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ABSTRACT
Classifiers trained on high-dimensional data, such as genetic datasets, often encounter
situations where the number of features exceeds the number of objects. In these cases,
classifiers typically rely on a small subset of features. For a robust algorithm, this subset
should remain relatively stable with minor changes in the training data, such as the
replacement of a few samples. While the stability of feature selection is a common focus
in studies of feature selection algorithms, it is less emphasized in classifier evaluation,
where onlymetrics such as accuracy are commonly used.We investigate the importance
of feature selection stability through an empirical study of four classifiers (logistic
regression, support vector machine, convex and piecewise Linear, and Random Forest)
on seven high dimensional, publicly available, gene datasets.Wemeasure the stability of
feature selection using Lustgarten, Nogueira and Jaccard Indexmeasures.We employed
our own cross-validation procedure that guarantees a difference of exactly p objects
between any two training sets which allows us to control the level of disturbance in the
data. Our results show the existence of a drop in feature selection stability when we
increase disturbance in the data in all 28 experiment configurations (seven datasets and
four classifiers). The relationship is not linear, but resembles more of a hyperbolic
pattern. In the evaluation of the tested classifiers, logistic regression demonstrated
the highest stability. It was followed in order by support vector machine, convex and
piecewise linear, with Random Forest exhibiting the lowest stability among them. This
work provides evidence that all tested classifiers are very sensitive to even small changes
in learning data in terms of features used by the model, while showing almost no
sensitivity in terms of accuracy. The data and codes to reproduce the results in the
article are available publicly on GitHub: https://github.com/tlukaszuk/feature-selection-
stability-in-classifier-evaluation.

Subjects Genomics, Computational Science, Data Mining and Machine Learning, Data Science
Keywords Classification of objects, Feature selection stability, Classifier evaluation, Gene
expression data, Feature selection

INTRODUCTION
In the field of bioinformatics, gene expression data analysis plays a vital role in
understanding the mechanisms of gene regulation and identifying potential biomarkers
for disease diagnosis and prognosis (Gong et al., 2017; Keller et al., 2011). With the
advancements in high-throughput technologies, vast amounts of gene expression data
are being generated, presenting new challenges and opportunities for data analysis. One of
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the critical tasks in gene expression data analysis is the identification of the subset of genes
that are most relevant to the phenotype of interest, which is often achieved through feature
selection and classification techniques (Deng, Xu &Wang, 2019).

Feature selection involves the extraction of a subset of features from the original
feature space to effectively reduce its dimensionality (Liu & Motoda, 2012). Notably, this
process maintains the original feature space’s structure intact, selecting only key features to
reconstruct a low-dimensional feature space that preserves the same spatial relationships
as the original.

Classification refers to the process of assigning predefined labels or classes to instances
based on their characteristics or features. The goal is to develop a predictive model that can
accurately classify new, unseen data into predefined categories (Bishop, 2006; Duda, Hart
& Stork, 2012; Fukunaga, 1972).

While it is true that the accuracy of classifiers and the number of selected features are
commonly reported in scientific publications on gene expression data analysis, the stability
of feature selection, although equally important, is often overlooked.

Feature selection stability refers to the consistency of the selected features across random
subsamples of the same dataset (Khaire & Dhanalakshmi, 2022). It is a critical aspect of
feature selection as it reflects the generalizability and reproducibility of the selected features
beyond the current dataset. Without assessing the feature selection stability, the selected
features may not be robust enough to be used for downstream analysis or generalization
to independent datasets, leading to unreliable and irreproducible results.

Therefore, it is essential to report the stability of feature selection along with the accuracy
and the number of selected features in gene expression data analysis publications. This
article presents a study of three metrics, using four publicly accessible high-dimensional
datasets and evaluating four distinct classifiers that incorporate feature selection. Three
of these classifiers utilize the L1 norm—namely, logistic regression (LR), support vector
machine (SVM), and our proprietary method that employs a convex and piecewise
linear (CPL) criterion function. The fourth analyzed classifier is based on tree structures,
specifically the Random Forest (RF) method.

Our article presents a special approach to cross-validation that allow us to better
understand feature selection stability. In this approach we are able to control disturbance
in data, by choosing a number of objects p that are different between any two training
datasets. This allows us to measure how the size of changes in datasets influences feature
selection stability and other metrics for different models.

To summarize, in this article:

• we propose a methodology of generation of dataset subsamples for the use in feature
selection stability evaluation;
• we empirically study the accuracy and feature selection stability in high-dimension gene
expression data, as well as analyse seven gene datasets and four classification methods
with embedded feature selection;
• we propose to combine feature selection stability with accuracy for classifier evaluation.
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The rest of the article is organized as follows: in ‘Background’ we give a short background
to our research related to the feature selection stability. Then, in ‘Methods’, we describe
classifiers used, with special focus on our classifier, based on the CPL function, feature
stability measures defined by Lustgarten, Nogueira and Jaccard, and also our cross-
validation procedure called trains-p-diff. In ‘Empirical Studies’ we describe the datasets
used and the experimental setup. In ‘Results’ we present the results of the experiments. In
‘Discussion’, we discuss the outcome we have achieved, particularly within the context of
the most recent literature. Finally we conclude in ‘Concluding Remarks’.

