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Ecological niche modeling (ENM) is a valuable tool for inferring suitable environmental
conditions and estimating species’ geographic distributions. ENM is widely used to assess
the potential effects of climate change on species distributions; however, the choice of
modeling algorithm introduces substantial uncertainty, especially since future projections
cannot be properly validated. In this study, we evaluated the performance of seven
popular modeling algorithms—Bioclim, Generalized Additive Models (GAM), Generalized
Linear Models (GLM), Boosted Regression Trees (BRT), Maxent, Random Forest (RF), and
Support Vector Machine (SVM)—in transferring ENM across time, using Mexican endemic
rodents as a model system. We used a retrospective approach, transferring models from
the near past (1950-1979) to more recent conditions (1980-2009) and vice versa, to
evaluate their performance in both forecasting and hindcasting. Consistent with previous
studies, our results highlight that input data quality and algorithm choice significantly
impact model accuracy, but most importantly, we found that algorithm performance varied
between forecasting and hindcasting. While no single algorithm outperformed the others in
both temporal directions, RF generally showed better performance for forecasting, while
Maxent performed better in hindcasting, though it was more sensitive to small sample
sizes. Bioclim consistently showed the lowest performance. These findings underscore that
not all species or algorithms are suited for temporal projections. Therefore, we recommend
testing multiple algorithms using a retrospective approach before applying models to
future scenarios.
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Abstract
Ecological niche modeling (ENM) is a valuable tool for inferring suitable environmental 

conditions and estimating species’ geographic distributions. ENM is widely used to assess the 

potential effects of climate change on species distributions; however, the choice of modeling 

algorithm introduces substantial uncertainty, especially since future projections cannot be 

properly validated. In this study, we evaluated the performance of seven popular modeling 

algorithms—Bioclim, Generalized Additive Models (GAM), Generalized Linear Models (GLM), 

Boosted Regression Trees (BRT), Maxent, Random Forest (RF), and Support Vector Machine 

(SVM)—in transferring ENM across time, using Mexican endemic rodents as a model system. 

We used a retrospective approach, transferring models from the near past (1950-1979) to more 

recent conditions (1980-2009) and vice versa, to evaluate their performance in both forecasting 

and hindcasting. Consistent with previous studies, our results highlight that input data quality 

and algorithm choice significantly impact model accuracy, but most importantly, we found that 

algorithm performance varied between forecasting and hindcasting. While no single algorithm 

outperformed the others in both temporal directions, RF generally showed better performance 

for forecasting, while Maxent performed better in hindcasting, though it was more sensitive to 

small sample sizes. Bioclim consistently showed the lowest performance. These findings 

underscore that not all species or algorithms are suited for temporal projections. Therefore, we 

recommend testing multiple algorithms using a retrospective approach before applying models 

to future scenarios.

Introduction
Climate change is significantly impacting biodiversity, causing shifts in species 

abundance and distribution that lead to extensive reshuffling of biotas (Parmesan & Yohe, 2003; 

Pacifici et al., 2015; Peterson et al., 2015; MacLean et al., 2018; Widick & Bean, 2019; 

Habibullah et al., 2022; Jaroszynska et al., 2023). In response to these dynamic changes, 

ecological niche modeling (ENM) has emerged as a valuable tool for analyzing and predicting 
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species' geographic distributions under various climatic scenarios, both past and future. 

Grounded in ecological niche theory, ENM integrates methodologies from multiple disciplines, 

including informatics, geographic information systems (GIS), and statistics (Austin, 2007; 

Soberón & Nakamura, 2009; Wiens et al., 2009; Sillero et al., 2021). This correlative approach 

utilizes georeferenced species occurrence data and environmental predictor variables to model 

the ecological niche of species, and projecting this information onto geographic space to 

generate a map that is commonly referred to as the species' potential distribution (Barbet-

Massin & Jetz, 2014; Elith et al., 2006; Peterson, 2011; Soley-Guardia, Alvaro-Serrano & 

Anderson, 2024).

