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Ecological niche modeling (ENM) is an approach to infer the suitable conditions for species’
persistence and their potential geographic distributions. ENM is extensively used to assess
the potential effects of climate change on species’ distributions, although modeling
algorithms are acknowledged as an important source of uncertainty in climate change
projections. A problem is that these models cannot be properly assessed in the context of
future projections. In this study, we evaluated the performance of seven popular modeling
algorithms (Bioclim, Generalized Additive Models (GAM), Generalized Linear Models (GLM),
Boosted Regression Trees (BRT), Maxent, Random Forest (RF), and Support Vector Machine
(SVM)) for transferring ENM over time for Mexican endemic rodents. To do so, we followed
a retrospective approach by transferring models from the near past (1950-1979) to the
present (1980-2009) and vice versa. We found three important results: (1) The quality of
input data and the algorithm had a significant effect on model output and performance; (2)
algorithm performance was different for transferring models to the future than to the past;
and (3) the most robust algorithms were RF, BRT and Maxent, whereas Bioclim was the
least consistent. In conclusion, algorithm choice is critical for transferring ENM over time.
Since no algorithm performed consistently better than the rest, we recommend to test
different algorithms prior transferring models to future scenarios under a retrospective
approach.
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Abstract
Ecological niche modeling (ENM) is an approach to infer the suitable conditions for species’ 

persistence and their potential geographic distributions. ENM is extensively used to assess the 

potential effects of climate change on species’ distributions, although modeling algorithms are 

acknowledged as an important source of uncertainty in climate change projections. A problem is 

that these models cannot be properly assessed in the context of future projections. In this study, 

we evaluated the performance of seven popular modeling algorithms (Bioclim, Generalized 

Additive Models (GAM), Generalized Linear Models (GLM), Boosted Regression Trees (BRT), 

Maxent, Random Forest (RF), and Support Vector Machine (SVM)) for transferring ENM over 

time for Mexican endemic rodents. To do so, we followed a retrospective approach by 

transferring models from the near past (1950-1979) to the present (1980-2009) and vice versa. 

We found three important results: (1) The quality of input data and the algorithm had a significant

effect on model output and performance; (2) algorithm performance was different for transferring

models to the future than to the past; and (3) the most robust algorithms were RF, BRT and 

Maxent, whereas Bioclim was the least consistent. In conclusion, algorithm choice is critical for 
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transferring ENM over time. Since no algorithm performed consistently better than the rest, we 

recommend to test different algorithms prior transferring models to future scenarios under a 

retrospective approach.

Introduction
Current climate change is affecting biodiversity in a myriad of ways (Parmesan & 

Yohe, 2003; Bellard et al., 2012; MacLean et al., 2018; Widick & Bean, 2019; Cuervo-Robayo et 

al., 2020; Habibullah et al., 2022) and biotas are changing due to alterations in the abundance 

and distributional shifts of species (Moritz et al., 2008; Kharouba, Algar & Kerr, 2009; Dobrowski 

et al., 2011; Pacifici et al., 2015; Peterson et al., 2015b; Jaroszynska et al., 2023). For some 

years now, ecological niche modeling (ENM) is a popular tool for analyzing geographic 

distributions of species in the context of past and current climatic changes (Araújo et al., 2005; 

Beaumont et al., 2009; García-Callejas & Araújo, 2016; Sequeira et al., 2018; Yates et al., 2018;

García- et al., 2023). ENM includes a suite of concepts and methodologies based on ecological 

niche theory that has taken advantage of other disciplines, such as informatics, geographic 

information systems (GIS), and statistics (Austin, 2007; Jiménez-Valverde, Lobo & Hortal, 2008; 

Soberón & Nakamura, 2009; Wiens et al., 2009).

