The effect of aging on the ciliary muscle and its potential relationship with presbyopia: a literature Review (#93504)

Second revision

Guidance from your Editor

Please submit by 23 Sep 2024 for the benefit of the authors .

Literature review article

Please read the 'Structure and Criteria' page to understand the reviewing criteria for this Literature review article.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

- 1 Tracked changes manuscript(s)
- 1 Rebuttal letter(s)
- 1 Figure file(s)
- 1 Table file(s)

i

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. STUDY DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- 1 You can also annotate this PDF and upload it as part of your review

When ready <u>submit online</u>.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Is the review of broad and cross-disciplinary interest and within the scope of the journal?
- Has field been reviewed recently. It there a good reason for this review (different viewpoint, audience etc.)?
- Introduction adequately introduces the subject and makes audience and motivation clear.

STUDY DESIGN

- Article content is within the <u>Aims and Scope</u> of the journal.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.
- Is the Survey Methodology consistent with a comprehensive, unbiased coverage of the subject? If not, what is missing?
- Are sources adequately cited? Quoted or paraphrased as appropriate?
- Is the review organized logically into coherent paragraphs/subsections?

VALIDITY OF THE FINDINGS

- Impact and novelty is not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Conclusions are well stated, linked to original research question & limited to supporting results.
- Is there a well developed and supported argument that meets the goals set out in the Introduction?
- Does the Conclusion identify unresolved questions / gaps / future directions?

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

The effect of aging on the ciliary muscle and its potential relationship with presbyopia: a literature Review

Hangjia Zuo Equal first author, 1, Hong Cheng Equal first author, 1, Meiting Lin 1, Xiang Gao 1, Yongguo Xiang 1, Tong Zhang 1, Ning Gao 1, Miaomiao Du 1, Yonglin Chen 1, Shijie Zheng 2, Rongxi Huang 3, Wenjuan Wan Corresp., 1, 2, Ke Hu

Corresponding Authors: Wenjuan Wan, Ke Hu
Email address: wanwenjuancqmus@163.com, cqhuke@hospital.cqmu.edu.cn

The ciliary muscle is known to play a part in presbyopia, but the mechanism has not received a comprehensive review, which this study aims to achieve. We examined relevant articles published from 1975 through 2022 that explored various properties of the muscle and related tissues in humans and rhesus monkeys. These properties include geometry, elasticity, rigidity, and composition, and were studied using a range of imaging technologies, computer models, and surgical methods. We identified a notable age-related displacement of the ciliary muscle apex that is characterized by anterior and medial shifts, and hypothesized to be primarily attributed to the accrual of connective tissue and tension exerted by the thickening lens. Other factors could also contribute to the movement, particularly the "inward bowing" of the sclera. Another noteworthy observation is that while the ciliary muscle experiences increasing constraint with advancing age due to adjacent anatomical structures, its contractile capacity remains unaltered, alongside the sustained constancy in both the concentration of muscarinic receptors and their binding affinity. Overall, more studies on human ciliary muscle are needed, as it ages differently from that of monkeys' ciliary muscle. These studies should explore other perspectives, including those regarding changes in the physical properties of the tissue and its relationship with other connected tissues.

¹ Chongqing Medical University, Chongqing Medical University, Chongqing, China

² The First Affiliated Hospital of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, Chongqng, China

Chongqing People's Hospital, Chongqing People's Hospital, Chongqing, China

- 1 The effect of aging on the ciliary muscle and its potential relationship with presbyopia: a
- 2 literature review
- 3 Hangjia Zuo^{1,#}, Hong Cheng^{1,#}, Meiting Lin¹, Xiang Gao¹, Yongguo Xiang¹, Tong Zhang¹, Ning
- 4 Gao¹, Miaomiao Du¹, Yonglin Chen¹, Shijie Zheng², Rongxi Huang³, Wenjuan Wan^{1,2*}, Ke Hu^{1,2*}

- 6 ¹Chongqing Medical University, Chongqing, CN
- ²The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of
- 8 Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National
- 9 Clinical Research Center for Ocular Diseases, Chongqing, CN
- 10 ³Chongqing People's Hospital
- 11 #These authors contributed equally.

12

- 13 Corresponding author and address for reprints:
- 14 Wenjuan Wan, MD, Ph.D.
- 15 The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of
- Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National
- 17 Clinical Research Center for Ocular Diseases, Chongqing, CN;
- 18 E-mail: wanwenjuancqums@163.com
- 19 Ke Hu, MD, Ph.D.
- 20 Chongging Medical University, Chongging, Chongging, CN;
- 21 The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of
- 22 Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National
- 23 Clinical Research Center for Ocular Diseases, Chongqing, CN;
- 24 E-mail: cghuke@hospital.cgmu.edu.cn
- 25 * These authors are co-corresponding authors on this work.

26

27 Abstract

29

30

31

32

33

34

35

37

38

39

40

41

42

43

44

45

47

48

49

50

51

53

54

Background: The ciliary muscle is known to play a part in presbyopia, but the mechanism has not received a comprehensive review, which this study aims to achieve. We examined relevant articles published from 1975 through 2022 that explored various properties of the muscle and related tissues in humans and rhesus monkeys. These properties include geometry, elasticity, rigidity, and composition, and were studied using a range of imaging technologies, computer models, and surgical methods. We identified a notable age-related displacement of the ciliary muscle apex that is characterized by anterior and medial shifts, and hypothesized to be primarily attributed to the accrual of connective tissue and tension exerted by the thickening lens. Other factors could also contribute to the movement, particularly the "inward bowing" of the sclera. Another noteworthy 36 observation is that while the ciliary muscle experiences increasing constraint with advancing age due to adjacent anatomical structures, its contractile capacity remains unaltered, alongside the sustained constancy in both the concentration of muscarinic receptors and their binding affinity. Overall, more studies on human ciliary muscle are needed, as it ages differently from that of monkeys' ciliary muscle. These studies should explore other perspectives, including those regarding changes in the physical properties of the tissue and its relationship with other connected tissues. **Methodology:** This literature review utilized a systematic methodology to identify and analyze pertinent studies of the presbyopia and ciliary muscles. The approach encompassed a thorough 46 examination of available literature across different academic databases, such as PubMed, Embase, and Cochrane Library. **Results:** Many studies have identified age-related thickening in the ciliary muscle and its potential causes, including the heightened deposition of connective tissues and traction exerted by the thickening lens. Notably, these inquiries culminated in the formulation of a geometric theory positing that the morphology of the ciliary muscle and its spatial relationship with adjacent structures exert pivotal influence over the tension exerted on zonular fibers. 52 **Conclusion:** The decline in the accommodative response of the muscle is prevalent in advanced age, with reduced mobility likely attributable to the increased stiffness of the Bruch's Membrane-

Choroid Complex (BMCC), where the tendons of the ciliary muscle insert, as well as the 55 thickening and stiffening of the lens. Importantly, the ciliary muscle forces do not change with 56 57 age.

58

59

60

Introduction

Presbyopia is a wide-spread condition that afflicts nearly every aging person on the planet. It is a 61 refractive consequence of aging where patients lose their ability to focus their eyes on nearby 62 objects. Such a loss of near vision means a great inconvenience and reduction in the quality of life. To tackle this challenge, different technologies that mainly focus on negating age-related changes 63 in the lens have been developed (Wolffsohn & Davies 2019). The most notable of these solutions 64 is intraocular lens (IOL) technology, an area that has attracted considerable funding and attention 65 from multidisciplinary experts. As a result, different types of IOLs, such as monofocal and 66 67 multifocal IOLs, have been developed (Altun 2020; Ang et al. 2020; Bianchi 2020). Though they are able to improve the condition and even eliminate the use of glasses, they have their limitations 68 69 and can cause new problems (Cho et al. 2022; Fernández et al. 2021; Sieburth & Chen 2019). 70 Some ardent proponents of IOL expect that the problem will be solved by future improvements of the technology, but there is a chance that better solutions lie elsewhere. 71 Given that the lens is only one of the components that may disrupt proper biomechanical 72 73 mechanisms, it is imperative to direct greater attention towards developing treatment approaches 74 that target other contributing factors. They have the potential to be incorporated into a customized regimen that best fits the patient if the causes of their presbyopia can be fully understood. However, 75 in order to develop effective interventions, it is necessary to first examine how age affects the 76 constituents of the eye. 77 One factor that demands attention is the ciliary muscle, which governs the tension of zonular fibers 78 79 through contraction and thereby plays a vital role in accommodation, as suggested by Helmholtz's theory of accommodation, a widely accepted and well supported theory (Bassnett 2021; Hermans 80 et al. 2007; Martin et al. 2005). Due to the unique structural location and large number of zonular 81