Several methods for constructing niche models have evolved to address different types 

of occurrence data: presence-only (e.g., Bioclim, environmental distances), presence-absence 

(e.g., Generalized Linear Models [GLM], Generalized Additive Models [GAM]), presence-

pseudoabsence (e.g., Genetic Algorithm for Rule-set Prediction [GARP]), and presence-

background (e.g., Ecological Niche Factor Analysis [ENFA], Maxent) (Phillips, 2008; Barbet-

Massin et al., 2012; Barbet-Massin & Jetz, 2014; Warton & Aarts, 2013; Fan et al., 2018; Qiao et

al., 2019; Sillero et al., 2023). Presence-absence methods are considered more robust when 

unequivocal absence data are available, as they help identify unsuitable areas that might be 

misclassified by presence-only methods (Brotons et al., 2004; Golicher et al., 2012). However, 

reliable absence data are rare, leading to the predominance of presence-only, presence-

pseudoabsence, and presence-background algorithms (Vaz, Cunha & Nabout, 2015; Soley-

Guardia, Alvaro-Serrano & Anderson, 2024; Sillero et al., 2021).

ENM is extensively used to evaluate the potential impacts of climatic changes by 

projecting modeled niches under current conditions onto past or future scenarios, a concept 

known as model transferability (Pearson & Dawson, 2003; Peterson, Martínez-Meyer & 

González-Salazar, 2004; Thomas et al., 2004; Waltari & Guralnick, 2009; Heikkinen, Marmion & 

Luoto, 2012; Garcia et al., 2016; Zhu, Fan & Peterson, 2021; Sillero et al., 2021). The success of

this transferability trlies on three critical assumptions: (1) the ecological niche remains stable 

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

PeerJ reviewing PDF | (2024:04:99858:1:1:NEW 17 Aug 2024)

Manuscript to be reviewed



during the period of transfer (Soberón & Nakamura, 2009); (2) the relationship between 

environmental variables and species remains constant during climatic changes (Hijmans & 

Graham, 2006; Wiens et al., 2009); and (3) the species is in equilibrium with the environment in 

the calibration scenario, meaning they occupy the available suitable areas accessible to them 

(Sequeira et al., 2018; Yates et al., 2018). These premises are critical as they assume that the 

current relationship between the species and the environment is optimal, and transferability will 

be defined by how closely the model conforms to this relationship.

A major challenge in model transferability is the presence of non-analog climates—

environmental conditions in the projected climatic scenario that are absent in the calibration 

scenario (Sequeira et al., 2018). Algorithms respond idiosyncratically to these conditions due to 

their programmatic features, frequently producing disparate results (Pearson, 2006; Araújo & 

Peterson, 2012; Essl et al., 2023). This issue is particularly problematic when projecting 

ecological niches into future climates, where no empirical data are available to validate algorithm

performance. Consequently, a common approach for evaluating algorithm effectiveness in 

climate change studies involves projecting models between two historical periods for which data 

are available, such as from the recent past to the present (Rubidge et al., 2011; Piirainen et al., 

2023). 

Extensive research has been conducted to compare algorithm performance across 

spatial and temporal transferences, utilizing both real and virtual species (Prasad, Iverson & 

Liaw, 2006; Hijmans & Graham, 2006; Kharouba, Algar & Kerr, 2009; Dobrowski et al., 2011; 

Rubidge et al., 2011; Moreno-Amat et al., 2015; García-Callejas & Araújo, 2016) These studies 

reveal that results can vary greatly due to factors such as species traits, biotic interactions, data 

completeness, and climatic dissimilarities. Such variations complicate the identification of the 

specific impacts that algorithm choices have on the outcomes (Yates et al., 2018; Merow et al., 

2014).

