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ABSTRACT

Background: Women typically have a higher body fat content than men. Fat
accumulation is associated with muscle weakness and alterations in mechanical
properties. This study aims to determine the relationship between BMI and weight
status with the mechanical properties of muscle and tendon. It was hypothesized that
the stiffness and tone of the forearm muscle and Achilles tendon would be correlated
with weight status and BML

Methods: A cross-sectional study was conducted with 136 female university students.
Grip strength was assessed using a dynamometer, body composition was analyzed
through bioimpedance, and countermovement jump performance was evaluated
with a force platform. Stiffness and tone were measured using the MyotonPro device.
ANOVA was used to compare grip strength and countermovement jump
performance according to body composition. The Pearson correlation coefficient was
used to examine bivariate associations.

Results: Relative grip strength decreased with an increase in fat content, while
forearm muscle stiffness and tone decreased with rising weight status and BML.
Stiffness of the Achilles tendon increased with an increase in fat content and showed
a significant positive correlation with BMI. Multiple regression analysis revealed a
weak correlation between BMI, body composition, and stiffness of the forearm
muscles.

Conclusion: The results of this study support the notion that the stiffness of the
forearm muscles and Achilles tendon is correlated with BMI in young adult women.
Furthermore, an increase in body fat percentage is linked to a decrease in mechanical
properties and poorer muscle function.
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INTRODUCTION

Obesity is defined as the accumulation of excess fat within the body, leading to various
health problems, and has reached pandemic proportions worldwide (Afshin et al., 2017). In
Chile, 74% of the adult population is classified as overweight or obese (OECD, 2022). While
the cardiovascular and metabolic consequences of obesity have been extensively studied, its
impact on muscle function has received less attention (Usgu, Ramazanoglu ¢ Yakut,
2021). Muscular strength in the upper extremity if often measured via handgrip strength
(HGS), due to its high reliability and validity (Vaishya, 2024). Grip strength results from
the combined contraction of the flexor and extensor muscles of the wrist and fingers
(Forman, Forman ¢ Holmes, 2021). Several forearm flexor muscles, including the flexor
pollicis longus, flexor digitorum profundus, flexor carpi ulnaris, and flexor digitorum
superficialis (Oatis, 2009), contribute to wrist flexion and grip force production. HGS is
known to be influenced by weight, height, age, and body mass (Roman-Liu, Tokarski &
Mazur-Rézycka, 2021). However, to our knowledge, there is limited information regarding
the association between the viscoelastic properties of the forearm muscles, HGS, and body
mass index (BMI).

Muscle stiffness is recognized as a marker of muscle performance and joint stability
during functional movements. Indeed, the stiffness and tone of the forearm flexor muscles
have been positively correlated with handgrip strength (Cevik Saldiran, Kara ¢» Kutlutiirk
Yikilmaz, 2022). Stiffness depends on muscle structure, including length and
cross-sectional area, as well as the forces applied and the intrinsic material properties of the
muscle (Baumgart, 2000). Furthermore, stiffness may significantly impact force
production within muscles (Bizzini ¢» Mannion, 2003; Pozarowszczyk et al., 2018). While
some stiffness may be favorable for performance, either too much or too little stiffness can
lead to injury (Bret et al., 2002; Brughelli & Cronin, 2008; Maciejewska-Skrendo et al., 2020;
Miyamoto, Hirata ¢ Kanehisa, 2015).

Several studies have demonstrated that greater muscle strength and higher tendon
stiffness positively influence jumping performance (Arampatzis et al., 2001; Brughelli ¢
Cronin, 2008; Butler, Crowell ¢ Davis, 2003; Waugh, Korff ¢ Blazevich, 2017). Most
research on the biomechanical properties of muscles suggests that higher stiffness is
advantageous for activities involving a fast stretch-shortening cycle and high movement
velocity (Brughelli et al., 2008), such as jumping actions (Flanagan, 2007). Vertical jumping
tests are widely used to evaluate both simple and complex tasks, as well assess lower limb
muscular strength and power performance (Kitamura et al., 2017; Petrigna et al., 2019).
The two commonly used tests considered reliable and valid for monitoring jump
performance and lower limb strength are the squat jump (SJ) and the countermovement
jump (CMJ). As mentioned earlier, force generation depends on both internal and external
factors. Regarding internal factors, muscle mass and volume positively influence strength,
while intramuscular fatty infiltration may negatively impact muscle strength (Staron et al.,
2000). It has been observed that greater muscle mass is associated with increased stiffness,
and muscles with greater passive stiffness tend to have more muscle mass (Chleboun et al.,
1997). Fat accumulation within skeletal muscle is linked to muscle weakness and poor
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tunction (Goodpaster et al., 2006). Therefore, an increase in weight status or BMI is
associated with a greater likelihood of low muscle strength in healthy young adult women
(Sung et al., 2022). Excessive fatty infiltration results in an increase in fibrous components
(and a decrease in contractile elements), which, along with the reduction in the size and
number of muscle fibers, may lead to changes in the viscoelastic properties of the muscle
(Usgu, Ramazanoglu & Yakut, 2021).

