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ABSTRACT
Individual movement influences the spatial and social structuring of a population.

Animals regularly use the same paths to move efficiently to familiar places, or to

patrol and mark home ranges. We found that Australian sleepy lizards (Tiliqua

rugosa), a monogamous species with stable pair-bonds, repeatedly used the same

paths within their home ranges and investigated whether path re-use functions as a

scent-marking behaviour, or whether it is influenced by site familiarity. Lizards can

leave scent trails on the substrate when moving through the environment and

have a well-developed vomeronasal system to detect and respond to those scents.

Path re-use would allow sleepy lizards to concentrate scent marks along these

well-used trails, advertising their presence. Hypotheses of mate attraction and

mating competition predict that sleepy lizard males, which experience greater intra-

sexual competition, mark more strongly. Consistent with those hypotheses, males

re-used their paths more than females, and lizards that showed pairing behaviour

with individuals of the opposite sex re-used paths more than unpaired lizards,

particularly among females. Hinterland marking is most economic when home

ranges are large and mobility is low, as is the case in the sleepy lizard. Consistent with

this strategy, re-used paths were predominantly located in the inner 50% home

range areas. Together, our detailed movement analyses suggest that path re-use is a

scent marking behaviour in the sleepy lizard. We also investigated but found less

support for alternative explanations of path re-use behaviour, such as site familiarity

and spatial knowledge. Lizards established the same number of paths, and used them

as often, whether they had occupied their home ranges for one or for more years.

We discuss our findings in relation to maintenance of the monogamous mating

system of this species, and the spatial and social structuring of the population.

Subjects Animal Behavior, Ecology, Zoology

Keywords Movement strategy, Path re-use, Signalling, Olfactory cues, Lizard, Scincidae,
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INTRODUCTION
Movement and space use are fundamental aspects of an animal’s life and critical for

many ecological processes (Kays et al., 2015; Nathan et al., 2008). Movement determines

the level of exposure to environmental conditions, such as heat when moving in or out
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of shade (Dawson et al., 2006; Firth & Belan, 1998), access to resources, and also

interaction frequencies with conspecifics, predators or prey (Arias-Del Razo et al., 2012;

Smaldino & Schank, 2012). Similarly, natal dispersal, the movement away from the

birthplace to the site of first reproduction, influences exposure to new environments

and access to mating partners (del Mar Delgado et al., 2009). Movement paths can

either be consistent, with individuals repeatedly moving along similar paths, such as

long distance migration routes (Åkesson et al., 2012), or they can be variable, such

as when animals like desert ants (Cataglyphis sp.) use different, often the most direct,

routes when returning from different locations back to some central refuge (Wehner,

2003). Investigating how animals move through their environment will contribute to a

better understanding of the key role movement plays for ecological and population

processes.

Moving along the same paths is a specialised movement strategy allowing very

particular insight into space and home range use. Particular functions of path re-use

generate predictions of movement behaviour, and allow deductions about the movement

strategy. There are several reasons why animals may establish consistent trails. In

complex habitats, regularly used trails may represent paths that require the least energy

to move through the environment, or the safest passageway to move between habitat

fragments (LaPoint et al., 2013). For example, water filled drainage ditches are consistently

re-used paths for the green frog (Rana clamitans melanota) as they provide high quality

habitat pathways to facilitate movement across mostly unsuitable habitat (Mazerolle,

2005). Corridors and other landscape characteristics may also funnel animal movement

consistently along particular pathways. Similarly, for flight paths, topography that

creates uplift along canyons and mountain ridges in the Appalachian mountains

concentrates movement of the golden eagle (Aquila chrysaetos) along consistently

re-used routes (Dennhardt et al., 2015). Animals may also learn movement paths to

reach, most efficiently and safely, resources that are out of sight at the origin of the path,

and then repeatedly follow the same trail (Laland & Williams, 1997). Hence, familiarity

with the environment would influence such path re-use behaviour. For instance, wild

baboons (Papio ursinus) move along highly repetitive routes every day to feed on regularly

visited fig trees (Noser & Byrne, 2010).

An alternative explanation for repeatedly moving along the same trails is that it can be

part of territory or home range marking behaviour. For example, males of the forest

thrush (Catharus fuscescens) repeatedly move to and sing at the same locations for up to

seven days, and Ethiopian wolves (Canis simensis) repeatedly move along the border of

their territory and scent mark at an average of three scent sites per kilometre (Sillero-

Zubiri & Macdonald, 1998). Another example of path re-use as scent marking behaviour is

from the pygmy bluetongue lizard (Tiliqua adelaidensis). In this species females, but not

males, repeatedly move along the same few paths radiating from their single entrance

burrows, and males appear to be lured to the female burrow along those scent trails

(Ebrahimi et al., 2015).

In this paper we investigate patterns of path re-use in another lizard to explore if

those patterns are best explained by scent marking behaviour, or alternatively by
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familiarity with the most efficient pathways through the environment, for example to

commonly used resources. First, focussing on scent marking, we combine our existing

understanding of scent marking behaviour in this species with detailed observations

of movement patterns to deduce if scent marking behaviour could explain path re-use

movement patterns. Investigating scent marking behaviour in natural conditions and

identifying scent mark locations across the landscape for entire populations is challenging,

but improves our understanding of factors influencing space use and its consequences

for population processes.

If repeatedly moving along the same paths is indicative of scent marking behaviour,

there are specific predictions about variation among individuals in movement patterns,

and about the spatial location of frequently used paths. Scent marks often inform

about the quality of the sender (Carazo, Font & Desfilis, 2007; Martı́n & López, 2015).

In a sexual context those scent marks can be used to discourage mating competitors

(intra-sexual context) and to attract mates (inter-sexual context) (Blaustein, 1981;

Heymann, 2006). Hence, themate attraction and mating competition hypothesis (Heymann,

2006) suggests that the sex experiencing greater mate choice or stronger intra-sexual

competition will scent mark more strongly. If path re-use is for scent marking then

that sex should re-use paths more frequently. Regarding the effective placement of

scent marks, the hypothesis of economic scent marking (Gosling & Roberts, 2001a; Roberts &

Gosling, 2001) was developed to put scent marking into a spatial context. It suggests

that the location where scent marks are most effective depends on home range size and

individual mobility. It predicts that species that occupy large home ranges relative to

their mobility will concentrate scent markings in their inner core home range areas

(hinterland marking), while those with higher mobility and smaller home ranges will

mark their home range boundaries including areas that overlap with neighbouring

conspecifics (Gosling & Roberts, 2001a; Roberts & Gosling, 2001).

Many squamate reptiles (lizards and snakes) produce scents, either from their skin

or specialised glands, and leave continuous scent trails on the substrate when moving

through the environment (Mason & Parker, 2010). They have a well-developed

vomeronasal system and, through tongue flicking, readily detect and respond to those

olfactory signals (Martı́n & López, 2015). Those chemical systems play an important

role in squamate intraspecific communication, and allow differentiation between sexes

(Fenner & Bull, 2011), between familiar and unfamiliar individuals (Aragón, López &

Martı́n, 2003; Bull, Griffin & Johnston, 1999; Bull et al., 2000), between related and less

related individuals (Bull et al., 2001) and among females of different sexual attractiveness

(Parker & Mason, 2012; Uhrig et al., 2012). Furthermore, chemical signals can play a role

in the spatial distribution of a species, and have been shown to influence refuge choice

(Scott et al., 2013) and to attract females to male home ranges (Martı́n & López, 2012).