In this study, we evaluated the performance of seven popular modeling algorithms—

Bioclim, Generalized Additive Models (GAM), Generalized Linear Models (GLM), Boosted 
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Regression Trees (BRT), Maxent, Random Forest (RF), and Support Vector Machine (SVM)—in

transferring niche models of Mexican endemic rodents from the mid-20th century to the late-

20th/early 21st centuries and vice versa. We selected Mexican endemic rodents due to their 

restricted and relatively well-known distributions, and because we do not expect significant 

climatic niche evolution over this period (Martínez-Meyer, Peterson & Hargrove, 2004). We 

expected that species with poor data quality (e.g., scarce or biased) would produce poor results 

regardless of the algorithm used. Conversely, for well-sampled species, we hypothesized that 

algorithms capable of modeling biologically meaningful response curves (e.g., bell-shaped 

responses to temperature), such as Maxent or SVM, would outperform simpler algorithms like 

Bioclim or GLM.

Materials & Methods
Occurrence data of species. We compiled occurrence records for 117 Mexican endemic rodent 

species (Ramírez-Pulido et al., 2014; Supplementary Material, Table S1) from various sources 

including natural history collections, journal articles, books, and theses (Supplementary Material,

Table S2). Records span two periods, 1950-1979 and 1980-2009, to align with available 

climatologies for Mexico. We eliminated duplicate records and those with questionable 

taxonomic or geographic certainty, retaining species with at least 10 unique localities per period 

to reduce the risk of data incompleteness issues (Hernández et al., 2006). For algorithms 

requiring absence data, we generated pseudoabsences by randomly selecting non-presence 

localities matching the number of presence records using the Ecospat package in R 3.5, (Di 

Cola et al., 2017; R Core Team, 2017).

Climatic variables. We used 19 bioclimatic variables generated for Mexico for the mid-

20th century (Time 1 [T1]: 1950-1979) and the late 20th/early 21st centuries (Time 2 [T2]: 1980-

2009) (Cuervo-Robayo et al., 2020). These variables were derived from monthly averages of 

precipitation and minimum and maximum temperatures recorded at climate stations across 

Mexico, southern USA, northern Guatemala, and Belize. The resulting surfaces have a spatial 
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resolution of 30 arc seconds (~1 km), following the methodology of the WorldClim dataset 

(Hijmans et al., 2005), and summarize the extreme, mean, and seasonal patterns in temperature

and rainfall. To reduce model complexity and minimize overfitting, we conducted Pearson 

correlation analyses for each species and excluded variables with correlations above 0.80 

(Radosavljevic & Anderson, 2014; Moreno-Amat et al., 2015; García-Callejas & Araújo, 2016; 

Regos et al., 2019) (Supplementary Material, Table S3). The area of analysis for each species 

(i.e., “M” in the BAM framework; Barve et al., 2011) was delineated by clipping the raster layers 

to the ecoregions (Olson et al., 2001) where each species has been recorded, assuming 

ecoregion boundaries serve as dispersal barriers (Radosavljevic & Anderson, 2014).

Ecological niche modeling. We evaluated the transfer capacity of seven algorithms: 

Bioclim (Nix & Busby, 1986; Beaumont, Hughes & Poulsen, 2005; Booth et al., 2014), a climatic 

envelope method; two regression-based techniques, Generalized Additive Models (GAM) and 

Generalized Linear Models (GLM) (Guisan, Edwards & Hastie, 2002); and four machine-learning

algorithms: Boosted Regression Trees (BRT; Elith, Leathwick & Hastie, 2008), Maxent (Elith et 

al., 2006; Phillips, Anderson & Schapire, 2006; Merow, Smith & Silander, 2013), Random Forest 

(RF; Breiman, 2001; Prasad, Iverson & Liaw, 2006), and Support Vector Machine (SVM; Drake, 

Randin & Guisan, 2006). Detailed information about the functioning of each algorithm can be 

found in the references cited.

