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ABSTRACT

In semi-arid and arid areas, gully erosion is one of the most destructive forms of erosion
and causes serious land degradation and resource destruction. Steepland gullies are
widely distributed in the dry valleys of southwest China, and their formation is one
of the main causes of soil erosion and the destruction of sloping farmland in the
region. Previous research on the development of steepland gullies is limited, and further
study is needed. In this study, 11 steepland gullies at various stages of development
located in Guobu Village, Xide County, Liangshan, Sichuan Province, were selected
for investigation using a digital elevation model (DEM) derived from unmanned aerial
vehicle data as the primary data source. These data had a spatial resolution of 0.1 m.
Fundamental parameters such as the gully length, width, depth, area, and volume were
extracted from the remote sensing data. Other characteristic parameters, including
the coefficient of main and tributary gullies, vertical gradient, gully elongation, and
gully openness, were also investigated. The results indicate a significant linear positive
correlation between the gully’s degree of openness and elongation as the gully’s length,
width, and depth increase. Furthermore, the vertical gradient and coefficient of main
and tributary gullies exhibit power-law relationships with these gully dimensions.
The development of steepland gullies was divided into infancy, youth, maturity, and
old age based on the use of the gully length as an ergodic indicator in space-for-
time substitution. The morphological characteristics of these different stages were
quantitatively analyzed, and a proposed mechanism for how the evolution of the gullies
proceeds was developed. An empirical model of volume-length erosion was established
to investigate the development process of steepland gullies in the dry valleys. It has been
observed that the development law of steepland gullies is essentially consistent with the
very active stage of typical gully formation, suggesting that steepland gully may represent
the initial stage of gully development. The results show that these steepland gullies have
their origin in high-intensity rainfall events that are accompanied by the formation of
steps and drop water. The effects of gravity erosion and hydraulic erosion then cause
the gullies to expand rapidly, forming gullies with a large head and a small tail before
they gradually stabilize. The results of this study will help with the understanding of
the formation and evolution of steepland gullies and will be of practical significance for
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the prevention of gully erosion and the protection of sloping farmland in the dry valley
region of southwest China.

Subjects Soil Science, Ecohydrology, Spatial and Geographic Information Science
Keywords Morphology, Space-for-time substitution, Dry valleys, Steepland gully

INTRODUCTION

Soil erosion is one of the major global environmental problems that endanger human
survival and development (Castillo & Gomez, 2016; lonita et al., 2021; Wuepper, Borrelli
¢ Finger, 2020). Gully erosion, which destroys sloping farmland and leads to significant
soil and water loss, is one of the most important forms of soil erosion and one of the
most serious manifestations of soil degradation (Bewket ¢ Sterk, 2003; Bruno, Stefano

& Ferro, 2008; Le Roux ¢ Sumner, 2012; Nearing et al., 1997). In certain loess regions of
Europe, gully erosion contributes an average of over 30% to the overall soil loss (Casali,
Giménez ¢ Bennett, 2009; Poesen et al., 2003), while in China, it accounts for half of the
total watershed loss (Wu et al., 2018). The rate at which permanent gullies cause soil loss
markedly surpasses that of cultivated land and stands as the primary driver behind global
landscape degradation (Allen et al., 2018; Bennett ¢ Wells, 2019). The dry valley region of
southwest China has a fragile ecological environment that suffers from severe soil erosion,
broken surfaces, and active gully erosion (Zheng & Gao, 2003). In the dry valley region of
southwest China, slopes with a gradient exceeding 25° comprise 55% of the total area (Fan
et al., 2020). The steepland gully is a distinctive erosion gully type found in the dry valleys
of the southwest region. It represents a permanent feature formed on slopes with a notable
incline, characterized by its wide body and tapering tail. As the erosion gully progresses, the
tail gradually thins out and either merges into adjacent gullies or dissipates entirely on the
slope, resulting in an overall spoon-shaped or palm-shaped morphology with distinct gully
patterns. The continuous expansion of steepland gullies has led to the ongoing depletion
of farmland resources, resulting in reduced land productivity and severe negative impacts
on local livelihoods, agricultural production, and regional economic development. An
accurate depiction of the processes involved in gully erosion is essential for comprehending
the underlying mechanisms, and an investigation into the development of steepland gullies
can help with the effective protection of sloping farmland while also playing a vital role in
the preservation of water and soil resources.