fibers, current technology does not support direct measurement of the forces they generate, as it 82 would disrupt the structure of the zonular fibers. Existing literature reports on the use of computer 83 84 modeling to simulate the forces exerted by these fibers (Schachar 2004). Goldberg et al. (2011; 85 2015) have provided us with a computer model that reconstructs the accommodation process by rendering it in the form of computer animation (Goldberg 2011; Goldberg 2015). Knaus et al. 86 (2021) took this a step further by devising a finite element model where parameters of the 87 88 components can be adjusted to produce different results. Other theories have been proposed to 89 explain the muscle's role in presbyopia as it and its related structures are gradually changed by age. One theory that is gathering momentum is the geometric theory that places more weight on 90 91 the shape-changing ability of the muscle than its contracting force. This theory will be discussed 92 in subsequent sections. 93 Nevertheless, depicting the movement of the muscle can be difficult because the iris acts as a screen that completely renders the muscle invisible to ordinary observation methods. Though some 94 studies evaded this problem by using iridectomized animals or albino patients (Baikoff et al. 2004; 95 96 Croft et al. 2006), these are not widely applicable methods to visualize the ciliary muscle in human 97 subjects. As a result, many imaging technologies have been employed to carry out the task. Two commonly employed techniques are ultrasound biomicroscopy (UBM) (Fernández-Vigo et al. 98 2022; Janssens et al. 2022) and anterior segment optical coherence tomography (ASOCT) (Ang et 99 100 al. 2018); the former is usually preferred over the latter since it is unrestricted by the iris (Warjri 101 & Senthil 2022). In addition, magnetic resonance imaging (MRI), though not so popular, has also been used by researchers (Strenk et al. 1999; Strenk et al. 2010). The research discussed in this 102 review exclusively utilized one of these three methods. Through their application, the veil over the 103 104 effects of aging on the ciliary muscle can be lifted. 105 In the following sections, before going into detail about age-related changes of the muscle, this paper reviews the basic structure of the ciliary body and muscle first. It approaches the problem 106 from two widely explored perspectives (geometric and morphological changes) and changes in 107 mobility and contractility. In the end, we provide a summary and deliberate on further directions. 108

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

Survey methodology

In January 2023, this study conducted searches across three databases: PubMed (MeSH), Embase, and the Cochrane Library. The search strategy utilized English-language search terms and combinations of them to explore articles related to "Ciliary muscle," "Ciliary body," "Zonules," and "Ciliary Process," combined with terms such as "Aging," "Presbyopia," "UBM," "OCT," and "aqueous humor." Boolean operators ("+", "AND", and "OR") were employed to refine the search results (supplementary material). The inclusion criteria for articles reviewed were as follows: (1) primary articles; (2) articles published in English or Chinese, irrespective of study design or publication date; and (3) studies considered most pertinent to this review. Identified articles underwent an initial screening to assess their relevance to the subject matter, and all pertinent articles were thoroughly reviewed. In this review, a total of 69 articles were included, and the screening process is illustrated in Figure 1. To enhance the academic integrity and minimize plagiarism concerns, the search methodology was designed to reduce overlap with existing literature. Additionally, earlier literature reviews on the same topic were consulted to ensure comprehensive coverage of key themes without redundancy. The methodology used in this study has certain limitations and potential biases. The search was limited to English and Chinese articles from only three databases, which may have excluded relevant research from other languages or databases. Additionally, the inclusion of older articles may introduce outdated perspectives, and reliance on previous reviews could reinforce existing biases. Despite these limitations, every effort was made to cover key themes comprehensively.

130

131

132

129

The ciliary body and ciliary muscle

Ciliary body structure

The ciliary body is a circular structure positioned behind the iris, which is normally opaque and colored, thereby rendering direct observation of the structure without iridectomy highly challenging. The ciliary body stretches from the root of the iris, where the two meet and form a

valley called ciliary sulcus, to the ora serrata, where the retina ends (Miesfeld & Brown 2019; 136 Warjri & Senthil 2022). The length of the structure is usually measured from the scleral spur, a 137 138 common reference point for carrying out measurements of the ciliary body, to the ora serrata 139 (Sheppard & Davies 2011a). Moreover, it is worth mentioning that the ciliary body ring does not 140 have a consistent length around the lens. On the temporal side, the ciliary body has a length of 5.6-6.3 mm, while on the nasal side the length is 4.6-5.2 mm. 141 142 With a cross-section resembling a right-angled triangle, the ciliary body can be divided into two 143 parts: the anterior part called the pars plicata and the posterior part called the pars plana. In the pars plicata of typical individuals, there are some 70 ridges with abundant capillaries inside, and 144 the ridges together form the ciliary processes (CP). Between the ridges are furrows where zonular 145 fibers, which suspend the lens, attach to the processes. The CP are lined by two layers of epithelial 146 147 cells, with the non-pigmented layer on the outside and the pigmented one on the inside. Together, they are in charge of the production of aqueous humor, an important fluid that supplies nutrients 148 to and removes wastes from avascular tissues and keeps intraocular components in position by 149 maintaining intraocular pressure (IOP). In contrast, though the pars plana is covered by zonular 150 151 fibers inserted into its posterior segment, no significant functions have yet been discovered related to the pars plana, which is less vascularized and, as indicated by its name, flat. As a result, the 152 region is regarded as a safety area through which surgical procedures like pars plana vitrectomy 153 154 access the inside of the eyeball. 155

Ciliary muscle structure and function

156

157

158

159

160

With its inner side separated from the double layers of epithelia by laminae of collagen fibers, and capillaries, the ciliary muscle comprises most of the ciliary stroma. In addition, its outer side is connected to the inner sclera via a lamina called supraciliaris. The anterior tendons of the muscle attach it to the scleral spur and trabecular meshwork, while in its posterior segment, tendons connect it to the Bruch's membrane, a structure that gives elasticity to the choroid.

The ciliary muscle is a smooth muscle that consists of three types of muscle fibers that differ from 161 each other by the directions they run in (Bassnett 2021). The longitudinal, or meridional, fibers 162

run from the anterior to the posterior part of the eye. They form the outermost layer of the muscle, 163 which is in juxtaposition to the inner surface of the sclera. In the front, they attach to the sclera 164 spur and trabecular meshwork, while in the rear they merge with the stroma of the choroid. The 165 166 radial fibers run obliquely, from medial to lateral, and from the CP to the chamber angle. As a result, they form a reticular pattern that is present throughout the middle of the ciliary muscle. The 167 circular fibers run perpendicular to the longitudinal ones, and as the fibers go around the globe, 168 169 they form a circular shape. As the innermost part of the ciliary muscle, circular fibers are the closest 170 to the apex of the CP (Knaus et al. 2024). There are two neural pathways associated with accommodation that innervate the ciliary muscle: 171 the sympathetic innervation, which is responsible for disaccommodation of the muscle, and the 172 parasympathetic innervation, which is the major innervation responsible for triggering 173 174 accommodative contraction of the muscle. Starting from the diencephalon, the sympathetic fibers proceed down the spinal cord until they pass through the C8-T2 segments into the cervical 175 sympathetic chain and then synapse in the superior cervical ganglion. Following that, axons of 176 177 postganglionic neurons leave the region to form the sympathetic carotid plexus, pass through the ciliary ganglion, and pierce the eve via short ciliary nerves. There are also other sympathetic fibers 178 navigating the long ciliary nerves and optic canal. The parasympathetic pathway, however, begins 179 as preganglionic fibers issuing from the Edinger-Westphal nucleus, traveling inside the 180 181 oculomotor nerve, arriving at the ciliary ganglion, and synapsing in it. The pathway then continues in the form of axons of postganglionic neurons that leave the ganglion, enter the eyeball, and 182 supply the ciliary muscle through the short ciliary nerves (McDougal & Gamlin 2015). 183 The ciliary muscle plays a crucial part in accommodation. According to Helmholtz's theory, when 184 185 the ciliary muscle is in a relaxed state, zonular fibers that suspend the lens are tensioned and exert a stretching force on the lens that makes it less rounded. The eye is unaccommodated at this stage, 186 and so, as in the case of emmetropia, can focus on objects clearly from afar. On the other hand, 187 when the ciliary muscle contracts, the tension on the zonular fibers is released, so the force that 188 pulls on the lens is no more. As a result, the lens is more rounded. This process, called 189