For implementation, we created models using the following R packages: DISMO for 

Bioclim (Hijmans et al., 2017), SDM for GLM, GAM, BRT, RF, and SVM. For GLM, we used a 

binomial response with a logit link, a quadratic function, and the Akaike Information Criterion 

(AIC) for stepwise selection (Guisan, Edwards & Hastie, 2002). We implemented GAM with a 

binomial response and a logit link function (Guisan, Edwards & Hastie, 2002). BRT was 

parameterized with a learning rate of 0.005, a tree complexity of 5, and a bag fraction of 0.5 

(Elith, Leathwick & Hastie, 2008). RF was calibrated with 500 trees (Prasad, Iverson & Liaw, 

2006). We used ENMeval (Kass et al., 2021) for Maxent models, testing four regularization 

multiplier values (0.5, 1, 1.5, 2) and combinations of five feature classes (linear, quadratic, 
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product, threshold, and hinge), with clamping and extrapolation options disabled. The best 

model for each species was selected using the Akaike Information Criterion corrected for small 

sample sizes (AICc) (Warren et al., 2014). All output maps were expressed on a continuous 

scale from 0 to 1.

We allocated 70% of the occurrence records for model calibration and the remaining 

30% for validation, applying the same proportions for pseudoabsences where required. The 

resulting models were then converted into binary maps (presence-absence) using a ten-

percentile threshold to minimize overprediction from potentially erroneous data (Radosavljevic & 

Anderson, 2014). We evaluated the models within time periods using binomial tests that 

compared the results against random expectations (Anderson, Lew & Peterson, 2003).

Model transferences. The logical procedure to evaluate the capacity of algorithms to 

transfer niche models across different temporal scenarios involves calibrating a niche model in 

period 1 and transferring it onto the climatic scenario of period 2, then validating the transference

with occurrences from period 2, or calibrating a niche model in period 2 and comparing the two 

maps (Hijmans & Graham, 2006). However, disparities in the number or environmental 

distribution of occurrences between periods can affect observed differences between the 

resulting maps, making it difficult to attribute such differences to algorithm performance alone. 

To address this issue, we implemented a cross-temporal approach to identify species with 

similar occurrence data structures in both time periods.

First, we calibrated a model using occurrences and climatic layers from period 1 

("auto1"); then, we generated a second model using the climatic layers from period 1 with 

occurrences from period 2 ("cross1"). Next, we calibrated a model using occurrences from 

period 2 with the climatic surfaces from that period ("auto2") and another model using 

occurrences from period 1 with the climatic surfaces from period 2 ("cross2"). All resulting maps 

were converted into binary format, and we compared "auto1" with "cross1" and "auto2" with 

"cross2" geographically (see next section). If the overall similarity between the two pairs of maps

was less than 70%, it indicated significant differences in the number or distribution of 
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occurrences between the time periods, which could hinder the ability of algorithms to transfer 

models across temporal scenarios. We repeated this procedure for all species and algorithms. 

Species for which the similarity value was below 70% were excluded from further analyses. 

Species with suitable datasets for analysis were classified as "control" species, while those 

without were labeled "without control." For control species, we proceeded with transferring 

models from period 1 to period 2 (forecast) and vice versa (hindcast) and subsequently 

evaluated model performance (Fig. 1).

Evaluation of algorithm performance. For each algorithm, models transferred from period 

1 to period 2 were compared pixel-by-pixel against models calibrated for period 2, and vice 

versa. We constructed confusion matrices for these comparisons, using the calibration models 

as references. In the confusion matrix: "a" represents the number of presence pixels correctly 

predicted by the transferred model (sensitivity), "b" denotes the number of absence pixels 

incorrectly classified as presence (commission error or false positives), "c" indicates the number 

of presence pixels incorrectly classified as absence (omission error or false negatives), and