ENMs are correlative methods that require georeferenced species’ occurrence data 

and a set of predictor variables in the form of GIS raster layers to reconstruct the ecological 

characteristics that define the conditions where species inhabit (i.e., its ecological niche) and 

then project these conditions onto the landscape to produce a geographical expression of the 

species’ niche, commonly referred to as its potential distribution (Elith et al., 2006; Peterson, 

2011; Sillero, 2011). Several methods have been implemented to produce niche models, which 

can be classified according to the type of input occurrence data as presence-only (e.g., Bioclim, 

environmental distances), presence-absence (e.g., Generalized Linear Models [GLM], 

Generalized Additive Models [GAM]), presence-pseudoabsence (e.g., Genetic Algorithm for 

Rule-set Prediction [GARP]), and presence-background (e.g., Ecological Niche Factor Analysis 
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[ENFA], Maxent) (Phillips, 2008; Barbet-Massin et al., 2012; Warton & Aarts, 2013; Fan et al., 

2018; Qiao et al., 2019; Sillero et al., 2023). From these, presence-absence methods are 

generally more robust when unequivocal absence data exist (Brotons et al., 2004; Golicher et 

al., 2012; Merow et al., 2014); however, in most cases, reliable absences are lacking. Therefore,

presence-only, presence-pseudoabsence and, presence-background algorithms have become 

popular in the last two decades (Vaz, Cunha & Nabout, 2015).

ENM has been broadly used to evaluate the potential geographic consequences of 

climatic changes by projecting the modeled species’ niche under current climatic conditions to 

past or future climatic scenarios, a process also known as model transference (Pearson & 

Dawson, 2003; Peterson, Martínez-Meyer & González-Salazar, 2004; Thomas et al., 2004; 

Waltari & Guralnick, 2009; Heikkinen, Marmion & Luoto, 2012; Garcia et al., 2016). At least three

main assumptions are behind model transferences over time that may or may not hold true: (1) 

the ecological niche does not evolve during the timeframe when the transference is performed 

(Soberón & Nakamura, 2009); (2) during a climatic change, even if the interactions among 

variables change, the relationship of those variables with the species remains constant (Hijmans

& Graham, 2006; Wiens et al., 2009); and (3) the species is in equilibrium with the environment 

in the calibration time/area, meaning that they occupy the available suitable areas that are 

accessible to them (Sequeira et al., 2018; Yates et al., 2018).

Furthermore, a key issue in model transference is the effect of non-analog climates 

(i.e., the set of environmental conditions that exist in an alternative climatic scenario different 

from the calibration one) on model performance (Sequeira et al., 2018). Non-analog climates 

impose a challenge to algorithms because no calibration exists for those climates, thus, when 

algorithms face non-analogues in alternative climatic scenarios (past or future), algorithms 

respond differently according to the instructions of the program, producing contrasting or even 

contradicting results(Pearson, 2006; Araújo & Peterson, 2012; Essl et al., 2023). This is 

particularly problematic in future projections because there are no occurrence data that can be 

used to evaluate algorithm performance. Thus, one solution to evaluate algorithm performance 
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in climate change studies is to project models between two time periods for which they have 

occurrence data, for example, from the relatively recent past to the present (Rubidge et al., 

2011; Piirainen et al., 2023).

Several studies have focused on evaluating the reliability of niche models for a 

specific time (Beaumont & Hughes, 2002; Araújo, Thuiller & Pearson, 2006; Maiorano et al., 

2011; Werkowska et al., 2017; Sequeira et al., 2018), but only a few have analyzed the 

performance of algorithms for transferring models over time (Prasad, Iverson & Liaw, 2006; 

Hijmans & Graham, 2006; Kharouba, Algar & Kerr, 2009; Rubidge et al., 2011; Moreno-Amat et 

al., 2015; García-Callejas & Araújo, 2016), with performance results spanning from good to bad 

for different species and algorithms, making it difficult to discern the effect of the algorithm 

choice in the results. Herein, we evaluate the performance of seven modeling algorithms for 

transferring niche models of Mexican endemic rodents from the mid-20th century to the present 

and vice versa. We used Mexican endemic rodents as study model because they have restricted

and relatively well- known distributions and because the evolutionary rate of mammals is not 

high enough to expect climatic niche evolution over this period of time (Martínez-Meyer, 

Peterson & Hargrove, 2004).