In women, strength performance is lower compared to men due to higher body fat
content, which accounts for the observed differences between the sexes (Mansour et al.,
2021). Additionally, the viscoelastic properties of muscles are significantly lower than those
in men (Hoffman et al., 2021). Therefore, women are a suitable group for investigating the
following research question: What is the effect of fat content on the viscoelastic properties
of muscle and tendon? Researchers have attempted to correlate stiffness with BMI;
however, many studies have either used samples that do not include all BMI categories or
have included a wide age range (Kocur et al., 2017; Romer et al., 2023; Usgu, Ramazanoglu
¢ Yakut, 2021). It has been found that in older adults (50-80 years), stiffness does not
correlate with body mass or BMI (Tomlinson et al., 2021). Consequently, this will be the
first study to correlate the viscoelastic properties of muscle and tendon with BMI and body
fat content in a group of healthy young adult women.

Previous studies have indicated that the myotonometer is highly reliable for measuring
skeletal muscle viscoelastic parameters in healthy individuals and those with various
diseases (Cevik Saldiran, Kara & Kutlutiirk Yikilmaz, 2022; Chuang, Wu ¢ Lin, 2012;
Frohlich-Zwahlen et al., 2014; Marusiak et al., 2010). Additionally, muscle tone and
stiffness have been found to be positively correlated with lower limb muscle strength and
upper limb hand motor function (Frohlich-Zwahlen et al., 2014).

Therefore, the aims of this study were to determine the relationship between BMI and
the mechanical properties of muscle and tendon and compare these properties according
to weight status. It was hypothesized that (1) greater stiffness and tone of the palmaris
longus and flexor digitorum superficialis muscles would be correlated with lower weight
status or BMI, and (2) greater stiffness and tone of the Achilles tendon would be correlated
with higher weight status or BMI.

MATERIALS AND METHODS

Participants

A cross-sectional, quantitative correlational study was conducted among 136 female
university students, aged between 18 and 25 years (mean age 19.47 + 1.5), who were
recruited from the University of Vifia del Mar. Only women were recruited, as they
potentially have a different distribution of adipose tissue in the muscular system compared
to men (Gallagher et al., 1996). The participants’ mean weight was 68.89 + 14.8 kg, height
was 1.60 + 5.6 m, and BMI was 26.75 + 5.4 kg/mz, as summarized in Table 1. The healthy
young adults were fully informed about the study’s purpose, and written informed consent
was obtained from each participant. Ethical approval for this study was obtained from the
institutional ethics committee of the Universidad Vifia del Mar (Reference Number:
CEC-UVM 24-23). Participants underwent a range of anthropometric and physical
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Table 1 Demographics, body composition, and absolute and relative to body mass handgrip strength of female subjects.

Parameters young adult (18-25)

Normal (n = 16) Normal-obesity (n = 35) Overweight (n = 60) Obesity (n = 25) Mean + SD