accommodation, is where the eye tries to focus on nearer objects by changing the power of the 190 lens, which is decided by its roundness. It is widely held that during the accommodation of a 191 192 normal eye, the ciliary muscle exhibits a forward and inward shift in mass, a shift that can mostly 193 be attributed to the movement of the longitudinal and circular fibers (Croft et al. 2013b; Goldberg 194 2015). Apart from accommodation, the ciliary muscle can also have an impact on IOP because it affects 195 196 the outflow of aqueous humor. There are two routes that the fluid takes to leave the eye. One is 197 the conventional pathway where the fluid enters from the trabecular meshwork at the limbus into the Schlemm's canal, where it is drained into veins. Most aqueous humor drains into this pathway. 198 199 The other way that aqueous humor leaves the eye is by filtering through the ciliary muscle, which 200 is called the unconventional pathway. Since connective tissues between muscle bundles are loose, 201 the fluid can seep through the tissues into the supraciliary and suprachoroidal spaces before passing 202 beyond the sclera (Bill 1977; Goel et al. 2010). The ciliary muscle is able to influence both aqueous humor outflow pathways. As the muscle is 203 204 connected to the trabecular meshwork anteriorly, it changes the geometry of the meshwork when 205 it contracts, making it less tightly packed, and so its resistance to outflow is reduced. Conversely, when the muscle relaxes, the elasticity of the meshwork returns it to its original form, resulting in 206 increased restriction to the outflow (Bill 1977; Goel et al. 2010). In the second pathway, which is 207 208 also called the uveoscleral pathway, the contraction of the ciliary muscle reduces the permeability 209 of the tissue and diminishes the outflow, with the majority of the effect being exerted on the main pathway (Bill & Phillips 1971). Given this, it is possible that age-related changes in the ciliary 210 muscle are not only responsible for presbyopia, but also for other diseases—glaucoma, for 211 212 example. If such a link is real, studies about other diseases associated with the ciliary muscle could in some ways increase our understanding about the muscle and its relationship with presbyopia 213 (Kaufman et al. 2019). 214

215 Age-related geometric and morphological changes of the ciliary muscle

The eye is a sophisticated and delicate optic system where a tiny alteration in the shape or relative

position of a structure can make a huge difference in the image we perceive. When the eye ages, 217 changes happen in its constituents, and consequently, such alterations occur can occur to 218 components inside and so affect its function. The lens, for example, thickens as we age, and so its 219 220 shape and relative position with respect to the zonules and ciliary muscle become different (Pardue 221 & Sivak 2000). Theories have been proposed to explain the relationship between these changes and presbyopia (Koretz & Handelman 1988; Koretz et al. 1984; Strenk et al. 2005; Tamm et al. 222 223 1992b). Tamm et al. (1991) even postulated that the major factor dictating the force on the lens is 224 the geometry and arrangement of the ciliary muscle (Tamm et al. 1992b). The same attention should be paid to examining age-related geometric and morphological changes of the ciliary 225 muscle, since the implications could be huge. 226 227 Currently, researchers focus almost entirely on the anterior segment of the ciliary muscle. Many 228 studies have identified that with age, the ciliary muscle in human changes to a more centripetal position. And there is also a diminishing ciliary muscle ring diameter (Pardue & Sivak 2000; 229 Richdale et al. 2016; Strenk et al. 1999; Strenk et al. 2010; Tamm et al. 1992b). Such movement 230 makes the disaccommodated ciliary muscle in older eyes somewhat resemble its accommodated 231 232 counterpart in younger eyes. Using magnetic resonance imaging (MRI), Strenk et al. (Strenk et al. 1999) measured the ciliary muscle ring diameter directly in images where the muscle could be 233 identified as a hypointense pixel cluster with a triangular shape. They found a clear trend that ring 234 235 diameter shortened as age increased. Moreover, to determine the relation between age and the 236 position of the ciliary muscle, Sheppard et al. (Richdale et al. 2016) and Strenk et al. (Strenk et al. 2010) used Anterior Segment Optical Coherence Tomography (ASOCT and MRI, respectively, to 237 look at the anteroposterior position of the ciliary muscle apex and width of the muscle. In both 238 239 studies, older subjects exhibited a forward movement of the ciliary muscle apex and an increase 240 in its thickness. Although potential challenges such as artifacts and distortion caused by subject motion, as well as the strong correlation between the antero-inward movement of the ciliary muscle 241 and aging, were confirmed. 242 Pardue & Jacob (2000) and Tamm et al. (1992) drew their conclusions from postmortem 243

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

examinations of donated eyes (Pardue & Sivak 2000; Tamm et al. 1992b), Admittedly, it is possible that the two studies observed structures that might have undergone changes after donors' deaths or during operations. The ischemic condition, for example, might have rendered the ciliary muscle less responsive to pharmacologic agents. Additionally, the loss of structural integrity might also have affected the shape of tissues. Nevertheless, the studies did provide more insight into the cause of the movement by offering a histological view of the ciliary muscle. Both found a significant increase in the connective tissue inside the ciliary muscle area in older individuals. This increase occurs most notably in the circular and reticular portions while being insignificant in the longitudinal portion. As more connective tissue grows between muscle bundles, the bundles grow further apart, which increases the muscle area. This thickening process of the muscle could at least partially explain why the muscle ring becomes smaller with age (Fernández-Vigo et al. 2022). In addition to studies that directly measured the ciliary muscle, other studies used an indirect method by focusing on the circumlental space (CLS), which is the space between CP and the equatorial edge of the lens (Croft et al. 2006; Croft et al. 2013a; Glasser et al. 2001). These studies observed decreasing CLS in older subjects. Since the lens equator itself does not grow in diameter with age (Sakabe et al. 1998; Strenk et al. 1999), the only way for the space to gradually narrow is by CP moving closer to the lens. Such displacement could partially be attributed to age-related changes in the sclera, which undergoes crosslinking and stiffening over time (Smewing 2020). This increased rigidity restricts biomechanical movements and prevents fibril sliding and inward movement (Croft et al. 2013b; Detorakis et al. 2010; Detorakis & Pallikaris 2013). The "inward bowing" of the sclera at the limbus has been documented by Croft et al. (Croft et al. 2013b). Moreover, diminishing CLS could indicate that the ciliary muscle or CP thicken with age, or both. According to the conventional electron microscope study by Marshall et al. (1992), stromal fibrosis happens both to the stroma in CP and those between ciliary muscle bundles. The parts in the muscle that are most affected are the oblique and circular portions, in which patchy thickening are found. Nonetheless, this thickening of stroma between ciliary muscle bundles is where humans and rhesus monkeys differ, because in aged eyes of rhesus monkeys, intramuscular connective tissue was only