BACKGROUND
In the last two decades, class prediction based on gene data has become a major
topic in many medical fields such as oncology, and other diseases including multiple
sclerosis (Bomprezzi et al., 2003). Such prediction refers to the categorical variable (most
often binary) that can be e.g., the presence or absence of a disease, a tumor sub-type or the
response to a therapy (Cruz & Wishart, 2006; Kourou et al., 2015; Pati, 2018).

Usually in one study there is data available for less than 300 patients, where each patient
is described by the thousands of gene expressions data. Such types of datasets with high
dimension and low number of observations are very challenging for statistical methods,
therefore many machine learning techniques are studied (Boulesteix et al., 2008).

Binary classification is the most basic task of machine learning and is often applied
to gene data. Classifier models learn on high-dimensional datasets and, in addition, they
automatically learn to use just a subset of features to make a prediction. Such subset
selection by classifier is sometimes called intrinsic or embedded feature selection. Other
types of feature selection, such as wrapper and filter methods (Lazar et al., 2012) were
also studied to discover genes responsible for the outcome class, but they need to be used
carefully because they could introduce the so called selection bias. This was outlined in our
previous study (Krawczuk & Łukaszuk, 2016) and here we will focus on feature selection
stability.

There has been much work done in the area of measuring the classification accuracy
for gene expression data using error rate, sensitivity, specificity and even the area under
receiver operating characteristic (ROC) curve (Guo et al., 2014; Novianti et al., 2015; Roy
et al., 2020), but rarely were those measures combined with selection stability which may
have fundamental practical meaning. If the model has low error but selects different genes
when just one patient in the training set is replaced, it will not give insight on which genes
could be the causes of disease and should be considered as unstable (Al Hosni & Starkey,
2021; Khaire & Dhanalakshmi, 2022).

Until recently, in the development of classification models, the focus was mainly
on improving performance and prediction accuracy. Algorithms were often focused
more on model complexity and minimising prediction errors (Freitas, 2014; Galdi &
Tagliaferri, 2018). In addition, researchers and practitioners concentrated on aspects such
as feature engineering, optimising hyperparameters or developing new machine learning
algorithms (Joy et al., 2016; Yang & Shami, 2020). In recent years, however, an increased
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awareness of the role of stability in feature selection and the awareness of the consequences
of unstable feature selection on overall model performance can be observed (Al Hosni &
Starkey, 2021; Khaire & Dhanalakshmi, 2022; Yang et al., 2013).

One of the key objectives in building predictive models is the ability to generalize.
Classical approaches to generalization often focused on the overall ability of the model to
deal effectively with new data and did not include an analysis of the stability of feature
selection (Kernbach & Staartjes, 2022). The gradual understanding that the stability of
feature selection is an important factor affecting a model’s ability to generalize effectively
led to a more detailed analysis of this issue in later years (Al-Shalabi, 2022; Nogueira,
Sechidis & Brown, 2018; Sechidis et al., 2020).

The stability of feature selection algorithmswas first studied byTurney (1995). Currently,
the topic of feature selection stability is a fairly important area of research in machine
learning and predictive modelling. Researchers seek to understand how different feature
selection methods affect the stability of models, as well as the practical implications of
unstable feature selection on the overall performance of predictive models (Al Hosni &
Starkey, 2021; Huang, 2021; Piles et al., 2021).

One of the earliest works proposing a framework for the stability of feature selection
was (Kalousis, Prados & Hilario, 2007), which included, among others, three gene datasets.
This study examined all three types of feature selection algorithms, including an embedded
method, and also considered the aspect of classification quality in their research.

Another study by Saeys, Abeel & Van de Peer (2008) demonstrated that constructing
ensemble feature selection techniques can enhance the stability of feature ranking and
subset selection by using methods similar to those applied in supervised learning. They
also emphasized the importance of evaluating the performance of the selected subset using
classification metrics. Similar to our approach, they proposed the use of the F-measure—a
well-known evaluationmetric in datamining that represents the harmonicmean of stability
(referred to as robustness in their work) and classification performance. In both Saeys,
Abeel & Van de Peer (2008) and the previously mentioned work by Kalousis, Prados &
Hilario (2007), the Jaccard Index was used to measure stability.

METHODS
This chapter outlines the methodologies and procedures employed in our study, providing
a foundation for the ensuing analysis and discussion. We start with the examination of
machine learned classifiers with the embedded features selection. This approach is beneficial
in that many machine learning models can use a small part of the features available in
training data which is particularly useful in high dimensional data. Then we describe in
detail how the stability of selected features can be measured, which is the key aspect in
bioinformatics and genetic data analysis where reproducibility and reliability are very
important. This aspect of our research addresses the often overlooked, yet crucial, element
of consistency in feature selections, which is essential for drawing reliable conclusions
in high-dimensional data analysis. Lastly, we introduce our tailored cross-validation
procedure we call trains-p-diff. This unique method is designed to ensure that exactly
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p objects differ between any two training sets—a strategy that allows us to control and
measure the impact of dataset variability on feature selection stability and other metrics.
This procedure not only enhances the rigor of our feature selection process but also
provides deeper insights into the influence of data variability on model performance.