Materials & Methods
Occurrence data of species. We gathered occurrence records for the 117 Mexican endemic 

rodent species (Ramírez-Pulido et al., 2014) from natural history collection databases, journal 

articles, books, and theses (Supplementary Material). For each record, we noted the collecting 

year and grouped occurrences into two time periods to match the climatologies available for the 

20th century (see below): 1950-1979 and 1980-2009. We discarded duplicate records to keep 

only one record per pixel and also discarded those records with questionable taxonomic or 

geographic certainty. Finally, we retained only those species for which we had at least 10 unique

localities per period to produce reliable models (Hernandez et al., 2006). Because some of the 

algorithms that we analyzed use pseudo-absence data, we randomly selected the same number 
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of unique localities with no presence records as with presence records for each species within 

the modeling area to generate the pseudo-absence dataset using the Ecospat package (Di Cola 

et al., 2017) in the software R 3.5 (R Core Team, 2017).

Climatic variables. We used 19 bioclimatic variables generated for Mexico by Cuervo-

Robayo et al. (2020) for mid-20th century (T1: 1950-1979) and late 20th–early 21st centuries 

(T2: 1980-2009) (Cuervo-Robayo et al., 2020). These variables were derived from monthly 

averages of precipitation, minimum and maximum temperatures drawn from climatic stations 

across Mexico, southern USA and northern Guatemala and Belize, producing surfaces at 30 arc 

seconds (~1 km) of spatial resolution, following the same methodology of the Worldclim dataset 

(Hijmans et al., 2005). The 19 bioclimatic variables summarize the extreme, mean and seasonal 

patterns of temperature and rainfall across the country and have been widely used for ecological

analyses and species’ distribution modeling (Worldclim has been cited more than 18,000 times, 

according to Google Scholar). To reduce the number of variables for analyses, we performed a 

Pearson’s correlation analysis for each species to eliminate highly correlated variables (> 0.80) 

thus reducing model complexity and the risk of overfitting (Radosavljevic & Anderson, 2014; 

Moreno-Amat et al., 2015; García-Callejas & Araújo, 2016). Finally, we delimited the area of 

analysis for each species (i.e., “M” in the BAM framework; (Barve et al., 2011) by clipping the 

raster layers to the ecoregions (Olson et al., 2001) in which each species has been recorded, 

assuming that the boundaries of the ecoregions have represented a barrier to dispersal for the 

species (Radosavljevic & Anderson, 2014).

Ecological niche modeling. We evaluated the performance of seven popular algorithms 

for transferring niche models over time: Bioclim (Nix, 1986; Booth et al., 2014), which is a 

climatic envelope method; two regression-based techniques, namely Generalized Additive 

Models (GAM) and Generalized Linear Models (GLM) (Guisan, Edwards & Hastie, 2002); and 

four machine learning algorithms: Boosted Regression Trees (BRT; (Elith, Leathwick & Hastie, 

2008), Maxent (Phillips, Anderson & Schapire, 2006), Random Forest (RF; (Breiman, 2001), and

Support Vector Machine (SVM;  (Drake, Randin & Guisan, 2006). Detailed information about the 
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functioning of each algorithm can be found elsewhere (Guisan, Edwards & Hastie, 2002; 

Beaumont, Hughes & Poulsen, 2005; Drake, Randin & Guisan, 2006; Elith et al., 2006; Phillips, 

Anderson & Schapire, 2006; Merow, Smith & Silander, 2013; Booth et al., 2014; Muscarella et 

al., 2014), but in general, Bioclim describes the niche of a species in terms of an n-dimensional 

quadrangular envelope defined by the range of values in which the species occurs at each 

individual variable (Nix, 1986). GLM is an extension of linear models without forcing data into 

unnatural scales and relating the mean of the response variable with the linear combination of 

the explanatory variables. GAM is a semi-parametric extension of GLM which applies a 

“smoothing” function to the explanatory variables and replacing the linear predictor with an 

additive predictor (Guisan, Edwards & Hastie, 2002). BRT is an ensemble method that combines

regression trees with a boosting algorithm (Elith, Leathwick & Hastie, 2008). Maxent is an 

algorithm that uses the maximum entropy principle and a Bayesian procedure to produce a 

probability surface where entropy is maximized to reflect the environmental suitability of the 

geographic area for the species (Phillips, Anderson & Schapire, 2006). RF is a combination of 

individual decision trees that converge in their classification outcome (Prasad, Iverson & Liaw, 

2006). SVM uses a functional relationship known as kernel to map data onto a new hyperspace 

(Drake, Randin & Guisan, 2006).