observed to have increased a tiny amount. This suggests that although the eyes of rhesus monkeys are morphologically and physiologically similar to those of humans and both species develop 272 presbyopia at the same stage of life, the mechanism behind presbyopia in rhesus monkeys could 273 274 well be different. However, even though connective tissue could be partially responsible for a diminishing ciliary 275 muscle ring diameter, the major cause underlying the phenomenon is very likely to be an aging 276 lens. Strenk et al. (1999) found that, to the contrary of phakic subjects who showed a centripetal 277 278 age-related displacement of the ciliary muscle, pseudphakic subjects had their ciliary muscles recovered to a position similar to that of the muscle in a 29-year-old phakic eye. Wasilewski et al. 279 (2008) carried out intracapsular lens extraction (ICLE), a surgery that removes the lens and its 280 capsule and therefore cuts the zonule, and extracapsular lens extraction (ECLE), a procedure that 281 282 removes only lens content, on rhesus monkeys. Compared to the control, the monkeys receiving ECLE exhibited only a small decrease in their resting ciliary body thickness while those receiving 283 ICLE had much thinner ciliary muscle profiles, especially in the anterior portion, and posteriorly 284 positioned muscle apices. These two studies attest that the lens is pulling on the ciliary muscle via 285 286 the zonule, and a thickened lens causes the muscle to be displaced centripetally. Moreover, some research has found that the attachment of the anterior zonules moves away from the lens equator 287 as the lens ages (Farnsworth & Shyne 1979; Sakabe et al. 1998). Consequently, such movement 288 289 may consequently exert an excessive pulling force on the ciliary muscle, forcing it to move. Overall, these studies provided evidence that backs a geometric theory: as the aging lens grows in 290 thickness, the insertion ring of zonules moves forward away from the lens equator and creates a 291 drag on the ciliary body, which in turn causes an antero-inward movement of the ciliary muscle. 292 293 The implications of such a movement could be huge. Changes in the shape and position of the muscle and consequentially altered geometric relationships between the muscle and related 294 295 components may greatly affect the outcome of accommodation and disaccommodation. However, more proof is needed. Computer models could offer some help since they are good at 296 reconstructing the whole process of accommodation, which current in vivo and in vitro methods 297

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

are insufficient at achieving. Furthermore, since the ciliary muscle and processes bulk up as the eye ages, even if the muscle increased by the same amount in thickness during accommodation as its younger version would, it would not produce the same level of change to its geometry (Knaus et al. 2021). Again tionally, there exists an age-related loss in apex thickening as reported by Croft et al. (Croft et al. 2013a). As a result, when this factor combines with the antero-inward displacement of the muscle, the zonules may not relax enough due to insufficient change in the configuration of the mechanical system composed of the lens, zonules, and the ciliary muscle. This can produce a pull on the lens that prevents it from rounding up, so presbyopia may arise.

Age-related changes in mobility and contractility

Definition of mobility and contractility

As mentioned above, the ciliary muscle, a key component in accommodation, controls the process via contraction, so whether it maintains the same ability to contract at an old age is worthy of particular attention. Some studies on humans and rhesus monkeys have identified a smaller amount of muscle contraction in old people. Croft et al. (2013) compared the thickening of ciliary muscle apex during accommodation in old and young people, and they revealed that the accommodative apex thickening reduced significantly with age (Croft et al. 2013a). Another study carried out by Xie et al. (2008) increased accommodative stimuli step by step and recorded alterations in Maximum Ciliary Muscle Thickness (CMTMAX) and the span between the scleral spur and the position with maximum ciliary muscle thickness (SSMAX) (Xie et al. 2022). CMTMAX thickening, according to the results, leveled off in the middle-aged group at 3 diopters. Meanwhile, the shortening of SSMAX also plateaued at 3D in the same group. In contrast, in the younger group, the two parameters kept increasing as the stimuli stepped up. In another study, Tamm et al. (1992) administered atropine and pilocarpine to rhesus monkeys and observed changes in biometrics of ciliary muscles administered with the two agents. Similarly, they found weakened ciliary muscle contraction in older eyes. However, before diving into a search for root causes of this age-related change wrought by senility, it is crucial to distinguish between two different factors that may determine the extent to which the

muscle can contract: mobility and contractility. The former measures how much latitude to 325 contract is granted to the muscle by the surrounding structures connecting to it, and the latter is an 326 327 indicator of the ability of the muscle to contract. If mobility is low, the muscle is restricted by other 328 components and thus cannot contract as it normally would. Also, if the muscle loses its 329 contractility, it will not produce the same amount of force to sustain the same level of contraction. Age-related changes in mobility 330 331 Since the mobility of the muscle is dependent on components outside, a clear understanding of 332 how the muscle connects to its surrounding structures is a prerequisite for further studies of agerelated changes in mobility. 333 In the front, the muscle is anchored to the scleral spur through elastic tendons and is indirectly 334 335 connected to the lens via zonular fibers attaching to the internal limiting membrane that covers the 336 nonpigmented epithelial cells in the valleys between the CP (McCulloch 1954). Studies concerning the anterior parts where the muscle connects have been focused on as a cause for the loss of ciliary 337 muscle mobility in an aging lens. Having rhesus monkeys as their subjects, Croft et al. (2008) 338 collected data about CP movement under electric stimulation in younger and older groups before 339 340 and after extracapsular lens extraction (ECLE)(Croft et al. 2008). According to the results, young eyes did not show much of a change in the accommodative CP movement after the surgery, while 341 the CP movement in older eyes, which initially had a much lower level of CP movement, increased 342 343 to close to that of the pre-operative young eyes. These results suggest that increased lens volume 344 contributes to the restriction of ciliary muscle in an aging eye. In addition, other studies about cataract extraction may also shed a light on the problem. Park et al. (Park et al. 2008) and Fayed 345 selected patients over 35 years old who suffered from cataracts as their subjects and used 346 347 UBM to visualize accommodative ciliary body movement in them before and after the surgery of cataract extraction and IOL implantation. Both studies confirmed that phacoemulsification surgery 348 helped recover a significant level of centripetal movement of the ciliary muscle. In light of the 349 aforementioned geometric theory, a possible decrease in lens thickness due to the surgery proposed 350 by Fayed et al. (2017) may well be the reason of the recovery. Therefore, it can be proposed that 351

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

as the lens ages, its increasing thickness is likely to reduce the excursion of the ciliary muscle. On the other hand, the posterior fibers of the ciliary muscle are attached to Bruch's membrane of the choroid through elastic tendons at the ora serrata, where the pars plana zonules (PPZ) form the valleys between the ciliary processes and connect to the ciliary epithelium(McCulloch 1954). In addition to this group of zonules, the intermediate vitreous zonules (iVZ) also originate from these valleys, run posteriorly in the cleft between the PPZ and anterior hyaloid, split at the ora serrata into fine fibrils that merge with the anterior hyaloid, and connect it to the PPZ (Croft et al. 2016; Lütjen-Drecoll et al. 2010). Another newly discovered group of zonules termed the posterior vitreous zonule insertion zone to the lens equator (PVZ INS-LE), however, attaches to the posterior lens equator directly, though it courses in the same direction as the former two groups: towards the posterior insertion zone at the ora serrata (Croft et al. 2016). Apart from the choroid and zonules, one other structure that connects to the ciliary body is the vitreous body, whose anterior hyaloid fuses with the surface of the ciliary body at the ora serrata (McCulloch 1954). A stiffening choroid could be a potential cause for decreasing mobility of the muscle. According to observations by Croft et al. (2017), when the muscle contracts during accommodation, it pulls the choroid forward. Due to its elasticity, the choroid is pliable, and as force is applied to the back of the eye, it produces a centrifugal movement of the choroid with the optic nerve head as the center of the movement (Croft et al. 2017; Croft et al. 2022b; Marshall et al. 1992). As the muscle is connected to the elastic choroid, changes in the structure's pliability under contractile force should make it easier for the muscle to contract. On the other hand, if the structure loses its elasticity, a drag force may resist the ciliary muscle forces. Ugarte et al. (2006) and Graebel et al. (1977) used their own devices to apply forces to strips of the choroid and obtained the stress-strain relation of the material. Their results suggest that the elasticity of the choroid decreases significantly with age. Accordingly, the decrease could eventually make it harder for the muscle to contract. However, restriction from the choroid possibly plays a major role in lowering ciliary muscle mobility. According to Tamm et al. (1992), when the eyes of young and old rhesus monkeys were bisected meridionally after being administered with pilocarpine, the contractile

