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ABSTRACT
Background. While significant attention has been paid to the potential risk of
pathogenic microbes aboard crewed spacecraft, the non-pathogenic microbes in these
habitats have received less consideration. Preliminary work has demonstrated that the
interior of the International Space Station (ISS) has a microbial community resembling
those of built environments on Earth. Here we report the results of sending 48 bacterial
strains, collected from built environments on Earth, for a growth experiment on the
ISS. This project was a component of Project MERCCURI (Microbial Ecology Research
Combining Citizen and University Researchers on ISS).
Results. Of the 48 strains sent to the ISS, 45 of them showed similar growth in space
and on Earth using a relative growth measurement adapted for microgravity. The
vast majority of species tested in this experiment have also been found in culture-
independent surveys of the ISS. Only one bacterial strain showed significantly different
growth in space. Bacillus safensis JPL-MERTA-8-2 grew 60% better in space than on
Earth.
Conclusions.Themajority of bacteria tested were not affected by conditions aboard the
ISS in this experiment (e.g., microgravity, cosmic radiation). Further work on Bacillus
safensis could lead to interesting insights on why this strain grew so much better in
space.

Subjects Microbiology, Science and Medical Education
Keywords Bacterial growth, International space station, Built environment, Microgravity, Space,
Non-pathogenic

INTRODUCTION
From 2012 to 2014, we conducted a nationwide citizen science project, ProjectMERCCURI
http://spacemicrobes.org/, aimed at raising public awareness of microbiology and research
on board the International Space Station (ISS). Project MERCCURI (Microbial Ecology
Research Combining Citizen and University Researchers on the ISS) was a collaborative
effort involving the ‘‘microbiology of the Built Environment network’’ (microBEnet)
group, Science Cheerleader, NanoRacks, Space Florida, and SciStarter. One of the goals of
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Project MERCCURI was to examine how a number of non-pathogenic bacteria associated
with the built environment would grow on board the ISS compared to on Earth.

Most previous work growing bacteria in space has focused on species known to
contain pathogenic strains (e.g., Escherichia coli (Klaus et al., 1997; Brown, Klaus & Todd,
2002) and Pseudomonas aeruginosa (Crabbé et al., 2011; Kim et al., 2013a), and much
less attention has been paid to the non-pathogenic microbes that surround us. An
understandable bias towards pathogens and pathogenic pathways is highlighted by work
on topics such as biofilm formation (Kim et al., 2013b; McLean et al., 2001), antibiotic
resistance/production (Benoit et al., 2006; Juergensmeyer, Juergensmeyer & Guikema, 1999;
Lam et al., 2002 reviewed in Klaus & Howard, 2006), and virulence (Nickerson et al., 2000;
Hammond et al., 2013).

Although concern about pathogens in spacecraft is certainly warranted, it should be
emphasized that the ability of a pathogen to survive outside a host and the ability to infect
a host are both, at least in part, dependent on the existing community of non-pathogenic
microbes in those locations. For example, the infectivity of some pathogens has been
shown to be very dependent on the host microbiome (e.g., Schuijt et al., 2015; Ichinohe
et al., 2011; Van Rensburg et al., 2015; Reeves et al., 2011). Therefore, it is important to
understand the entire microbial ecosystem of spacecraft. Indeed, in recent years, several
culture-independent studies have examined the microbiome of the ISS (Castro et al.,
2004; Venkateswaran et al., 2014; Moissl et al., 2007), including another part of Project
MERCCURI (J Lang et al., 2015, unpublished data). These studies have shown, not
surprisingly, that the microbiome of the ISS bears a strong resemblance to the microbiome
of human-associated built environments on Earth. Therefore, it is of interest to see how
microbes from human-associated environments behave in space.

For this study, samples fromhuman-associated surfaces (e.g., toilets, doorknobs, railings,
floors, etc.) were collected at a variety of locations around the United States, usually in
collaboration with the public. A wide variety of bacteria were cultured from these samples,
and 48 non-pathogenic strains were selected for a growth assay comparing growth in
microgravity on the ISS and on Earth.