"d" corresponds to the number of absence pixels correctly predicted (specificity). We then 

calculated the following indices to assess model performance: True Skill Statistics (TSS; 

Equation 1), Overlap Index (OI; Equation 2), False Negative Rate (FNR; Equation 3), and False 

Positive Rate (FPR; Equation 4) (Fielding & Bell, 1997):

TSS=
a

a+c
+

d

b+d
−1 Eq. 1

OI=
a

a+c
Eq. 2

FNR=
b

b+d
Eq. 3

FPR=
c

a+c
Eq. 4
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TSS measures the accuracy of predictions by comparing the number of correctly 

predicted pixels to what would be expected by chance. It ranges from -1 (no better than random)

to 1 (perfect discrimination), with values above 0.7 considered reliable (Allouche, Tsoar & 

Kadmon, 2006). OI measures the proportion of overlap between the maps from different time 

periods indicating their consistency. FNR represents the omission error and measures the rate 

of overfitting, with values ranging from 0 to 1, and FPR measures the overestimation, also 

ranging from 0 to 1 (Rebelo, Tarroso & Jones, 2010).

Statistical analysis. To evaluate differences between forecast and hindcast model 

transfers, we conducted a Mann-Whitney-Wilcoxon test (Pohlert, 2016). We also used a Kruskal-

Wallis test to compare the performance of different algorithms in transferring models.  When a 

significant difference was detected, we used a Nemenyi test for pairwise multiple comparisons of

mean ranks among algorithms. These statistical tests were performed using the PMCMR 

package in R (Pohlert, 2016). Additionally, we explored the relationship between the number of 

occurrence records and model performance—measured by True Skill Statistics (TSS)—for each 

algorithm and direction (forecast and hindcast) using Pearson's correlation analyses. All 

calculations and statistical analyses were carried out in R 3.5 (R Core Team, 2017).

Results

Occurrence data of species. We compiled occurrence data for 117 Mexican endemic rodent 

species (Ramírez-Pulido et al., 2014). Of these, only 44 species had sufficient unique records (at

least 10 per time period) to generate robust models (Supplementary Material, S3). Fourteen 

species were underrepresented in one of the two time periods, while 59 species lacked the 

minimum of 10 unique records in either period. Among the 44 species with sufficient data, 

Peromyscus melanophrys (n = 504), Peromyscus difficilis (n = 440), Chaetodipus arenarius (n = 

248), and Sigmodon mascotensis (n = 191) had the highest number of records.

Temporal consistency of occurrence data. We evaluated the temporal consistency of 

occurrence data for the 44 species with sufficient records using a cross-validation test. None of 
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the algorithms demonstrated high data consistency (defined as >70% similarity) across all 44 

species. SVM and RF achieved the highest levels of consistent transferences, successfully 

applying to 42 species in both hindcasting and forecasting scenarios. In contrast, GLM showed 

the lowest consistency, with consistent models for 35 species in hindcasting and 36 in 

forecasting (Table 1). 

Niche models and model transferences. Binomial tests revealed that models calibrated 

with occurrences and climatic layers from the same period (auto1 and auto2) significantly 

deviated from random expectations for most species, indicating reliable model accuracy. 

Exceptions included GLM models for Callospermophilus madrensis, Dasyprocta mexicana, and 

Dipodomys phillipsii in T1 (1950-1979), and Dipodomys phillipsii, Neotamias durangae, 

Neotoma goldmani, and Oryzomys guerrerensis in T2 (1980-2009); a BRT model for 

Pappogeomys bulleri in T2, and a Maxent model for Dasyprocta mexicana in T2 (Supplementary

Material, Table S4).