Conversely chemical signals can also function as a repellent. In the Iberian wall lizard

(Podarcis hispanica), olfactory signals allow individuals to assess and avoid the potential

threats from neighbours (Carazo, Font & Desfilis, 2008). And males of the Iberian

rock lizard (Iberolacerta cyreni) delay and reduce the intensity of agonistic interactions

with other males that are perceived, from olfactory signals, as the home range owner
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(López & Martı́n, 2011). These examples clearly show the influence of olfactory

communication on squamate behaviour.

Our study species, the sleepy lizard (Tiliqua rugosa Gray, 1825), is a large herbivorous

skink with a wide distributional range in mesic and semi-arid regions of southern

Australia (Bull, 1995). It is estimated to live up to 50 years (Bull, 1995) and forms long-

term monogamous pair bonds (Bull, 1988; Leu et al., 2015), with partner home ranges

overlapping almost completely (Kerr & Bull, 2006a). Lizards do not mate each year, and

the strength of the pair bond varies among partnerships and years (Bull, 1994; Bull, 2000).

Leu et al. (2010a), Leu et al. (2015) and Leu, Kappeler & Bull (2011) defined lizards as

paired if they were recorded close together on more than 10% of observation records,

and they, and Godfrey et al. (2012) confirmed that each year there were some adult

lizards that remained unpaired.

As in other squamates, sleepy lizards detect and respond to conspecific olfactory

cues, which play a prominent role in influencing their behaviour. For instance, previous

studies have shown that female sleepy lizards use chemical cues for mother-offspring

recognition (Main & Bull, 1996) and to discriminate between their pair partner and

unfamiliar males (Bull & Lindle, 2002). Individuals also follow scent trails to locate

partners (Bull, Bedford & Schulz, 1993a; Bull & Lindle, 2002). Olfactory signalling by

neighbours is a possible mechanism to maintain the reported stable spatial and social

organisation with little shift in home range location between years (Bull & Freake, 1999;

Godfrey, Sih & Bull, 2013; Leu et al., 2016).

In this study we investigated path re-use behaviour in the sleepy lizard and determined

whether it conforms with predictions of scent marking behaviour, or with predictions

of site familiarity. The scent marking aspect of our study builds on our previous

experimental work which identified that sleepy lizards leave scent trails as they brush

against the surface while moving through the landscape and directly respond to them

(Bull, Bedford & Schulz, 1993a; Bull & Lindle, 2002). Repeatedly using the same paths

would concentrate natural scent trails in certain areas as well as repeatedly refresh those

scent marks, thereby reinforcing their signalling strength. From the mate attraction

and mating competition hypothesis we predicted a higher frequency of path re-use in males

than females, because sleepy lizard males experience stronger intra-sexual competition

(Bull & Pamula, 1996; How & Bull, 2002; Murray & Bull, 2004). Following from the same

hypothesis, we predicted greater competition for mates, and hence greater path following

behaviour, in paired compared to unpaired individuals. Although pair bonds are stable

over time, not all females reproduce each year (Bull, 1988; Leu et al., 2015), and some

adult individuals in one year (more likely to be females) may be unpaired if they are

not seeking matings. Then, from the hypothesis of economic scent marking (Roberts &

Gosling, 2001) we predicted that more re-used paths would be located within the inner

than the outer areas of the home range, because sleepy lizard daily movement capabilities

are low relative to their home range size (Bull & Freake, 1999; Kerr & Bull, 2006a).

In addition to investigating whether scent marking behaviour can explain path re-use,

we also investigated the alternative hypothesis that frequent path re-use results from

familiarity with the most efficient routes to areas with commonly used resources, such as
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patches of high food abundance or important refuge sites. Individuals need time

to acquire information of their surroundings, and spatial knowledge increases with

settlement duration (del Mar Delgado et al., 2009). In return, familiarity with an area,

i.e. spatial knowledge influences individual movement behaviour (Noser & Byrne, 2010).

For example, butterfly fishes move along predictable paths when foraging (Reese, 1989)

and chipmunks (Tamias striatus) run along particular paths to escape predators

(Clarke et al., 1993). Stamps (1995) suggested that in species occupying complex

habitats, individuals learn and use certain paths to move rapidly and efficiently around

obstacles and barriers in familiar areas. Although our study site, in flat, open chenopod

scrubland has few obvious environmental constraints on movement that might impede

or channel movement along particular trajectories, bushes and interspersed trees may

constitute local obstacles that lizards need to move around. We hypothesised that

familiarity with the home range area and resource distribution influences movement

behaviour in the sleepy lizard and predicted that path re-use behaviour would be more

frequent among long-term resident lizards than among lizards that had recently arrived

and were less familiar with the area.

MATERIAL AND METHODS
Study site
Our study site was an approximate 1.5� 1.5 km area located near Bundey Bore Station in

the mid-north region of South Australia (33�54′16″S, 139�20′43″E), with an average

annual rainfall of about 250 mm. It contains relatively homogeneous chenopod scrubland,

dominated by blue bush, Maireana sedifolia, with interspersed small stands of sheoak

trees, Casuarina cristata. An infrequently used vehicle track crosses the site but does

not impede movement. The habitat structure of the study site is very open, allowing

many movement paths, and lizards regularly move across the vehicle track at multiple

locations along its length. The study was conducted in the austral spring and early

summer (Aug–Dec) of two years, 2009 and 2010. This is the period of year when lizards

are most active. It is normally too cool for lizard movement earlier in the year, and

movement is inhibited after December when most of the annual plants that they feed

on have dried out and food is unavailable. Our previous records suggest little movement

activity outside of these study periods (Kerr & Bull, 2006b).

Data recording
We used previously described procedures (Godfrey et al., 2012; Leu et al., 2010a; Leu,

Kappeler & Bull, 2010b; Wohlfeil et al., 2013) to collect lizard GPS location data. In the

early spring of each year (August–September) we caught all 60 resident adult lizards

within the study site and attached data loggers, each containing a GPS unit, a radio

transmitter and a step counter, to the dorsal surface of their tails using surgical tape.

The data loggers recorded synchronous GPS locations for all active lizards every 10 min,

over the following 4 months. GPS locations were only recorded if a lizard had been taken

at least one step in the past ten minutes. Radio transmitters with unique frequencies

allowed us to identify and locate each lizard every 12 days to download data and change
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batteries. Lizards were measured (snout-to-vent length) and weighed at each data

download. Each data logger plus radio transmitter weighed 37 g, 4.5% of the body

weight of an average adult lizard, or 6.6% of the lightest lizard in our study. We found

no evidence that GPS loggers adversely affected lizard behaviour or condition. Repeated

measures of mass showed no unnatural decrease in body condition. We observed

neither behavioural lethargy when lizards were relocated and caught, nor signs of skin

damage where loggers were attached. We removed the GPS loggers and released all

lizards at the end of the study. In the following months after their release, sleepy lizards

naturally shed their skin which would rid them of any undetected skin damage.