We executed Bioclim in the R package DISMO (Hijmans et al., 2017), where the 

resulting map is expressed as a continuous model based on the rescaled calculation of 

percentiles assuming that areas near the median are more suitable. We used the SDM package 

(Naimi & Araújo, 2016) in R for GLM, GAM, BRT, FR, and SVM. For GLM, we used a binomial 

response with logit link, quadratic function and AIC for stepwise selection. We implemented 

GAM with a binomial response with logit link function. We parameterized BRT with a learning 

rate of 0.005, tree complex of 5 and bag fraction of 0.5. We calibrated RF with 500 trees. We ran

Maxent in ENMeval (Muscarella et al., 2014) under default settings but with the clamping and 

extrapolate options disabled and selected the best model per species with the minimum values 

of AICc.  All output maps were expressed in a continuous scale from 0 to 1.
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For all algorithms, we used 70% of the occurrence records for model calibration and 

the remaining 30% for validation, and we used the same proportion for pseudo-absences in the 

algorithms that required so. Then, each resulting model was transformed into a binary map 

(presence-absence) by selecting a ten-percentile threshold value; i.e., 10% of all occurrence 

records were left out. We decided to use this threshold to avoid over-prediction due to potentially

erroneous occurrences (Radosavljevic & Anderson, 2014). All algorithms were evaluated for 

their capacity to produce reliable models within time periods via binomial tests to compare model

results against random expectations (Anderson, Lew & Peterson, 2003).

Model transferences. The logical procedure to evaluate the capacity of algorithms to 

transfer niche models across different temporal scenarios involves calibrating a niche model in 

period 1 and transfer it onto the climatic scenario of period 2, then validate the transference with 

occurrences from period 2, or calibrate a niche model in period 2 and compare the two maps  

(Hijmans & Graham, 2006). A problem with these approaches emerges when the number or 

spatial distribution of occurrences in each period is different, because the differences observed 

between the resulting maps of the two time periods may have been due to the disparities of the 

occurrences rather than algorithmic performance. To solve this problem, we followed a cross-

temporal approach to identify the species with similar occurrence data structure in the two time 

periods. First, we calibrated a model in period 1 with occurrences from that period that we 

named auto1, then we generated a second model with the climatic layers of period 1 and the 

occurrences of period 2, named cross1. Second, we calibrated a model using the climatic 

surfaces of period 2 with the occurrences from that period (auto2) and another model with the 

occurrences of period 1 on the climatic surfaces of period 2 (cross2). Third, we converted all 

resulting maps into binary and geographically compared auto1 vs. cross1 and auto2 vs. cross2 

(see next section). If the overall similarity between the two pairs of maps was <70%, it meant 

that the difference in the number/distribution of occurrences between time periods was large 

enough to hinder the response of algorithms to transfer models across temporal scenarios. We 

repeated this procedure for all species and the seven algorithms and discarded from further 
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analyses those species for which their similarity value was <70%. Species with a dataset 

suitable for analyses were called control and the rest were called without control. For control 

species, we transferred models from period 1 to period 2 (forecast) and vice versa (hindcast), 

and evaluated model performance (fig. 1). 

Evaluation of algorithm performance. For each algorithm, every model that was 

transferred from period 1 to period 2 was compared against the model that was calibrated in 

period 2, and vice versa, in a pixel-by-pixel fashion, as follows. First, we built a confusion matrix 

in which the calibration model was the reference; therefore, in the confusion matrix, a was the 

number of presence pixels correctly predicted by the transferred model (sensitivity), b was the 

number of absence pixels erroneously classified as presence (commission error or false 

positives), c was the number of presence pixels erroneously classified as absence (omission 

error or false negatives), and d is the number of absence pixels correctly predicted (specificity). 

