member of
Neocricetodon. Lastly, this work makes a contribution to a debate that went on for
decades, as the genus Kowalskia can be confirmed as junior synonym of
Neocricetodon.

Subjects Evolutionary Studies, Paleontology, Taxonomy, Zoology
Keywords Rodentia, Cricetinae, Bayesian inference, Maximum parsimony, Tip-dating,
Morphological clock, Ancestral state reconstruction, Neogene, Stratigraphic congruence, Rogue taxa

INTRODUCTION

Cricetidae, with more than 700 living species, is the second most speciose family inside
Muroidea. According to molecular studies (Musser ¢ Carleton, 2005; Neumann et al.,
20065 Steppan & Schenk, 2017), it comprises the following subfamilies: the new World rats
and mice (Sigmodontinae, Neotominae and Tylomyinae), the group of voles, musk rats
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and lemmings (Arvicolinae), and the Old World hamsters (Cricetinae). Cricetinae
(commonly known as hamsters), is a group of mouse to rat-sized rodents with cheek
pouches and short tails, which comprises nowadays 18 species distributed in seven genera.
Today, they live in the Palearctic realm, mostly in steppe and grassland habitats but also in
desert areas and urban environments (Pardifias et al., 2017). Over the history, hamsters
have been considered either as a tribe (e.g., Simpson, 1945) or a subfamily (e.g., Mein ¢
Freudenthal, 1971). The different taxonomic ranks attributed to this group have resulted
from the lack of consensus concerning the taxonomic rank of Cricetidae, which has been
classified as a subfamily inside Muridae with all its main clades treated as tribes instead of
subfamilies (McKenna ¢ Bell, 1997) or it has been considered as a family on its own
(Chaline, Mein ¢ Petter, 1977), which agrees with morphological and molecular
reconstructions, with the exclusion of some genera from the group, however (Steppan ¢
Schenk, 2017; Lépez-Antofianzas et al., in press).

Depending on the fossils attributed to Cricetinae, its temporal range varies from the
Early Miocene (e.g., Mein ¢ Freudenthal, 1971 who included Democricetodon within
cricetines) or from the Middle Miocene (e.g., Fejfar et al., 2011 with Collimys as the earliest
cricetine) until nowadays. In this work, we consider Democricetodontinae (including
Democricetodon and Copemys, among other genera) to be stem Cricetidae among which
we may find its potential ancestors (Lindsay, 2008; Lopez-Antofianzas et al., in press).
Therefore, as a working hypothesis, we treat the cricetines as having a temporal range that
spans from the Middle Miocene until today as considered by Daxner-Hdock (1972) and
Fejfar et al. (2011).

This study does not include these stem cricetids but focuses on the earliest
representatives of the subfamily Cricetinae: Apocricetus Freudenthal, Mein ¢ Martin
Sudrez, 1998, Collimys Daxner-Hock, 1972, Cricetulodon Hartenberger, 1965, Hattomys
Freudenthal, 1985, Neocricetodon Schaub, 1934, Pseudocricetus Topachevsky ¢~ Skorik,
1992 and Rotundomys Mein, 1965. Its objective is to elucidate the phylogenetic
relationships inside this group, for which these early forms represent the most important
initial radiation.

Previous phylogenetic reconstructions merely focused on species belonging to one or
two genera and were based on maximum parsimony solely (Cuenca Bescds, 2003; Lopez-
Antofianzas, Peldez-Campomanes ¢ Alvarez-Sierra, 2014; Sinitsa & Delinschi, 2016).
Moreover, molecular phylogenetic studies dealing with extant Cricetinae incorporated
fossil data solely to calibrate the nodes (Steppan, Adkins ¢» Anderson, 2004; Neumann et al.,
2006; Steppan & Schenk, 2017; Lebedev et al., 2018). However, additional approaches based
on Bayesian methods have to be explored (see Lopez-Antorianzas et al., 2022) to shed light
on the diversification processes of the studied groups and to be able to accurately estimate
divergence times. Recent advances in this field include the so-called morphological clock,
which refers to the rate of morphological changes through time. This rate together with the
incorporation of fossils as tips, in order to calibrate the tree in a tip-dating approach, allows
estimating divergence times, even in completely extinct clades (Turner, Pritchard ¢
Matzke, 2017). The position of the fossil taxa on the tree is hereby simultaneously
reconstructed. In this way, it is not necessary to rely on possibly wrong assumptions about
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the position of fossil taxa, as is the case when applying the node-dating method (Near,
Meylan & Shaffer, 2005; Parham ¢ Irmis, 2008). Based on these ideas, more complex ways
of modelling different aspects regarding a more accurate reconstruction of phylogenetic
trees have been explored. This includes for example, relaxing the morphological clock rate
(Zhang, 2022), incorporating a fossilized birth-death tree model (Stadler, 2010), or
accounting for different taxon sampling strategies (Hohna et al., 2011).

In this study, we present the first reconstructed phylogeny based on dental
morphological data, from a selected series of Late Miocene to Pliocene cricetine genera,
mainly distributed in Europe, which exhibit high levels of species diversity. We compare
the results obtained by applying different phylogenetic techniques, such as maximum
parsimony and Bayesian inference approaches to propose the most robust phylogenetic
hypothesis. Overall, the study contributes to a better understanding of the early evolution
of the group and help to clear up previous systematic and taxonomic questions.

MATERIALS AND METHODS

Upper molars are indicated with upper-case letters (M1, M2, M3), lower molars with
lower-case letters (m1, m2, m3). The dental terminology used in this work is shown in
Fig. 1.

Taxon set

Included taxa depend on data availability and general completeness of the material. Within
the seven extinct genera, Apocricetus, Collimys, Cricetulodon, Hattomys, Neocricetodon
(including species assigned to Kowalskia), Pseudocricetus and Rotundomys, a total number
of 41 species could be coded, which makes up around 77% of the total number of species
within these genera (53), that were found in the literature. Additionally, two extant taxa
were included as well, Cricetus cricetus (Linnaeus, 1758) and Nothocricetulus migratorius
(Pallas, 1773). As outgroup, Eucricetodon wangae Li, Meng ¢» Wang, 2016 was added, as
coded in Lopez-Antorianzas ¢ Peldez-Campomanes (2022). For additional information
about the included taxa, e.g., age interval, references, observed material, see Supplemental
Material S1.