We found significant differences between algorithms for transferring models from T1 to 

T2 and vice versa (H = 78.75 and H = 79.08, respectively, both p < 0.01). RF consistently 

showed the highest mean TSS (x̄ = 0.83 ± 0.08) in forecasting, while Maxent in hindcasting (x̄ = 

0.82 ± 0.10). Notably, Maxent showed significantly higher TSS values for hindcasting than 

forecasting (w = 435, p = 0.002). Conversely, BRT, RF, and Bioclim showed no significant 

directional differences. Bioclim recorded the lowest in both forecasting (x̄ = 0.50 ± 0.20) and 

hindcasting (x̄ = 0.52 ± 0.21). 

Significant differences between algorithms were also evident in OI (H = 27.27, p = 0.014 

in hinadcasting and H = 15.93, p < 0.01 in forecasting), with Bioclim (x̄ = 0.52 ± 0.21) and GAM 

(x̄ = 0.65 ± 0.18) showing the greatest variation in forecasting, and Maxent also displaying 

significant directional differences (w = 382, p < 0.01). RF maintained consistent performance 

across both directions (forecasting: x̄ = 0.83 ± 0.08; hindcasting: x̄ = 0.80 ± 0.09) (Fig. 2; 

Supplementary Material, Table S5).
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The FPR varied significantly among algorithms in both forecasting and hindcasting 

(H = 92.237 and H = 77.102, both p < 0.01), with Bioclim showing the highest rates both in 

forecasting (x̄ = 0.47 ± 0.22) and hindcasting (x̄ = 0.47 ± 0.22), and RF the lowest (forecasting: x̄

= 0.09 ± 0.09; hindcasting: x̄ = 0.10 ± 0.08). Maxent showed significant differences in FPR 

between directions (w = 1062, p = 0.003). The FNR also showed significant differences between

algorithms for hindcasting (H = 51.171, p < 0.01) and forecasting (H = 65.92, p < 0.01), where 

GAM recorded the highest values (Fig. 2; Supplementary Material, Table S5)..

Correlation analyses. Our correlation analyses between the number of occurrence 

records and TSS scores showed weak and non-significant positive relationships for most 

algorithms (R² < 0.1, p > 0.05). Exceptions were Bioclim, GAM, and GLM in hindcasting, with 

GLM also showing a marginal significance in forecasting (Fig. 3). In general, species with larger 

sample sizes generally achieved higher TSS scores, 

Discussion

In this study, we explored the transferability of ecological niche models (ENMs) for 

Mexican endemic rodents using seven widely used algorithms across past and recent climatic 

conditions. Our findings reveal that these algorithms differ in robustness when transferring 

models across time periods. Random Forest (RF), Maxent, Boosted Regression Trees (BRT), 

and Support Vector Machine (SVM) consistently performed well, while Bioclim showed the 

poorest performance. Notably, Maxent exhibited significant sensitivity to the direction of transfer,

with marked differences between hindcasting and forecasting. Our results are consistent with 

previous studies that have observed variations in algorithm performance when transferring niche

models to different climatic scenarios (Moreno-Amat et al., 2015; Beaumont et al., 2016; Bell & 

Schlaepfer, 2016; García-Callejas & Araújo, 2016; Liang et al., 2018; Qiao et al., 2019; 

Heikkinen, Marmion & Louto, 2012). However, to our knowledge, no prior studies have 

examined how occurrence data quality affects algorithm performance in both forecasting and 

hindcasting.
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A well-known factor affecting model transferability is the presence of non-analog climates

between time periods (Sequeira et al., 2018; Essl et al., 2023). Climatic combinations outside 

the calibration scenario challenge all algorithms, particularly those with limited extrapolation 

capacity, such as Bioclim (Qiao et al., 2019). To assess the influence of non-analog climates on 

algorithm performance, we conducted a Mobility-Oriented Parity (MOP) analysis (Owens et al., 

2013, which quantifies the multidimensional similarity between two climatic scenarios (calibration

and transfer) and maps areas requiring strict extrapolation, with the smop package (Osorio-

Olvera & Contreras Díaz, 2024) in R. Our results indicate that the areas with dissimilar climatic 

combinations—and thus where strict extrapolation is needed—are limited across Mexico: from 

T1 to T2, they occupy 0.58% of the country, and from T2 to T1, 1.7% (Supplementary Material, 

Fig. S1). Therefore, non-analog climates do not explain most of the observed variation in 

algorithm performance.