Then, we calculated the following indices: True Skill Statistics (TSS; Equation 1), Overlap Index 

(OI, Equation 2), False Negative Rate (FNR; Equation 3) and False Positive Rate (FPR; 

Equation 4) (Fielding & Bell, 1997), as follows:

TSS=
a

a+c
+

d

b+ d
−1Eq . 1

OI=a/ (a+c )Eq .2

FNR=
b

b+d
Eq . 3

FPR=
c

a+c
Eq . 4

FPR is a measure of overestimation, whereas FNR indicates overfitting (Rebelo, 

Tarroso & Jones, 2010), and both have a scale from 0-1. OI reflects the proportion of overlap 

between the two maps. Finally, TSS compares the number of correctly predicted pixels minus 

randomly assigned data within a hypothetical set of perfect predictions. TSS score ranges from -
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1 to 1, where values between -1 and 0 reflect a model that does not perform better than chance, 

while a value of 1 is considered a perfect discrimination. Models with TSS values above 0.7 are 

considered reliable (Allouche, Tsoar & Kadmon, 2006). All calculations were made with the 

statistical program R 3.5 (R Core Team, 2017).

Statistical Analysis. We performed a Mann-Whitney-Wilcoxon test to evaluate differences

between forecast and hindcast transferences (Pohlert, 2016). Also, we implemented a Kruskal-

Wallis test to evaluate differences in the transference performance between algorithms, when a 

difference was found, we carried out a Nemenyi test, which makes pairwise multiple 

comparisons of mean sums of independent samples. These test are implemented in the 

PMCMR package (Pohlert, 2016). All statistical analyses were performed in R.3.5 (R Core 

Team, 2017).

Results

Species’ occurrences. We found occurrence data for the 117 rodent species endemic to Mexico 

(Ramírez-Pulido et al., 2014); however, we found sufficient unique records (at least 10) for 

generating models for each time period only for 44 species. There were no sufficient data for 14 

species for one of the two periods, whereas there were 59 species for which we did not find 10 

unique records for both periods. For the 44 species with sufficient data for further analyses, 

Peromyscus melanophrys (n = 504), Peromyscus difficilis (n = 440), Chaetodipus arenarius (n = 

248), and Sigmodon mascotensis (n=191) held the highest number of records.

Temporal consistency of occurrence data. We evaluated the consistency of occurrence 

data at each period to perform temporal transferences for all 44 species with sufficient data. We 

found that the number of species with high model similarity (>70%) between the two time 

periods was different depending on the algorithm (Table 1). Maxent got the highest number of 

species, whereas GAM the lowest (Table 1).

Niche models and model transferences. In general, all algorithms produced reliable 

models for calibration in both time periods. Binomial test for models calibrated in the two climatic
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scenarios were significantly different from random expectations for all species, except for GLM 

models for Callospermophilis madrensis, Dasyprocta mexicana and Dipodomys phillipsii for T1 

(1959-1979), and Dipodomys phillipsii, Neotamias durangae, Noetoma goldmani and Oryzomys 

guerrerensis for T2 (1979-2009); a BRT model for Pappogeomys bulleri for T2; and a Maxent 

model for Dasyprocta mexicana for T2 (Supplementary Material). 

We observed differences in algorithm performance when models were transferred 

across climatic scenarios (fig. 2). Some algorithms performed differently for forecasting and 

hindcasting: our results showed that Bioclim, GAM and Maxent generally produced higher TSS 

values for hindcasting than for forecasting, with significant differences between directions only 

for Maxent (w = 139, p = 0.04). Similar results were observed for the omission index (OI), with 

significant differences between directions for Maxent (w = 140, p = 0.043). 

We found significant differences between algorithms for transferring models from the

present to the past scenario (H = 17.71, p = 0.006) and from the past to the present (H = 21.50, 

p < 0.01), being BRT the algorithm with the highest mean TSS value (x̄ = 0.84 ± 0.08) and 

Bioclim the lowest (x̄ = 0.46 ± 0.24) in forecasting. For hindcasting, Maxent obtained the highest 

mean value (x̄ = 0.82 ± 0.11) and Bioclim the lowest (x̄ = 0.60 ± 0.15). We observed a similar 

pattern for OI with significant differences between algorithms for hindcasting (H = 27.27, p = 

0.014) and forecasting (H = 15.93, p < 0.01). We observed the greatest variation in forecasting 

for Bioclim (x̄ = 0.46 ± 0.24) and GAM (x̄ = 0.54 ± 0.40) and, on the contrary, RF showed a very 

consistent behavior and little variation in both directions (forecasting: x̄ = 0.81 ± 0.09; 

hindcasting: x̄ = 0.80 ± 0.075), and GAM for hindcasting (x̄ = 0.8 ± 0.07).