Age (years) 18.6 £ 0.9° 194 + 1.5° 19.7 £ 1.7° 19.6 + 1.5° 1947 + 15
Body mass (kg) 524 t 6.4° 58.2 + 5.9° 69.9 + 5.9 90.1 + 14.7° 68.89 + 14.8
Height (m) 161.0 + 8° 158.9 + 5.6* 160.1 + 5.3* 160.8 + 5.8* 160.1 + 5.6
Body mass index (kg/m?) 19.9 + 2.0° 229 +13° 27.3 + 14° 35.1 + 5.6° 26.75 + 5.4
Body fat mass (kg) 12.8 + 2.6 19.6 + 2.8 27.1 + 3.8° 417 + 10.74 26.15 + 103
Percent body fat (%) 24.4 + 3.4° 33.8 £2.7° 38.6 + 3.4° 453 + 4.7¢ 36.91 + 6.8
Fat free mass (FFM) (kg) 39.5 + 5.0° 38.4 + 4.0° 428 +3.8° 49.4 + 5.9° 4249 +57
Skeletal muscle mass (SMM) (kg) 21.4 +3.1° 20.8 +2.4° 235 +23° 27.4 * 3.6° 23.27 £ 3.5
Handgrip strength (kg) 22.2 + 54%P 211 +5.9° 22.8 + 4.5%P 251 + 7.0° 23.09 5.2
Handgrip relative to body mass 1.1 £0.2* 0.9 +0.2° 0.8 + 0.2 0.7 £ 0.2° 0.88 + 0.2
CMJ Force (N) 1,079.0 +241.2* 1,176 + 241.7° 1,373 + 244.3° 1,767 + 438° 1,362 + 361.5
CM]J Force relative to body mass (N/kg) 28.1 + 8.3% 26.3 + 9.5% 25.3 + 8.3% 25.04 + 9.9% 25.80 + 8.8
CM]J Power (W) 2912 + 120.1*° 2413 + 86.03 257.5 + 79.9° 327.0 + 89.70°  268.1 + 94.5
CM]J Power relative to body mass (W/kg) 54+ 19° 4.1+ 1.46° 3.7 £1.2° 3.6 +0.9° 40+ 14

Note:

Countermovement jump (CM]). Significant differences were assessed by one-way ANOVA. The letters a, b, ¢, and d indicate statistically significant difference at p < 0.05
within each row comparison between groups. Parameters with no common letters are significantly different (p < 0.05).

performance assessments in a single testing session. First, students who voluntarily
participated attended the science school laboratory, where anthropometric parameters
were measured. Next, an operator experienced in using the MyotonPro equipment
assessed the mechanical properties of the forearm muscles and the Achilles tendon. Then,
after explaining the procedure, grip strength in both extremities was measured. Following
this, the jump test was conducted, and finally, impedance analysis measurements were
performed. Participants were instructed on the correct execution of the CMJ and given the
opportunity to practice jumps with feedback from an instructor before performing the
actual jumps.

Myotonometric assessment of muscle mechanical properties

After collecting anthropometric measures, muscle stiffness (the tissue’s resistance to force
that changes its shape) and oscillation frequency (as an indication of tone, or the resting
level of tension in the tissue) (Aird, Samuel & Stokes, 2012; Chuang, Wu ¢ Lin, 2012) in the
forearm flexor muscles (including the palmaris longus and flexor digitorum superficialis)
and the Achilles tendon were assessed using the MyotonPRO device (Myoton AS, Tallinn,
Estonia). Briefly, the MyotonPRO probe was placed perpendicular to the skin surface
overlying the muscle belly being measured. Once the device was held stable in position, it
applied an automatic preload of 0.18 N to register the natural damping oscillation of the
muscle through the overlying skin and subcutaneous tissue. Additionally, the device
exerted an automatic mechanical impulse with a duration of 15 ms to the contact area.
Following this, a light, quick-release mechanical force of 0.4 N was applied for 15 ms to
induce muscle deformation. Subsequently, the integrated accelerometer recorded the
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muscle response as dampened natural oscillation, from which stiffness and tone were
computed (Chuang, Wu & Lin, 2012). The examination began with the flexor digitorum
superficialis (FDS), followed by the palmaris longus muscle, and concluded with an
assessment of the Achilles tendon. Measurements were performed on the dominant hand
and foot.

Procedures

The location of the flexor digitorum superficialis (FDS) muscle was determined based on
anatomical landmarks. Participants were comfortably seated upright with their arms
resting on the table. The elbow was bent at approximately 120 degrees, the forearm was
supinated, the hand was positioned palm up, and the wrist and fingers were relaxed. To
locate the FDS muscle, we identified the point two-thirds of the distance from the elbow
along the line between the medial epicondyle of the humerus and the palmaris longus
tendon. Participants were instructed to oppose the thumb and little finger with the wrist in
slight flexion to help identify the palmaris longus tendon. Subsequently, we palpated
approximately 10 cm from the ulnar styloid process to locate the belly of the FDS muscle
while asking them to flex the middle and ring fingers (Tantipoon et al., 2023). The
measurement site was marked with a dermatological pen as a black circle (Fig. 1). For the
examination of the palmaris longus muscle, we targeted the point one-third of the distance
from the elbow along the line between the medial epicondyle of the humerus and the
palmaris longus tendon, marked by a blue circle (Fig. 1). Finally, this area was marked with
a non-permanent marker to designate it as the point for myoton measurements.