Gully evolution has always been a prominent topic in the field of gully geomorphology
(Bewket & Sterk, 2003; He et al., 2018; Jiang et al., 2018; Ran et al., 2018; Roberts ¢ Gregg,
2019) and is influenced by various factors, including the basin area, surface runoff,
precipitation index, previous precipitation, soil moisture, and piping index (Berger et
al., 20105 Seginer, 1966). Due to the diverse internal and external forces that influence the
different stages of gully development, notable spatiotemporal variations are observed (Gales
et al., 2013), making an accurate description of gully erosion essential. Gullies constitute
a significant geomorphic unit of dry valleys and serve as a crucial conduit for sediment
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and pollutant transport (Zhang et al., 2022). The presence and developmental processes of
gullies markedly influence the geomorphic characteristics and subsequent evolution of the
landscapes where they occur (Zhang, 2020). Although the formation of gullies is relatively
rapid, their subsequent development progresses comparatively slowly.

Previous monitoring of gully erosion revealed that a series of interconnected processes,
including leakage, soil creep, collapse, and erosion, regulate gully development (Sidorchuk,
1999; Soufi, 20025 Zheng, Xu ¢ Qin, 2016). The primary mechanisms contributing to gully
development are headwater erosion, lateral erosion of the gully slope, and cutting erosion
beneath the gully (Jing, 1986). Its formation and evolution are influenced by various factors
(Shen et al., 2015), including topography, parent material and soil properties, climate
conditions, hydrological processes, vegetation coverage, and current land-use changes
(Hayas, Poesen & Vanwalleghem, 2017; Parkner et al., 2006; Rahmati et al., 2022; Torri et
al., 2018). The formation and development of spoon gullies in loess areas result from the
interaction between external factors such as climate, soil and vegetation and internal factors
such as geology and geomorphology (Li ef al., 2022). In the subtropical and semi-humid
regions of Tennessee, United States, gully incision and expansion are closely correlated
with antecedent rainfall, cumulative rainfall, and rainfall duration (Luffrman, Nandi &
Spiegel, 2015). Agricultural activities and disturbance intensity, land reclamation for
farming purposes (Chaplot et al., 2011; Lesschen et al., 2007; Saxton et al., 20125 Selkimiiki
& Gonzilez-Olabarria, 2017), overgrazing, deforestation through forest cutting practices,
road construction activities, and urbanization markedly influence gully incision initiation
and progression. Forest cover markedly contributes to inhibiting gully incision development
(Fajardo, Llancabure ¢ Moreno, 2022; Nogueras et al., 2000; Vandekerckhove et al., 2000).
Basic geometric characteristics such as gully network density, tortuosity, cutting degree, and
inclination angle are effective when evaluating morphological evolution in river landforms
(Bryan & Rockwell, 1998; Shen et al., 2015), whereas parameters such as length, width, and
depth are efficient for characterizing steepland gully evolution (Deng et al., 2015; Wang et
al., 2023). The coefficients of main and tributary gullies, gully openness degree, vertical
gradient, gully elongation, and the length-to-width ratio can directly quantify erosion
gully development (Liu et al., 2016). Examining the correlation between these fundamental
indicators can reveal steepland gully development patterns and provide insights into the
mechanisms underlying erosion gully formation (Berger et al., 2010; Kimaro et al., 2008).