The false negative rate (FNR), which indicates model overestimation, showed 

significant differences between algorithms for hindcasting (H = 15.93, p = 0.014) and forecasting

(H = 27.27, p < 0.01). Bioclim showed a difference with BRT (p = <0.01) and RF (p = 0.03) for 

forecasting and Maxent (p = <0.01) for hindcasting. GAM showed the highest FNR for 

forecasting (x̄ = 0.29 ± 0.39) and GLM for hindcasting (x̄ = 0.10 ± 0.06), both algorithms with the 

highest variation in each direction. In turn, the false positive rate (FPR; an indication of 
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overfitting) was not different for hindcasting (H = 10.96, p = 0.089), but it was so for forecasting 

(H = 13.22, p=0.039). We observed a difference in FPR between directions only for Maxent (w = 

301, df = 6, p = 0.04).  Conversely, GAM showed the highest FPR values for forecasting. 

Discussion

Transferences of ecological niche models over time have been widely used to 

assess the response of biodiversity to climatic changes (Allouche, Tsoar & Kadmon, 2006; 

Araújo, Thuiller & Pearson, 2006; Rebelo, Tarroso & Jones, 2010; Peterson et al., 2015a). 

Similar to our results, the variation between algorithms in niche model transfers to alternative 

climatic scenarios seems to be the rule and has been observed in multiple comparative studies 

(Moreno-Amat et al., 2015; Beaumont et al., 2016; Bell & Schlaepfer, 2016; García-Callejas & 

Araújo, 2016; Liang et al., 2018; Qiao et al., 2019). However, to our knowledge, no previous 

studies have analyzed the effect of occurrence data structure and direction of transfers in the 

performance of algorithms.

In this study, we evaluated the performance and consistency of seven popular 

algorithms for transferring niche models to past (hindcast) and future (from the past to the 

present; forecast) climatic conditions for Mexican endemic rodents as study model. We decided 

to use endemic species for two reasons: (1) the ecological niche of the species is better 

reconstructed for species with restricted ecological conditions than for those that occupy a great 

diversity of environments (Raxworthy et al., 2007); and (2) the climatic databases used in this 

analysis were developed specifically for Mexico (Cuervo-Robayo et al., 2020). Our analyses 

showed three main results: first, the quality of input data and the algorithm had a significant 

effect on model output and performance. Second, algorithms did not perform equally for 

hindcasting and forecasting, where we found generally higher performance for the latter. And 

third, we found that algorithms performed differently for model transferences, being Random 

Forest (RF), Boosted Regression Trees (BTR) and Maxent consistently robust, whereas Bioclim 

showed the lowest performance.
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Algorithm performance for model transferences has been analyzed under different 

approaches, including the use of virtual species (García-Callejas & Araújo, 2016) and real 

species of different biological groups (Heikkinen, Marmion & Luoto, 2012; Beaumont et al., 2016;

Fan et al., 2018), as well as testing different sets of variables (Barbet-Massin & Jetz, 2014; 

Warren et al., 2014)  and climate change projections to the past and future (Dobrowski et al., 

2011; Veloz et al., 2012). In this study, we assessed algorithm performance for a single 

taxonomic group under a retrospective approach and found that occurrence data structure 

between time periods plays a critical role. We know that an adequate sampling is necessary to 

make a good characterization of the species’ ecological niche in the calibration scenario before 

transferring a model to different scenarios (Araújo, Pearson & Rahbek, 2005), but this is the first 

time that disparities in the occurrence data between time periods are evaluated in the context of 

climate change analyses. 