Handgrip strength

For the next step, individual maximum grip force was assessed using a hydraulic
dynamometer with an adjustable grip (Baseline® model). Measurements were first
performed on the right side, followed by the left side of the body. Participants were
instructed to stand upright with their arms at their sides and to squeeze with maximum
force for 3 to 5 s, guided by standardized verbal cues from the researcher. The value
obtained before resetting the dynamometer to 0 was recorded. This process was repeated
three times for each hand, with a 1-min rest between each trial. The highest score from the
three trials of the dominant hand was used in the analysis. The right hand was dominant in
98.5% of participants.

Anthropometric measures

For body measurements, standardized techniques were employed. Two measurements of
each parameter were taken, and the mean of these measurements was calculated. Weight
was determined using a SECA scale (model 700, precision 50 g), with the subject in light
clothing centered on the scale’s plate. Height was measured using a SECA stadiometer
while the subject stood with shoes removed, shoulders relaxed, and facing away from the
wall. BMI was calculated from weight (kg) and height (m) squared and expressed in kg/m®.
BMI categories followed international adult standards: underweight (BMI < 18.5),
normal weight (BMI = 18.5 to 24.9), overweight (BMI = 25.0 to 29.9), and obesity
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M. Palmaris longus

medial epicondyle

Figure 1 Experimental setup. (A) Setup for MyotonPRO measurement. (B) Measurement point on the
flexor digitorum superficialis muscle (black circle). (C) Palmaris longus muscle landmark determination
(blue circle). Full-size k&l DOI: 10.7717/peer;j.18430/fig-1

(BMI > 30 kg/m?). Normal-weight obesity refers to individuals with normal body weight
and BMI but a high body fat percentage (>30% body fat; BMI: 18.5-24.9 kg/m?), as defined
in a previous study (Kapoor et al., 2019). Body composition was assessed using the InBody
270 direct segmental multi-frequency bioelectrical impedance analysis device (InBody Co.
Ltd, South Korea). Measurements were conducted in temperature-controlled labs. Body fat
mass and lean mass were measured using a standardized protocol with an eight-electrode
multi-frequency segmental system, which underwent regular servicing and calibration.

Jump performance

A force platform (Art Oficio, PF-4000/50; Chile) was used to measure the
countermovement jump (CM]J). Participants underwent a warm-up prior to the test.
During the test, each participant assumed a standing position with feet parallel and
shoulder-width apart, knees extended, and arms at their sides. After a quick downward
movement, they flexed their knees and hips, followed by a rapid extension of the knees to
achieve a maximum vertical jump. Participants performed three CMJ repetitions with a
1-min rest between each, and the best performance was used for subsequent statistical
analyses.

Statistical analysis

The Shapiro-Wilk test was used to assess the normality of the distribution, while Bartlett’s
test was employed to analyze the homogeneity of variances. If a variable did not follow a
normal distribution or if variances were not homogeneous, a log transformation of the data
was performed, followed by a back transformation to present the results. Continuous data
were expressed as means and standard deviations. Differences in handgrip strength (HGS),
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stiffness, and tone of forearm muscles and Achilles tendons according to weight status
(normal, normal-obesity, overweight, obesity) were analyzed using a one-way analysis of
variance (ANOVA) followed by Tukey’s post-hoc tests. Potential differences in
countermovement jump (CMJ) parameters according to weight status were also analyzed
using ANOVA. The relationships between numerical variables were evaluated using
Spearman’s correlation. A Spearman’s correlation coefficient of 0.00-0.10 was interpreted
as indicating very weak or no correlation, 0.10-0.39 as weak correlation, 0.40-0.69 as
moderate correlation, 0.70-0.89 as high correlation, and 0.90-1.00 as very strong
correlation (Schober, Boer ¢ Schwarte, 2018). Multiple regression analysis was conducted
to examine the effects of BMI and body composition on the stiffness and tone of the
forearm muscles and Achilles tendons. In this analysis, BMI and body composition were
considered independent variables, while the mechanical properties of the muscle or tendon
were treated as dependent variables. A general linear model analysis was used, with the
alpha level set at p < 0.05, and all hypothesis tests were two-tailed. Statistical analysis was
performed using GraphPad version 8.01 for Windows.

RESULTS

Table 1 presents the descriptive statistics of the female university sample, categorized into
four groups based on weight status. Age and height exhibit a homogeneous distribution
across these categories. As expected, weight, body mass index, body fat mass, percent body
fat, fat-free mass, and skeletal muscle mass all show significant increases from the healthy
weight group to the obese group. Grip strength is significantly higher in obese participants
compared to those with normal-obesity weight. However, when expressed relative to body
mass, grip strength shows a significant decrease from the normal weight group to the obese
group. For CM] force and power, there is a significant increase from the normal weight
group to the obese group. However, when expressed as relative values, CM] force and
power show a significant decrease from the normal weight group to the obese group
(Table 1).