Individual lizards that were followed for fewer than 30 days were excluded from our

analyses, leaving observations of 55 lizards (30 males, 25 females) in 2009 and 60 lizards

(30 males, 30 females) in 2010. Forty-three lizards (23 males, 20 females) were observed

in both years. The study required permanent marking of individual lizards, in order to

allow identification across years. We used a toe-clip numbering code analogous to the

technique used by Sinn, While & Wapstra (2008), which has been shown to cause low

stress in lizards (Langkilde & Shine, 2006; Perry et al., 2011). The study was conducted

with a Permit to Undertake Scientific Research from the South Australian Department

of the Environment, Water and Natural Resources (permit number A23436). Lizards

were treated using procedures formally approved by the Flinders University Animal

Welfare Committee in compliance with the Australian Code of Practice for the Use of

Animals for Scientific Purposes (permit number E232).

Description of path use
We divided the study area into more than 22,000 10 m� 10 m grid cells, and considered a

lizard was moving along a path if it was in two different grid cells in consecutive GPS

readings (10 min apart). We defined a path to have started on the first occasion when

consecutive readings were in different cells, and to have ended when an active lizard

was recorded in the same grid cell in two consecutive readings. Leu, Kappeler & Bull (2011)

reported that the mean distance travelled by an active sleepy lizard was 12–15 m in

10 min, and in this study most paths progressed by one adjacent grid cell between

readings. However, a sleepy lizard can occasionally achieve speeds of up to 1.2 km/h (Kerr,

Bull & Cottrell, 2004; Main & Bull, 2000) or 200 m in 10 min. Thus we considered

that consecutive locations up to 20 grid cells apart were realistic, although this was

uncommon. Where consecutively occupied grid cells were not adjacent, we interpolated

a direct route between the two GPS readings and deduced the grid cells that the lizard

must have passed through on its path.

We determined all paths of each lizard in each year, and then investigated how

frequently an individual lizard moved along the same path on separate occasions within

the same year. For this analysis we considered all paths that were five grid cells long

(equivalent to about 50 m), and included all 50 m subsets of any longer paths. Thus a

six cell path sequence ABCDEF would be represented in the analysis as two paths, ABCDE

and BCDEF. Although this may have resulted in some instances where more than one

sequence came from the same longer path, it was biologically important to include all
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segments of a re-used path and not arbitrarily truncate the path to one sequence of five

cells. Our choice of five cell paths was informed by the average of about 200 m that sleepy

lizards travel per day (Kerr & Bull, 2006b; Main & Bull, 2000), as well as the inherent

imprecision of the GPS units (Leu et al., 2010a). We matched paths with identical grid

cell sequences, but permitted forward and reverse matching, that is movement along

the same path but in opposite directions. Then, for each individual in each year we

determined how many different paths were re-used at least three times and the total

number of times those paths were used (the sum, over all paths, of the number of times

each frequently used path was followed).

Accounting for home range size and the number of GPS locations
The likelihood that a lizard will move along the same path by chance alone should increase

with decreasing home range size. We accounted for this relationship by including

individual home range size (in hectares) as a covariate in our subsequent modelling.

We calculated home range size for each individual in Ranges 8 (Kenward et al., 2008).

We used the 95% Minimum Convex Polygon (MCP) that excluded outlier locations

while representing the overall area of activity. Additionally, the number of records of

path re-use should increase with the number of recorded locations, and we accounted

for this by including the number of GPS locations for each individual as a covariate.

The number of GPS locations itself is a function of the number of days the lizard was

observed and the individual activity level of the lizard on those days, since GPS locations

were only recorded when lizards were active and moving.

Effects of sex and pairing status on path re-use behaviour
We hypothesised that, if a function of path re-use was to establish scent trails, both sex and

pairing status would influence path re-use behaviour. At first capture we determined

the sex of each individual by the relatively broader heads of males (Bull & Pamula, 1996),

and through gently everting the male hemipenes (Bull, 1988). As previously described

(Leu et al., 2015; Leu, Kappeler & Bull, 2011), we determined that a male and female lizard

were paired if they were within 2 m of each other, as determined by their synchronous

GPS locations, on at least 10% of recorded occasions when both were active (Leu et al.,

2010a). The 10% contact threshold to define pairing is arbitrary, but is biologically

meaningful, because other interactions are usually brief and infrequent while pairing

is a prolonged association (Leu et al., 2010a). Infrequently males become paired with

more than one female within a season, with those pair partners also repeatedly and

consistently interacting (Leu et al., 2010a). Here, we considered both females in those

polygynous partnerships to be paired. Females actively participate in the maintenance

of the pair bond (Leu, Kappeler & Bull, 2011), and we considered that both females in

these relationships may participate in scent marking.

All analyses were performed in IBM SPSS 20. We constructed repeated measures

linear models using the mixed function in SPSS, which allows missing data, so we could

include lizards that were not tracked in both years. We used sex, pairing status and year

as fixed factors, and home range size and number of GPS locations as covariates, as
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described above. We did not include lizard as a random factor but took the repeated

measure structure of our data into account. We used those models to analyse two

dependent variables, the number of paths re-used and the total number of times those

paths were re-used. We ln(x + 1) transformed both measures of path re-use to achieve

a normal distribution of the error terms of the models. First, we built full factorial

repeated measures models with different covariance structures and determined the

most suitable model covariance structure as compound symmetry. This likens our model

to a repeated measures ANOVA but allows for missing data points. We followed West,

Welch & Galecki (2007) and compared models that contained the same variables but

differed in their covariance structure using restricted likelihood ratio tests, with p-values

calculated using �2 distributions (West, Welch & Galecki, 2007). We did not include

the 3-way interaction term, as it is often difficult to interpret, after confirming that it

did not play a role.

Re-used path in relation to home range structure
We investigated the locations of the re-used paths, and whether they were predominantly

found within the inner or outer parts of the home range. We calculated the 50%minimum

convex polygon (MCP) home range of each lizard in each year as the inner home

range area. The 50% MCP contained 50 percent of all active locations of each lizard,

and hence the likelihood to form paths was the same in the inner and outer home range

parts. For each lizard we determined in Ranges 8 (Kenward et al., 2008) the proportion

of grid cells of its repeatedly used paths that were located within the 50% MCP home

range. We then multiplied the proportion of grid cells with the total number of repeatedly

used paths to achieve a measure comparable to the number of paths we had used earlier.

Because each path had five grid cells (and was about 50 m long) parts of some paths

could have been in both the inner and the outer home range area. Our calculations

proportionally assigned those paths to both inner and outer home range areas. We

inferred the number of paths in the outer home range area was the difference between

the number of paths in the inner home range area and total number of repeatedly

used paths. Allowing paths to be partially within the inner and outer home range areas,

resulted in a more conservative estimate of the proportion of repeatedly used paths in

either area, than if we had omitted paths that were partially in both areas, or if we had

assigned paths to the area where they were mostly located. In our analyses we focussed

on the re-used paths of the 43 lizards observed in both years. Because we analysed

whether re-used paths were predominantly in the inner or outer parts of the home

range, lizards that did not re-use any path in 2009 or 2010 were excluded (5 lizards from

the 2009 data, and 2 lizards from the 2010 data). As before, we ln(x + 1) transformed

the dependent variable and constructed a repeated measures linear model using the

mixed function in SPSS, with year and home range part as fixed factors, and home

range size and number of GPS locations as covariates. Again we determined the model

covariance structure as compound symmetry, but, different from above, we accounted

for the second level of repeated measures (year and home range part) when building

the model.
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Effect of residency on path re-use behaviour
Finally, we investigating the alternative hypothesis of home range familiarity for path

re-use behaviour and explored in a further analysis whether path re-use behaviour was

influenced by residency, which we assumed represented longer term familiarity with the

area. For this we only used the records from 2010, and we classified all lizards followed in

that year as residents if they had been previously caught in 2009, and as new arrivals if they

were caught for the first time in 2010. Again, we ln(x + 1) transformed the dependent

variables, and constructed two linear models using the mixed function, analysing the

number of paths re-used and the total number of times those paths were re-used, and

included sex, pairing status and residency as fixed effects, and home range size and

number of GPS locations as covariates.