One important issue when using correlative modeling under a retrospective 

approach to evaluate the geographic responses of species to climate change is to decouple the 

effect of data bias or incompleteness from the signal of geographic change. A logical way to 

proceed when you have two temporally distinct sets of occurrence data and climatic scenarios 

(i.e., T1 and T2) is to calibrate a model in T1 with the occurrences and climatic scenario from 

that time period, transfer the resulting model to T2, and use the occurrences of T2 to validate the

transfer, and vice versa. However, this approach may have a problem of inconsistency of the 

occurrences between the two time periods, ergo, if the quantity or quality of occurrence data 

from the two periods are different, then the two niche models will result somewhat different and 

transferences will be affected in an unknown manner. In such case, the geographic shift 

observed under these conditions is mostly due to the occurrence differences, rather than to the 

responses of species to climatic changes. To avoid this pitfall, our initial step was to test for data 

consistency between the two time periods by carrying out a cross-modeling procedure. To do so 

for the 44 species with sufficient data in the two time periods, we first calibrated a model with the

climatic scenario and occurrences form T1, and then, we calibrated a second model with 
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occurrences from T2 under the climatic scenario of T1 and compared the two resulting maps, 

and vice versa. If the data from the two time periods were consistent, the two maps should result

highly similar, otherwise they would be significantly different. Interestingly, we found that the 

number of species with consistent data was different depending on the algorithm, being Maxent 

the most robust (n = 21), whereas the General Additive Model (GAM) obtained the lowest 

number (n = 3) (Table 1). This result corroborates the fact that algorithms have different 

sensitivity to data bias or incompleteness (Moreno-Amat et al., 2015); therefore, if the user 

knows or suspects about this problem in the dataset, a safer decision is to use a low data-

demanding algorithm (e.g., Maxent, Bioclim).

There are at least three assumptions when transferring niche models over time: (1) 

the species is in equilibrium with the environment (Araújo, Pearson & Rahbek, 2005), (2) the 

species maintains the same response to environmental conditions between time periods 

(Anderson 2011), and (3) the ecological niche remains conserved along time periods (Soberón &

Nakamura, 2009; Wiens et al., 2009; Sequeira et al., 2018). However, other factors have a 

strong effect on the capacity of niche models to transfer over time, the most critical one being 

the variability produced by at least three sources: (1) data completeness and structure (i.e., 

quality and quantity) (García-Callejas & Araújo, 2016; García- et al., 2023); (2) algorithm 

performance (Heikkinen, Marmion & Luoto, 2012; Beaumont et al., 2016; Liang et al., 2018; 

Qiao et al., 2019); and (3) taxonomic idiosyncrasies (Sequeira et al., 2018; Regos et al., 2019). 

Of the seven algorithms that we tested, Random Forest (RF) showed the greatest predictive 

capacity and lowest overprediction. This algorithm has proved robust for transferences using 

virtual species (García-Callejas & Araújo, 2016), good performance for interpolations (Liang et 

al., 2018), relatively low overprediction (Mi et al., 2017), and high performance (Bell & 

Schlaepfer, 2016). Our results are consistent with other studies that found BRT having a good 

performance (García-Callejas & Araújo, 2016; Liang et al., 2018; Sequeira et al., 2018) and high 

variability (Bell & Schlaepfer, 2016). Maxent was also an algorithm that showed a high 

performance, particularly for hindcasting. Maxent is the most widely used algorithm 
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(Radosavljevic & Anderson, 2014; Moreno-Amat et al., 2015) in part because it is robust to data 

biases (Heikkinen, Marmion & Luoto, 2012; Liang et al., 2018; Sequeira et al., 2018). In turn, 

Bioclim presented the lowest performance, with low overfitting but high overprediction and 

variability between projections. Bioclim is sensitive to outliers or insufficient sampling, which 

might be the reason for its poor performance (Dobrowski et al., 2011; Beaumont et al., 2016).