Research on steepland gullies has been conducted worldwide, including in New Zealand
and Ethiopia, with a primary focus on the factors that influence the development
of the gullies (Betts, Trustrum ¢ Rose, 2003; Billi & Dramis, 2003; Frankl et al., 2013a;
Marden et al., 2012). Steepland gullies are widely distributed in the dry valley regions.
However, research on its development and evolution process remains in the preliminary
exploration stage. While steepland gully development disrupts land resource integrity
and effectiveness, it can also exacerbate soil erosion on slopes. Therefore, the study of
steepland gullies in the dry valleys is of considerable importance. In this study, using
space-for-time substitution, steepland gully development was divided into stages based on
spatial factors. The characteristics and erosion mechanisms at each stage were then used
to develop a proposed model for the progression of gully evolution. This approach will
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aid in understanding steepland gully formation and evolution while providing a reliable
theoretical foundation for predicting gully erosion and preventing soil erosion.

STUDY AREA

The Liangshan region is acknowledged as one of the regions of China that suffers most
seriously from soil erosion (Liu ¢» Zhao, 2004). The region has a subtropical monsoon
climate characterized by an average annual temperature of 14 degrees centigrade, average
annual precipitation of 1,006 mm, and average annual evaporation of 1,945 mm. The
precipitation is not evenly distributed throughout the year. Purple and yellow-brown soil
types predominate, and low-to-medium-altitude mountains constitute approximately 70%
of the land area. This study focused on Guobu Village, which is located in Xide County
of Liangshan of Sichuan Province and features topography where the elevation gradually
decreases from north to south and east to west; the elevation has a range of approximately
1,680-2,025 m. This area is located on the east side of the Anning River—Zemu River fault
zone (Fig. 1A), which is the principal active fault at the eastern boundary of the Sichuan—
Yunnan active block. The robust tectonic background is influenced by the collision and
compression between the Indian and Eurasian plates, which creates a complex geological
environment characterized by well-developed secondary fault structures, extensive rock
fragmentation, and poor stability (Jiang et al., 2015; Replumaz et al., 2001; Wang et al.,
1998). Notably, numerous erosion gullies, including steepland gullies at various stages of
evolution, are widely distributed across the area and comprise a relatively comprehensive
evolution sequence that facilitates the investigation of steepland gully development and
evolution (Fig. 1B).

DATA AND METHODS

Data collection

A Pegasus D200S multi-rotor unmanned aerial vehicle (UAV) equipped with a LIDAR110
lidar was used to carry out a digital terrain survey of the study area on January 14th, 2022.
Eleven field control points were set in conjunction with real-time kinematic positioning
for precise calibration of both the vertical and horizontal data. The UAV Butler software
was utilized to convert the lidar data format, and the laser point cloud trajectory was
calculated using the Inertial Explore high-precision GNSS/INS post-processing software.
Subsequently, the point cloud data underwent calculation using the UAV Butler software.
The data were then segmented into blocks, followed by noise removal and classification;
this ultimately produced a digital elevation model (DEM) with a resolution of 0.1 m, along
with a processing flow chart for the laser point cloud data (Fig. 2).

Methods
Use of spatiotemporal ergodic indicators for studying the development of
steepland gullies

When utilizing the space-for-time substitution method to investigate the evolution of river
geomorphology, it is necessary to ensure that the selected experimental objects are situated
at an equivalent watershed level and have comparable watershed morphologies; in other
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Figure 1 The study area. (A) The data set is provided by Geospatial Data Cloud site, Computer Network
Information Center, Chinese Academy of Sciences; Landsat 8 OLI_TIRS Satellite Digital Products (https:
Jwww.gscloud.cnkources/accessdata/4112pid=263).

Full-size Gl DOI: 10.7717/peerj.18411/fig-1

words, the chosen experimental subjects should share a similar or identical developmental
environment (Fryirs, Brierley ¢ Erskine, 2012). In this study, we selected a representative
region featuring steepland gullies within a dry valley. This area exhibits well-developed
geological structures, steep terrain gradients, concentrated precipitation patterns, and
sparse vegetation cover, as well as fragmented rock and soil compositions; these provide
the basic conditions necessary for the formation of erosion gullies. Moreover, various stages
of steepland gully evolution have been preserved within the study area, thereby forming a
relatively comprehensive sequence.