RESULTS
The composition of the study population in each year is shown in Table 1. We deduced

808 (2009) and 1252 (2010) paths, five grid cells long, that were used at least three times

by an individual lizard. Details of the tracking data and path use parameters derived

from the GPS locations each year are shown in Table 2. Fifty of the 55 lizards in 2009,

and 56 of the 60 lizards in 2010 often (three or more times) moved along paths which they

had used before, while five lizards in 2009, and four in 2010 never used the same path

more than twice. Although our analyses considered two separate measures of path re-use,

results were completely consistent for both.

Analysis of the data from both years showed significant main effects on path re-use

behaviour of sex and pairing status. Males re-used their own paths more than females,

and paired lizards re-used their own paths more than unpaired lizards (Fig. 1). There

was also a marginally significant sex � pairing status interaction effect. Paired females

moved along previously used paths more frequently than unpaired females, while the

difference between paired and unpaired males was smaller (Fig. 1). The analysis also

confirmed the predicted positive relationship with the number of GPS locations (number

of re-used paths: regression coefficient b = 0.001, t101.450 = 6.182, p < 0.001; total re-use

frequency: b = 0.001, t103.898 = 6.069, p < 0.001), albeit with low regression coefficient

values due to the high numerical values for the number of GPS locations, and the predicted

negative relationship with the home range size (number of re-used paths: regression

coefficient b = -0.086, t98.661 = -2.539, p = 0.013; total re-use frequency: b = -0.090,

Table 1 Composition of the study population. Number of individuals in each category.

Year 2009 2010

Male 30 30

Female 25 30

Paired 37 37

Un-paired 18 23

Resident 43

New arrival 17
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Figure 1 (A) number of re-used paths, and (B) total path re-use frequency in relation to sex and pairing status. Both variables were ln(x + 1)

transformed, and means are estimated marginal means from the model.

Table 2 Average tracking data and path use parameters per lizard. Measures were derived from the

GPS locations each year.

Year 2009 2010

Mean (SE) days observed 81.327 (2.067) 86.333 (2.008)

Mean (SE) GPS locations recorded 1634.491 (51.319) 2062.617 (62.123)

Median (min, max) number of re-used paths used 8 (0, 84) 11 (0, 139)

Median (min, max) total re-use frequency 26 (0, 276) 31 (0, 515)

Table 3 Repeated measures linear model of the path re-use behaviour. Number of paths used at least three times, total frequency of path re-use

(both variables ln(x + 1) transformed).

Number of paths Total re-use frequency

Variable df F p df F p

Intercept 105.953 3.817 0.053 105.898 6.510 0.012

GPS locations 101.450 38.215 <0.001 103.898 36.828 <0.001

Homerange size 98.661 6.448 0.013 94.859 4.314 0.041

Sex 73.763 63.117 <0.001 70.976 56.942 <0.001

Paired 100.677 4.431 0.038 103.020 4.962 0.028

Year 71.155 0.051 0.822 70.263 0.116 0.734

Sex � Paired 100.856 3.035 0.085 103.298 3.981 0.049

Sex � Year 46.783 0.051 0.823 45.578 0.0002 0.989

Paired � Year 65.957 1.097 0.299 68.006 0.926 0.339
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t94.859 = -2.077, p = 0.041) (Table 3). Path re-use behaviour did not differ significantly

between years, nor were there any significant interaction effects with year in the analyses

(Table 3).

Analysis of the spatial locations of the re-used paths showed that significantly

more paths were located in the inner 50% than the outer 50% of the home range area

(Table 4; Fig. 2).

Analysis that included residency status of the 2010 lizards (Table 5), confirmed the

patterns in the previous analysis, but additionally showed there was no significant effect,

or any interaction effects, to suggest that familiarity with the site, based on past residency,

influenced path re-use behaviour.

Table 4 Repeated measures linear model of the number of re-used paths in the inner and outer

homerange part. Variable was ln(x + 1) transformed.

Number of paths

Variable df F p

Intercept 150.295 2.603 0.109

GPS locations 138.189 21.641 <0.001

Homerange size 122.923 1.879 0.173

Homerange part 70.842 5.096 0.027

Year 95.398 0.801 0.373

Homerange part � Year 67.569 0.580 0.449

Figure 2 Number of re-used paths, calculated from the five grid cells of each path, that were located

in the inner 50% MCP and outer home range area. Variable was ln(x + 1) transformed, and means are

estimated marginal means from the model.

Leu et al. (2016), PeerJ, DOI 10.7717/peerj.1844 11/20

http://dx.doi.org/10.7717/peerj.1844
https://peerj.com/


DISCUSSION
Our results showed that sleepy lizards commonly established paths within their home

range which they repeatedly followed. We also showed there was substantial variation

among individual lizards in both the number of re-used paths they established, and in the

number of times they used those paths. We deduced that these differences were not related

to home range familiarity, because resident lizards did not differ from new arrivals in

their patterns of path re-use. Lizard sex and pairing status were more important factors

explaining the variation in patterns of path re-use. Males followed their own paths more

than did females, and paired lizards followed their own paths more often than did

unpaired lizards, particularly among females. Additionally, more re-used paths were in the

inner than the outer area of the home range. We explore two explanations for these

patterns of variation among individuals in path following behaviour.

First, site familiarity has been shown to affect fitness (Forrester, Casady & Wittmer,

2015). And it was suggested that animals may benefit from site specific knowledge, such as

learned locations of important resources and efficient paths that connect these resources

(Stamps, 1995; Stamps & Krishnan, 1999). Lizards may establish repeatedly used trails

when moving to commonly used resources, such as shelter sites or reliable food patches.

In sleepy lizards, shelter sites are often within the inner home range core (Kerr & Bull,

2006a). Similarly, the inner parts of home ranges may include areas with the most

commonly exploited food patches. Hence, lizards may have shown greater path re-use

behaviour in the inner 50% of the home range where those important resources were

located. However, within that interpretation, we expected, but did not find that lizards

more familiar with the area would be more likely to know and use common paths.

Although this suggests that path re-use does not reflect movement to repeatedly used

areas, we cannot entirely reject that hypothesis from our available data. Lizards may

acquire spatial information fast enough to become familiar with their central home

ranges in their first year, although they most likely arrived in the study area in early spring

shortly before we started our observations. While regular use of the same path to reach

Table 5 Effect of residency, using 2010 data. Linear model of the path re-use behaviour: number of

paths used at least three times, total frequency of path re-use (both variables ln(x + 1) transformed).