Machine learning models with embedded feature selection
We focus only on these models, due to the following reasons:

• using any classifier on data such as gene expression, where the number of objects is
much lower than the number of features will likely conduct feature selection anyway;
• we have been working on a classifier that minimizes convex and piecewise linear
criterion function (CPL) with L1 regularization which we would like to test;
• computational efficiency is a significant constraint, as employing wrapper methods such
as SVM-RFE (Guyon et al., 2002; Guyon & Elisseeff, 2003) would render our extensive
computations, which spanned weeks, unfeasible within a practical timeframe;
• and finally using other feature selection methods such as wrapper or filter would require
the use of a classifier to measure accuracy anyway.

We can distinguish two types of machine learning models with embedded feature
selection—one is based on L1 regularization, while the other one is based on decision
trees. One of the widely used anti-overfitting techniques is the regularization of the model
parameters values by L1 or L2 norm. It can be used by many classifiers such as logistic
regression, support vector machines, or neural networks. When both norms reduce
overfitting, only L1 norm tends to set weights for the features to zero, which works like
feature selection. Let us introduce L1 norm with our CPL classifier.

We assume that data is represented as m feature vectors xj = [xj1,...,xjn]T
(
j = 1,...,m

)
of the same dimensionality n. The components xji of the vectors xj are called features. Each
feature vector xj is labelled with yj (yj ∈ {−1,1}) its membership to the decision class. For
example yj =−1 describe patients suffering from a certain disease and the yj = 1 describe
patients without the disease. Then we define the convex and piecewise linear criterion
function as:

8C(w,θ)=
m∑
j=1

max(0;1−yj(wTxj+θ))+ (1−C)
n∑

i=1

|wi| , (1)

where w= [w1,...,wn]
T
∈ Rn is the weight vector, and θ ∈ R1 is the threshold of the

hyperplane H (w,θ) and 0≥C ≥ 1 is a hyperparameter that controls the strength of the
regularization penalty. A lower value of C increases the strength of the regularization and
leads to more weights being pushed towards zero, resulting in a sparser model with fewer
features. Conversely, a higher value of C reduces the impact of regularization, allowing the
model to fit the training data more closely.

The basis exchange algorithm allows us to find the minimum efficiently, even in the
case of large multidimensional datasets (Bobrowski, 1991). In our experiments we used our
own python implementation.

Łukaszuk and Krawczuk (2024), PeerJ, DOI 10.7717/peerj.18405 5/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.18405


Similar to our criterion function8C (Eq. (1)), L1 regularization can be introduced to LR
and SVM algorithms. In our experiments we used the scikit-learn (Pedregosa et al., 2011)
implementation.

Another embedded feature selection method is one based on decision trees. In the
process of building the tree on every internal node the feature needs to be selected for test
that is based on gini or entropy criterion (Tangirala, 2020). For datasets with much more
features than objects n>>m only a small number of features will be used even for a fully
grown tree without pruning. In practice many ensemble techniques are used with decision
trees like bagging or boosting. We decided to use the RF algorithm in our experiments also
from the scikit-learn package (Pedregosa et al., 2011).

Feature selection stability measures
The issue of feature selection method sensitivity to minor changes in training data has
been explored by several authors. If the selection of features changes significantly when
a different sample from the same training data is used, the method is deemed unstable.
On the other hand, if the feature subset remains largely unchanged despite alterations in
the data, the method is considered stable. Although this notion is straightforward, there is
currently no universally accepted metric for quantifying stability, and various suggestions
have been put forth in the literature.

One of the first measures used to assess stability were those based on the intersection
of feature sets, such as the Tanimoto distance (Kalousis, Prados & Hilario, 2007) and the
Jaccard Index (Saeys, Abeel & Van de Peer, 2008). These measures allow for the evaluation
of the similarity between feature sets of different cardinalities but do not account for the
total number of features, and therefore, do not provide a correction for chance. However,
in our case, where the total number of features is much higher than the number of selected
features, this correction is minimal.

SJ (F ci,F cj )=
|F ci ∩F cj |

|F ci ∪F cj |
=

r
ci+ cj− r

(2)

where F ci and F cj are two subsets of features with cardinalities ci and cj , respectively, and
r is the number of shared features. This measure ranges from 0 to 1, taking the value of 0
when there are no common features and the value of 1 when both subsets are identical.