Morphological characters and matrix construction

The matrix was constructed in Mesquite v. 3.81 (Maddison ¢ Maddison, 2023). It is based
on the morphological matrix from Lopez-Antorianzas ¢ Peldez-Campomanes (2022), and
expanded here from 82 characters to 116 characters, introducing additional characters
corresponding to the structures allowing to differentiate cricetine genera and species. Four
characters concern the whole molar row, six refer to morphometrics, and the remaining
106 are related to the morphology of each dental element (M1: 37; M2: 11; M3: 16; m1: 23;
m2: 9; m3: 10). In cases of intraspecific variability between different locations, only the
condition found in the type locality has been considered. In case of variability in the type
location, only the character state present in most of the specimens was taken into account,
except for specimens, for which no clear majorities were seen. The morphological matrix is
provided in Supplemental Material S2.
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Figure 1 Dental terminology used in this study. Full-size K&l DOT: 10.7717/peerj.18440/fig-1

Phylogenetic reconstructions

All final trees were annotated and visualized in R with the packages treeio, ggtree and
deeptime (Wang et al., 2020; Yu, 2022; Gearty, 2023). For input and output files of the
Bayesian inference and maximum parsimony analyses, see Supplemental Material S3.

Maximum parsimony analyses. All maximum parsimony analysis were run with TNT
v. 1.6 (Goloboff & Morales, 2023) with all characters treated as unordered.

Equal weights analysis. The analysis under equal weights (MP-EW) was conducted
with new technology algorithms using initial trees from 1,000 rounds of random addition
sequence, with 100 iterations or rounds for sectorial search, ratchet, and tree fusing. The
resulting 106 most parsimonious trees (256 steps, consistency index (CI): 0.414, retention
index (RI): 0.715) were used to calculate a 50% majority consensus tree (258 steps, CI:
0.411, RI: 0.711). Clade support (given in %) was calculated based on 1,000 bootstrap (BS)
replicates under the same parameters (Felsenstein, 1985).

Implied weights analysis. An additional analysis was run under the same options, as
before but including implied weighting (MP-IW) (Goloboff et al., 2008). Following recent
suggestions, a larger concavity index (k) of 12 was used (see Goloboff, Torres ¢» Arias,
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2018). The resulting two most parsimonious trees (257 steps, CI: 0.412, RI: 0.713) were
used to calculate a consensus tree, (258 steps, CI: 0.411, RI: 0.711) with clade support based
on 1,000 BS replicates (Felsenstein, 1985).

Bayesian inference analyses. Bayesian analyses were run with the parallel version
of MrBayes v. 3.2.7a (Altekar et al., 2004; Ronquist et al., 2012b) using the Cyber-
Infrastructure for Phylogenetic Research (CIPRES) Science Gateway version 3.3 (Miller,
Pfeiffer & Schwartz, 2010).

Non-clock analysis. The Mkv model (Lewis, 2001) was used with among character rate
heterogeneity modelled under a gamma distribution (Yang, 1993). All characters were
treated as unordered. The analyses were run with four independent Metropolis-Coupled
Markov chain Monte Carlo (MCMCMC) runs with six chains and 30,000,000 generations,
sampling every 1,000 steps and a burn-in of 30%. Convergence and sufficient length of the
runs were checked, using the R package Convenience v. 1.0.0 (Fabreti ¢ Hohna, 2022).
Based on the posterior tree sample a maximum clade compatibility (MCC) tree was
calculated, as a consensus tree.

Time-calibrated relaxed-clock analysis. All settings of the non-clock analysis were
adopted, except the number of MCMCMC generations, which was increased to
50,000,000. Time-calibrated relaxed-clock analyses were performed under a fossilized
birth-death (FBD) tree prior (Stadler, 2010; Zhang et al., 2016). To model the way in which
extant and extinct taxa are sampled in the construction of the tree, different strategies can
be used (Simades, Caldwell & Pierce, 2020). To avoid problems when inferring speciation or
extinction rates (Hohna et al., 2011), we have tested two of the three strategies, that are
compatible with the FBD tree prior. The option ‘diversity’, that assumes a sampling
strategy to maximize the diversity of extant taxa, was excluded, as our database only
includes two extant species. Consequently, we have tested the two models that assume
randomly sampled extant species. The first one, with sampled ancestors, SA-FBD
(‘random’), allows the fossil taxa to be tips or ancestors of other taxa, while in the second
one, the so-called noSA-FBD (‘fossiltip’), the fossil taxa have to be tips. The use of one or
another can have an impact in the estimations of divergence times (Gavryushkina et al.,
20145 Simoes, Caldwell ¢ Pierce, 2020). For the extant sampling probability, the number of
included extant taxa (2) is divided by the total number of extant Cricetinae species (18 after
Musser & Carleton, 2005).

In order to time-calibrate the tree, the tip-dating approach was used (Ronquist et al.,
2012a; Ronquist, Lartillot ¢ Phillips, 2016). Age ranges of the fossil taxa, resulting from age
uncertainties of one or multiple locations of one taxon, were addressed by assigning
uniform prior distributions to the tip calibrations, which can help to avoid erroneous
divergence time estimations (O’Reilly, Dos Reis ¢ Donoghue, 2015; Barido-Sottani et al.,
2019). For the root age, an offset exponential distribution was set as a prior, with a
minimum of 33 Ma (= minimal age of the oldest included fossil Eucricetodon wangae) and
a mean of 41.2 Ma (following Lopez-Antonianzas ¢ Peldez-Campomanes, 2022).

To give an informative prior to the base rate of the clock, the median tree length,
calculated by a preceding non-clock analysis, was divided by the median of the root age
prior (3.189768/37.1 = 0.085978) (following Simaes et al., 2018, 2020). This estimated rate
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in natural log scale (= —2.45367) was used as the mean of a log-normal distribution with
the exponent of the mean (e*%**°”® = 1.08978) as the standard deviation (following Pyron,
2017). To enforce proper rooting of the tree and facilitate reaching convergence, the
ingroup was constrained to be monophyletic.

For relaxing the clock, two different models, compatible with the FBD prior are
implemented in MrBayes v. 3.2.7a. The IGR (Independent gamma rate) model draws
substitution rates from a gamma distribution, uncorrelated between branches, which
allows more dramatic rate changes (more punctuated mode of evolution) (Drummond
et al., 2006). The second model, TK02, samples from a lognormal distribution and is
autocorrelated between branches, which represents a more gradual mode of evolution
(Thorne & Kishino, 2002). Both models were used here, resulting in a total of four different
models with all combinations of “fossiltip” vs. ‘random’ and IGR vs. TK02. To choose the
best fit model, stepping-stone sampling was done to estimate the marginal likelihoods (Xie
et al., 2011). These can be used to calculate Bayes factors to compare the fit of two models
to the data. For the stepping-stone sampling, the number of MCMCMC generations was
increased by a factor of 10 to 500,000,000 as suggested by Ronquist et al. (2020).