Number of paths Total re-use frequency

Variable df F p df F p

Intercept 51 2.139 0.150 51 4.369 0.042

GPS locations 51 17.475 <0.001 51 17.189 <0.001

Homerange size 51 1.800 0.186 51 1.179 0.283

Sex 51 50.475 <0.001 51 48.229 <0.001

Paired 51 9.637 0.003 51 11.000 0.002

Residency 51 1.582 0.214 51 1.402 0.242

Sex � Paired 51 4.213 0.045 51 5.711 0.021

Sex � Residency 51 0.326 0.570 51 0.819 0.370

Paired � Residency 51 0.002 0.967 51 0.008 0.931
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frequently used resources may be a component of the establishment of repeatedly used

paths, we suggest another explanation is more likely.

Our second explanation is that lizards regularly re-use the same paths to establish

and maintain a network of scent based signals to indicate their presence to conspecifics.

Repeatedly moving along the same path may concentrate those scent trails, and allow

them to persist for longer over time. According to this explanation a network of stronger

scent marks would be established by path re-use, than by moving more often along

different paths within the home range. The presence of strong scent marks would

allow lizards to selectively avoid or contact neighbouring individuals (Leu et al., 2010a;

Godfrey et al., 2012).

Our observations of variation in path re-use behaviour among individuals are

consistent with the predictions of two scent marking hypotheses. First, the prediction

derived from the mate attraction and mating competition hypothesis (Heymann, 2006)

suggests that scent marks are used to attract mates and to repel mating competitors,

and that the sex experiencing greater mate choice or stronger intra-sexual competition

will scent mark more strongly. In sleepy lizards, intra-sexual conflict is stronger among

males than females. Males fight each other by locking jaws (Kerr & Bull, 2002), have wider

heads than females, allowing greater bite force in these fights (Bull & Pamula, 1996),

and have significantly higher incidence of scale damage, largely around the head and

presumably reflecting agonistic encounters (Murray & Bull, 2004). Thus males should

scent mark more than females, and this is consistent with our findings of greater path

re-use in male than in female sleepy lizards.

If males are the predominant scent markers, it could explain the relatively low level of

extra-pair paternity in this species (Bull, Cooper & Baghurst, 1998), despite the lack of

persistent mate guarding (Murray & Bull, 2004). Males that are close to their female

partner sometimes (but not always) defend her from rival males (Murray & Bull, 2004),

but pair partners are only spatially close for an average 30% of their active time during the

mating season (Leu, Kappeler & Bull, 2011). Scent marks may supplement physical mate

guarding to reduce the opportunity for extra-pair matings.

This still does not completely explain why unpaired males scent marked at a similar,

high level to paired males. Sleepy lizards form long-term stable pair bonds (Bull, 1988),

and advantages from mate familiarity appear to select for choosing the same pair partner

in subsequent years (Leu et al., 2015). The males, which we considered to be unpaired

during the study period, could include males from these long-term partnerships with

female partners that were not reproducing. A speculative explanation for these findings

could be that these males may continue to scent mark to competitors in years when

their partner does not reproduce in order to maintain exclusive access to the female

partner in subsequent years.

Female scent marking may be to indicate mating readiness to males, as in the related

pygmy bluetongue lizard, Tiliqua adelaidensis (Ebrahimi et al., 2015). Among females

we found that paired females re-use paths more than unpaired females. Females in this

long-lived species are unlikely to mate and reproduce every year, because of their high

investment into large offspring (Bull, Pamula & Schulze, 1993b; Munns & Daniels, 2007).
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A proportion of females have only low contact with males in some years, perhaps

deferring reproduction until their body condition improves in another year (Bull, 1994;

Bull, 2000). This is consistent with our observation that paired females re-use paths

more than unpaired females. Females also participate in maintaining partner proximity

(Leu, Kappeler & Bull, 2011), and those females that are paired may scent mark more

to attract their pair partner and potentially signal mating readiness. Females might also

be signalling their mating readiness to neighbouring males. Although extra-pair mating is

relatively infrequent in the sleepy lizard (Bull, Cooper & Baghurst, 1998) some females

will swap partners, for instance if the male is heavily parasitised (Bull & Burzacott, 2006).

These speculations require empirical investigations to determine the intended recipients

of female olfactory signalling, but female signalling is likely to be related to mating

opportunity, either with the social pair partner or extra-pair males.

An alternative explanation for why paired lizards re-used paths more often could

be that unpaired lizards were more exploratory while searching for a mating partner.

However, we might predict that some unpaired females are simply not reproducing

that year, perhaps due to a lack of reserves following the high energetic investment into

offspring in a previous year (Bull, Pamula & Schulze, 1993b; Munns & Daniels, 2007).

In that case, unpaired males should show greater increase in exploratory behaviour and

a stronger reduction in path re-use than females. Our observed trends were the opposite

of that prediction, making that explanation unlikely.

The second scent marking hypothesis, related to scent marking economics predicts that

scent marks need to be placed around a home range area to maximise detectability by

possible intruders, but within economically sustainable constraints (Gosling & Roberts,

2001a; Gosling & Roberts, 2001b). Sleepy lizards have home ranges of about 4 ha (Bull &

Freake, 1999) which are large in relation to their daily movement of usually less than

200 m per day (Kerr & Bull, 2006b; Main & Bull, 2000). If one function of path re-use

is to scent mark to indicate spatial ownership and to reduce intra-sexual competition

for the female partner, then the pattern of higher path re-use within the inner home

range area is consistent with the expected strategy of hinterland marking for this species.

Hinterland marking is used when the inner home range area is the maximum area that

is economically possible to repeatedly mark or when particularly valuable resources

are located within this area (Gosling & Roberts, 2001b; Roberts & Gosling, 2001). Although

sleepy lizards do not establish exclusive territories, like many other lizard species

(Stamps & Krishnan, 1994), they maintain inner core home range areas that are rarely used

by other same sex individuals (Kerr & Bull, 2006a). The exclusive inner core area may be

partly maintained by scent marks, and path re-use may contribute to that scent marking.

Although a previous study found that lizards did not change their overall home ranges

when olfaction was experimentally blocked (Zuri & Bull, 2000), that study did not

investigate impacts of olfactory blocking on the inner home range structure.

CONCLUSIONS
The results of our analyses are consistent with our hypothesis that path re-use in the sleepy

lizard is a form of scent marking behaviour. We have shown that some sleepy lizards
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repeatedly move along a network of paths, and that the variation in path re-use behaviour

between inner and outer sections of the home range, and among different individual

lizards is consistent with predictions for scent marking behaviour, and for males to

maintain exclusive access to their female pair partners. However, detailed observations

of the response of other lizards to the re-used paths, and carefully designed experiments,

for example removing or over-marking scent trails on re-used paths could further

substantiate our indirect evidence that sleepy lizards re-use paths as scent marking

behaviour. Some lizards never used the same path more than twice, while a few others

showed low frequencies of path re-use. This may be indicative of a different signalling

strategy but remains to be investigated. Furthermore, whether extensive scent marking

in males reduces the frequency of extra-pair paternity, and hence has fitness benefits,

still needs to be determined. Scent marking is costly, but it could reduce the much

higher costs of agonistic interactions to maintain exclusive access to resources including

mating partners (Gosling & Roberts, 2001a), and it has the potential to affect the spatial

distribution pattern of a population (Martı́n & López, 2012). If path re-use represents

a signalling function in other taxa, then analysis of movement patterns can provide

important insights into drivers that can influence the spatial and social structure of a

population.
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Arias-Del Razo I, Hernández L, Laundré JW, Velasco-Vázquez L. 2012. The landscape of fear:

habitat use by a predator (Canis latrans) and its main prey (Lepus californicus and Sylvilagus

audubonii). Canadian Journal of Zoology 90(6):683–693 DOI 10.1139/z2012-036.