Another crucial factor affecting model performance is data quality, specifically the 

representation of the environmental combinations that define a species' ecological niche (van 

Proosdij et al., 2016; Jiménez-Valverde, 2020). Low-quality data may result from insufficient 

sampling or environmental bias (Wang & Jackson, 2023). We initially hypothesized that species 

with fewer occurrences would show poor transferability across all algorithms, as small sample 

sizes often lead to an incomplete ecological niche characterization. However, our results indicate

that sample size impacts algorithms differently: while sample size minimally affected 

transferability for RF, BRT, and SVM, it significantly impacted Bioclim, GLM, GAM, and, to a 

lesser extent, Maxent. These findings align with previous studies where Maxent outperformed 

Bioclim (Hernandez et al., 2006) and GAM (Wang & Jackson, 2023) under small sample sizes. 

Sample size also explains the differing performance of algorithms in forecasting and 

hindcasting. In our study, Maxent exhibited the greatest directional difference, showing greater 

robustness during hindcasting than forecasting (Fig. 2). Notably, Maxent's sensitivity to sample 

size was evident only in forecasting (Fig. 3), suggesting that small sample sizes more adversely 

affect its transferability than other algorithms like RF and BRT. This disparity in performance 
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between Maxent and RF is consistent with Wang & Jackson's (2023) findings, who recommend 

RF for small sample sizes.

The robustness of modeling algorithms under varying data qualities appears to hinge on 

their ability to accurately characterize what García-Callejas & Araújo (2016) refer to as the 

geometrical complexity of the ecological niche—the structural characteristics of the boundary 

between suitable and unsuitable conditions in environmental space. For species with well-

defined niches, like those specialized to specific environments, robust models are generally 

easier to obtain. In contrast, species with broader environmental preferences require more 

unbiased samples to accurately characterize their more complex niche boundaries. 

Consequently, some algorithms manage boundary complexity better than others, especially with 

small sample sizes. Our analysis revealed that Bioclim had the poorest performance in 

transferring niche models across temporal climatic scenarios. Bioclim, a simple environmental 

envelope model based on the range of values from occurrence records in the predictor variables

(Nix, 1986), is highly sensitive to extreme values and the number of predictors (Beaumont, 

Hughes & Poulsen, 2005). Additionally, Bioclim’s quadrangular representation of the ecological 

niche in environmental space limits its ability to model complex niche geometries. A similar issue

may arise with GLM, particularly with small sample sizes (Guisan, Edwards & Hastie, 2002).

In contrast, RF and Maxent exhibited the highest transfer capacity, followed closely by 

BRT and SVM. RF also demonstrated the most consistent performance between transfer 

directions. This algorithm has proven robust for transferring models with both virtual (García-

Callejas & Araújo, 2016) and real (Mi et al., 2017) species, shows good interpolation 

performance (Bell & Schlaepfer, 2016; Liang et al., 2018), and relatively low overprediction (Mi 

et al., 2017). However, this robustness comes at the cost of overfitting, which sometimes limits 

its extrapolation capacity beyond the calibration range (Heikkinen, Marmion & Lousteau, 2012). 

Maxent, on the other hand, is less prone to overfitting, particularly when parameterized ad hoc 

for specific species (Merow, Smith & Silander, 2013). In summary, the four machine-learning 

algorithms generally outperformed the two regression-based and climatic envelope algorithms. 
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However, as highlighted in numerous comparative studies, there is no "silver bullet" algorithm 

that consistently performs best across all data structures (Qiao, Soberón & Peterson, 2015). 