response of the ciliary muscle to the agent was lost in old eyes. However, this loss was only 379 exhibited in the middle parts where the choroid was intact (Tamm et al. 1992a). At the site where 380 the choroid was detached from the sclera, the effect of pilocarpine was retained, and no discernible 381 382 difference in inner apical position was observed among the three age groups. Though eyes of 383 rhesus monkeys may differ from those of humans in some respects, this study indicates that a stiffer choroid may be a major cause of decreasing mobility of the muscle. Moreover, choroid and 384 385 the elastic tendons that fasten the choroid to ciliary muscle have been reported to become more 386 rigid by growing thicker with age, potentially further diminishing the mobility of the muscle (Tamm et al. 1991). 387 Another potential factor that may increase restriction on the ciliary muscle is an aging vitreous 388 389 body. Though anatomically it may look like a simple knob of gel, this component is essentially 390 made of cisterns, which are individual chambers that are filled with gel and framed by collagen 391 fibers (Jongebloed & Worst 1987). When the component ages, the collagen fibers start to stick together and become stiff, and vitreous liquefaction, which further increases stiffness by increasing 392 393 the liquid amount inside, occurs. Consequently, a stiffened vitreous body probably does not 394 respond to pulling force as well as before and can even generate more resistance against the force. As reported by Croft et al. (2013; 2022), the peripheral vitreous in rhesus monkeys is pulled 395 forward during accommodation by the vitreous zonules at regions where the two structures fuse 396 397 together, while the anterior hyaloid bows backward behind the lens. However, the movements 398 decrease noticeably with age (Croft et al. 2022a; Croft et al. 2013b). Overall, these results suggest that a stiffened vitreous body also contributes to age-related reduction in the mobility of the ciliary 399 400 muscle. 401 Apart from exterior causes, the decrease in mobility could come from changes within the muscle 402 as well. Hyalinization, a process that turns stroma into homogeneous translucent materials, has been reported to be a prevalent condition in humans over 50 years old, and takes place in areas 403 from the CP stroma to the stroma separating the reticular portion and the circular portion (Croft et 404 al. 2013b; Tamm et al. 1992b). It is possible that this process contributes to the development of 405

417

presbyopia by altering physical properties of the stroma, making it more rigid. Former studies have indicated that the circular fibers, which are interspersed with connective tissue, produce most of 407 408 the antero-inward movement of the muscle (Lewis et al. 2012; Lossing et al. 2012; Mohamed 409 Farouk et al. 2018). An increase in the rigidity of connective tissue could suppress that movement 410 and help bring about presbyopia. On the whole, the ciliary muscle becomes more and more restricted when it, and other structures 411 412 of the eye undergo age-related changes. An ever-thickening lens in the anterior chamber and an 413 ever-hardening vitreous body in the posterior chamber, or the muscle itself, may be responsible for that. The consequential restriction, when strong enough, will deprive the muscle of the ability 414 to produce enough geometric change that is needed to loosen up zonular fibers and release tension 415 416 on the lens, so presbyopia occurs.

Age-related morphological changes

As individuals age, the morphology of the ciliary muscle undergoes notable changes, particularly 418 in fiber type composition (Flügel et al. 1990). The proportion of Type I fibers (slow-twitch muscle 419 420 fibers typically associated with endurance activities) increases with age, while the proportion of 421 Type II fibers (fast-twitch muscle fibers associated with rapid, short-duration activities) decreases. This shift in fiber type may adapt the ciliary muscle to meet the demands for sustained rather than 422 instantaneous contraction. Research by Sheppard and Davies (2010), employing AS-OCT 423 424 technology, provides new insights into this adaptation. Their observations revealed that with increased accommodative demand, the anterior portion of the ciliary muscle exhibits significant 425 contraction-induced shortening and thickening of the anterior muscle body (Sheppard & Davies 426 2010). This suggests that, with aging, the ciliary muscle undergoes structural adaptations to 427 428 accommodate new functional requirements. Additionally, changes in fiber type have led to more pronounced fiber grouping within the ciliary muscle, further reflecting its adaptive structural 429 changes. Sheppard and Davies (2011) further reported that the length of the anterior ciliary muscle 430 in emmetropic eyes significantly decreases with age, whereas its maximum width increases 431 (Sheppard & Davies 2011b). These alterations are likely closely associated with changes in muscle 432

- 433 fiber types.
- Furthermore, the overall mass of the ciliary muscle increases, potentially due to an increase in the
- and number of muscle fibers and muscle volume. This phenomenon is considered a compensatory
- 436 mechanism aimed at preserving contraction capability in the aging ciliary muscle. However,
- 437 further research is required to determine whether these morphological changes can fully offset the
- 438 functional decline associated with aging.

Age-related physiological changes

- The ciliary muscle may undergo physiological changes with aging, including alterations in muscle
- 441 fiber composition, hypertrophy, and atrophy (Tamm et al. 1992b). While earlier studies, such as
- those by Tamm et al. (1992), suggested that both the longitudinal and reticular portions of the
- ciliary muscle might experience atrophy with age, more recent research indicates that the ciliary
- muscle may hypertrophy to generate greater force required for accommodating the aging lens.
- Additionally, as the sclera becomes stiffer and the choroid becomes more relaxed, these changes
- may prompt the ciliary muscle to increase its mass to adapt to the structural changes in the aging
- 447 eye.

439

- Tamm et al. (1992) observed that the area of the longitudinal portion decreased by more than half
- as the age of the subjects increased from 30 to 80 years. More pronounced atrophy may occur in
- 450 the reticular portion, where the proportion of connective tissue increased from 20% in subjects
- aged 30 to 40 years to 50% in those aged 50 to 60 years, with a concurrent decrease in the area of
- 452 this portion. However, Sheppard and Davies (2010) used anterior segment optical coherence
- 453 tomography (AS-OCT) to observe a significant increase in the thickness of the anterior part of the
- 454 ciliary muscle (CM25) during accommodation, suggesting that the ciliary muscle might
- hypertrophy to meet the demands of accommodation. Furthermore, Hipsley and Colbert (2022)
- 456 proposed that although the ciliary muscle maintains or even increases its contractile force with
- age, the development of presbyopia may be related to biomechanical changes in the ciliary muscle
- 458 and other ocular structures.

While Tamm et al. (1992) reported an increase in the area of the circular portion with age, Marshall et al. (2013) using immunoelectron microscopy found significant atrophy in both the reticular and circular portions(Croft et al. 2013b). The atrophy of the circular portion, which is responsible for most of the ciliary muscle's accommodative movement, may reduce contractile force and contribute to presbyopia. These findings suggest that hypertrophy and atrophy of the ciliary muscle may represent different aspects of presbyopia development, highlighting the need for further research to understand how these changes collectively impact accommodative ability and the progression of presbyopia.

Age-related contractile changes

The contraction force of the ciliary muscle, or the muscle's ability to contract, is influenced by various factors, including the proportion of muscle cells, the number of muscarinic binding sites,

and the activities of choline acetyltransferase (ChAT) and acetylcholinesterase (AChE). Before

exploring how aging affects these specific factors, it is crucial to understand how aging impacts

the overall function of the ciliary muscle.

Poyer et al. (1993) studied the contraction force of aged ciliary muscle through in vitro experiments, measuring the contraction responses of monkey ciliary muscle strips after administering carbachol and aminoethylacetic acid. Although in vivo experiments indicate that with aging, the contraction response of live monkey ciliary muscle to muscarinic agents weakens, in vitro tests did not reveal a significant relationship between contraction force and age. This finding aligns with results from cataract surgery, which typically restores much or all of the ciliary muscle's contraction force, suggesting that even in old age, the ciliary muscle retains significant contraction potential (Fayed 2017; Park et al. 2008). However, research by Pardue and Sivak (2000) indicates that although the ciliary muscle responds to drug treatments at all ages, a decrease in ciliary muscle length may be associated with a potential decline in contraction force (Pardue & Sivak 2000). This echoes Poyer et al.'s findings, suggesting that while the aged ciliary muscle still retains some contraction force, it may be affected by aging. With increasing age, the response of the ciliary muscle to electrical stimulation and muscarinic cholinergic agonists (such as

511

512

pilocarpine) may weaken, possibly related to degenerative changes in intramuscular nerves, 486 changes in muscarinic receptor concentrations, or reduced receptor binding affinity. 487