Blaustein AR. 1981. Sexual selection and mammalian olfaction. The American Naturalist

117(6):1006–1010 DOI 10.2307/2460580.

Bull CM. 1988. Mate fidelity in an Australian lizard Trachydosaurus rugosus. Behavioral Ecology

and Sociobiology 23(1):45–49 DOI 10.1007/BF00303057.

Bull CM. 1994. Population dynamics and pair fidelity in sleepy lizards. In: Vitt LJ, Pianka ER, eds.

Lizard Ecology: Historical and Experimental Perspectives. Princeton: Princeton University Press,

159–174.

Leu et al. (2016), PeerJ, DOI 10.7717/peerj.1844 16/20

http://dx.doi.org/10.7717/peerj.1844/supplemental-information
http://dx.doi.org/10.7717/peerj.1844#supplementalnformation
http://dx.doi.org/10.7717/peerj.1844#supplementalnformation
http://dx.doi.org/10.1371/journal.pone.0041195
http://dx.doi.org/10.1670/192-02n
http://dx.doi.org/10.1139/z2012-036
http://dx.doi.org/10.2307/2460580
http://dx.doi.org/10.1007/BF00303057
http://dx.doi.org/10.7717/peerj.1844
https://peerj.com/


Bull CM. 1995. Population ecology of the sleepy lizard, Tiliqua rugosa, at Mt Mary,

South Australia. Australian Journal of Ecology 20(3):393–402

DOI 10.1111/j.1442-9993.1995.tb00555.x.

Bull CM. 2000. Monogamy in lizards. Behavioural Processes 51(1–3):7–20

DOI 10.1016/S0376-6357(00)00115-7.

Bull CM, Bedford GS, Schulz BA. 1993a. How do sleepy lizards find each other?

Herpetologica 49(3):294–300.

Bull CM, Burzacott D. 2006. The influence of parasites on the retention of long-term

partnerships in the Australian sleepy lizard, Tiliqua rugosa. Oecologia 146(4):675–680

DOI 10.1007/s00442-005-0224-z.

Bull CM, Cooper SJB, Baghurst BC. 1998. Social monogamy and extra-pair fertilization in

an Australian lizard, Tiliqua rugosa. Behavioral Ecology and Sociobiology 44(1):63–72

DOI 10.1007/s002650050515.

Bull CM, Freake MJ. 1999. Home-range fidelity in the Australian sleepy lizard, Tiliqua rugosa.

Australian Journal of Zoology 47(2):125–132 DOI 10.1071/ZO99021.

Bull CM, Griffin CL, Johnston GR. 1999. Olfactory discrimination in scat-piling lizards.

Behavioral Ecology 10(2):136–140 DOI 10.1093/beheco/10.2.136.

Bull CM, Griffin CL, Lanham EJ, Johnston GR. 2000. Recognition of pheromones from

group members in a gregarious lizard, Egernia stokesii. Journal of Herpetology 34(1):92–99

DOI 10.2307/1565244.

Bull CM, Lindle C. 2002. Following trails of partners in the monogamous lizard, Tiliqua

rugosa. Acta Ethologica 5(1):25–28 DOI 10.1007/s10211-002-0063-4.

Bull CM, Pamula Y. 1996. Sexually dimorphic head sizes and reproductive success in

the sleepy lizard Tiliqua rugosa. Journal of Zoology 240(3):511–521

DOI 10.1111/j.1469-7998.1996.tb05302.x.

Bull CM, Pamula Y, Schulze L. 1993b. Parturition in the sleepy lizard, Tiliqua rugosa.

Journal of Herpetology 27(4):489–492 DOI 10.2307/1564848.

Bull MC, Griffin C, Bonnett M, Gardner M, Cooper S. 2001. Discrimination between related

and unrelated individuals in the Australian lizard Egernia striolata. Behavioral Ecology and

Sociobiology 50(2):173–179 DOI 10.1007/s002650100348.

Carazo P, Font E, Desfilis E. 2007. Chemosensory assessment of rival competitive ability and

scent-mark function in a lizard, Podarcis hispanica. Animal Behaviour 74(4):895–902

DOI 10.1016/j.anbehav.2007.02.011.

Carazo P, Font E, Desfilis E. 2008. Beyond ‘nasty neighbours’ and ‘dear enemies’? Individual

recognition by scent marks in a lizard (Podarcis hispanica). Animal Behaviour 76(6):1953–1963

DOI 10.1016/j.anbehav.2008.08.018.

Clarke MF, Burke Da Silva K, Lair H, Pocklington R, Kramer DL, McLaughlin RL. 1993.

Site familiarity affects escape behaviour of the eastern chipmunk, Tamias striatus. Oikos

66(3):533–537 DOI 10.2307/3544949.

Dawson TJ, McTavish KJ, Munn AJ, Holloway J. 2006. Water use and the thermoregulatory

behaviour of kangaroos in arid regions: insights into the colonisation of arid rangelands

in Australia by the Eastern Grey Kangaroo (Macropus giganteus). Journal of Comparative

Physiology B 176:45–53 DOI 10.1007/s00360-005-0030-2.

del Mar Delgado M, Penteriani V, Nams VO, Campioni L. 2009. Changes of movement patterns

from early dispersal to settlement. Behavioral Ecology and Sociobiology 64(1):35–43

DOI 10.1007/s00265-009-0815-5.

Leu et al. (2016), PeerJ, DOI 10.7717/peerj.1844 17/20

http://dx.doi.org/10.1111/j.1442-9993.1995.tb00555.x
http://dx.doi.org/10.1016/S0376-6357(00)00115-7
http://dx.doi.org/10.1007/s00442-005-0224-z
http://dx.doi.org/10.1007/s002650050515
http://dx.doi.org/10.1071/ZO99021
http://dx.doi.org/10.1093/beheco/10.2.136
http://dx.doi.org/10.2307/1565244
http://dx.doi.org/10.1007/s10211-002-0063-4
http://dx.doi.org/10.1111/j.1469-7998.1996.tb05302.x
http://dx.doi.org/10.2307/1564848
http://dx.doi.org/10.1007/s002650100348
http://dx.doi.org/10.1016/j.anbehav.2007.02.011
http://dx.doi.org/10.1016/j.anbehav.2008.08.018
http://dx.doi.org/10.2307/3544949
http://dx.doi.org/10.1007/s00360-005-0030-2
http://dx.doi.org/10.1007/s00265-009-0815-5
http://dx.doi.org/10.7717/peerj.1844
https://peerj.com/


Dennhardt AJ, Duerr AE, Brandes D, Katzner TE. 2015. Modeling autumn migration of a

rare soaring raptor identifies new movement corridors in central Appalachia. Ecological

Modelling 303:19–29 DOI 10.1016/j.ecolmodel.2015.02.010.