Handgrip strength, weight status, body mass index, and body
composition

Relative HGS, calculated and analyzed by weight status, showed lower values in higher
adiposity categories (Fig. 2A). Significant differences were observed between the normal
weight and normal-obesity groups (normal weight: 1.11 + 0.2 kg/kg/m? normal-obesity:
093 +0.2 kg/kg/mz, P <0.01) (F (132,2) =13.47, p < 0.0001), as well as between the normal
weight group and both the overweight and obesity groups (normal weight: 1.11 +

0.2 kg/kg/m?; overweight: 0.84 + 0.2 kg/kg/m?; obesity: 0.73 + 0.2 kg/kg/m?, p < 0.0001). A
significant moderate negative correlation was found between relative handgrip strength
and BMI, which is closely related to fat tissue (r = —0.44, p = 0.0001) (Fig. 2B). A moderate
negative correlation was also observed between BMI and body fat mass (r = -0.51,

p =0.0001) (Fig. 2C). Additionally, there was a weak negative correlation between relative
handgrip strength and fat-free mass (r = —0.29) (Fig. 2D).
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Figure 2 Association between handgrip strength, weight status, body mass index, and body
composition. (A) Relative grip strength exhibits a significant decrease from the healthy weight status
to obesity category. In addition, there was a significant differences between normal weight and
normal-obesity category (normal weight: 0.42 + 0.07; normal-obesity: 0.29 + 0.06, p < 0.0001). (B)
Relative Handgrip strength have a negative moderate correlation (r = —0.44) with body mass index.
(C) Relative handgrip strength have a negative moderate correlation (r = —0.51) with body fat mass. (D)
Relative Handgrip strength have a negative weak correlation (r = —0.29) with fat free mass. *p < 0.5,
**%p < 0.001, ****p < 0.0001. Full-size K&] DOT: 10.7717/peer;j.18430/fig-2

Mechanical properties, weight status and body mass index

A one-way ANOVA showed a significant decrease in the stiffness of the palmaris
longus muscle from the normal weight group to the obesity group (normal weight: 265.7 +
35.4 N/m; obesity: 233.3 + 33.3 N/m, p < 0.01) (F (1322 = 6.912, p < 0.0001) (Fig. 3A).
There was a significant weak negative correlation between the stiffness of the palmaris
longus muscle (r = -0.35, p = 0.0001) and BMI (Fig. 3B). Similarly, one-way ANOVA
showed a significant decrease in the tone of the palmaris longus muscle from the normal
weight group to the obesity group (normal weight: 15.3 + 1.3 Hz; obesity: 14.32 £ 1.1 Hz,
P <0.5) (F (132,2) = 4.63, p < 0.001) (Fig. 3C), and the tone of the palmaris longus showed a
negative weak correlation (r = —0.31) with BMI (Fig. 3D). A one-way ANOVA revealed a
significant decrease in the stiffness of the flexor digitorum superficialis from the normal
weight group to the obesity group (normal weight: 298.4 + 39.8 N/m; obesity: 273.0 +
35.0 N/m, p < 0.5) (F (1322) = 4.5, p <0.01) (Fig. 3E). There was a significant weak negative
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Figure 3 Mechanical properties of forearm flexor muscles in relation to weight status and body mass index. (A) Stiffness of palmaris longus
exhibit a significant decrease from normal weight to obesity category (normal weight: 265.7 + 35.4 N/m; obesity: 233.3 + 33.3 N/m). (B) Stiffness of
palmaris longus have a negative weak correlation (r = —0.35) with body mass index. (C) Tone of the palmaris longus muscle exhibit a significant
decrease from normal weight to obesity category (normal weight: 15.3 + 1.3 Hz; obesity: 14.32 + 1.1 Hz). (D) Tone of the palmaris longus muscle
have a negative weak correlation (r = —0.31) with body mass index. (E) Stiffness of flexor digitorum superficialis exhibit a significant decrease from
normal weight to obesity category. (F) Stiffness of flexor digitorum superficialis have a negative weak correlation (r = —0.18) with body mass index.
(G) Tone of the flexor digitorum superficialis did not show differences by weight status. (H) Tone of the flexor digitorum superficialis have a negative
weak correlation (r = —0.15) with body mass index. *p < 0.5, **p < 0.01. Full-size K&] DOT: 10.7717/peer;j.18430/fig-3

correlation between the stiffness of the flexor digitorum superficialis muscle (r = 0.18,

p < 0.001) and BMI (Fig. 3F). We did not find significant differences in the tone of the
flexor digitorum superficialis muscle by weight status (F (1322) = 1.9, p > 0.05) (Fig. 3G),
although a weak negative correlation was found between the tone of the flexor digitorum
superficialis muscle (r = 0.15, p < 0.01) and BMI (Fig. 3H).