All analyses were checked for convergence by the R package Convenience v. 1.0.0
(Fabreti & Hohna, 2022), as mentioned for the non-clock analysis.

Rogue taxon identification and tree set pruning. To improve posterior probabilities of
the resulting trees, so-called rogue (‘wildcard’) taxa, were identified. These taxa are
characterised by an unstable position in the tree, as they are resolved in varying clades in
the trees of a tree set, e.g., the posterior tree sample of a Bayesian inference analysis. This
leads to decreased posterior probabilities or even less resolved consensus trees. Equally, in
the case of maximum parsimony analyses, they can affect the consensus tree calculated by
several most parsimonious trees or the support values, given by a set of bootstrap trees.
Deletion of the rogue taxa from the tree sets before calculating the consensus trees, can
therefore lead to better resolved and supported trees, while they are still incorporated in the
actual reconstruction. The deletion of the rogue taxa from the taxon set followed by a
re-run of the analysis (e.g., in Aberer ¢ Stamatakis, 2011; Simées, Caldwell ¢» Pierce, 2020)
is seen critically by some authors as it means disregarding available and potentially
important information (as discussed in Goloboff ¢» Szumik, 2015).

In this study, the posterior tree samples of both clock trees were used to identify rogue
taxa utilising the R package Rogue v. 2.1.6 (Smith, 2022, 2023). An additional examination
of the 106 most parsimonious trees of the equal weighting maximum parsimony analysis,
using the web interface of RogueNaRok (Aberer, Krompass ¢ Stamatakis, 2013), did not
result in any identified rogue taxa. For the R-code used to identify the rogue taxa, see
Supplemental Material S4.

This study does not include the Pleistocene cricetine taxa, for which a revision beyond
the scope of this paper is needed. The lack of the youngest cricetine fossil taxa from our
analysis, makes the inferred position of the two included extant species uncertain. For this
reason, they were removed from the resultant trees (Figs. 1, 2, S5.1-3) but are shown in
Figs. 55.4-8 together with a discussion on the identified rogue taxa in Supplemental
Material S5.
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Figure 2 Majority consensus tree (phylogram), calculated from the two most parsimonious trees of

the implied weighting maximum parsimony analysis. Bootstrap values over 50% are indicated at

respective nodes in black, node numbers in red. The scale bar represents character state changes.
Full-size K&] DOT: 10.7717/peer;j.18440/fig-2

In total, the tree sets of all analyses were pruned by the same rogue taxa and the extant
taxa, to obtain comparable trees. These trees, that are based on the pruned taxon set were
then used for the subsequent analyses.

Assessing stratigraphic congruence

To compare the fit of the topologies resulting from the different reconstruction methods,
the R package strap v. 1.6 (Bell & Lloyd, 2015) was used to first time calibrate the non-clock
trees, and then to calculate the following stratigraphic fit indices: (i) the relative
completeness index (RCI) assesses the amount of gaps in the fossil record in relation to the
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observed fossil ranges in the tree (Benton ¢ Storrs, 1994); (ii) the gap excess ratio (GER)
indicates the sum of ghost ranges in the tree scaled in relation to the possible minimum
and maximum sum of ghost ranges in theoretical topologies (Wills, 1999); (iii) the
modified Manhattan stratigraphic measure (MSM") indicates the sum of ghost ranges in
the tree in relation to the sum of ghost ranges of the theoretical tree of best fit to the
stratigraphy (Siddall, 1998; Pol ¢» Norell, 2001). For all indices, significance tests were
carried out, that resulted in very small p-values. Resulting indices of all analyses are listed
in Supplemental Material Sé.

Character mapping

To ensure reliable results, two methods and two trees were used to map ancestral character
states. Following the results of the stratigraphic congruence analyses, the implied weighting
maximum parsimony tree was used to map characters in TNT under a parsimonious
approach (see Supplemental Material S7) and the time-calibrated tree under the IGR clock
model was used for stochastic character mapping with the R package phytools v. 2.1.1
(Revell, 2024). For the stochastic character mapping, three different models were fit to each
character, with rates between states being either equal, symmetrical, or all different. The
respective best fitting model was chosen using the Akaike information criterion and then
used to map the character on the tree. Finally, for each character, the posterior probabilities
of the different states were plotted on the nodes of the tree. For the reconstructed maps of
characters, that are mentioned in the results, see Supplemental Material S8.

RESULTS

Three taxa, Apocricetus darderi, Neocricetodon ambarrensis and Pseudocricetus
polgardiensis were identified as rogue taxa, based on the clock trees and were pruned from
the taxon set before calculating the consensus trees (MP-EW: 234 steps, CI: 0.453, RI:
0.757; MP-IW: 235 steps, CI: 0.451, RI: 0.755).

Maximum parsimony analysis

Maximum parsimony analyses of morphological data sets including highly homoplastic
characters can be improved by weighting characters according to their homoplasy
(Goloboff et al., 2008). Consequently, implied weighting parsimony analyses can produce
more resolved and accurate trees than standard equal weights (Smith, 2019). To assess
which tree, from equal or implied weighting, fits better with the chronostratigraphy,
stratigraphic congruence indices were calculated. While the topologies of both parsimony
trees are quite similar (see Figs. 1 and S5.3), our results evidence a better stratigraphic
congruence of the implied weighting tree than of the equal weighting tree (see
Supplemental Material S5). Therefore, we discuss below the topology retrieved by applying
implied weighting (Fig. 2).

The topology of the consensus tree of the two most parsimonious trees shows a major
basal split into two main clades. The first one (stemming from node 28) consists of
Collimys, Rotundomys, Cricetulodon bugesiensis and Cricetulodon sabadellensis whereas
the other one (stemming from node 3) includes the remaining cricetines. The most basal
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taxon of this latter clade is Cricetulodon hartenbergeri, followed by Pseudocricetus (node
27), which is in turn sister to a large clade (node 5) that splits into two lineages. The first of
them (stemming from node 6) includes Cricetulodon complicidens and most of the species
belonging to the genus Neocricetodon. The second one (stemming from node 17) has as
most basal taxa the sister species N. browni and N. nestori, as sister clade to the group
stemming from node 18: Apocricetus plinii, followed by Cricetulodon meini plus
Cricetulodon lucentensis, and the sister clades Hattomys and Apocricetus sensu stricto (s.s.).