MATERIALS AND METHODS
Sample collection
Samples were collected from built environment surfaces throughout the United States
on cotton swabs (Puritan 25-806 2PC) and mailed (usually overnight) to the University
of California Davis where they were transferred to lysogeny broth (LB) plates. Colonies
were chosen for further examination based on maximizing morphological variation.
Each chosen colony was double-dilution streaked (two rounds of streak plates) and
then the identity determined by direct PCR and Sanger sequencing using the 27F (5′-
AGAGTTTGATCMTGGCTCAG-3′) and 1391R (5′-GACGGGCGGTGTGTRCA-3′)
primers (see Dunitz et al., 2015 for details). Sanger sequences were trimmed and aligned
using Geneious (Kearse et al., 2012). The resulting consensus sequence was identified
through a combination of BLAST (Altschul et al., 1990) and building phylogenetic trees
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using the Ribosomal Database Project (RDP) website (Cole et al., 2014). The 48 candidates
for spaceflight were chosen on the basis of biosafety level (BSL-1 only), taxonomic variety,
and human interest. In the absence of international standards, the biosafety level of each
organism was determined by searching the American Biological Safety Association (ABSA)
risk group database, the American Tissue Culture Collection (ATCC), the Deutsche
Sammlung von Mikroorganismen und Zellkulturen (DSMZ), and other public databases.
An organism was removed from consideration if it was listed as BSL-2 or higher in any
country or collection in the world. Human interest was an arbitrary set of criteria such as
unusual physiology, catchy name, or a memorable original isolation source.

Growth experiment
A set of bacterial plates were created for each aspect of the study: growth in microgravity
on the ISS (space plates), or growth on Earth (ground plates). The plates were created
using clear agar to facilitate optical density (OD) measurements. 1.5 g of Gelzan CM
agar (Sigma-Aldrich, St. Louis, MO, USA) was added to 1 liter of lysogeny broth (LB).
Each well of a flat-bottomed 96-well plate (Costar, Corning, NY, USA) was plated with
200 µl of agar. The plates were flamed to remove bubbles and incubated for 48–72 h at
room temperature (∼20 ◦C) to ensure sterility before adding bacteria. Fresh overnights
of each bacterial isolate were diluted to .01 OD600 and made into 8% glycerol stocks.
For plating, 10 µl of each thawed stock dilution was added to two wells per 96 well
plate. Six replicate plates were made. The bacteria were placed into different locations
on each plate in order to account for drying at the edges or any other positional effects
on the plates. The plates were then sealed with adhesive polypropylene film (VWR #
60941-072), into which a grid of micron-diameter holes were cut with a laser to allow for
airflow. The ground plates were stored at −80 ◦C at UC Davis, and the space plates were
mailed on dry ice to the National Aeronautics and Space Administration (NASA) Johnson
Space Center in Houston, TX before transfer (at−80 ◦C) to Cape Canaveral, FL for launch.

This payload was flown on the CRS-3 launch of the Space Exploration Technologies
(SpaceX) Dragon spacecraft, on a Falcon 9 v1.1 rocket which successfully launched April
18, 2014. After six days, the space plates were removed from the MELFI (Minus Eighty
Lab Freezer For ISS) and partially thawed. However, technical problems arose and the
space plates were placed back into the MELFI until December 8, 2014. At that time, all
three plates were thawed and the OD600 of each well (3×3 grid) was measured at time 0
(60 min after removal from the freezer) and then every 24 h for four days. Measurements
were performed in a Molecular Devices SpectraMax M5e plate reader which was modified
for integration onto the ISS. On these same days, equivalent measurements of the ground
plates were taken in a Molecular Devices SpectraMax M5e plate reader at UC Davis. The
exception to this was the initial partial thawing, which was not replicated with the ground
plates since the amount of thaw was not reported by the astronauts. After the experiment,
the ground plates were placed back at −80 ◦C and the space plates were placed back into
the MELFI. In February 2015, the space plates were transferred to a −95 ◦C freezer on
board a Dragon spacecraft. The vehicle splashed down in the Pacific Ocean on Feb 10,
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2015. The space plates were then mailed to UC Davis on dry ice and were transferred to
−80 ◦C when received.

Once the plates arrived, we thawed all six plates and performed a high-density
measurement in a Tecan M200 plate reader. OD600 readings were taken in a 5×5 grid
covering the entire well, these 25 measurements were then averaged within each well.

Analysis
For each sample, the averages of the six space replicates and six ground replicates were
compared using a Student’s t -test. To correct for multiple hypothesis testing, the p-values
were adjusted using the False Discovery Rate (FDR)method (Benjamini & Hochberg, 1995).
All raw data, analyses and scripts can be found at https://zenodo.org/record/44661.