Mechanical properties of Achilles tendon, weight status, and BMI
Figure 4 illustrates the relationship between the mechanical properties of the forearm
muscles and Achilles tendon, considering weight status and the influence of BMI. A
one-way ANOVA showed a significant increase in the stiffness of the Achilles tendon from
the normal-weight group to the obesity group (normal weight: 728.3 + 72.6 N/m; obesity:
832.7 + 124.1 N/m) (F (132,) = 4.89, p < 0.001) (Fig. 4A). Conversely, a one-way ANOVA
did not show significant differences in the tone of the Achilles tendon between the
normal-weight group and other weight statuses (F (13,,2) = 1.58, p > 0.05) (Fig. 4B). There
was a significant weak positive correlation between the stiffness of the Achilles tendon
(r = 0.34, p = 0.0001) and BMI (Fig. 4C), while a weak positive correlation was found
between the tone of the Achilles tendon (r = 0.18) and BMI (Fig. 4D).
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Figure 4 The relationship between stiffness of the Achilles tendon, weight status, and the influence
of BMI. (A) Stiffness of the Achilles tendon significantly increased from the normal weight to the obesity
category (normal weight: 728.3 + 72.6 N/m; obesity: 832.7 £ 124.1 N/m). (B) The tone of the Achilles
tendon did not change according to weight status. (C) Stiffness of the Achilles tendon shows a significant
positive correlation with BMI (r = 0.34). (D) The tone of Achilles tendon shows a very weak correlation
with BMI (r = 0.18). *p < 0.5, **p < 0.01. Full-size K&l DOT: 10.7717/peerj.18430/fig-4

Multiple correlations among BMI, body composition, and the
mechanical properties of the forearm muscle and Achilles tendon
Table 2 presents a multiple regression analysis examining the effect of BMI and body
composition on the stiffness and tone of the forearm muscles and Achilles tendon. The
relationship between stiffness, body composition, and BMI is weaker in the Achilles
tendon compared to the forearm muscles (multiple correlation coefficient (R): forearm
muscles, 0.34 + 0.02; Achilles tendon, 0.25 + 0.01). The regression model has a 34%
predictive accuracy for the stiffness of the forearm muscles based on body composition and
BMI, and nearly 25% predictive accuracy for the stiffness of the Achilles tendon. The tone
of the palmaris longus shows differences depending on fat or lean mass content (multiple
correlation coefficient (R): fat mass, 0.30 + 0.03; lean mass, 0.19 + 0.02). There was no
significant correlation between BMI, body composition, and the tone of the Achilles

tendon.
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Table 2 Multiple correlation analysis between BMI, body composition, and muscle or tendon mechanical properties.

Palmaris longus Flexor superficialis Achilles tendon

Parameters Body composition * BMI R R? P R R? P R R? P

Stiffness Body fat mass 0.369 0.13 0.0001 0.366 0.13 0.0001 0.244 0.05 0.0009
Percentage body fat 0.337 0.14 0.0001 0.341 0.11 0.0002 0.264 0.07 0.0006
Skeletal muscle mass 0.341 0.11 0.0002 0.321 0.10 0.0007 0.263 0.07 0.0001
Fat free mass 0.338 0.11 0.0003 0.309 0.09 0.001 0.267 0.07 0.0001

Tone Body fat mass 0.307 0.09 0.001 0.299 0.09 0.0019 0.09 0.008 0.57
Percentage body fat 0.357 0.12 0.0001 0.279 0.07 0.0045 0.19 0.04 0.078
Skeletal muscle mass 0.193 0.03 0.079 0.229 0.05 0.027 0.07 0.0005 0.708
Fat free mass 0.190 0.03 0.08 0.218 0.04 0.039 0.078 0.0062 0.65

Note:

R, Multiple correlation coefficient; R?, Coefficient of determination.