Another important and novel result derived from our analyses is that most algorithms

performed differently for transferring models to future scenarios than to the past. Bioclim and 

GAM performed better for hindcasting than for forecasting, whereas RF, Support Vector 

Machine (SVM) and BRT behaved the opposite. Maxent and the Generalized Linear Model 

(GLM) were consistent for the two time periods. These differences may reflect the capacity of 

models to deal with non-analog climates (Pearson et al., 2006). For instance, Bioclim is sensitive

to extreme values, so it may be more affected by larger differences between climatic scenarios, 

as compared to Maxent that has the capacity to clamp and extrapolate into non-analog values 

(Phillips & Dudík, 2008). More importantly, these results suggests that the choice of an algorithm

has implications beyond its simple capacity to produce adequate models in the calibration 

scenario. 

Finally, a potential limitation of this study is that the taxonomy of Mexican rodentsis 

continuously updated. While our research relied on the latest revision of Mexican mammals 

(Ramírez-Pulido et al. 2014),recent proposals suggest species separation for Peromyscus 

melanophrys, P. furvus, P. levipes, P. zarhynchus, and Osgoogomys banderanus (Lorenzo et 

al., 2016; Almendra et al., 2018; Cruz-Gómez et al., 2021; Bradley et al., 2022). As a result, the 

quantity and spatial structure of occurrences for these species may undergo some modifications.

Nonetheless, based on our calibration tests, we believe that the generality of our findings 

remains unaffected by these taxonomic changes

Finally, when the aim of a study is to explore the potential distributional responses of 

species to climate change under a niche modeling approach, we recommend the following:  

First, perform a thorough screening and cleaning of occurrence data and identify the most 
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important variables to characterize the ecological niche of the focal species. Then, perform a 

cross-modeling procedure between time periods in a retrospective fashion (past to present and 

vice versa) using different algorithms to identify the effect of sampling bias or incompleteness on

model transferences, and decide whether the target species is suitable for the analysis. Split the 

occurrence data into two time periods (e.g. present-near, past) and model between times with 

different algorithms or perform a consensus to identify the model with the highest transferability 

over time according to the specific data structure. Finally, identify FNR and FPR to make a 

decision on the error that best fits the question to be answered by the transfer.

Conclusions

We found that both the quantity and quality of data, along with the choice of the modeling

algorithm significantly influence model transferability. Furthermore, we observed that algorithms 

exhibit unequal performance when transferring models from the past to the present compared to 

the reverse process. Consequently, we assert that not all species are suitable candidates for 

transferring models to alternative climatic scenarios; only those species with sufficient 

occurrence records to produce robust niche models, should be considered for projections time 

periods. 

Additionally, not all algorithms perform uniformly across different occurrence data 

structure and levels of completeness. Some algorithms are more sensitive to small sample sizes

and non-analog climates. Therefore, we recommend conducting preliminary tests on algorithmic 

performance to specific occurrence datasets in a retrospective manner before proceeding with 

model transferences to future climatic scenarios.
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Table 1(on next page)

Species with sufficient occurrences

Number of species with consistent occurrence data between time periods for each modeling
algorithm
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Algorithm

Number of species with consistent models

Occurrences of period 1 
modeled with climatic 
variables of Period 2

Occurrences of period
2  modeled with 
climatic variables of 
Period 1

Bioclim 41 42

Boosted Regression Trees (BRT) 44 43

Generalized Additive Models (GAM) 44 44

Generalized Linear Models (GLM) 44 44

Maxent 44 44

Random Forest (RF) 44 44

Support Vector Machine (SVM) 44 44
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Note
This table is unnecessary because the results can be easily stated as: Except for Bioclim (41 in period 1 versus 42 in period 2) and BRT (44 in period 2), all species modeled were consistent (44 models in both directions). 



Figure 1
Methodological approach

Methodological approach used to evaluate the ability of algorithms to transfer niche models
over time. (a) Ecological niche model calibrated with occurrence data and environmental
variables from the same period. (b) Ecological niche model calibrated with occurrence data
from one period and environmental variables from a different period. (c) Model transferred to
a different period. (d) Geographic validation by comparing the model transferred from one
period against the model calibrated in the other period.
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Figure 2
Model performance

Performance of niche modeling algorithms for hindcasting and forecasting using different
metrics: True Skill Statistics, TSS; Overlap Index OI; False Positive Rate, FPR; and False
Negative Rate, FNR.
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