In our previous research, we used a measure proposed by Lustgarten, Gopalakrishnan &
Visweswaran (2009) as an extension of the Kuncheva similarity measure (Kuncheva, 2007).
The Kuncheva metric introduces a correction for chance but is applicable only to two
datasets with the same cardinality. Lustgarten’s extension allows for its use with subsets
F ci and F cj of different cardinalities ci and cj , which is the usual case in embedded feature
selection methods. It is calculated as follows:

SL(F ci,F cj )=
r− cicj

n

min(ci,cj)−max(0,ci+ cj−n)
, (3)

where n is the total number of features. This measure ranges from (−1,1] and provides a
correction for chance. Negative values correspond to situations where common features
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appear less frequently than the expected overlap under random selection. Feature stability
is then defined as the average similarity of all pairs of feature sets:

ASM =
2

k(k−1)

k−1∑
i=1

k∑
j=i+1

SJ/L(F ci,F cj ) , (4)

where k is the number of obtained features sets.
Lately Nogueira, Sechidis & Brown (2018) proposed a new feature selection stability

measure based on the frequency of selected features.

Z =


z11 z12 z13 ... z1n
z21 z22 z23 ... z2n
....

zk1 zk2 zk3 ... zkn

 (5)

Each row Zk of Z matrix refers to one feature selection subset, columns represents each
feature, then observed frequency of selection of f feature is pf = 1

k
∑k

i=1zif . While it is still a
generalization of Kuncheva measure in the sense that for subsets with the same cardinality
it has the same values, it is computationally effective and holds the so called Maximum
Stability (Deterministic Selection) property. The Nogueira features stability measure φ(Z )
reaches its maximum, if-and-only-if all feature sets in Z are identical. Nogueira, Sechidis &
Brown (2018) show that their measure holds this property while the Lustgraten measures
violate the backward implication of it.

φ(Z )= 1−
1
n
∑n

f=1 s
2
f

n̄
n(1−

n̄
n)

(6)

where s2f =
k

k−1pf (1−pf ) is the unbiased sample variance of the selection of the f feature
and n̄= 1

k
∑k

i=1
∑n

f=1zif .
It it worth noticing that both measures hold the other four desired properties mentioned

by Nogueira, Sechidis & Brown (2018):
1. Fully defined. The stability estimator φ(Z ) (Eq. (6)) should be defined for any collection

Z of feature sets, thus allowing for the total number of features selected to vary.
2. Strict monotonicity. The stability estimator φ(Z ) (Eq. (6)) should be a strictly

decreasing function of the sample variances s2f of the variables Zf (column in the
matrix Z ).

3. Bounds. The stability φ(Z ) (Eq. (6)) should be upper/lower bounded by constants not
dependent on the overall number of features or the number of features selected.

4. Correction for chance. Subsets of features can share some of the features even if selected
randomly.

trains-p-diff procedure for generating dataset splits
Cross-validation is a technique used in machine learning to evaluate the performance of a
model by splitting the dataset into training and testing sets. The basic idea is to train the
model on a portion of the data and then use the remaining data to evaluate the model’s
performance. Typically, we divide a set of objects into a fixed number of k roughly equal
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Table 1 Example demonstrating the operation of the trains-p-diff procedure. Assumptions: the
dataset D consists of |D| = 10 objects, the training sets in each split are to be of size t = 6, the training set
from any split is to have p = 2 objects not present in the training set from the other split, i.e., each pair of
training sets from different splits is to have t −p= 6−2= 4 objects in common. The training and test sets
are presented as object indexes in the range 0–9.

Split Training set Test set
1 [1, 3, 4, 6, 7, 9] [0, 2, 5, 8]
2 [0, 1, 3, 5, 7, 9] [2, 4, 6, 8]
3 [0, 1, 4, 5, 6, 9] [2, 3, 7, 8]
4 [0, 3, 4, 5, 6, 7] [1, 2, 8, 9]

portions, and then create a training set from k−1 portions and, using the remaining one
portion, assess the quality of the model. The procedure is repeated k times, and each time
a different portion of the data acts as the test set.

In our research, the aim is to evaluate the discriminant model in terms of the stability
of the features it uses and the impact of the composition of the training set on the features
selected by the model. With this aim in mind, it is particularly important to construct the
training sets correctly. In each cross-validation step, the number of objects in the training
set should be the same and each training set should differ from any other training set used
in the other cross-validation steps by a precisely specified number p (p∈ {1,2,...}) objects.
In order to meet these conditions, we have developed our own method for generating
training and test sets for cross-validation.

The parameters of the trains-p-diff procedure are the size of the training set t in each
split generated in successive cross-validation steps and the number of objects p by which
the training sets of any two splits differ. The dataset D on which the splits are to be made
should have a count of at least t +p (|D| ≥ t +p). The procedure will result in train/test
splits with counts of t and |D|− t respectively. Each selected pair of training parts from any
two splits will have exactly t −p common objects and p objects occurring in only one of
the sets from the pair. An example showing how the procedure works is shown in Table 1.

Using the trains-p-diff procedure described above, we can obtain reproducible
training and test sets that allow the results of different discriminant models to be compared.
We can also accurately control the size and degree of differentiation in the composition of
the training sets, allowing us to assess the stability of the model.