DISCUSSION

The aim of this investigation was to determine the relationship between BMI and the
mechanical properties of muscle and tendon, and to compare these properties across
different weight statuses. First, we observed that relative HGS significantly decreases as
weight status increases, showing a moderate negative correlation with BMI. Second, the
stiffness and tone of the forearm muscles decreased with increasing weight status and BMI.
Third, we found that the stiffness and tone of the Achilles tendon increased as weight
status and BMI rose. In this study, the decision to focus on women, who generally have a
higher body fat content than men, was deliberate, in order to analyze the effect of higher fat
content on the mechanical properties of forearm muscle and tendon, and to compare its
impact on strength performance.

Our study reveals that relative HGS decreased significantly from healthy weight to obese
participants. Additionally, relative HGS showed moderate negative correlations with BMI
across all participants; that is, as BMI increases, grip strength decreases. In a study
comparing handgrip strength and BMI in female basketball players, a low correlation was
found between BMI and handgrip strength. However, it should be noted that Pizzigalli
et al. (2017) studied only normal-BMI females who also engage in sports, which differs
from our sample. Our study sample consists exclusively of women, with 11.8% having
normal weight, 25.7% with normal-weight obesity, 44.1% overweight, and 18.4% obesity.
Furthermore, we found that relative HGS had a moderate negative correlation with body
fat mass and a low correlation with fat-free mass (FFM), indicating that excess fat has a
disadvantageous effect on handgrip strength, while the amount of FFM in our participants
had no significant impact on grip strength. In this context, Miller et al. (1993) indicated
that the differences in strength linked to sex are more pronounced in the upper body.
Therefore, the differences in grip strength can be attributed to the fact that women
generally have less lean body mass in the upper body (Miller et al., 1993). Interestingly, we
found that relative HGS was significantly lower in the normal-obesity group compared to
the normal-weight group. Excessive body fat, even in individuals with a healthy body
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weight, is described as normal-weight obesity syndrome (Oliveros et al., 2014). A high body
fat content, even within a normal body weight range, results in low fat-free mass, including
skeletal muscle. In such cases, higher adiposity may reflect lower functional muscle mass
(Lafortuna et al., 2004), and the risk of cardiometabolic dysregulation and systemic
inflammation has been reported. Indeed, evidence indicates that fat infiltration into
skeletal muscles is associated with lower muscle strength, reduced muscle power, and
impaired physical function (Hilton et al., 2008). These findings suggest that muscle
weakness could be caused by muscular fat infiltration.

We found significant differences in the percentage of body fat mass between the normal
weight group and all other categories. Healthy muscle contains about 1.5%
intramyocellular fat, which can increase to over 5% in individuals with obesity (Malenfant
et al., 2001). Therefore, the inclusion of intramuscular fat is an important factor that affects
muscle contractile performance, leading to a decrease in muscle force (Rahemi, Nigam ¢
Wakeling, 2015) and potentially causing changes in the viscoelastic properties of the
muscle (Usgu, Ramazanoglu ¢ Yakut, 2021).

Our study reveals a correlation between BMI and the stiffness and tone of the palmaris
longus. Additionally, we found a weak correlation between BMI and the stiffness and tone
of the flexor digitorum superficialis. Research on the relationship between BMI and muscle
stiffness is limited and controversial. For instance, recent studies reported no association
between BMI and muscle stiffness at rest or during contraction (Hoffman et al., 2021).
However, it should be noted that Hoffman et al. (2021) study involved participants with a
mean BMI of 23.51, corresponding only to individuals with a healthy weight status, and
included an older age range (18 to 50 years) compared to our sample. In another study, the
relationship between BMI and muscle stiffness in neck muscles showed a correlation in
only one muscle group among multiple neck muscles measured. However, Kuo et al.
(2013) studied only individuals classified as normal weight or underweight. Usgu,
Ramazanoglu & Yakut (2021) found weak positive correlations between BMI and the tone
and stiffness of the bilateral biceps femoris, as well as the stiffness and elasticity of the right
biceps brachii, across all participants. Notably, their sample included individuals ranging
from normal weight to overweight categories. Kocur et al. (2017) explored the relationship
between BMI and the stiffness and elasticity of the sternocleidomastoid muscle in females,
reporting a strong correlation with elasticity and a moderate correlation with stiffness.
Although this study included participants across all BMI categories (18.5 to 33.8) and only
healthy women, the age range was very broad, spanning from 21 to 88 years. It is
well-documented that body composition changes with age, even in the absence of changes
in body weight. Aging leads to a loss of muscle mass, an increase in body fat, and fat
infiltration into muscles (Kim ¢ Won, 2022; St-Onge ¢ Gallagher, 2010). In our study, we
controlled for the age factor by using a limited age range (18-25 years) to compare
biomechanical properties according to weight status and BMI. The mechanism affecting
the stiffness and tone of superficial forearm muscles in relation to BMI is not entirely clear.
Myotonometric measurements of muscle biomechanical properties depend on many
variables related to the structure and function of connective tissue (Kocur et al., 2017). The