Tip-dated Bayesian analysis

The results of the stepping stone sampling strongly evidence a better fit for the “fossiltip’
sampling strategy under both clock models (2 log.(B10) > 10, see Kass ¢ Raftery, 1995).
Comparing Tk02 with IGR under “fossiltip’, the better fit model is the Tk02 (2

log.(B1o) = 4.6) but without strong evidence. However, the analysis under the Tk02 model
showed some problems in reaching convergence (ESS below 200 for two parameters,
‘convergence failed’ according to Convenience). The IGR model showed a considerably
better performance (lowest ESS > 3,300, ‘convergence reached’ according to Convenience).
Moreover, the results of the strap analyses show a better stratigraphic congruence for the
IGR model than for the TK02 model (see Supplemental Material S6). As both calibrated
Bayesian inference analyses resulted practically in the same topology of the trees (see
Figs. 2 and S5.2) with only slight differences in the posterior probabilities (generally a bit
higher in Tk02) and in the relationships among the species belonging to Neocricetodon
(particularly in that concerning the clades with low posterior probabilities), we describe
below only the results obtained by applying the “fossiltip’ strategy under the IGR model
(Fig. 3).

The topology of our tree evidences four major clades. The most basal one (stemming
from node 35) consists of all species belonging to Collimys. Its sister clade (stemming from
node 3) includes all remaining cricetines, with its most basal clade (stemming from
node 31) including all Rotundomys species on the one side and the remaining two major
clades (stemming from nodes 5 and 18) on the other. The first of the latter (stemming from
node 5) consists of all species of Neocricetodon, as well as Cricetulodon complicidens. The
second one (stemming from node 18) has Cricetulodon hartenbergeri as sister of two
clades: a small one (node 30) including Cricetulodon bugesiensis and Cricetulodon
sabadellensis and a larger one (stemming from node 19) constituted by a succession of
clades with Pseudocricetus (node 29) at the base, followed by the sister taxa Cricetulodon
meini and Cricetulodon lucentensis (node 28). One node up (node 22) inserts A. plinii,
followed by the sister lineages Apocricetus s.s. and Hattomys. The topology of the tree
supports the monophyly of Collimys (node 35), Rotundomys (node 31), Neocricetodon
(node 5), Pseudocricetus (node 29), Apocricetus s.s. (node 26), and Hattomys (node 24). In
contrast, the genus Cricetulodon is paraphyletic and only the type species Cricetulodon
sabadellensis and Cricetulodon bugesiensis should be included in this genus.

Divergence times. The divergence times estimated using the two different clock models
IGR and TKO02, vary only slightly, with differences of mostly less than 500,000 years. In the
same way, uncertainties on divergence times (measured by 95% highest probability
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Figure 3 MCC tree of the time-calibrated relaxed-clock IGR Bayesian inference analysis. Posterior
probabilities of clades are indicated at respective nodes in black, node numbers in red, node bars indicate
the 95% highest posterior density for divergence times. The scale axis is in Ma, the chronostratigraphic
chart follows Cohen, Harper & Gibbard (2022). Full-size K&l DOT: 10.7717/peer;j.18440/fig-3

densities (HPD) ranges) are quite similar independently of the clock model applied. In the
following, the results of the analysis under the IGR model are reported. They reveal a late
Early Miocene age for the first split within the ingroup (16.54 Ma, 95% HPD: 14.53-
19.12 Ma). Collimys is recovered as the oldest genus, diverging during the Middle Miocene
(14.81 Ma, 95% HPD: 14.07-15.85 Ma). The remaining five monophyletic genera diverged
later, during the Late Miocene: Neocricetodon (11.28 Ma, 95% HPD: 10.26-12.64 Ma),
Rotundomys (10.91 Ma, 95% HPD: 10.01-12.23 Ma), Pseudocricetus (7.9 Ma, 95% HPD:
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6.69-9.29 Ma), Hattomys (6.7 Ma, 95% HPD: 5.17-8.47 Ma), and Apocricetus s.s. (5.7 Ma,
95% HPD: 4.59-6.81 Ma).

Ancestral character state reconstructions

The slight differences in the topology of both trees (particularly regarding the phylogenetic
position of Rotundomys and Collimys) result in different reconstructed synapomorphies
for some clades. However, concerning the genera, most of the synapomorphies found
when analysing the results of the stochastic character mapping are also retrieved by the
parsimonious mapping of synapomorphies (see Supplemental Materials S7 and S8). Only a
few synapomorphies are not found with the latter approach, due to the coding of
polymorphic states as ‘ambiguous’ in the mapping process in TNT. Therefore, below we
list mainly the synapomorphies obtained by applying stochastic character mapping.

All species belonging to Collimys (stemming from node 35) share the exclusive
synapomorphy of having an ectomesolophid on the m1 (68: 0->1). Additional ambiguous
synapomorphies are: e.g., a labial spur of the anterolophule reaching the labial border of
the M1 (103: 0>2), a long mesoloph on the M3 (49: 2-0) and the presence of a labial spur
of the anterolophulid on the m1 (64: 0->1).

The clade Rotundomys (stemming from node 31) is defined by the following exclusive
synapomorphies: a very weak to absent mesoloph on M1 and M2 (20: 152, 37: 152), a
posteroloph that is merged with the posterior metalophule on the M1 (26: 1>3) and the
presence of a short or hanging labial anterolophid on the m3 (88: 0->1), as well as many
non-exclusive synapomorphies.

Representatives of the clade stemming from node 5 including Neocricetodon and
Cricetulodon complicidens share non-exclusive synapomorphies such as the presence of the
anterior metalophule on the M2 (38: 2>1/0). Additional non-exclusive synapomorphies,
only shared with Collimys, are the presence of a long mesolophid on the m1 (66: 0/1->2)
and having a medium to long labial spur of the anterolophule on the M1 that reaches the
molar border in most of the taxa belonging to Neocricetodon (103: 0->1/2).

Representatives of Pseudocricetus (stemming from node 29) are characterised by having
a short but distinct posteroloph on the M3 (56: 0>1) and the tendency to form a very small
mesolophid on the m2 (73: 2->1).

Apocricetus s.s. (stemming from node 26) is characterised by the two non-exclusive
synapomorphies of having a multi-lobed, crestiform anteroconid (57: 2>4) with a poorly
developed labial anterolophid (60: 0->1) on the ml.

Representatives of Hattomys (stemming from node 24) are clearly distinct from those
belonging to its sister group Apocricetus s.s. They are characterised by sharing the two
exclusive synapomorphies of having large M1, longer than 3.2 mm (1: 1->3) and an
hypolophulid connected to a medium sized mesolophid on the m1 (109: 25).

DISCUSSION

Maximum parsimony vs. Bayesian trees
All maximum Parsimony and Bayesian tip-dated and undated trees (Figs. 1, 2, S5.1-3)
support the monophyly of Collimys, Rotundomys, Pseudocricetus Apocricetus s.s. and
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Hattomys. Neocricetodon includes Cricetulodon complicidens in all trees. It is monophyletic
in the Bayesian trees but not in the parsimonious ones, as two species branch outside of the
clade (N. browni and N. nestori in the implied weighting analysis and N. moldavicus and
N. fahlbuschi in the equal weighting one).