488 Although Pover et al. (1993) did not find significant age-related changes in contraction force, research by Lütjen-Drecoll et al. (2010) observed significant degenerative changes in muscle cells 489 and myelinated nerve fibers in monkey ciliary muscles using optical and electron microscopy. 490 These changes were closely related to a decline in accommodative amplitude and stabilized after 491 492 the age of 25. In contrast, no significant changes in muscarinic receptor concentration or receptor binding affinity were observed (Gabelt et al. 1990). However, since the aging process of the human 493 494 ciliary muscle may differ from that of monkeys, these results might not be directly applicable to humans. In exploring the impact of aging on ocular accommodative ability, Hipsley and Colbert 495 (2022) proposed a new model that provides a more comprehensive perspective. They noted that 496 with increasing age, changes occur in the biomechanical and physiological functions of the eye, 497 498 not limited to the lens but also involving the ciliary muscle, vitreous body, sclera, and other ocular structures (Hipsley, A., & Colbert, T 2022). Specifically, they emphasized that although the 499 ciliary muscle can maintain its contraction force even in old age, the decline in accommodative 500 ability may be related to biomechanical dysfunctions of the entire ocular accommodative apparatus. Furthermore, Hipsley and Colbert's study indicated that with age, ocular structures 502 might undergo cumulative damage, such as lens hardening due to oxidative stress and advanced 503 glycation end-products (AGEs), increased scleral biomechanical stiffness, and decreased elasticity 504 of the ciliary muscle tendons and Bruch's membrane-choroid complex (BMCC). These changes 505 506 collectively contribute to a reduction in accommodative amplitude and ultimately affect the eye's accommodative function (DRoF). Although current research has not reached a definitive 507 conclusion regarding age-related changes in contraction force, existing evidence suggests that the 508 509 ciliary muscle retains a certain degree of function during aging. Future research on the human eye 510 is needed to further validate this phenomenon.

The contraction force of the ciliary muscle may not significantly decrease in the elderly or may only decrease slightly; therefore, its role in the decline of accommodative function in presbyopic

513 patients may be relatively minor.

Summary and future directions

Although more studies are needed to validate some discoveries and theories concerning the aging 515 516 process of the ciliary muscle and to reveal more unknown sides of this process, several questions 517 can be asked. First, there are significant age-related changes in the geometry and morphology of the ciliary muscle, which cause it to become displaced forward and inward. Such displacement can 518 be represented by the thickening and forward movement of the ciliary muscle apex and are 519 520 explained by an increase in connective tissue and the pulling force from the thickened lens. It is worth noting that the age-related narrowing of the circumlental space (CLS) should not be 521 522 interpreted solely as the consequence of the antero-inward movement of the muscle. Other factors could also contribute to this movement, especially the "inward bowing" of the sclera. Further 523 524 studies are needed to confirm the existence of age-related narrowing of the CLS and investigate its potential relationship with accommodation and presbyopia. 525 However, whether the geometric and morphological changes have substantial influence on 526 527 accommodation remains unclear. The question may be better answered by computer models, as 528 they excel in controlling variables and visualizing the process. This could also prove to be a direction for future research. 529 Another issue brought about by age is the irresponsiveness of the ciliary muscle to stimuli. The 530 531 major reason for this is the age-related loss in the mobility of the muscle, caused by a stiffening choroid, hardening vitreous body, thickening lens, and stiffening of the sclera. Hyalinization in the 532 muscle tissue is possibly another culprit, but there are currently no studies on how it affects the 533 physical properties of the ciliary muscle tissue, making it an area worth further investigation. 534 535 Additionally, as the ciliary muscle mass advances with age, the length of the pars plana increases (Pardue & Sivak 2000; Richdale et al. 2016). This may intriguingly affect the tightness of posterior 536 components and consequently influence the mobility of the ciliary muscle. 537 In contrast to the decline in mobility, no considerable decline in contractility has been found, 538 though the atrophy of myocytes has been observed. In addition, evidence from rhesus monkeys 539

suggests that the concentration of muscarinic receptors and binding affinity of the receptors remain unchanged at an old age. Nevertheless, it should be noted that experiments about contractility have nearly all been carried out on rhesus monkeys, whose eyes are similar to those of humans but age in a different way, as mentioned formerly (Lütjen-Drecoll et al. 1988). Therefore, more experiments conducted on the human ciliary muscle are needed.

One other overlooked potential direction is not directly related to presbyopia. As previously mentioned, age-related changes in the muscle can be the common underlying mechanism for presbyopia and other diseases like glaucoma. This has been discussed and supported by Kaufman et al. (2019). Exploring the insights gained from studying other diseases could potentially increase our understanding of presbyopia and its relationship to the ciliary muscle.

Conclusion

There are complex interactions among all of the anatomical components of the eye, and the ciliary muscle, a vital component of accommodation, is not immune to aging. Therefore, the aging of the ciliary muscle may well be a trigger to presbyopia. Studies about the aging process of the muscle mainly center on changes in its geometry, its relative position to related components, mobility, and contractility. Though it hides behind the opaque iris, imaging technologies such as UBM have been employed to visualize it and its accommodative movement. Moreover, when a detailed examination of the muscle's fine structures is needed, light and electron microscopy are valuable tools for researchers. These technologies allow for the investigation of the muscle's fine structures, including the increase in connective tissues and the effects of lens thickening. More importantly, the studies discussed have contributed to various theories about the ciliary muscle's role, including geometric theory, lenticular theory, capsular theory, and zonular theory. These theories collectively explore how the shape of the ciliary muscle and its interactions with other components influence the tension of zonular fibers. In addition, other studies have confirmed that most of the accommodative response of the muscle are lost at an advanced age and the loss of mobility is the main culprit, which could be caused by a thickening lens and stiffening choroid. In contrast, the

muscle's contractility remains relatively stable throughout the lifespan. Future studies, particularly those focusing on human ciliary muscles, will shed more light on the situation by determining whether previous findings in rhesus monkeys can be extrapolated to humans and uncovering more unknown factors contributing to presbyopia. Moreover, incorporating computer-based studies or in-silico models could be beneficial by providing further insights into the aging process of the ciliary muscle and its implications for presbyopia(Cabeza-Gil et al. 2022; Goldberg 2015; Knaus et al. 2021; Knaus et al. 2024).

574

575

Acknowledgement

We express our gratitude to Guoning Yang for his editing of our article.

577

Reference

578579

- Altun A. 2020. Comparing the Effect of Monofocal and Multifocal Intraocular Lenses on Macular Surgery. *Journal*of Ophthalmology 2020. 10.1155/2020/1375298
- Ang M, Baskaran M, Werkmeister RM, Chua J, Schmidl D, Aranha Dos Santos V, Garhöfer G, Mehta JS, and Schmetterer L. 2018. Anterior segment optical coherence tomography. *Prog Retin Eye Res* 66:132-156. 10.1016/j.preteyeres.2018.04.002
- Ang RE, Picache GCS, Rivera MCR, Lopez LRL, and Cruz EM. 2020. A comparative evaluation of visual, refractive, and patient-reported outcomes of three extended depth of focus (Edof) intraocular lenses. *Clinical* Ophthalmology 14:2339-2351. 10.2147/OPTH.S255285
- Baikoff G, Lutun E, Wei J, and Ferraz C. 2004. Anterior chamber optical coherence tomography study of human natural accommodation in a 19-year-old albino. *J Cataract Refract Surg* 30:696-701. 10.1016/j.jcrs.2003.12.043
- 591 Bassnett S. 2021. Zinn's zonule. *Prog Retin Eye Res* 82:100902, 10.1016/j.preteyeres.2020.100902
- Bianchi GR. 2020. Spectacle independence after cataract surgery: A prospective study with a multifocal intraocular lens. *Medical Hypothesis, Discovery, and Innovation in Ophthalmology* 9:38-46.
- 594 Bill A. 1977. Basic physiology of the drainage of aqueous humor. *Exp Eye Res* 25 Suppl:291-304. 10.1016/s0014-595 4835(77)80025-0
- Bill A, and Phillips CI. 1971. Uveoscleral drainage of aqueous humour in human eyes. *Exp Eye Res* 12:275-281.
 10.1016/0014-4835(71)90149-7
- Cabeza-Gil I, Ruggeri M, Chang YC, Calvo B, and Manns F. 2022. Automated segmentation of the ciliary muscle in OCT images using fully convolutional networks. *Biomed Opt Express* 13:2810-2823. 10.1364/boe.455661
- 600 Cho JY, Won YK, Park J, Nam JH, Hong JY, Min S, Kim N, Chung TY, Lee EK, Kwon SH, and Lim DH. 2022.