Ebrahimi M, Godfrey SS, Fenner AL, Bull CM. 2015. Mating behaviour in pygmy bluetongue

lizards: do females ‘attract’ male lizards? Australian Journal of Zoology 62(6):491–497

DOI 10.1071/ZO14055.

Fenner A, Bull CM. 2011. Responses of the endangered pygmy bluetongue lizard to

conspecific scats. Journal of Ethology 29(1):69–77 DOI 10.1007/s10164-010-0225-1.

Firth BT, Belan I. 1998. Daily and seasonal rhythms in selected body temperatures in the

Australian lizard Tiliqua rugosa (Scincidae): field and laboratory observations. Physiological

Zoology 71(3):303–311 DOI 10.1086/515919.

Forrester TD, Casady DS, Wittmer HU. 2015. Home sweet home: fitness consequences of site

familiarity in female black-tailed deer. Behavioral Ecology and Sociobiology 69(4):603–612

DOI 10.1007/s00265-014-1871-z.

Godfrey SS, Bradley JK, Sih A, Bull CM. 2012. Lovers and fighters in sleepy lizard land:

where do aggressive males fit in a social network? Animal Behaviour 83(1):209–215

DOI 10.1016/j.anbehav.2011.10.028.

Godfrey SS, Sih A, Bull CM. 2013. The response of a sleepy lizard social network

to altered ecological conditions. Animal Behaviour 86(4):763–772

DOI 10.1016/j.anbehav.2013.07.016.

Gosling LM, Roberts SC. 2001a. Scent-marking by male mammals: cheat-proof signals

to competitors and mates. Advances in the Study of Behavior 30:169–217

DOI 10.1016/s0065-3454(01)80007-3.

Gosling LM, Roberts SC. 2001b. Testing ideas about the function of scent marks in territories

from spatial patterns. Animal Behaviour 62(3):F7–F10 DOI 10.1006/anbe.2001.1802.

Heymann EW. 2006. Scent marking strategies of new world primates. American Journal of

Primatology 68(6):650–661 DOI 10.1002/ajp.20258.

How TL, Bull CM. 2002. Reunion vigour: an experimental test of the mate guarding hypothesis

in the monogamous sleepy lizard (Tiliqua rugosa). Journal of Zoology 257(3):333–338

DOI 10.1017/S0952836902000936.

Kays R, Crofoot MC, Jetz W, Wikelski M. 2015. Terrestrial animal tracking as an eye on life

and planet. Science 348(6240):aaa2478 DOI 10.1126/science.aaa2478.

Kenward RE, Walls SS, South AB, Casey NM. 2008. Ranges 8: For the Analysis of Tracking

and Location Data. Online Manual. Wareham: Anatrack Ltd.

Kerr GD, Bull CM. 2002. Field observations of aggressive encounters between male

sleepy lizards (Tiliqua rugosa). Herpetological Review 33:24–26.

Kerr GD, Bull CM. 2006a. Exclusive core areas in overlapping ranges of the sleepy lizard,

Tiliqua rugosa. Behavioral Ecology 17(3):380–391 DOI 10.1093/beheco/arj041.

Kerr GD, Bull CM. 2006b.Movement patterns in the monogamous sleepy lizard (Tiliqua rugosa):

effects of gender, drought, time of year and time of day. Journal of Zoology 269(2):137–147

DOI 10.1111/j.1469-7998.2006.00091.x.

Kerr GD, Bull CM, Cottrell GR. 2004. Use of an ‘on board’ datalogger to determine lizard

activity patterns, body temperature and microhabitat use for extended periods in the field.

Wildlife Research 31(2):171–176 DOI 10.1071/WR03048.

Laland KN, Williams K. 1997. Shoaling generates social learning of foraging information in

guppies. Animal Behaviour 53(6):1161–1169 DOI 10.1006/anbe.1996.0318.

Leu et al. (2016), PeerJ, DOI 10.7717/peerj.1844 18/20

http://dx.doi.org/10.1016/j.ecolmodel.2015.02.010
http://dx.doi.org/10.1071/ZO14055
http://dx.doi.org/10.1007/s10164-010-0225-1
http://dx.doi.org/10.1086/515919
http://dx.doi.org/10.1007/s00265-014-1871-z
http://dx.doi.org/10.1016/j.anbehav.2011.10.028
http://dx.doi.org/10.1016/j.anbehav.2013.07.016
http://dx.doi.org/10.1016/s0065-3454(01)80007-3
http://dx.doi.org/10.1006/anbe.2001.1802
http://dx.doi.org/10.1002/ajp.20258
http://dx.doi.org/10.1017/S0952836902000936
http://dx.doi.org/10.1126/science.aaa2478
http://dx.doi.org/10.1093/beheco/arj041
http://dx.doi.org/10.1111/j.1469-7998.2006.00091.x
http://dx.doi.org/10.1071/WR03048
http://dx.doi.org/10.1006/anbe.1996.0318
http://dx.doi.org/10.7717/peerj.1844
https://peerj.com/


Langkilde T, Shine R. 2006. How much stress do researchers inflict on their study animals?

A case study using a scincid lizard, Eulamprus heatwolei. Journal of Experimental Biology

209:1035–1043 DOI 10.1242/jeb.02112.

LaPoint S, Gallery P, Wikelski M, Kays R. 2013. Animal behavior, cost-based corridor models,

and real corridors. Landscape Ecology 28(8):1615–1630 DOI 10.1007/s10980-013-9910-0.

Leu ST, Bashford J, Kappeler PM, Bull CM. 2010a. Association networks reveal social organization

in the sleepy lizard. Animal Behaviour 79(1):217–225 DOI 10.1016/j.anbehav.2009.11.002.

Leu ST, Burzacott D, Whiting MJ, Bull CM. 2015. Mate familiarity affects pairing behaviour

in a long-term monogamous lizard: evidence from detailed bio-logging and a 31-year field

study. Ethology 121(8):760–768 DOI 10.1111/eth.12390.

Leu ST, Farine DR, Wey TW, Sih A, Bull CM. 2016. Environment modulates population

social structure: experimental evidence from replicated social networks of wild lizards.

Animal Behaviour 111:23–31 DOI 10.1016/j.anbehav.2015.10.001.

Leu ST, Kappeler PM, Bull CM. 2010b. Refuge sharing network predicts ectoparasite load in a

lizard. Behavioral Ecology and Sociobiology 64(9):1495–1503 DOI 10.1007/s00265-010-0964-6.

Leu ST, Kappeler PM, Bull CM. 2011. Pair-living in the absence of obligate biparental

care in a lizard: trading-off sex and food? Ethology 117(9):758–768

DOI 10.1111/j.1439-0310.2011.01934.x.
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Martı́n J, López P. 2015. Condition-dependent chemosignals in reproductive behavior of lizards.

Hormones and Behavior 68:14–24 DOI 10.1016/j.yhbeh.2014.06.009.

Mason RT, Parker MR. 2010. Social behavior and pheromonal communication in reptiles.

Journal of Comparative Physiology A 196(10):729–749 DOI 10.1007/s00359-010-0551-3.