Cricetulodon splits up in the same groups in both, the IGR Bayesian clock analysis and
the implied weighting parsimony analysis (Figs. 1 and 2). However, some differences are
observed concerning the phylogenetic position of the clades. In this way, the topology of
the parsimony tree shows Cricetulodon bugesiensis and Cricetulodon sabadellensis as the
most basal taxa of the clade including Collimys and Rotundomys (stemming from node 28,
Fig. 2), whereas in the Bayesian topology this lineage belongs to the clade that comprises
the remaining species of Cricetulodon, Pseudocricetus, Apocricetus and Hattomys
(stemming from node 18, Fig. 3). Moreover, A. plinii is basal to Cricetulodon meini and
Cricetulodon lucentensis in the parsimony tree, but sister to Apocricetus s.s. and Hattomys
in the Bayesian one (inserting at node 18, Fig. 2 vs. node 22, Fig. 3).

The most striking difference when comparing the Bayesian clock tree to the parsimony
one concerns the relationship between Collimys and Rotundomys, for which the parsimony
analysis found a sister relationship (see node 29, Fig. 2, BS = 76) whereas in the Bayesian
tree they insert sequentially (at node 2 and 3, Fig. 3). Therefore, depending on the
topology, contrasting ancestral character state reconstructions are found. The characters
that are different in Collimys and Rotundomys compared to the remaining cricetines are
the following: M1 anterocone not clearly divided, but more crestiform vs. divided in two (5:
6 vs. 2); M1 lingual anteroloph clearly present vs. weak or absent (11: 0 vs. 1); upper molars
protolophule posterior vs. double (7: 0 vs. 1, 34: 2 vs. 1, 47: 3 vs. 0); m3 lingual anterolophid
well-developed vs. weak or absent (76: 1 vs. 0, reversed in Apocricetus s.s. and Hattomys
(76: 0 vs. 1)). According to the stochastic character mapping, all these characters serve as
synapomorphies for the clade Neocricetodon + Cricetulodon + Pseudocricetus + Apocricetus
+ Hattomys (stemming from node 4, Fig. 3). In the parsimony analysis, on the other side,
the results are reversed. Only having a double protolophule on the M1 is reconstructed as a
synapomorphy for this clade (stemming from node 3, Fig. 2), while the other
above-mentioned characters serve here as synapomorphies for the clade Collimys +
Rotundomys (node 29, Fig. 2).

The genera Rotundomys and Collimys were informally grouped by Kilin (1999) on the
basis of emerging hypsodonty, whereas Heissig (1995) excluded Collimys as potential
ancestor of Rotundomys, stating that the tendency of acquiring hypsodonty evolved
independently.

In the parsimony analysis, Cricetulodon sabadellensis and Cricetulodon bugesiensis are
additionally positioned as sister taxa to Collimys and Rotundomys. Considering the much
younger age of the Cricetulodon taxa compared to Collimys, the arrangement in the
Bayesian tree seems more plausible.

Collimys
According to our results, Collimys forms a monophyletic group, from which Collimys
transversus and Collimys gudrunae are splitting first. Prieto ¢ Rummel (2009a, 2009b)
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proposed three different lineages within this genus. An early lineage Collimys transversus-
Collimys gudrunae, a second temporally intermediate lineage involving Collimys sp. 1, 2
(from Petersbuch 10, 18, 6 and 48) and a later lineage Collimys hiri-Collimys longidens—
Collimys dobosi. Our results, nevertheless, do not support the lineages proposed by Prieto
& Rummel (2009a, 2009b). Moreover, according to the topology of our tree, the clade
Collimys dobosi plus more derived taxa (stemming from node 37, Fig. 3) differs
significantly from the Collimys hiri-Collimys longidens—Collimys dobosi lineage proposed
by Prieto & Rummel (2009a, 2009b). The latter authors proposed the lineage mainly on the
basis of an increase in size, in hypsodonty and in mesoloph length on the M1 and M2,
together with other minor morphological variations but the validity of the lineages has
been doubted later, due to regional variation of the taxa (Prieto et al., 2014; Hir et al., 2017).
Our results show that the most basal position of Collimys transversus and Collimys
gudrunae is supported by the smaller size of Collimys transversus and the presence of a
slightly more developed lingual anteroloph on the M3, in both reconstructed phylogenies.
Collimys dobosi is the next splitting species, sister to Collimys hiri and Collimys longidens,
due to a more square-shaped M2, which is elongated in the latter taxa, and the presence of
an anterior metalophule in the M3. The absolute size differences between the species are
too small to result in different states in the phylogenetic matrix. The length of the
mesoloph on the M1 is variable in Collimys dobosi, Collimys hiri and Collimys longidens
but it does not reach the border of the teeth in the majority of the specimens, whereas it
usually does on the M2 of all three taxa (Kdlin ¢ Engesser, 2001; Hir, 2005; Prieto &
Rummel, 2009b). Therefore, the reconstructions resulted in a more basal Collimys dobosi,
in both dated and undated analyses, due to above mentioned reasons. This basal position
of Collimys dobosi compared to Collimys hiri and Collimys longidens is congruent to the
slightly older age attributed to the former species. It has been recorded from Felsétarkany,
Hungary (~12.2-11.6 Ma), while Collimys longidens and Collimys hiri have been found in
Nebelbergweg, Switzerland and Hammerschmiede, Germany, respectively (~11.9-11.3
Ma) (Hir et al., 2016, 2017; Prieto ¢ Rummel, 2016).

Rotundomys

Rotundomys freiriensis as the basal-most taxon within Rotundomys is the best supported
split in the reconstructed phylogenies. It is based on the absence of the mesoloph (or
anterior metalophule) on the M3, which is present in the remaining species of the genus
and in having the lingual anterolophid on m1 and m2 better developed than in more
derived taxa. This arrangement follows the proposal of several previous studies (Antunes &
Mein, 1979; Freudenthal, Mein ¢ Martin Sudrez, 1998; Lopez-Antofianzas, Peldez-
Campomanes & Alvarez-Sierra, 2014). Rotundomys montisrotundi and R. intimus form a
clade characterised by a poorly developed lingual anteroloph on the M2. Lopez-
Antorianzas, Peldez-Campomanes ¢ Alvarez-Sierra (2014) addressed the similarity
between these two species and with R. sabatieri, and separated them on the basis of size, as
well as some minor morphological differences and different proportions of morphotypes.
The results of their phylogenetic analysis showed R. montisrotundi and R. bressanus as
sister species, based on the absence of the lingual anteroloph on the M2 in most specimens.
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However, their phylogenetic analysis only included the genera Rotundomys and
Cricetulodon and therefore these results should be taken with caution before drawing
general conclusions. Mein (1975) proposed R. bressanus to be derived from

R. montisrotundi, mainly based on size differences. Intraspecific variation of

R. montisrotundi complicates, however, confirming or refuting this hypothesis
(Freudenthal, Mein ¢ Martin Sudrez, 1998).

In general, discrimination between species often relies on differences in size, that can,
however, overlap in their ranges (see R. sabatieri vs. R. bressanus in Aguilar, Michaux ¢
Lazzari, 2007), resulting in short branch lengths in the maximum parsimony phylogram
and in collapsed clades, due to zero-size branch lengths (see R. sabatieri). Consequently,
the only reliable relationships within the genus seem to be the basal position of
R. freiriensis and the closely related R. montisrotundi and R. intimus.