Confirmation
In order to confirm that the observed results were not due to contamination of the wells,
each of the 12 replicates (six space, six ground) for the three bacteria showing statistically
different growth between the ISS and Earth were cultured after the experiment. Bacteria
were struck from the wells onto LB-agar plates, then single colonies were grown into
overnight cultures. DNA was extracted using a Wizard Genomic DNA Purification kit
(Promega, Madison, WI, USA) from each of the 36 cultures (3 bacteria ×12 replicates)
and the identity was confirmed by BLAST of the Sanger sequenced PCR product using the
27F and 1391R primers as described above.

Comparison to ISS swab data
The bacterial community on the ISS was recently surveyed by PCR amplification and
sequencing of 16S rRNA genes from swabs (Lang et al., unpublished data). We compared
the 16S sequence of each of our bacterial isolates to the ‘‘representative sequence’’ from
each operational taxonomic unit (OTU) generated from the survey data. A BLASTN search
was performed locally and a match was considered to be present in the data when there was
97% identity over at least 250 bp of the rRNA sequence (the amplified fragment is 253 bp).

RESULTS AND DISCUSSION
Growth experiments are typically undertaken in liquid media, in part because measuring
the optical density of a liquid culture is straightforward. However, liquid cultures present
a number of problems in microgravity. Most organisms that passed our screening did not
grow well under anaerobic conditions, and thus required some sort of gas exchange with
the surrounding air. On the ground, aerobic conditions are easily created by incubating
in open or loosely capped vessels. This is impractical and unsafe in microgravity; there
is no ‘‘safe’’ orientation in which the liquid will remain in place. We explored several
unsuccessful approaches to this problem. For example, we found that gas-permeable plate
seals leak when inverted, and their adhesion failed completely after freezing. We also
fabricated custom plates with seals made from hydrophobic polydimethylsiloxane (PDMS)
with micron-diameter vent holes, but these also leaked when inverted.

We eventually concluded that the design requirements were mutually exclusive; either
we could achieve containment for liquid cultures at the expense of aerobic conditions, or
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we could achieve aerobic conditions at the expense of liquid culture containment.We chose
the latter, so our plates were prepared with solid media. Solid media is not traditionally
used for OD measurements, and so our results need to be interpreted differently from OD
in liquid culture. Using clear agar to maximize transparency, we programmed the plate
reader to take OD measurements at nine different locations in each well, each of which
was measured twenty five times per observation. The plates were inoculated in a manner
intended to create many small colonies (see ‘Materials and Methods’). As these colonies
grow, their edges intersect with reading points, and the OD for that point increases in a
stepwise fashion. As the colony thickens, the OD gradually increases. OD in liquid media is
thought to correspond to scattering of light by individual cells, whereas our measurements
correspond to the number, diameter, and thickness of the colonies. The intervals elapsed
between occultations of the reading points decrease exponentially, and so the average OD
across each well behaves very similarly to traditional observations of log-phase growth in
liquid media. However, in the absence of correlation with the gold standard of dilution
plate counts, this should be considered as a relative measure of growth. This was validated
by repeated growth experiments on Earth, showing normal growth kinetics of colonies
grown with this method, a sample dataset is shown in Fig. S1. To our knowledge this is
the first use of solid media to measure bacterial growth kinetics in this manner. The data
from the different plate readers (Tecan and Molecular Dynamics) was compared at 96 h
by plotting the OD600 values against each other. While the concordance was not perfect,
there was a strong relationship between the two machines which provided validation of the
data from both Molecular Dynamics machines (ground and space).

By this measure, the vast majority of the bacteria (45/48) behaved very similarly in space
and on Earth (Table 1). Only three bacteria showed a significant difference in the two
conditions; Bacillus safensis, Bacillus methylotrophicus, and Microbacterium oleivorans. As
part of double checking these results, we performed Sanger sequencing of rRNA genes
from the wells corresponding to each of these species of the space plates and ground
plates. A few wells produced mixed Sanger sequence, suggesting the presence of more than
one organism in the well. In addition, a couple of wells gave a clear identification of a
contaminating organism. We therefore inferred that there had been some contamination
of the B. methylotrophicus and M. oleivorans wells. Since the remaining 45 organisms were
not tested for contamination, it is possible that some of those represent false negatives. The
B. safensis wells were all clear of any signs of contamination.