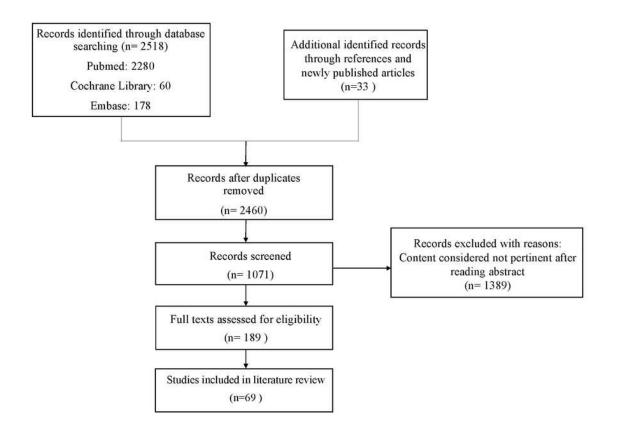
 Visual Outcomes and Optical Quality of Accommodative, Multifocal, Extended Depth-of-Focus, and

- Monofocal Intraocular Lenses in Presbyopia-Correcting Cataract Surgery: A Systematic Review and Bayesian Network Meta-analysis. *JAMA ophthalmology*. 10.1001/jamaophthalmol.2022.3667
- Croft MA, Glasser A, Heatley G, McDonald J, Ebbert T, Nadkarni NV, and Kaufman PL. 2006. The zonula, lens, and
 circumlental space in the normal iridectomized rhesus monkey eye. *Invest Ophthalmol Vis Sci* 47:1087-1095.
 10.1167/iovs.04-1524
- 607 Croft MA, Heatley G, McDonald JP, Katz A, and Kaufman PL. 2016. Accommodative movements of the lens/capsule 608 and the strand that extends between the posterior vitreous zonule insertion zone & the lens equator, in relation 609 to the vitreous face and aging. *Ophthalmic Physiol Opt* 36:21-32. 10.1111/opo.12256
- 610 Croft MA, Lütjen-Drecoll E, and Kaufman PL. 2017. Age-related posterior ciliary muscle restriction A link between 611 trabecular meshwork and optic nerve head pathophysiology. *Exp Eye Res* 158:187-189. 612 10.1016/j.exer.2016.07.007
- Croft MA, McDonald JP, James RJ, Heatley GA, Lin TL, Lütjen-Drecoll E, and Kaufman PL. 2008. Surgical intervention and accommodative responses, I: centripetal ciliary body, capsule, and lens movements in rhesus monkeys of various ages. *Invest Ophthalmol Vis Sci* 49:5484-5494. 10.1167/iovs.08-1916
- Croft MA, McDonald JP, Katz A, Lin TL, Lütjen-Drecoll E, and Kaufman PL. 2013a. Extralenticular and lenticular
 aspects of accommodation and presbyopia in human versus monkey eyes. *Invest Ophthalmol Vis Sci* 54:5035 5048. 10.1167/iovs.12-10846
- 619 Croft MA, Nork TM, Heatley G, McDonald JP, Katz A, and Kaufman PL. 2022a. Intraocular accommodative 620 movements in monkeys; relationship to presbyopia. *Exp Eye Res* 222:109029. 10.1016/j.exer.2022.109029
- Croft MA, Nork TM, McDonald JP, Katz A, Lütjen-Drecoll E, and Kaufman PL. 2013b. Accommodative movements
 of the vitreous membrane, choroid, and sclera in young and presbyopic human and nonhuman primate eyes.
 Invest Ophthalmol Vis Sci 54:5049-5058. 10.1167/iovs.12-10847
- 624 Croft MA, Peterson J, Smith C, Kiland J, Nork TM, McDonald JP, Katz A, Hetzel S, Lütjen-Drecoll E, and Kaufman 625 PL. 2022b. Accommodative movements of the choroid in the optic nerve head region of human eyes, and 626 their relationship to the lens. *Exp Eye Res* 222:109124. 10.1016/j.exer.2022.109124
- Detorakis ET, Drakonaki EE, Tsilimbaris MK, Pallikaris IG, and Giarmenitis S. 2010. Real-time ultrasound elastographic imaging of ocular and periocular tissues: a feasibility study. *Ophthalmic Surg Lasers Imaging* 41:135-141. 10.3928/15428877-20091230-24
- Detorakis ET, and Pallikaris IG. 2013. Ocular rigidity: biomechanical role, in vivo measurements and clinical significance. *Clin Exp Ophthalmol* 41:73-81. 10.1111/j.1442-9071.2012.02809.x
- Farnsworth PN, and Shyne SE. 1979. Anterior zonular shifts with age. *Exp Eye Res* 28:291-297. 10.1016/0014-633 4835(79)90091-5
- Fayed AAE. 2017. Ultrasound biomicroscopy value in evaluation of restoration of ciliary muscles contractility after cataract extraction. *Clin Ophthalmol* 11:855-859. 10.2147/opth.S131399
- Fernández-Vigo JI, Kudsieh B, Shi H, De-Pablo-Gómez-de-Liaño L, Fernández-Vigo J, and García-Feijóo J. 2022.
 Diagnostic imaging of the ciliary body: Technologies, outcomes, and future perspectives. *Eur J Ophthalmol* 32:75-88. 10.1177/11206721211031409
- Fernández J, Rodríguez-Vallejo M, Martínez J, Burguera N, and Piñero DP. 2021. Long-term efficacy, visual performance and patient reported outcomes with a trifocal intraocular lens: A six-year follow-up. *Journal of Clinical Medicine* 10. 10.3390/jcm10092009
- Flügel C, Lütjen-Drecoll E, and Bárány E. 1990. [Structural differences in the structure of the ciliary muscles in eyes