Neocricetodon
The name Neocricetodon Schaub, 1934 was validated by Daxner-Hock et al. (1996) and
followed by a majority of authors afterwards.

Our results show three synapomorphies for Neocricetodon: (i) the presence of a long
mesolophid on the m1, (ii) the presence of a labial spur of the anterolophule on the M1 and
(iii) the presence of an anterior metalophule on the M2. These results agree with those of
Freudenthal, Mein & Martin Sudrez (1998), regarding the synapomorphies (i) and (ii).
Additionally, they also mentioned that the species belonging to Neocricetodon show a
labial anterolophulid on the m1 and elongated mesolophs on the upper molars. Our results
are also in line with those of Sinitsa ¢» Delinschi (2016), agreeing on the synapomorphy
(iii) the presence of the anterior metalophule on the M2. The latter authors additionally
proposed as synapomorphies of this clade an expanded anterocone and the presence of a
labial anterolophule on the M1, a labial anterolophulid on the m1, and a four rooted M2.
They have, however, only included Cricetulodon sabadellensis, ‘Kowalskia cf. schaubi’
(Kretzoi, 1951) and Democricetodon as outgroup taxa but no other cricetines, therefore
these proposed synapomorphies must be treated carefully. A four rooted M2, for example,
is reconstructed as plesiomorphic for Neocricetodon by the stochastic character mapping.

Interestingly, the first two synapomorphies we have proposed for Neocricetodon, (i) the
presence of a mesolophid on the m1 (reaching the molar border in most of the taxa) and
(ii) the presence of a labial spur of the anterolophule on the M1 (reaching the border of the
molar in most taxa) are not considered as synapomorphies by Sinitsa ¢ Delinschi (2016).
In fact, these authors, coded N. occidentalis, N. progressus and N. moldavicus as lacking or
having a short mesolophid on the m1 (Sinitsa ¢ Delinschi, 2016; Table 2). However,
previous studies have described N. occidentalis and N. progressus as having usually long
mesolophids (de Bruijn et al., 1975; Freudenthal, Lacomba ¢ Martin Sudrez, 1991;
Topachevsky & Skorik, 1992; Freudenthal, Mein ¢ Martin Sudrez, 1998; Sinitsa, 2012) and
N. moldavicus as having short to medium mesolophids. Moreover, the holotype of this
latter species shows a clearly well-developed mesolophid (Lungu, 1981; Sinitsa ¢ Delinschi,
2016). Regarding (ii) the spur of the anterolophule on the M1, Sinitsa ¢ Delinschi (2016)
coded having short or absent spurs as one single state of character. This could be the reason
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why the presence of this structure has not been expressed in their matrix of characters in
several taxa (e.g., N. nestori, see Engesser, 1989), impeding its identification as a possible
synapomorphy.

Both the above-mentioned structures, the mesolophid on the m1 and the labial spur of
the anterolophule on the M1, are relatively poorly developed in N. moldavicus, justifying its
basal position within the clade. Only the third synapomorphy, (iii) the presence of the
anterior metalophule on the M2 (coded here as metalophule either anterior or double), is
clearly observable in N. moldavicus. However, as noticed by Freudenthal, Mein ¢ Martin
Sudrez (1998), who did not include this character as a diagnostic trait of the genus, it is
quite variable in several taxa (e.g., N. nestori, N. progressus, N. hanae, N. browni), although
there is a strong tendency towards its presence. Sinitsa ¢ Delinschi (2016) termed the
character as ‘phylogenetically irrelevant’, due to homoplasy and reversals in some clades.
They specifically mentioned the loss of this structure in N. grangeri but the single M2 from
the original material is too heavily damaged to make any statement concerning the
metalophule (Daxner-Hock et al., 1996). Yet, additional found material of this species, that
includes several complete M2s, evidences that most of them have an anterior metalophule
(Wu & Flynn, 2017).

Several phylogenetic hypotheses within Neocricetodon have been proposed (Wu, 1991;
Daxner-Hock, 1992; Freudenthal, Mein ¢ Martin Sudrez, 1998; Qiu ¢ Li, 2016; Sinitsa ¢
Delinschi, 2016). However, the evolutionary history of this taxon, that includes numerous
species with wide geographical and temporal distribution, is complex to untangle. This
complexity is also reflected in our results, which put in evidence low posterior probabilities
for most of the clades within Neocricetodon and some differences in the topologies of the
trees, which mostly prevents reliable statements about the proposed lineages. However, the
clade combining N. magnus, N. intermedius and N. polonicus (stemming from node 14,
Fig. 2, or node 15, Fig. 3), which were dominantly distributed in Eastern Europe, in
Hungary, Poland, Slovakia and Ukraine, (Fahlbusch, 1969; Janossy ¢» Kordos, 1977,
Pevzner et al., 1996) is consistent in all our analyses and very well supported in the IGR
Bayesian tree (PP = 1). This result is in disagreement with the hypothesis of Wu (1991),
who separated the three species into three different lineages mainly on the basis of their
molar size. Conversely, it corroborates the close relationship between N. polonicus and
N. intermedius, as recovered by Sinitsa ¢ Delinschi (2016), who did not include N. magnus
in their analysis.