Space-for-time substitution often employs ergodic indicators to reflect the
spatiotemporal development of individual landforms and thus represent the changing
characteristics of research objects. In studies on the evolution of geomorphology, many
researchers have utilized morphological measurement parameters such as distance,
location, and geomorphologic dimension or complexity as ergodicity indices (Huang
et al., 2019). Micallef et al. (2014), Yang et al. (2021b), and others used space-for-time
substitution to investigate the evolution of gullies and selected the gully length as an
ergodic indicator to represent the different stages of gully development. In this study, this
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Figure 2 Flowchart of data processing.
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method was adopted for sorting and numbering the steepland gullies based on the length
of the main gully.

Morphological indicators used to represent the spatiotemporal development
of steepland gullies

The selected gully parameters were first extracted using the ArcGIS software to obtain
DEM data for the steepland gullies. Referring to earlier studies (Micallef et al., 2014), the
indicators that can effectively reflect the morphological changes during the development
of steepland gullies were selected: the coefficient of the main and tributary gullies, vertical
gradient, gully elongation, and gully openness. Descriptions of these indicators are given
below. (1) The coefficient of the main and tributary gullies, R, is the ratio of the length of
the main gully to the total length of the gully:

L
"L
where L is the length of the main gully, and Ly is the total length of the gully. (2) The
vertical gradient, I, is the ratio of the difference in elevation between the gully’s head and

R (1)

tail to its length:
H, — H,

R

where H; is the elevation of the gully head, H is the elevation of the gully tail, and L is the

I

(2)

length of the gully. (3) The gully elongation, F, is the ratio of the gully’s width to its length:

F:T (3)
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where W represents the width of the gully, and L represents its length.

The gully elongation quantifies the relationship between the length and width of the
rectangle formed by enclosing the gully along the direction of the normal to the slope. It
also indirectly classifies the gully according to the type of tail: according to Huang Jinlv’s
proportion standard, F < 0.618 corresponds to a “slender” tail, F = 0.618 corresponds to
a tail of the “Huang Jinlv type”, and F > 0.618 corresponds to a “short, coarse” tail. (4)
The gully openness, K, is a measure of the topographic openness of the gully:

w 1000A
K=—=—- (4)
H L-H
where W is the width, A is the area, L is the length, and H is the relative height difference
of the gully.
A gully with K > 0.65 is defined as “open”, 0.35 < K < 0.65 corresponds to a “semi-open

gully”, and an “incised” gully has K < 0.35.

Steepland gully cross-section indicators

During the process of gully development, the cross-section morphology serves as a
significant indicator of gully dynamics. The VF indicator, a measure of the width-to-
height ratio of a valley, can be employed to quantitatively assess a gully’s cross-sectional
characteristics and thus provide insight into regional uplift patterns. Given the specific
conditions prevailing in the study area, for each gully, we selected five cross-sections for
analysis: these were named upper gully, upper-middle gully, middle gully, lower-middle
gully, and lower gully (Fig. 3). The average VF value was then calculated for each cross-
section (Bull & Mcfadden, 1977). A low VF value (VF < 1.0) was considered to indicate a
V-shaped valley with rapid regional uplift and intense downcutting erosion by a river. A
high VF value (VF > 1.0) was considered to correspond to a wider valley where tectonic
activity is relatively weak and lateral erosion dominates over downcutting erosion. The
value of the VF indicator was calculated as

VF — 2VFfw (5)
" [(Eld — Esc) + (Erd — Esc)]

where Ffw represents the width of the valley floor, Eld and Erd represent the elevations of

the shoulders on the two sides of the valley, and Esc represents the average elevation of the
valley floor.

Empirical volume—-length relationship

There is a power function relationship between the volume and length of the erosion
trench, which usually closely fits the data set, so the volume-length (V-L) model can be
used to predict the volume of the gully (Frankl et al., 2013D).