This is even more evident in model transferability, where algorithm weaknesses are amplified 

(Pearson et al., 2006; Moreno-Amat et al., 2015). 

A final note of caution is that while our analyses were designed to evaluate algorithm 

performance for temporal transferability using Mexican endemic rodents as the model system, a 

potential source of error lies in the continuously updated taxonomy of these species. Our 

analyses were based on the latest revision of Mexican mammals (Ramírez-Pulido et al., 2014); 

however, recent proposals suggest species separation for Peromyscus melanophrys, P. furvus, 

P. levipes, P. zarhynchus, and Osgoogomys banderanus (Lorenzo et al., 2016; Almendra et al., 

2018; Cruz-Gómez et al., 2021; Bradley et al., 2022). These taxonomic changes could affect the 

quantity and spatial structure of occurrences for these species, potentially impacting model 

performance (Soley-Guardia, Serrano & Anderson, 2024).

Conclusions

Ecological niche modeling is often used to transfer models across temporal scenarios for 

climate change analysis. However, the suitability of the species for such transfers and the 

robustness of the chosen algorithms are often overlooked. Our results highlights that the 

performance of these algorithms, and consequently the reliability of temporal transfers, is 

primarily influenced by the quality of data. Low sample sizes significantly compromise the 

effectiveness of model transfers, with some algorithms being more affected than others. Indeed, 

an algorithm may yield different results for the same species when transferring models to past 

versus future scenarios, indicating that not all species and algorithms are equally suited for 

transferring models across temporal scenarios. Among the algorithms evaluated, those capable 

of modeling complex ecological boundaries with minimal overfitting—such as Random Forest, 

Maxent, and Boosted Regression Trees—consistently outperformed simpler algorithms like 
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Bioclim or GLM. Consequently, we strongly recommend a careful assessment of both species 

and algorithms before proceeding with temporal transfers. In this regard, the retrospective cross-

temporal approach presented here offers a valuable alternative.
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Table 1(on next page)

Species with sufficient occurrences

Number of species with consistent occurrence data between time periods for each modeling
algorithm
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Table 1. Number of species with consistent occurrence data suitable for temporal transferences by 

modeling algorithm.

Algorithm Hindcasting Forecasting

Bioclim 40 38

Boosted Regression Trees (BRT) 39 39

Generalized Additive Models (GAM) 41 41

Generalized Linear Models (GLM) 35 36

Maxent 38 38

Random Forest (RF) 42 42

Support Vector Machine (SVM) 42 42
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Figure 1
Methodological approach to evaluate algorithm performance over time.

Figure 1. Methodological approach applied to evaluate the ability of algorithms to transfer
niche models over time. (A) Ecological niche model calibrated with occurrence data and
environmental variables from the same period. (B) Ecological niche model calibrated with
occurrence data from one period and environmental variables from a different period. (C)
Model transferred to a different period. (D) Geographic validation by comparing the model
transferred from one period against the model calibrated in the other period. The example
maps correspond to the cotton rat Sigmodon mascotensis, and the climate data for the
analysis were obtained from Cuervo-Robayo et al. (2020). The figure was created with
Libreoffice-Impress 7.1.1.2 (The Document Foundation, 2020).
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Figure 2
Algorithm performance measured with different metrics.

Figure 2. Performance of niche modeling algorithms for hindcasting and forecasting using
different metrics: True Skill Statistics, TSS; Overlap Index OI; False Positive Rate, FPR; and
False Negative Rate, FNR. Solid red and blue dots represent the median and the upper and
lower bars, the interquartile range, and the width of each plot represents the density of
observations.
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Figure 3
Correlation between the number of occurrence records and model performance by True
Skill Statistics (TSS).

Figure 3. Pearson correlation analyses between the number of occurrence records of each
species and model performance measured by True Skill Statistics (TSS) for each algorithm
and direction. Dots represent individual species and lines the linear trend, red indicates
forecasting and blue hindcasting.
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