EMPIRICAL STUDIES
In this chapter we present a detailed overview of our experimental studies, encompassing
the datasets used, the setup of our experiments, and a comprehensive presentation of the
results obtained.We start with the description of the datasets that have been chosen for their
relevance and potential to provide insightful revelations in the realm of high-dimensional
genetic data analysis. We outline the characteristics of each dataset in terms of the number
of objects and features. In the next section, we provide clear and replicable framework of
our experiments, ensuring that our experiments can be validated and reproduced. Finally,
we present and interpret our empirical results.
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Table 2 Genetic datasets used.

Dataset #objects #features Class sizes
Breast 289 35,981 143/146
Colorectal 194 49,386 97/97
Leukemia 101 54,675 60/41
Liver 165 47,322 115/50
Prostate 124 12,620 64/60
Renal 143 54,675 71/72
Throat 103 54,675 74/29

Datasets
We selected seven gene expression datasets named: Breast, Colorectal, Leukemia, Liver,
Prostate, Renal and Throat. They were obtained from the Curated Microarray Database
(CuMiDa) repository provided at https://sbcb.inf.ufrgs.br/cumida (Feltes et al., 2019). All
datasets were characterized by a significant number of features, in this case describing the
expression of specific genes, and the presence of two decision classes. Table 2 shows the
most important parameters of the datasets.

The CuMiDa database is a collection of several dozen carefully selected microarray
data sets for Homo sapiens. These data sets were chosen from over 30,000 microarray
experiments available in the Gene Expression Omnibus (GEO) (Edgar, Domrachev &
Lash, 2002), following strict filtering and evaluation criteria. In addition to technical
aspects, proper data curation of GEO datasets also supports ethical standards. Thorough
documentation of experimental methods, participant consent, and compliance with ethical
guidelines help protect the rights and privacy of individuals contributing to scientific
research.

Experimental setup
For every experiment we used the trains-p-diff procedure described earlier for p∈ P
(P = {1,2,3..10,12,14,...,20}), and for every p there was usually 10 of datasets splits to
train and test, sometimes less if the dataset was small and the p high. This was repeated three
times for different random seeds. For every split a classifier was trained and metrics were
obtained. Accuracy was calculated on a test set, number of selected features and feature
selection stability metrics were calculated based on a fitted classifier model (see Fig. 1).

We performed two kinds of experiments - in the first one, called the single classifier, we
ran one classifier on all datasets with different values for C . From this experiment we can
see how different values of C influence the results. This experiment did not really allow us
to compare different classifiers, which is why we performed the second experiment where
for each dataset we ran all classifiers with the C parameter set in such a way, that all of them
selected a similar number of features (see Fig. 2). In this design we can compare classifiers
and for example say which of them is more stable in terms of selecting the same features.

As mentioned earlier, implementations of classifiers LR, SVM and RF offered by the
scikit-learn (Pedregosa et al., 2011) library, as well as our own implementation of the CPL
classifier, were used in the experiments. Most of the parameters of the classifiers were left
at default values apart from those listed below:
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Figure 1 Metrics calculation with trains-p-diff procedure. This procedure was repeated three times
for each tested value of p between 1 and 20. Dataset was typically split k = 10 times, although fewer splits
were used for smaller datasets with high values of p. A classifier was trained for each split, and relevant
metrics were obtained.

Full-size DOI: 10.7717/peerj.18405/fig-1

LR: LogisticRegression(C, penalty =‘l1’, solver =‘liblinear’, max_iter

=100000)

SVM: LinearSVC(C, penalty =‘l1’, dual =False, max_iter =100000)

RF: RandomForestClassifier(n_estimators =100, random_state =0,

min_samples_leaf =2)

CPL: GenetClassifier(C)

In the case of the LR, SVM and CPL classifiers, the influence on feature selection, in
particular on the number of selected features, was obtained by manipulating the values of
the C parameter. In the RF classifier, on the other hand, features were selected on the basis
of a threshold value set for the collection of feature_importances_ (the Gini importance)
created on the basis of the trained model.

RESULTS
The results for the ’single classifier’ experiment are displayed in Figs. 3 and 4, where the
X-axis consistently represents p - the number of differing objects between any two training
sets. We anticipate minimal changes in the selected features for a small p (indicating slight
differences in the training set), but as p increases, these changes may also grow. This
trend is evident in the first three columns, which assess feature selection stability using
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Figure 2 The experimental design included two approaches: testing a single classifier with various val-
ues across all datasets, and using a single C value per classifier to achieve a similar number of selected
features (multi classifiers). The second approach allowed us to compare results between classifiers.

Full-size DOI: 10.7717/peerj.18405/fig-2

Lustgarten, Nogueira and Jaccard Index measures. The decrease in stability doesn’t appear
linear but more hyperbolic in nature. We observe better stability at lower values of the
regularization parameter C (indicating model complexity), meaning that models select
fewer features, as shown in the fourth column’s charts. These charts also reveal that the
number of selected features is independent of the randomness of the training set (or the
value of p) and depends solely on C . The last column presents the accuracy measured on
the test set, which, again, seems unaffected by the value of p and is influenced by C in
certain instances. This collection of charts distinctly showcases the different behaviors of
the RF classifier compared to other classifiers employing L1 regularization.