According to the topology of our tree, Neocricetodon also includes Cricetulodon
complicidens. Difficulties regarding the genus assignment of this species were already
mentioned in several papers (Freudenthal, Mein ¢» Martin Sudrez, 1998; Kilin, 1999).
Topachevsky ¢ Skorik (1992), who coined this species, described some similarities with
Neocricetodon, such as the presence of a long mesolophid on the m1, a long labial spur of
the anterolophule on the M1, and an anterior metalophule on the M2. These are, in fact,
the three above mentioned synapomorphies that define this group. Consequently, the
reallocation of Cricetulodon complicidens into the genus Neocricetodon seems to be
justified.
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This reallocation could seem to cause confusion considering another species coined by
Topachevsky ¢ Skorik (1992) as ‘Kowalskia complicidens” due to the fact that Kowalskia is
considered a junior synonym of Neocricetodon by several authors (Freudenthal, Mein ¢
Martin Sudrez, 1998; Sinitsa & Delinschi, 2016). However, ‘Kowalskia’ complicidens is
thought not to belong to Neocricetodon (or Kowalskia) but rather to Sinocricetus Schaub,
1930 (Daxner-Hock et al., 1996; Qiu & Li, 2016; Sinitsa ¢ Delinschi, 2016).

This leads to the question about the validity of the genus Kowalskia or its synonymy
with Neocricetodon. The scarce material of the type species N. grangeri did not help to
clarify this issue and therefore some authors keep the genera separated (Daxner-Hock
et al., 1996), whereas others consider Kowalskia as junior synonym of Neocricetodon, until
the discovery of additional material of this species would allow to either detect clear
similarities or differences (Freudenthal, Mein e~ Martin Sudrez, 1998). Sinitsa ¢» Delinschi
(2016) reconstructed the phylogeny of the group. Their work retrieved K. polonica, the type
species of Kowalskia, branching in the same clade as N. grangeri and other species of
Neocricetodon. However, due to the limited material of N. grangeri, they could not code
any of the characters related to the M1 of this species, which make up nearly half of the
total characters of their matrix. Soon afterwards, Wu & Flynn (2017) published additional
material of N. grangeri, which helped them to conclude that the synonymy of Kowalskia
with Neocricetodon is strongly supported.

The topologies of the parsimony, undated and tip dating TK02 clock trees (Figs. 1, S5.1,
2) agree with Sinitsa & Delinschi (2016) in the phylogenetic position of the type species of
Kowalskia and Neocricetodon, as nesting within a clade that includes the remaining species
of Neocricetodon (stemming from node 6, Fig. 2). All these trees evidence a derived
position of K. polonica, which shares the three synapomorphies mentioned above that
characterise the genus Neocricetodon. Only the Bayesian IGR clock tree (Fig. 3) shows two
main clades inside the clade Neocricetodon, one of which (stemming from node 8, Fig. 3)
includes the type species N. grangeri and the other one (stemming from node 14, Fig. 3)
includes K. polonica. These two clades could be interpreted as two separated genera, with
all species in the same clade as K. polonica reallocated to Kowalskia. However, taking into
account the very low posterior probabilities of these clades (0.12 and 0.35), the absence of
clear synapomorphies for both of the clades, and that these clades are not recovered in any
of the remaining analyses presented here, we consider the synonymy of Kowalskia with
Neocricetodon to be justified.

Cricetulodon

The difficulty of defining the genus Cricetulodon is exemplified by previous proposals of
synonymising it with Rotundomys or with Neocricetodon (Freudenthal, 1967, 1985).
Freudenthal, Mein & Martin Sudrez (1998) eventually separated Cricetulodon from
Neocricetodon mainly based on the presence of a mostly lingual anterolophulid on the m1
of the former taxon. Due to the high variability observed on the anterior part of the m1 of
these two taxa, the determination of a dominantly lingual or labial anterolophulid can be
problematic, particularly, when the anterolophid is double or more centrally positioned
(Engesser, 1989; Wu, 1991; Daxner-Hock & Hock, 2015). The problems of relying on this

Dirnberger et al. (2024), PeerdJ, DOI 10.7717/peerj.18440 16/27


http://dx.doi.org/10.7717/peerj.18440/supp-5
http://dx.doi.org/10.7717/peerj.18440
https://peerj.com/

Peer/

variable character to allocate a species into a genus are exemplified by the
above-mentioned Cricetulodon complicidens.

The topology of our trees (Figs. 1 and 2) does not support the monophyly of
Cricetulodon, which is in agreement with previous phylogenetic studies (Lopez-
Antofianzas, Peldez-Campomanes ¢ Alvarez-Sierra, 2014). However, the work of these
authors was focused on a new species of Rotundomys and only the species belonging to
Rotundomys and Cricetulodon were analysed. The three clades they recovered,
Cricetulodon hartenbergeri plus Cricetulodon sabadellensis, Cricetulodon bugesiensis plus
Cricetulodon lucentensis, and Cricetulodon meini, all basal to Rotundomys, are not found in
our trees. Our results show Cricetulodon meini and Cricetulodon lucentensis as sister
species, which is consistent with the hypothesis of a potential ancestor-descendant
relationship between these two taxa suggested by Freudenthal, Mein & Martin Sudrez
(1998). After Freudenthal (1967), the position of Cricetulodon hartenbergeri and
Cricetulodon sabadellensis as potential ancestors of Rotundomys, was adopted and
discussed by several authors (Fejfar, 1970; Daxner-Hock, 19725 Kilin, 1999; Fejfar et al.,
2011; Lopez-Antofianzas, Peldez-Campomanes & Alvarez-Sierra, 2014). While
Cricetulodon sabadellensis and Cricetulodon bugesiensis are recovered as possible ancestors
of Rotundomys in the undated analyses (see node 28, Fig. 2), they are quite distant in the
clock trees, which is likely resulting from their similar or even younger age compared to
R. freiriensis.

Be that as it may, the clade consisting of Cricetulodon lucentensis and Cricetulodon
meini is not closely related to the type species of the genus Cricetulodon sabadellensis in
any of our trees. Consequently, these species should be excluded from the genus and
transferred into a new one.

Pseudocricetus

This genus was partly defined on the basis of some characters of the mandible, the skull
and the incisors by Topachevsky ¢ Skorik (1992) and Sinitsa (2010). Some dental
morphological characters, such as the presence of reduced mesolophs and mesolophids,
anterior protolophules or the split of the anterocone that were proposed to define
Pseudocricetus, are in fact also present in several other genera (Daxner-Hock et al., 1996;
Freudenthal, Mein & Martin Sudrez, 1998). According to our results, Pseudocricetus is
monophyletic and, in the Bayesian tree, sister clade to the lineage of Cricetulodon
lucentensis, Cricetulodon meini, Apocricetus and Hattomys (stemming from node 21,
Fig. 3). This agrees with previous hypotheses, according to which there were
morphological similarities between Pseudocricetus and Apocricetus (Kdilin, 1999), or that
considered Pseudocricetus as a possible ancestor of Hattomys (Freudenthal & Martin
Sudrez, 2010).