V=a-I". (6)

Here, V represents the volume of the gully, and L represents its length. The higher the
absolute value of a is, the stronger the correlation between V' and L; b reflects the rate at
which the volume changes in response to variations in gully length.
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Data processing

In this study, high-resolution DEM data and the space-for-time substitution approach were
used to select 11 steepland gullies that were at various stages of development (Figs. 1B and
4). Basic indicators such as the gully length, width, depth, area, volume, vertical gradient,
width-to-length ratio, openness, and the coefficient of main and tributary gullies were

extracted using ArcGIS software.
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Table 1 Statistical results of basic indicators of steepland gullies in Guobu village.

Gully Gully Gully Gully Area Volume

No. length (m) width (m) depth (m) (m?) (m?)

Gl 82.29 11.56 3.57 1159.69 4140.09
G2 100.44 12.96 3.88 1107.41 4291.23
G3 114.01 11.12 3.19 667.34 2128.81
G4 117.69 12.01 3.68 1176.95 4331.17
G5 141.02 19.39 4.86 2190.96 10641.78
G6 144.06 30.24 6.50 3604.47 23429.08
G7 227.94 45.61 16.29 8248.49 134332.59
G8 239.70 61.90 24.29 11459.63 278305.31
G9 265.60 91.50 28.86 20630.29 595331.27
Gl10 363.87 114.11 30.57 31783.21 971658.19
Gl1 498.82 145.87 41.57 50878.91 2115087.19

RESULTS AND ANALYSIS

Morphological characteristics of steepland gully
Planar characteristics

Based on the lengths of the main gullies, the steepland gullies in the study area were sorted
and numbered (Fig. 4); gully G1 was the shortest at 82.29 m, and gully G11 was the longest
at 498.82 m. Gully G3 was the narrowest (width = 11.12 m), and gully G11 was the widest
(width = 145.87 m). The shallowest gully, designated G3, had a depth of 3.57 m, whereas
G11 was the deepest at 41.57 m. As steepland gullies develop, their length, width, depth,
area, and volume increase (Table 1).

An empirical model, V = 0.2 x L*%!, which accurately describes the relationship between
the length and volume of the steepland gullies in the dry valleys, was established. This model
exhibits a high coefficient of determination (R*> =0.98), indicating a strong correlation
between the length and volume (Fig. 5A). The area and volume of the steepland gullies
were found to increase nonlinearly with the length of the main gully (Figs. 5A and 5B).
During steepland gully development, the longitudinal and transverse forces are exerted,
leading to continuous growth, widening, and increased erosion amount. In the early
stages of development, expansion is slow; however, in the later stages, the expansion rates
accelerate rapidly. The gully elongation increases linearly with the width, length, and depth
of the gully (Figs. 5C, 6A and 7A), where ductility values remain below 0.618 according
to the Huang Jinlv’s proportion standard, classifying it as a slender gully type. The gully
openness also increases linearly with the width, length, and depth of the gully (Figs. 5D,
6B and 7B). Based on the openness degree, gullies G1-G7 were found to correspond to
the incised type (K <0.35), whereas gullies G8-G11 were found to correspond to the
semi-open type (0.35 < K < 0.65). These results show that, as gullies develop, the amount
of undercutting continues to increase as a result of hydraulic action. The vertical gradient
decreases nonlinearly with the width, length and depth of the gully (Figs. 5E, 6D and 7D),
and the coefficient of the main and tributary gullies decreases nonlinearly with the width,
length, and depth (Figs. 5F, 6C and 7C). These two results indicate that the early stages of
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gully development are rapid; the rate of development later slows down until it becomes
constant.

Profile characteristics

Based on the actual situation in the study area, four representative gullies were selected,
and the five cross-sections described in “Steepland gully cross-section indicators” were
drawn for each of them (Fig. 8); the average VF values for these cross-sections were then
calculated. It was observed that the VF values gradually increased as the gullies developed
(Fig. 9). The range falls between 0.38 and 1.35, where G1-G9 represent V-shaped gullies
(VF < 1), while G10 and G11 represent U-shaped gullies (VF > 1).