The outcomes of the ’multi classifiers’ experiment are shown in Fig. 5. We regulated
each classifier to select a comparable number of features: 60 for the Breast dataset, 20 for
Colorectal, Leukemia and Liver datasets and 25 for Prostate, Renal and Throat datasets.
The exact feature counts are shown in the fourth column, with the remaining columns
mirroring those from the initial experiment involving single classifiers. In this scenario,
each line represents a different classifier, facilitating direct comparisons. The first three
columns of the chart, which illustrate feature selection stability, clearly reveal that RF
performs the poorest, while the others are more closely matched. However, they can be
ranked, starting with LR as the most effective, followed by SVM, and then CPL, as detailed
in Table 3. Notably, LR exhibits unique behavior in the Throat dataset, demonstrating high
feature stability across all p values but simultaneously the lowest test set accuracy among
all classifiers, as seen in the fourth column. Regarding accuracy, there is no definitive best
performer; RF lags behind in the Breast dataset, while CPL and SVM excel in the Throat
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Figure 3 Results for classifiers SVM and LR, each tested with three varying complexity parameter val-
ues (indicated by colors). The first three columns in the chart display the stability of feature selection as
measured by Lustgarten, Nogueira and Jaccard Index metrics. The fourth column presents number of se-
lected features, and the last column indicates the test accuracy. The X-axis represents the values of p used
in trains-p-diff cross-validation procedure, i.e., the number of objects by which any two training splits
differ.

Full-size DOI: 10.7717/peerj.18405/fig-3

dataset. For the Colorectal and Leukemia datasets, the accuracy for all classifiers is very close
to 1.0. Therefore, in these cases, examining the stability of the selected features becomes
more important.

To enable a direct comparison of classifiers, we have computed the average values
for feature selection stability ASM (Eq. (7)), as measured by the Lustgarten metric, and
displayed them in Table 3. In addition, we suggest employing the harmonic mean of
feature selection stability ASM and test accuracy acc_test (see Eq. (8)) to derive a singular
measure that accounts for both aspects of classifier quality. The findings are documented
in Table 4. Given that the accuracy was relatively consistent across classifiers, the results
closely mirror the feature selection stability alone, indicating that the LR model performs
the best, followed by SVM and CPL, with RF ranking the lowest. It is also worth noting
that the Fβ score can be adjusted with different β values to place greater emphasis on either
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Figure 4 Results for classifiers CPL and RF, each tested with three varying complexity parameter val-
ues (indicated by colors). The first three columns in the chart display the stability of feature selection as
measured by Lustgarten, Nogueira and Jaccard Index metrics. The fourth column presents number of se-
lected features, and the last column indicates the test accuracy. The X-axis represents the values of p used
in trains-p-diff cross-validation procedure, i.e., the number of objects by which any two training splits
differ.

Full-size DOI: 10.7717/peerj.18405/fig-4

stability or accuracy.

ASM =

∑
p∈PASMp

|P|
(7)

where ASMp is ASM (Eq. (4)) stability measure value obtained in trains-p-diff

procedure with fixed value of p.

F1=
2

1
ASM
+

1
acc_test

(8)

where ASM and acc_test indicate the average feature stability (Eq. (7)) and average test
classification accuracy, respectively. Averaging is done over all tested values of the p
parameter in trains-p-diff cross-validation procedure.
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Figure 5 Results for four classifiers, distinguished by color, set to select a comparable number of
features (shown in the fourth column) by selecting the complexity parameter value. The first three
columns in the chart display the stability of feature selection as measured by Lustgarten, Nogueira and
Jaccard Index metrics. The forth column presents number of selected features, and the last column
indicates the test accuracy. The X-axis represents the values of p used in trains-p-diff cross-validation
procedure, i.e., the number of objects by which any two training splits differ.

Full-size DOI: 10.7717/peerj.18405/fig-5
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Table 3 The average values for feature selection stability ASM (Eq. (7)), as measured by the Lustgarten
metric obtained by the tested classifiers for the datasets used. Each number in the table is the appropri-
ate, for a particular classifier and dataset, averaged over the considered values of p, the value of the Lust-
garden stability measure obtained in the ‘multi classifiers’ experiment (see Fig. 5, the first column).

Breast Colorectal Leukemia Liver Prostate Renal Throat
LR 0.841 0.949 0.907 0.793 0.698 0.713 0.752
SVM 0.786 0.850 0.853 0.813 0.662 0.652 0.569
CPL 0.697 0.750 0.693 0.663 0.566 0.659 0.508
RF 0.463 0.511 0.471 0.491 0.241 0.232 0.308

Table 4 Harmonic means (Eq. (8)) of the Lustgarten stability measure and test accuracy obtained by
the tested classifiers for the datasets used. Each number in the table is the harmonic mean of the Lust-
garden stability measures averaged over the considered values of p and the test accuracy averaged over the
considered values of p, for a particular classifier and dataset, in the ‘multi classifiers’ experiment (see Fig.
5, the first and the last columns).