Mazerolle M. 2005. Drainage ditches facilitate frog movements in a hostile landscape.

Landscape Ecology 20(5):579–590 DOI 10.1007/s10980-004-3977-6.

Munns S, Daniels C. 2007. Breathing with big babies: ventilation and oxygen consumption during

pregnancy in the lizard Tiliqua rugosa. Physiological and Biochemical Zoology 80(1):35–45

DOI 10.1086/508823.

Murray K, Bull CM. 2004. Aggressiveness during monogamous pairing in the sleepy lizard,

Tiliqua rugosa: a test of the mate guarding hypothesis. Acta Ethologica 7(1):19–27

DOI 10.1007/s10211-004-0092-2.

Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, Smouse PE. 2008. A movement

ecology paradigm for unifying organismal movement research. Proceedings of the National

Academy of Sciences 105(49):19052–19059 DOI 10.1073/pnas.0800375105.

Noser R, Byrne R. 2010. How do wild baboons (Papio ursinus) plan their routes? Travel among

multiple high-quality food sources with inter-group competition. Animal Cognition 13:145–155

DOI 10.1007/s10071-009-0254-8.

Leu et al. (2016), PeerJ, DOI 10.7717/peerj.1844 19/20

http://dx.doi.org/10.1242/jeb.02112
http://dx.doi.org/10.1007/s10980-013-9910-0
http://dx.doi.org/10.1016/j.anbehav.2009.11.002
http://dx.doi.org/10.1111/eth.12390
http://dx.doi.org/10.1016/j.anbehav.2015.10.001
http://dx.doi.org/10.1007/s00265-010-0964-6
http://dx.doi.org/10.1111/j.1439-0310.2011.01934.x
http://dx.doi.org/10.1007/s00265-011-1198-y
http://dx.doi.org/10.1006/anbe.1996.0164
http://dx.doi.org/10.1007/s004420050981
http://dx.doi.org/10.1371/journal.pone.0030108
http://dx.doi.org/10.1016/j.yhbeh.2014.06.009
http://dx.doi.org/10.1007/s00359-010-0551-3
http://dx.doi.org/10.1007/s10980-004-3977-6
http://dx.doi.org/10.1086/508823
http://dx.doi.org/10.1007/s10211-004-0092-2
http://dx.doi.org/10.1073/pnas.0800375105
http://dx.doi.org/10.1007/s10071-009-0254-8
http://dx.doi.org/10.7717/peerj.1844
https://peerj.com/


Parker MR, Mason RT. 2012. How to make a sexy snake: estrogen activation of female sex

pheromone in male red-sided garter snakes. Journal of Experimental Biology 215:723–730

DOI 10.1242/jeb.064923.

Perry G, Wallace MC, Perry D, Curzer H, Muhlberger P. 2011. Toe clipping of amphibians

and reptiles: science, ethics, and the law. Journal of Herpetology 45(4):547–555

DOI 10.1670/11-037.1.

Reese ES. 1989. Orientation behavior of butterflyfishes (family Chaetodontidae) on coral reefs:

spatial learning of route specific landmarks and cognitive maps. Environmental Biology of Fishes

25(1):79–86 DOI 10.1007/bf00002202.

Roberts SC, Gosling LM. 2001. The economic consequences of advertising scent mark location

on territories. Chemical Signals in Vertebrates 9:11–17.

Scott ML, Whiting MJ, Webb JK, Shine R. 2013. Chemosensory discrimination of social

cues mediates space use in snakes, Cryptophis nigrescens (Elapidae). Animal Behaviour

85(6):1493–1500 DOI 10.1016/j.anbehav.2013.04.003.

Sillero-Zubiri C, Macdonald DW. 1998. Scent-marking and territorial behaviour of

Ethiopian wolves Canis simensis. Journal of Zoology 245(3):351–361

DOI 10.1111/j.1469-7998.1998.tb00110.x.

Sinn DL, While GM, Wapstra E. 2008. Maternal care in a social lizard: links between

female aggression and offspring fitness. Animal Behaviour 76(4):1249–1257

DOI 10.1016/j.anbehav.2008.06.009.

Smaldino PE, Schank JC. 2012. Movement patterns, social dynamics, and the evolution of

cooperation. Theoretical Population Biology 82(1):48–58 DOI 10.1016/j.tpb.2012.03.004.

Stamps J. 1995. Motor learning and the value of familiar space. The American Naturalist

146(1):41–58 DOI 10.1086/285786.

Stamps JA, Krishnan VV. 1994. Territory acquisition in lizards: II. Establishing social and

spatial relationships. Animal Behaviour 47(6):1387–1400 DOI 10.1006/anbe.1994.1186.

Stamps JA, Krishnan VV. 1999. A learning-based model of territory establishment.

Quarterly Review of Biology 74(3):291–318 DOI 10.1086/393163.

Uhrig EJ, Lutterschmidt DI, Mason RT, LeMaster MP. 2012. Pheromonal mediation of

intraseasonal declines in the attractivity of female red-sided garter snakes, Thamnophis sirtalis

parietalis. Journal of Chemical Ecology 38(1):71–80 DOI 10.1007/s10886-011-0054-x.

Wehner R. 2003. Desert ant navigation: how miniature brains solve complex tasks. Journal of

Comparative Physiology A 189(8):579–588 DOI 10.1007/s00359-003-0431-1.

West BT, Welch KB, Galecki AT. 2007. Linear mixed models. A Practical Guide Using

Statistical Software. Boca Raton, Florida: Chapman and Hall/CRC.

Wohlfeil CK, Leu ST, Godfrey SS, Bull CM. 2013. Testing the robustness of transmission

network models to predict ectoparasite loads. One lizard, two ticks and four years. International

Journal for Parasitology: Parasites and Wildlife 2:271–277 DOI 10.1016/j.ijppaw.2013.09.005.

Zuri I, Bull CM. 2000. Reduced access to olfactory cues and home-range maintenance in

the sleepy lizard (Tiliqua rugosa). Journal of Zoology 252(2):137–145

DOI 10.1111/j.1469-7998.2000.tb00610.x.

Leu et al. (2016), PeerJ, DOI 10.7717/peerj.1844 20/20

http://dx.doi.org/10.1242/jeb.064923
http://dx.doi.org/10.1670/11-037.1
http://dx.doi.org/10.1007/bf00002202
http://dx.doi.org/10.1016/j.anbehav.2013.04.003
http://dx.doi.org/10.1111/j.1469-7998.1998.tb00110.x
http://dx.doi.org/10.1016/j.anbehav.2008.06.009
http://dx.doi.org/10.1016/j.tpb.2012.03.004
http://dx.doi.org/10.1086/285786
http://dx.doi.org/10.1006/anbe.1994.1186
http://dx.doi.org/10.1086/393163
http://dx.doi.org/10.1007/s10886-011-0054-x
http://dx.doi.org/10.1007/s00359-003-0431-1
http://dx.doi.org/10.1016/j.ijppaw.2013.09.005
http://dx.doi.org/10.1111/j.1469-7998.2000.tb00610.x
http://dx.doi.org/10.7717/peerj.1844
https://peerj.com/

	Lizard movement tracks: variation in path re-use behaviour is consistent with a scent-marking function
	Introduction
	Material and Methods
	Results
	Discussion
	Conclusions
	flink6
	References