As illustrated in Fig. 8, the cross section of the gully exhibits a gradual transition
from wide to narrow, which is indicative of a wide gully head and a narrow gully tail.
The four selected gullies have undergone progressive deepening and widening over time,
transitioning from shallow V-shaped gullies to having a more pronounced U-shaped
morphology. Initially, the cross-sections exhibit distinct V-shapes with smooth walls,
primarily due to hydraulic scouring and undercutting. Subsequently, the gullies gradually
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achieved within the U-shaped gullies.

and single shape and are at the infant stage.

evolve into broader V-shaped gullies characterized by the formation of noticeable fractures
and steps on their slopes; gravity-induced collapse also becomes increasingly prominent
during this stage. At the same time, lateral erosion continues to widen the gullies, and
surface tributaries develop. This leads to the slopes becoming less steep until stability is

Division of the development of steepland gullies into stages

The steepland gully classification results show that each development stage is associated
with different morphological characteristics (Tables 1 and 2). Gullies G1, G2, and G3 have
lengths of between 82.29 and 114.01 m, widths of between 11.12 and 12.96 m, and depths
of between 3.19 and 3.88 m. These gullies have VF values of less than 1 and V-shaped
cross-sections. The scale of these gullies is small: they consist of a single gully with regular

Gullies G4, G5, and G6 have lengths between 117.69 and 144.06 m, widths between

12.01 and 30.24 m, and depths between 3.68 and 6.50 m. These gullies have VF values of
less than 1 and V-shaped cross-sections. The gully edges are severely broken. These gullies
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are spoon-shaped with a big top and small bottom, are irregular in shape, and are gradually
expanding up to the gully wall; this results in an increased eroded area.

Gullies G7, G8, and G9 have lengths between 227.94 and 265.60 m, widths between
45.61 and 91.50 m, and depths between 16.29 and 28.86 m; they have VF values of less than
1. These gullies have wide V-shaped cross-sections and exhibit a further increase in gully
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scale as the gully heads collapse and move upstream; these gullies are at the mature stage
and exhibit strong erosion.

Gullies G10 and G11 have lengths of 265.60 and 498.82 m, widths of 91.50 and 145.87 m,
and depths of 30.57 and 41.57 m, respectively; for both gullies, VF > 1. These gullies have
U-shaped cross-sections, and their internal branches are well developed. The head of the
gully headward erodes the sloping farmland. Although the shape of this type of erosion
gully can be irregular, gullies of this type are generally spoon-shaped. Later, during the
old-age stage of steepland gully development, hydraulic erosion predominates due to the
overall decrease in erosion potential energy.

DISCUSSION

The V-L empirical relationship of steepland gullies

The relationship between gully volume and gully length can be described by a power
function, and numerous scholars have established a significant empirical V-L power

function relationship to predict both the volume of gullies and the amount of erosion
(Caraballo-Arias et al., 2016; Dong et al., 2014; Frankl et al., 2013b; Wu et al., 2018). The
coefficients of the regression equations in different regions vary significantly due to
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Table 2 Morphological characteristics of steepland gullies at different development stages.

Steepland gully
numbers

Development
stage

Characterization

Profile and planar

G1,G2,G3

G4, G5, G6

G7, G8, G9

G10, G11

Infancy

Youth

Maturity

Old

The slope bedrock in the study area consists mainly of
siltstone with developed bedding and joints, resulting in
broken rocks. Surface runoff scours away a significant
amount of clastics from the loose surface, causing steps to
form on the slope. Numerous erosion breakpoints form
along the longitudinal section of the runoff route, which

develop into gully heads. As a result of the action of flowing

water, continuous headward erosion occurs at these gully
heads, leading to the lengthening of the rills. Eventually,
many gully heads become connected, forming the initial
steepland gully.

The erosion process has intensified and is dominated by
hydraulic erosion, resulting in the steepland gully eroding
downstream with further increases in length, width, and
depth.