Breast Colorectal Leukemia Liver Prostate Renal Throat
LR 0.884 0.972 0.944 0.864 0.693 0.781 0.779
SVM 0.854 0.919 0.921 0.879 0.677 0.745 0.694
CPL 0.794 0.857 0.818 0.779 0.618 0.744 0.647
RF 0.606 0.675 0.638 0.654 0.357 0.364 0.453

DISCUSSION
In the discussion section three matters need to be pointed out: firstly, the uniquness of
our train-p-diff procedure and how other researchers address perturbaion in data in
the feature selection stability context; secondly, our focus on comparing feature sets with
different cardinality opposed to top-k features from ranking; and finally, the discussion of
our results and future work.

To the best of our knowledge, there have been no published studies that have evaluated
the stability of feature selection algorithms using the specific approach applied by us—by
rigorously controlling perturbation in training sets through defining the exact number of
differing objects. Nevertheless, we will refer to some articles that performed experiments
with the described levels of perturbations in the data.

In the latest study by Barbieri, Grisci & Dorn (2024), two levels of perturbation in the
training data—small and significant—were tested to analyze their effect on the stability of
feature selection. The small perturbation was achieved by sampling 90% of the instances
with reposition. The significant perturbation was obtained through a bootstrap-like
sampling with repetition, where an average of 63.2% of the original samples were retained.
In our study, both perturbations are considered rather significant, as it was observed that
altering even a single instance in the training set can lead to different feature selections.

The work, cited in the previous paragraph, by Barbieri, Grisci & Dorn (2024) is closely
related to our research, particularly since some of the datasets were sourced from CuMiDa
(Feltes et al., 2019), the same repository we used. For example, on the Liver dataset, they
report an F-measure between 0.9 and 1.0 for SVM and RF, with the number of selected
features ranging from five to 200, which is consistent with our experimental results. While
we use accuracy as ourmetric, they stated, ’’Because datasets are very balanced, the accuracy

Łukaszuk and Krawczuk (2024), PeerJ, DOI 10.7717/peerj.18405 15/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.18405


metric yields results similar to the F-measure’’. For the Prostate dataset, both their results
and ours were lower, around 0.7. In terms of stability, they used the Kuncheva metric,
which can only be applied to two feature subsets of the same cardinality. This approach was
suitable for their experimental framework, so precise results cannot be directly compared
with ours. However, our work can be seen as an extension of theirs, as we explore different
levels of data perturbation and integrate feature selection with model building.

Three levels of training data perturbations were studied by Pes (2020). Perturbation in
her experiments were not fully controlled as in our case, but were based on randomness.
Specifically 0.9 fraction of input dataset were repeatedly randomly sampled (without
replacement) to create different training sets. This procedure created training datasetets
which could differ in the range between 0 and 10%. Experiments were also performed using
0.8 and 0.7. Interestingly, the drop in stability in these results between 0.9 and 0.8 is much
higher than beetween 0.8 and 0.7, which is exactly what was observed in our experiments
for growing disturbancy in the data (hyperbolic shape).

In another deep study on stability of feature selection by Kalousis, Prados & Hilario
(2007) ten-fold cross-validation was used where the overlap of training instances among
the different training folds was reported to be 78%. Different amounts of perturbation in
data were not considered whatsoever, but their size was directly noticed.

Secondly, we would like to discuss how we compared selected features. In our
experiments, the model is allowed to choose the appropriate number of features based
on the data presented during training, so the number of features in each run was usually
different. In contrast, some other techniques select the top-K features, resulting in identical
cardinalities. For example, in the articlesmentioned in the previous paragraphs, stability was
measured on the top five, 10, 20, etc., best features using the Kuncheva metric (Kuncheva,
2007).

We previously worked with the Lustgarten extension for the Kuncheva metric
(Lustgarten, Gopalakrishnan & Visweswaran, 2009), but recently, we discovered an
interesting proposal from Nogueira, Sechidis & Brown (2018). The Nogueira metric has
a strong theoretical foundation, although it is not widely used. Our experiments show
only a small difference between these two metrics, and they generally lead to the same
conclusions. Many other studies in this area also use metrics based on the intersection of
feature sets, such as the Jaccard Index (Saeys, Abeel & Van de Peer, 2008), so we included it
in our results as well.