ThisBacillus safensis strainwas collected at the Jet Propulsion Laboratory (JPL-NASA) on
a Mars Exploration Rover before launch in 2004. As part of standard Planetary Protection
protocols, all surface-bound spacecraft are sampled during the assembly process and those
strains are then saved for further analysis. We obtained this strain as part of a collection of
JPL-NASA strains to send to the ISS (Table 1). In this experiment, Bacillus safensis grew to a
final density of∼60% higher in space than on the ground, with very little variation between
replicates (Fig. 1). The genome sequence of this strain, Bacillus safensis JPL-MERTA-8-2
has just been published (Coil, Benardini & Eisen, 2015) and may contain clues as to why
this strain behaved so differently in space.
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Table 1 Final growth (OD600) of all 48 strains as measured on Earth at the end of the experiment with a high-density measurement in a Tecan
platereader.Values represent the mean of 6 wells,± the standard deviation. Difference between space and Earth were determined using a Student’s
t -test and the p-values were adjusted for multiple hypothesis testing by using the False Discovery Rate (FDR).

Organism Location Source Mean OD
(space)

Mean OD
(ground)

FDR
p-value

Bacillus safensis JPL-NASA (CA) Mars Exploration Rover 1.44± 0.09 0.86± 0.07 0
Bacillus methylotrophicus Yuri’s Night New York (NY) Doorknob 1.54± 0.05 1.69± 0.09 0
Microbacterium oleivorans St. Joseph’s Prep (PA) School mascot 1.61± 0.3 1.93± 0.14 0.04
Bacillus atrophaeus JPL-NASA (CA) Mars Exploration Rover 1.69± 0.05 1.57± 0.14 0.07
Porphyrobacter mercurialis Pop Warner: Coronado (CA) Stadium seat 0.85± 0.13 1.03± 0.2 0.07
Bacillus flexus NFL: Tennesse Titans (TN) Stadium field 1.47± 0.24 1.72± 0.1 0.07
Bacillus atrophaeus Denver Museum of Nature and Science (CO) Antique microscope 1.62± 0.06 1.3± 0.25 0.14
Bacillus altitudinis Deerfield Academy (MA) School field 1.23± 0.09 1.22± 0.15 0.14
Macrococcus brunensis WHYY Radio (PA) Keyboard 1.06± 0.15 1.29± 0.11 0.14
Bacillus tequilensis Today Show (NY) Candy jar 1± 0.21 1.09± 0.1 0.14
Bacillus amyloliquefaciens NFL: New England Patriots (MA) Stadium seat 1.41± 0.13 1.53± 0.12 0.14
Bacillus subtilis JPL-NASA (CA) Robotic arm (Insight) 1.32± 0.16 1.08± 0.25 0.16
Micrococcus luteus NBA: Sacramento Kings (CA) Sweat mop 1.01± 0.08 0.87± 0.16 0.21
Leucobacter chironomi Davis (CA) Toilet 1.03± 0.27 1.03± 0.12 0.21
Kocuria kristinae NBA: San Antonio Spurs (TX) Court floor 1.93± 0.06 1.85± 0.16 0.21
Kocuria rhizophila Yuri’s Night Los Angeles (CA) Camera 2.01± 0.14 1.97± 0.19 0.21
Bacillus stratosphericus Academy of Natural Science (PA) Water dish 1.34± 0.14 1.1± 0.13 0.21
Bacillus tequilensis MBA: Philadelphia Phillies (PA) Dugout 1.41± 0.18 1.03± 0.15 0.21
Micrococcus luteus Pop Warner: Lake Brantley (FL) Football goalpost 1.71± 0.03 1.69± 0.06 0.21
Paenibacillus mucilaginosus Field Museum (IL) ‘‘Sue’’ the T. rex 1.57± 0.13 1.54± 0.14 0.21
Exiguobacterium sibiricum AT&T Park (CA) Second base 1.3± 0.23 1.38± 0.14 0.21
Exiguobacterium indicum NFL: Team fromWashington D.C. Stadium field 1.26± 0.16 1.17± 0.23 0.21
Curtobacterium pusillum UC Davis (CA) Stadium gate 1.28± 0.3 1.49± 0.14 0.21
Kocuria marina Yuri’s Night North Carolina (NC) Water Fountain 1.77± 0.1 1.73± 0.08 0.26
Bacillus megaterium The Liberty Bell (PA) The Liberty Bell 1.38± 0.24 1.46± 0.15 0.34
Bacillus lichenformis NBA: Philadelphia 76ers (PA) Practice court 1.18± 0.13 1.07± 0.14 0.34
Bacillus megaterium JPL-NASA (CA) Mars Curiosity Rover 1.6± 0.14 1.55± 0.16 0.38
Bacillus subtilus NBA: Orlando Magic (FL) Game ball 1.35± 0.08 1.17± 0.19 0.38
Arthrobacter nitroguajacolicus Chapman Hill Elementary (OR) Stadium field 1.67± 0.12 1.76± 0.25 0.44
Bacillus aryabhattai NFL: Oakland Raiders (CA) Practice field 1.62± 0.3 1.64± 0.13 0.44
Microbacteria arborescens JPL-NASA (CA) Viking Mars Orbiter 1.69± 0.26 1.59± 0.47 0.49
Bacillus pumilus JPL-NASA (CA) Mars Exploration Rover 0.97± 0.25 1.26± 0.25 0.49
Paenibacillus elgii JPL-NASA (CA) Mars Exploration Rover 1.39± 0.3 0.84± 0.14 0.49
Kocuria rosea JPL-NASA (CA) Mars Exploration Rover 1.61± 0.26 1.53± 0.18 0.49
Bacillus aryabhattai Pop Warner: Broncos (FL) Stadium field 1.65± 0.28 1.54± 0.05 0.49
Micrococcus yunnanensis Discover Magazine (WI) Dictionary 1.68± 0.41 1.75± 0.23 0.49
Bacillus amyloliquefaciens Franklin Institute (PA) Statue 1.4± 0.09 1.38± 0.14 0.6
Bacillus megaterium Chemical Heritage Foundation (PA) Antique pressure vessel 1.57± 0.43 1.56± 0.14 0.61
Exiguobacterium acetylicum NFL: San Franciso 49ers (CA) Stadium field 1.57± 0.18 1.53± 0.21 0.61