The effect of gravity reduces the capacity of the surface
runoff to transport deposits. In addition, transported
deposits gradually accumulate from the head of the gully to
its tail, leading to the formation of a steepland gully with a
large head, wide body, and narrow tail.

The gully bed undergoes longitudinal erosion as a result
of rainfall, resulting in the formation of a hydraulic drop.
At the same time, headward erosion continuously erodes
the gully head, causing its collapse, together with upstream
movement along the slope direction. This process leads

to an increase in the length, width, and depth of the gully
while encouraging surface runoff. Finally, surface runoff
occurs across the gully, which leads to a further decrease in
the gully gradient. As a result, the gully gradually stabilizes,
and the vegetation within the gully begins to recover.

various influencing factors, including development stage, gully count, morphological

characteristics, and measurement methods (Li et al., 2017; Wu et al., 2018). Therefore,

establishing an empirical relationship between the length and volume of steepland gullies

in the dry valleys can serve as a reference for the rapid estimation of gully volume. The

statistical data of 11 steepland gullies were utilized in this study to establish power functions

for length and volume. The regression equation V' = 0.2 x

was derived, yielding a high

coefficient of determination (R = 0.98). These findings support previous research results
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(Dong et al., 20145 Zhang et al., 2022), indicating a robust association between steepland
gully length and volume. The conclusion is drawn that the steepland gullies belong to
the gully category and are in the initial developmental stages. Compared to the empirical
model proposed by Yang et al. (2021a), the very active stage is characterized by V =0.164
x L1273 (n=39), the active stage is characterized by V =13.721 x L2992 (3 =32), and the
relatively active stage is characterized by V = 1.739 x L*162 (n = 26). The slightly stable
stage is represented by V = 7.407 x L!83* (5 = 14), while in the entire process, a moderately
stable stage exists, with V =11.641 x L'77® (n=111). Comparative analysis revealed that
the steepland gullies are currently in a very active stage of dry valley gully development
(Fig. 10). As the steepland gullies progress, both their length and width increase, while
internal branches gradually form within the gully. Traceability erosion diminishes the gully
watershed, causing it to merge with other gullies and expand continuously, ultimately
transforming into a continuous gully system. Therefore, steepland gullies likely represent
an early stage in the development of gully systems in the dry valley region of southwest
China.

Characteristics of steepland gully development in the dry valley
A steepland gully represents the initial stage of the formation of a permanent gully. The
development of steepland gullies exhibits particular characteristics influenced by natural
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factors, such as geology, topography, climate, soil, vegetation, and human activity. This
results in distinctive developmental characteristics. The morphology of a steepland gully
resembles that of a spoon gully found on the Loess Plateau of northern China. Despite both
types exhibiting prominent gully lines with a wide head and narrow tail, taking on shapes
resembling spoons or palms, the key difference is that the spoon gully’s tail gradually tapers
and either merges into a larger gully or directly disappears on the slope surface (Heede
1982; Li et al., 2020; Li et al., 2017). The Loess Plateau experiences limited rainfall and is
dominated by cotton loess and sandy loess slopes. These slopes have high collapsibility
and are highly susceptible to subsurface erosion of the loess; as a result, kettle depressions
and hidden caverns, as well as spoon gullies, are formed (Li et al., 2003; Li et al., 2020; Su et
al., 2015). In the dry valleys of southwest China, active geological structures, concentrated
precipitation, sparse vegetation, and fragmented rock and soil provide the necessary
conditions for steepland gully development. The slope experiences the formation of a series
of water flow pits due to the combined effects of intense rainfall and gravity, leading to
water-induced continuous headward erosion and ultimately initiating the development of
steepland gullies (Xiong et al., 2014; Zhao et al., 2013). The joint action of gravity erosion
and hydraulic erosion affects two types of gullies, with the headward erosion at the gully
head markedly contributing to the promotion of further gully development.