Pérez et al. (2024), PeerdJ, DOI 10.7717/peerj.18430 12/18


http://dx.doi.org/10.7717/peerj.18430
https://peerj.com/

Peer/

structure and morphology of myofascial tissue constantly and dynamically change in
response to external loads (Mayers, 2009). It is known that extracellular matrix
morphology, including the content and cross-linking of collagen (Gosselin et al., 1998), can
influence stiffness. Therefore, we hypothesize that the most probable reason for increased
stiffness is the infiltration of muscle connective tissue. Various studies have shown that the
amount of non-contractile connective or adipose tissue in skin and myofascial tissues
increases with fat content (Liu et al., 2016; Sun et al., 2013), which contributes to higher
passive muscle stiffness and affects the quality of muscle contraction. Fat has stiffer
material properties than muscle (Rahemi, Nigam ¢ Wakeling, 2015); thus, the
introduction of fat into muscle results in increased stiffness. Our results showed that the
stiffness and tone of the palmaris longus and flexor digitorum superficialis muscles
decreased with an increase in weight status, which partially contradicts (Kelley, Goodpaster
¢ Storlien, 2002), who suggested that obese individuals have lower muscle quality,
attributing the loss in contractile performance to increased muscle belly tissue stiffness as
intramuscular fat concentration rises.

Apart from muscle properties, the properties and behavior of tendons are crucial for
human movement and locomotion. Optimal tendon stiffness is essential for enhancing
sports performance and preventing injuries (Morgan et al., 2018). In our study, Achilles
tendon stiffness increased from normal weight status to obesity categories and was
correlated with BMI. Tomlinson et al. (2021) explored the effects of obesity on skeletal
muscle function and tendon properties, reporting that in young participants (18-49 years
old) ranging from normal weight to obese, Achilles tendon stiffness positively correlated
with both body mass and BMI. In another recent study, the relationship between Achilles
tendon stiffness and BMI was investigated in individuals with a mean age of 20.19 years.
No association was found between BMI and Achilles tendon stiffness (Romer et al., 2023).
However, it should be noted that (Romer et al., 2023) studied only professional athletes,
and the mean BMI was 22.85, which differs from our results.

We consider that the differences in Achilles tendon stiffness observed in this study may
be attributed to fat mass content. We hypothesize that in young women, Achilles tendon
stiffness adapts to the loading stimulus rather than responding directly to the nature of the
load (e.g., adiposity level). Our results are consistent with other studies reporting a higher
correlation between Achilles tendon stiffness and increased BMI in young adults, though
this was not observed in older individuals (Tomlinson et al., 2021). Moreover, it has been
demonstrated that a higher BMI is associated with both a greater cross-sectional area of the
Achilles tendon and increased stiffness in young individuals, with body mass strongly
associated with both the cross-sectional area and stiffness of the Achilles tendon. This
suggests that higher mechanical stress from excess body weight may lead to protective
changes in tendon characteristics in obese individuals.

The present study has strengths and limitations. First, we chose to examine only a group
of women. However, muscle strength and the content and distribution of adipose tissue
differ between men and women (Lafortuna et al., 2004; Ramirez-Vélez et al., 2018), which
may affect the interpretation of our results. Second, the examination was limited to the
upper extremities for muscle assessments and only the Achilles tendon in the lower
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extremities. Despite the large sample size, another limitation is the low number of
participants in the normal-weight group (11.8%), while 88% had a body fat percentage
over 30%. Although we found a relationship between the stiffness of forearm muscles and
the Achilles tendon, the correlation ranged from weak to moderate. Additionally, the
myometric method has limitations in investigating deep-seated but inaccessible muscles.
Therefore, further research with different experimental groups is needed to corroborate
our findings and gather additional data.

CONCLUSIONS

The results of the present study support the notion that the stiffness of the forearm muscles
and Achilles tendon is correlated with BMI in young adult women. Furthermore, higher
grip strength is associated with increased muscle stiffness, while a higher body fat
percentage is linked to decreased mechanical properties and poorer muscle function.
Additionally, an increase in Achilles tendon stiffness is associated with a higher BMI.
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