(continued on next page)
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Table 1 (continued)

Organism Location Source Mean OD
(space)

Mean OD
(ground)

FDR
p-value

Bacillus horikoshii Parkway Middle School (FL) Banister 1.53± 0.34 1.67± 0.09 0.61
Macrococcus equipercicus Catholic Montessori School (OH) Floor 0.99± 0.19 0.94± 0.2 0.64
Streptomyces kanamyceticus KARE11 Morning News (MN) Set kitchen 1.11± 0.2 0.92± 0.16 0.66
Pantoea eucrina Smithsonian Air and Space Museum (D.C.) Mercury Orbiter 1.57± 0.31 1.57± 0.09 0.76
Bacillus horikoshii Pop Warner: Saints (NJ) Stadium field 1.64± 0.2 1.58± 0.07 0.79
Curtobacterium herbarum Georgia Tech (GA) Stadium seat 1.42± 0.19 1.5± 0.13 0.79
Bacillus pumilus Pop Warner: Chittanoga (NY) Porta-Potty handle 1.17± 0.31 1.35± 0.12 0.82
Micrococcus luteus Pop Warner: Apopka (FL) Practice mat 0.99± 0.27 0.86± 0.34 0.82
Bacillus marisflavi Pop Warner: PeeWee Bengals (NC) Stadium field 1.66± 0.19 1.61± 0.26 0.82

Figure 1 Growth (OD600) over time of Bacillus safensis JPL-MERTA-8-2 in space (green) and on Earth
(brown). Values represent the mean of six wells,± the standard deviation.

It is perhaps no surprise that most built environment-associated bacteria behave very
similarly on the ISS as on Earth. After all, the ISS is a home and office of sorts, with
environmental conditions very similar to a building on Earth with the exception of gravity.
The ISS is maintained at around 22 ◦C with a relative humidity of around 60% and
pressure and oxygen concentrations very close to those at sea level on Earth. Additionally,
this experiment did not provide enough time to study the long-term adaptation of bacteria
to the environment on board the ISS.

A related project from our lab has examined the microbial community already present
on the ISS (Lang et al., unpublished data). Given that the ISS appears to harbor similar
microbes to built environments on Earth, we also asked if there were close relatives to our
48 bacteria already present on the ISS. The vast majority (39/48) of our bacterial species
were found in the existing microbial community data which is not surprising given the
built environment origins of the isolates. This suggests that our data showing these species
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growing with similar kinetics on space and on Earth is potentially relevant to the biology
of the microbial communities already present on the ISS.
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