Steepland gullies are widely distributed worldwide and are found in locations such as New
Zealand and Ethiopia. These gullies form on steep slopes and are significantly influenced
by precipitation. However, their development patterns and morphology vary due to
differences in climate and lithology. In the dry valleys of southwest China, the formation of
steepland gullies can be attributed to heavy rainfall. Once they have formed, these gullies
rapidly erode the bedrock, leading to collapses that damage vegetation and arable land.
In the study area in New Zealand, steepland gullies form as a result of deforestation and
intensive agriculture. Typically triggered by landslides, these gullies develop in areas where
multiple drainage channels converge; these are subsequently carved out and deepened
by flowing water. The rate at which these gullies develop and their development patterns
are primarily influenced by the steep topography and underlying lithology (Marden et
al., 2012). In the study area in Ethiopia, the natural vegetation has been destroyed due to
human activities such as grazing and crop planting. On the hillsides, this has resulted in
steepland gullies caused by rainfall (Frankl et al., 2013a). Regarding their morphological
characteristics, the steepland gullies in the dry valleys of southwest China and those in New
Zealand exhibit similar features, such as a wide head and a thin tail that resembles a spoon
or a palm. However, research on the erosion of steep slopes in Ethiopia revealed that a
high clay content and the presence of extensive rock fragments in the soil on these slopes
increases the susceptibility to sheet erosion when the slopes are exposed to rainfall (Nyssen
et al., 2006).

CONCLUSIONS

In this study, high-resolution DEM images acquired by unmanned aerial vehicles were
used to select 11 steepland gullies in the dry valley region of southwest China based
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on space-for-time substitution. The length, width, depth, area, volume, coefficient of
main and tributary gullies, vertical gradient, gully elongation, gully openness, and the
width-to-height ratio of the gullies were extracted using ArcGIS software. By considering
the morphological characteristics of the different stages of gully development, this
development was divided into four stages. Quantitative analysis of both the planar and
profile morphology of the gullies at these different stages was used to deduce how the
evolution of the gullies progressed. The following two main conclusions can be drawn. (1)
Based on the morphological characteristics of gully development, the evolution of steepland
gullies can be categorized into four stages: infancy, youth, maturity, and old age. Each stage
exhibits a distinct profile and planar features. The gullies designated G1, G2, and G3 were
found to be in their infancy, gullies G4, G5, and G6 to be at the youth stage, and gullies G7,
G8, and G9 to be mature gullies. Two gullies—G10 and G11—were found to have reached
the old-age stage. Steepland gullies have their origin in intense rainfall events that result in
scouring caused by slope runoff. Subsequent lateral and headward erosions together lead to
the widening of the gully as the area of the adjacent watershed decreases; this leads to rapid
development of the gully. In the later stages of development, gravity erosion dominates,
although lateral erosion also occurs; however, due to the reduced overall erosion potential,
the secondary erosion and transport resulting from hydraulic action ultimately stabilize the
gully. (2) During the development of steepland gullies, there is a significant linear positive
correlation between the gully’s degree of openness and elongation with increasing gully
length, width, and depth. The vertical gradient and the coefficient of main and tributary
gullies also exhibit power-law relationships with these gully dimensions. The simultaneous
occurrence of longitudinal and lateral erosion leads to continuous growth and widening of
the gullies, resulting in an increase in the amount of erosion. Initially, the expansion of a
steepland gully proceeds at a relatively slow pace with gradual increases in both area and
volume; however, during the later stages, the development accelerates significantly, leading
to a rapid expansion in both the area and volume of the gully. Nevertheless, as the gully
continues to develop, its overall potential energy gradually diminishes causing the gully
to tend toward stabilization. The V-L erosion empirical model for steepland gullies was
established and compared with that of typical gullies in the dry valley region of southwest
China. The findings indicate that the development law of steepland gullies is essentially
consistent with the very active stage of typical gully formation, indicating that steepland
gullies may represent an early stage in gully development. This model can effectively predict
the volume and extent of erosion caused by steepland gullies in the dry valleys of southwest
China, thereby providing valuable insights for the rapid estimation of cutting volumes.
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