- of primates. A histochemical and morphological study]. Fortschr Ophthalmol 87:384-387.
- Gabelt BT, Kaufman PL, and Polansky JR. 1990. Ciliary muscle muscarinic binding sites, choline acetyltransferase, and acetylcholinesterase in aging rhesus monkeys. *Invest Ophthalmol Vis Sci* 31:2431-2436.
- Glasser A, Croft MA, Brumback L, and Kaufman PL. 2001. Ultrasound biomicroscopy of the aging rhesus monkey
 ciliary region. *Optom Vis Sci* 78:417-424. 10.1097/00006324-200106000-00014
- Goel M, Picciani RG, Lee RK, and Bhattacharya SK. 2010. Aqueous humor dynamics: a review. *Open Ophthalmol J* 4:52-59. 10.2174/1874364101004010052
- Goldberg DB. 2011. Computer-animated model of accommodation and theory of reciprocal zonular action. *Clin Ophthalmol* 5:1559-1566. 10.2147/opth.S25983
- Goldberg DB. 2015. Computer-animated model of accommodation and presbyopia. *J Cataract Refract Surg* 41:437 445. 10.1016/j.jcrs.2014.07.028
- Hermans E, Dubbelman M, van der Heijde R, and Heethaar R. 2007. The shape of the human lens nucleus with accommodation. *J Vis* 7:16.11-10. 10.1167/7.10.16
- Janssens R, van Rijn LJ, Eggink CA, Jansonius NM, and Janssen SF. 2022. Ultrasound biomicroscopy of the anterior segment in patients with primary congenital glaucoma: a review of the literature. *Acta Ophthalmol* 100:605-613. 10.1111/aos.15082
- Jongebloed WL, and Worst JF. 1987. The cisternal anatomy of the vitreous body. *Doc Ophthalmol* 67:183-196. 10.1007/bf00142712
- Kaufman PL, Lütjen Drecoll E, and Croft MA. 2019. Presbyopia and Glaucoma: Two Diseases, One Pathophysiology?
 The 2017 Friedenwald Lecture. *Invest Ophthalmol Vis Sci* 60:1801-1812. 10.1167/iovs.19-26899
- Knaus KR, Hipsley A, and Blemker SS. 2021. The action of ciliary muscle contraction on accommodation of the lens explored with a 3D model. *Biomech Model Mechanobiol* 20:879-894. 10.1007/s10237-021-01417-9
- Knaus KR, Hipsley A, and Blemker SS. 2024. A new look at an old problem: 3D modeling of accommodation reveals
 how age-related biomechanical changes contribute to dysfunction in presbyopia. *Biomech Model Mechanobiol* 23:193-205. 10.1007/s10237-023-01767-6
- 668 Koretz JF, and Handelman GH. 1988. How the human eye focuses. *Sci Am* 259:92-99. 10.1038/scientificamerican0788-92
- Koretz JF, Handelman GH, and Brown NP. 1984. Analysis of human crystalline lens curvature as a function of accommodative state and age. *Vision Res* 24:1141-1151. 10.1016/0042-6989(84)90168-8
- Lewis HA, Kao CY, Sinnott LT, and Bailey MD. 2012. Changes in ciliary muscle thickness during accommodation in children. *Optom Vis Sci* 89:727-737. 10.1097/OPX.0b013e318253de7e
- Lossing LA, Sinnott LT, Kao CY, Richdale K, and Bailey MD. 2012. Measuring changes in ciliary muscle thickness with accommodation in young adults. *Optom Vis Sci* 89:719-726. 10.1097/OPX.0b013e318252cadc
- Lütjen-Drecoll E, Kaufman PL, Wasielewski R, Ting-Li L, and Croft MA. 2010. Morphology and accommodative function of the vitreous zonule in human and monkey eyes. *Invest Ophthalmol Vis Sci* 51:1554-1564. 10.1167/iovs.09-4008
- Lütjen-Drecoll E, Tamm E, and Kaufman PL. 1988. Age-related loss of morphologic responses to pilocarpine in rhesus monkey ciliary muscle. *Arch Ophthalmol* 106:1591-1598. 10.1001/archopht.1988.01060140759051
- Marshall GE, Konstas AG, Abraham S, and Lee WR. 1992. Extracellular matrix in aged human ciliary body: an immunoelectron microscope study. *Invest Ophthalmol Vis Sci* 33:2546-2560.
- Martin H, Guthoff R, Terwee T, and Schmitz KP. 2005. Comparison of the accommodation theories of Coleman and

- of Helmholtz by finite element simulations. *Vision Res* 45:2910-2915. 10.1016/j.visres.2005.05.030
- McCulloch C. 1954. The zonule of Zinn: its origin, course, and insertion, and its relation to neighboring structures.
- 686 Trans Am Ophthalmol Soc 52:525-585.
- 687 McDougal DH, and Gamlin PD. 2015. Autonomic control of the eye. *Compr Physiol* 5:439-473. 688 10.1002/cphy.c140014
- Miesfeld JB, and Brown NL. 2019. Eye organogenesis: A hierarchical view of ocular development. *Curr Top Dev*690 *Biol* 132:351-393. 10.1016/bs.ctdb.2018.12.008
- Mohamed Farouk M, Naito T, Shinomiya K, and Mitamura Y. 2018. Observation of Ciliary Body Changes during
 Accommodation Using Anterior OCT. *J Med Invest* 65:60-63. 10.2152/jmi.65.60
- 693 Pardue MT, and Sivak JG. 2000. Age-related changes in human ciliary muscle. *Optom Vis Sci* 77:204-210. 694 10.1097/00006324-200004000-00013
- Park KA, Yun JH, and Kee C. 2008. The effect of cataract extraction on the contractility of ciliary muscle. *Am J Ophthalmol* 146:8-14. 10.1016/j.ajo.2008.02.026
- Richdale K, Bullimore MA, Sinnott LT, and Zadnik K. 2016. The Effect of Age, Accommodation, and Refractive Error on the Adult Human Eye. *Optom Vis Sci* 93:3-11. 10.1097/opx.0000000000000757
- Sakabe I, Oshika T, Lim SJ, and Apple DJ. 1998. Anterior shift of zonular insertion onto the anterior surface of human crystalline lens with age. *Ophthalmology* 105:295-299. 10.1016/s0161-6420(98)93172-4
- 701 Schachar RA. 2004. Qualitative effect of zonular tension on freshly extracted intact human crystalline lenses: 702 implications for the mechanism of accommodation. *Invest Ophthalmol Vis Sci* 45:2691-2695. 703 10.1167/iovs.03-1267
- Sheppard AL, and Davies LN. 2010. In vivo analysis of ciliary muscle morphologic changes with accommodation and axial ametropia. *Invest Ophthalmol Vis Sci* 51:6882-6889. 10.1167/iovs.10-5787
- Sheppard AL, and Davies LN. 2011a. The effect of ageing on in vivo human ciliary muscle morphology and contractility. *Investigative ophthalmology & visual science* 52:1809-1816.
- Sheppard AL, and Davies LN. 2011b. The effect of ageing on in vivo human ciliary muscle morphology and contractility. *Invest Ophthalmol Vis Sci* 52:1809-1816. 10.1167/iovs.10-6447
- 710 Sieburth R, and Chen M. 2019. Intraocular lens correction of presbyopia. *Taiwan J Ophthalmol* 9:4-17. 10.4103/tjo.tjo_136_18
- Smewing L. 2020. Advanced glycation end products as a biomarker for accelerated ocular ageing and glaucoma.

 University of Plymouth.
- Strenk SA, Semmlow JL, Strenk LM, Munoz P, Gronlund-Jacob J, and DeMarco JK. 1999. Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study. *Invest Ophthalmol Vis Sci* 40:1162-1169.
- Strenk SA, Strenk LM, and Guo S. 2010. Magnetic resonance imaging of the anteroposterior position and thickness
 of the aging, accommodating, phakic, and pseudophakic ciliary muscle. *J Cataract Refract Surg* 36:235-241.
 10.1016/j.jcrs.2009.08.029
- Strenk SA, Strenk LM, and Koretz JF. 2005. The mechanism of presbyopia. *Prog Retin Eye Res* 24:379-393. 10.1016/j.preteyeres.2004.11.001
- Tamm E, Croft MA, Jungkunz W, Lütjen-Drecoll E, and Kaufman PL. 1992a. Age-related loss of ciliary muscle mobility in the rhesus monkey. Role of the choroid. *Arch Ophthalmol* 110:871-876.
- 724 10.1001/archopht.1992.01080180143043


PeerJ

725	Tamm E, Lütjen-Drecoll E, Jungkunz W, and Rohen JW. 1991. Posterior attachment of ciliary muscle in young,
726	accommodating old, presbyopic monkeys. Invest Ophthalmol Vis Sci 32:1678-1692.
727	Tamm S, Tamm E, and Rohen JW. 1992b. Age-related changes of the human ciliary muscle. A quantitative
728	morphometric study. Mech Ageing Dev 62:209-221. 10.1016/0047-6374(92)90057-k
729	Warjri GB, and Senthil S. 2022. Imaging of the Ciliary Body: A Major Review. Semin Ophthalmol 37:711-723.
730	10.1080/08820538.2022.2085515
731	Wolffsohn JS, and Davies LN. 2019. Presbyopia: Effectiveness of correction strategies. Prog Retin Eye Res 68:124-
732	143. 10.1016/j.preteyeres.2018.09.004
733	Xie X, Sultan W, Corradetti G, Lee JY, Song A, Pardeshi A, Yu F, Chopra V, Sadda SR, Xu BY, and Huang AS.
734	2022. Assessing accommodative presbyopic biometric changes of the entire anterior segment using single
735	swept-source OCT image acquisitions. Eye (Lond) 36:119-128. 10.1038/s41433-020-01363-3
736	Hipsley, A., & Colbert, T. (2022). The zooming eye: Lens effects of age on dynamic range of focus. Presbyopia
737	Physician. Retrieved from https://presbyopiaphysician.com/issues/2022/september/the-zooming eye-lens-
738	effects-of-age-on-dynamic-range-of-focus/
739	

Figure 1

Flow Chart