Apocricetus
Freudenthal, Mein & Martin Sudrez (1998) proposed the phyletic lineage, Apocricetus
plinii-A. alberti-A. barrierei-A. angustidens. According to these authors, the changes
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along this lineage, e.g., the development of the anterior protolophules or the presence of an
anterior ridge in the M1, are gradual and refer to size as well as to morphological features
(see also Ruiz-Sanchez et al., 2014; Mansino et al., 2014). The topologies of our trees mostly
agree with the thoughts of Freudenthal, Mein ¢» Martin Sudrez (1998) except for A. plinii,
which, despite being basal to Apocricetus s.s., does not belong to this clade. Instead, the
results of the Bayesian analysis show A. plinii (inserting at node 22, Fig. 3) as sister species
to the sister clades Apocricetus s.s. and Hattomys. The topology of the maximum
parsimony tree shows A. plinii (inserting at node 18, Fig. 2) as basal to the clade (stemming
from node 19, Fig. 2) consisting in Cricetulodon meini plus Cricetulodon lucentensis and
the sister clades Apocricetus s.s. and Hattomys.

Apocricetus plinii and A. alberti show less derived features such as a better developed
anterior protolophule on the M1 when comparing with A. angustidens and A. barrierei.
However, A. plinii differs from A. alberti by its less derived morphology of the anteroconid
on the m1, which is not crest-like but split into two anteroconids. In addition, the labial
spur of the anterolophule on the M1 of A. plinii is usually free and not connected to the
labial anterocone as is the case of A. alberti (Freudenthal, Mein e Martin Sudrez, 1998).
Therefore the ‘anterior atoll’ that is formed between the two anterocones in all species
belonging to Apocricetus s.s. and Hattomys, is often absent in A. plinii, which could explain
its phylogenetical position in the tree.

Hattomys

Regarding the characters that have been used to define Hattomys, special attention was
paid to the mesoloph(id) and the so-called ‘preloph(id)’ (Freudenthal, 1985; Savorelli,
2013). Due to the direction and position of the structure that connects the ectoloph and the
entoconid, it is difficult to know whether it represents the mesolophid, the anterior
hypolophulid or a combination of both (Freudenthal, 1985; Savorelli, 2013). This structure
is here interpreted as a mesolophid of medium length (or long in the case of the m3), which
is fused with the anterior hypolophulid to some extent (well visible in Savorelli, 2013,
Fig. 5.6). The so-called ‘prelophid’ is here interpreted as a lingual spur of the
anterolophulid that is connected to the anterior metalophulid and to the posterior spur of
the lingual anteroconid. In the upper molars, the ‘preloph’ is, accordingly, the labial spur of
the anteroloph, which is either connected to a longitudinal running anterior protolophule
and the posterior spur of the labial anterocone, or runs freely, as frequently seen in

H. beetsi. This spur can also continue towards the labial border after its connection to the
labial anterocone (see e.g., Freudenthal, 1985, plate 3.1). On all upper molars, the anterior
metalophule seems to be lacking and there is only a long mesoloph, that usually reaches the
labial border of the tooth. It can sometimes connect to the metacone.

The presence of a ‘preloph(id)’ is, independently of its interpretation, not a
synapomorphy for Hattomys considering its frequent presence in Apocricetus s.s. (Ruiz-
Sanchez et al., 2014; Mansino et al., 2014). Instead, two non-exclusive synapomorphies, the
presence of mesolophids of medium length on the m1 and the m2, and a single exclusive
synapomorphy, the connection of the hypolophulid to the mesolophid on the m1, are
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identified by the stochastic character mapping. Moreover, synapomorphies proposed in
previous studies (Freudenthal, 1985; Savorelli, 2013), such as the presence of a long
mesoloph on the M2 and the M3 that reaches the labial border of the tooth and the
well-developed ‘flanges’ on the cusps were only identified in H. nazarii and H. gargantua,
here. These characters turned out to be plesiomorphic in H. beetsi, which could explain the
basal-most position of this taxon inside the clade.

Hattomys is found in Gargano peninsula, Italy, as part of a clearly insular fauna. There is
uncertainty regarding the timing and modes of colonisation of the island (Mazza ¢
Rustioni, 2008; van den Hoek Ostende, Meijer & van der Geer, 2009; Freudenthal ¢» Martin
Sudrez, 2010; Freudenthal, van den Hoek Ostende ¢ Martin-Sudrez, 2013; Savorelli ¢
Masini, 2016). Due to the uncertainty of the age of the fauna, a relatively large interval of
time was chosen for these three species, regarding the tip-dating. This could explain the
relatively large 95% HPD range of the estimated divergence time of this clade, when
compared with other taxa such as Apocricetus s.s.

Possible ancestors of Hattomys were assumed to be found in Neocricetodon,
Pseudocricetus or Apocricetus (Freudenthal & Martin Sudrez, 2010). Freudenthal (1985)
especially emphasized the similarity between Hattomys and A. alberti, which is congruent
with the close relationship between Hattomys and Apocricetus s.s., that we retrieved in this
study. According to the topology of our Bayesian tree, the common ancestor of Hattomys
and Apocricetus s.s. could be a species close to A. plinii. The timing of the split between
these two genera (7.41 Ma, 95% HPD: 6.23-8.8 Ma), and to A. plinii (8.22 Ma, 95% HPD:
7.1-9.56 Ma) could have an impact in the estimations of the age of the Gargano fauna.
Freudenthal, van den Hoek Ostende ¢ Martin-Sudrez (2013) assume a single colonisation
event at around 8.8-7.5 Ma, which fits quite well with the here reconstructed divergence
estimations.

CONCLUSION

This study is the first to analyse the origin and early diversification of cricetine rodents
based on a morphological only dataset of late Miocene and Pliocene fossils applying
Bayesian and parsimony methods. Our results unravel the relationships within and
between several of its genera, providing answers to their systematic uncertainties. This
work evidences that the genera Collimys, Rotundomys, Pseudocricetus, Apocricetus s.s. and
Hattomys are monophyletic whereas Cricetulodon is paraphyletic. The species Apocricetus
plinii does probably not belong to Apocricetus, being basal to the sister clades Apocricetus
s.s. and Hattomys. Pseudocricetus is closer to the Apocricetus-Hattomys clade than to
Neocricetodon. Finally, Kowalskia is confirmed as a junior synonym of Neocricetodon with
‘Cricetulodon’ complicidens being most likely a member of this genus. The new insights
into the relationships between these extinct genera, help to gain a better understanding of
the evolutionary history of the Cricetidae. Based on the expanded morphological matrix,
additional extinct and also extant members of the group can be rapidly added to the
phylogeny in future studies. Hence, this work provides the first basis for the still relatively
poorly understood origin of today’s hamsters.
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