Finally we would like to comment on our research, which we think can be seen as a
proposal of a new dimension on which feature selection stability can be studied - precisely
defined perturbation in training data. The most common dimension found in literature
is the top k number of features, after—of course—comparing different algorithms. For
example, in Kalousis, Prados & Hilario (2007) stability metrics for 10 top features were
reported. Less often some hyperparameters of the algorithms are tested. When we decided
to measure stability in function of perturbation in data we were faced with the challanges
of eliminating other factors that may influence it—namely, those other dimensions. This
is why we performed two types of experiments. In the first, together with perturbation in
data we also checked the regularization parameter C (hyperparameter), which showed us
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how stability depends on both perturbation and regularizaton. The second experiment
was different in the sense that we wanted to fix everything for all algorithms in a similar
way to be able to compare them. We decided to fix the number of features the algorithms
selected by choosing the specific value for regularization. We were aware that those were
not all possible ways of studying feature selection stability with controlled perturbation in
the data, but those two experiments gave us some valuable insights.

The first experiment showed us that the relation between more stability and more
regularization (less features) is not as obvious as it was expected, since it could be argued
that if less features were selected, they should be only strong, identical features. In our
experiments this could be observed only for some combinations of classifiers and datasets.

The second experiment was designed by us in order to be able to compare classifiers
directly. It clearly shows the order for the regularization based classifiers, with the LR being
most stable, followed by SVM and our CPL. It can be argued that SVM should be stable
in small perturbations in data since the hyperplane is supported just by a few instances
from the data (no more than the number of selected features). If we do not remove those
instances from the training set it should stay the same. LR stability was a real surprise for
us, but it can be noticed that this basic benchmarking method performs very well in many
cases. Lower stability of CPL was a slight disappointment for us, because it was hoped
that stability could be the strongest property among the two direct competitors - LR and
SVM. It was known from previous experiments that they are similar in terms of accuracy
(Krawczuk & Łukaszuk, 2016).

The CPL stability in comparison to others was underwhelming. We can see how this
method can be developed towards improvement. Bobrowski (1996) proposed constructing
a CPL function based on so-called dipols (two instances from the dataset). Dipols could be
clear (two objects from the same class) or mixed (two objects from two different classes).
The idea is to look for the hyperplane that will go through asmanymixed dipoles as possible.
The number of dipols is the squared number of instances, and although computationally
it will be more expensive, it can provide more stability for the selected features.

Another direction we would like to explore is to investigate more precisely how the
regularization parameter C influences the results of the CPL classifier, similar to the
approach in Nogueira & Brown (2016), where both feature selection stability and accuracy
were studied over a wide range of regularization parameters for the LR classifier. We aim
to employ a specific method of selecting C that minimizes the reduction of one feature, as
proposed in Bobrowski & Łukaszuk (2011).

To conclude the discussion, it is important to address the limitations of the presented
research. Firstly, we relied solely on data from a single domain, gene expression, made
available by one data repository. These data may have unique characteristics, so in
future research, it would be beneficial to use data from other domains as well, such as
representations of text documents, which also have a much larger number of features
than objects. The second limitation worth noting is related to one of the computational
procedures implemented during the experiments. This concerns the choice of the value of
the C parameter in the case of LR, SVM, and CPL classifiers, or the cut-off threshold in the
case of the RF classifier, both of which control the complexity of the models. Determining
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the appropriate value of these parameters, which varies for each classifier and dataset, in
order to select the desired number of features, often required numerous time-consuming
trials. In the future, automating this process as much as possible would allow for more
efficient execution of experiments.

CONCLUDING REMARKS
Our research examines four classifiers with built-in feature selection capabilities - three
utilizing L1 regularization and one based on decision trees. We conducted a series of
experiments on seven high-dimensional gene expression datasets, using three metrics to
assess feature selection stability. Alongside the stability, we always evaluate accuracy, as
high stability paired with low accuracy does not sufficiently differentiate one classifier
from another. In our studies, we employed a novel cross-validation approach named
trains-p-diff, ensuring that each pair of training sets differs by exactly p items. This
method allowed us to assess feature selection stability at various levels of data disturbance.

Minor modifications to the dataset, such as replacing a single item, can lead to a different
subset of features being chosen by classifiers, with stability measures dropping below 1. As
the level of disturbance escalates, stability generally decreases. This decline is initially more
marked but lessens as the disparity in the data (i.e., the value of p) increases, exhibiting a
hyperbolic curve-like pattern. This trend is consistent across all classifier types, datasets,
and stability measures. However, the extent of stability does vary among different classifiers
and datasets. In our experiments, the RF classifier consistently showed the lowest stability,
while the LR, based on L1 regularization, demonstrated the highest stability. Interestingly,
the accuracy of the classifiers seemed largely unaffected by data disturbances, with most
classifiers performing comparably well. However, the RF performed least effectively on the
Breast dataset, and the LR on the Throat dataset.

In summary, feature selection stability is a crucial aspect of classifier evaluation in gene
expression data analysis. It aids the identification of a robust and informative subset of
genes, enhances the interpretability of results, and contributes to the generalization and
reliability of classification models in high-dimensional biological data contexts.

In this article, we did not focus on methods to improve stability or investigate factors
influencing it, but merely measured this aspect of feature selection across several datasets
and classifiers. In the future, it would be valuable to examine what affects this stability and
how it can be enhanced.
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