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The role of Tertiary Lymphoid Structures (TLS) in oncology is gaining interest, particularly
in colorectal carcinoma, yet a thorough analysis remains elusive. This study pioneered a
novel TLS quantification system for prognostic and therapeutic response prediction in
colorectal carcinoma, alongside a comprehensive depiction of the TLS landscape. Utilizing
single-cell sequencing, we established a TLS score within the Tumor Immune
Microenvironment (TIME). Analysis of Tertiary Lymphoid Structure-related Genes (TLSRGs)
in 1184 patients with Colon Adenocarcinoma/Rectum Adenocarcinoma (COADREAD) from
TCGA and GEO databases led to the identification of two distinct molecular subtypes.
Differentially Expressed Genes (DEGs) further segregated these patients into gene
subtypes. A TLS score was formulated using Gene Set Variation Analysis (GSVA) and its
efficacy in predicting immunotherapy outcomes was validated in two independent cohorts.
High-scoring patients exhibited a 'hot' immune phenotype, correlating with enhanced
immunotherapy efficacy. Key genes in our model, including C5AR1, APOE, CYR1P1, and
SPP1, were implicated in COADREAD cell proliferation, invasion, and PD-L1 expression.
These insights offer a novel approach to colorectal carcinoma treatment, emphasizing TLS
targeting as a potential anti-tumor strategy.
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19 Abstract

20 The role of Tertiary Lymphoid Structures (TLS) in oncology is gaining interest, particularly in 

21 colorectal carcinoma, yet a thorough analysis remains elusive. This study pioneered a novel TLS 

22 quantification system for prognostic and therapeutic response prediction in colorectal carcinoma, 

23 alongside a comprehensive depiction of the TLS landscape. Utilizing single-cell sequencing, we 

24 established a TLS score within the Tumor Immune Microenvironment (TIME). Analysis of 

25 Tertiary Lymphoid Structure-related Genes (TLSRGs) in 1184 patients with Colon 

26 Adenocarcinoma/Rectum Adenocarcinoma (COADREAD) from TCGA and GEO databases led 

27 to the identification of two distinct molecular subtypes. Differentially Expressed Genes (DEGs) 

28 further segregated these patients into gene subtypes. A TLS score was formulated using Gene Set 

29 Variation Analysis (GSVA) and its efficacy in predicting immunotherapy outcomes was 

30 validated in two independent cohorts. High-scoring patients exhibited a 'hot' immune phenotype, 

31 correlating with enhanced immunotherapy efficacy. Key genes in our model, including C5AR1, 

32 APOE, CYR1P1, and SPP1, were implicated in COADREAD cell proliferation, invasion, and 

33 PD-L1 expression. These insights offer a novel approach to colorectal carcinoma treatment, 

34 emphasizing TLS targeting as a potential anti-tumor strategy.

35

36 Introduction

37 Colorectal cancer, a predominant gastrointestinal malignancy, ranks third in cancer-related 

38 mortality globally. The survival rates at five years hover around 65%1,2. Surgical removal is the 
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39 cornerstone for treating early-stage colorectal cancer, while advanced stages often benefit from 

40 an integrated approach of chemotherapy and targeted therapies3. The advent of immune 

41 checkpoint inhibitors (ICIs) has marked a revolutionary shift in oncological therapeutics, 

42 offering significant clinical advantages for patients4,5. Yet, the response to ICIs is limited to a 

43 small patient subset6,7, underscoring the urgent need for biomarker research. This research is 

44 essential for refining patient selection and developing strategies to overcome immune resistance.   

45 Historically, biomarker investigations have predominantly relied on RNA sequencing (RNA-

46 Seq) from whole tumor tissues8, providing a collective genetic snapshot of diverse cell 

47 populations. Unfortunately, biomarkers identified through this method have demonstrated 

48 restricted predictive capability. The emergence of single-cell RNA sequencing (scRNA-Seq) has 

49 revolutionized this landscape, facilitating gene expression analysis at an individual cell level and 

50 paving the way for the discovery of more effective biomarkers9. 

51 TLS are spontaneously formed ectopic lymphoid formations that arise in chronic inflammation 

52 sites, including tumor environments. These structures, which bear a structural similarity to 

53 secondary lymphoid organs, are chiefly comprised of an array of immune cells - B cells, T cells, 

54 dendritic cells, neutrophils, and macrophages10. Additionally, TLSs encompass high endothelial 

55 venules and lymphatic vessels, crucial for directing immune cell movement into TIME. Notably, 

56 the presence of TLSs has been associated with improved prognosis in a range of solid tumors, 

57 such as melanoma11, renal cell carcinoma12, and colorectal cancer13. Furthermore, emerging 

58 studies highlight a significant correlation between TLSs and the efficacy of immunotherapy14. 

59 The existence of TLSs has been identified as a predictive biomarker for the response to ICI 

60 therapy in advanced-stage cancers, including bladder cancer15 and head and neck squamous cell 

61 carcinoma16. Consequently, the induction of TLSs is increasingly being explored as a novel 

62 therapeutic approach in oncology 17. 

63 Additionally, numerous investigations have demonstrated that prevalent anti-cancer therapies 

64 are capable of prompting intratumoral TLS formation in murine models. Chelvanambi utilized 

65 the STING agonist ADU S-100 in treating B16.F10 melanomas, led to STING activation within 

66 the TIME, correlating with the reduction of melanoma progression and concurrent development 

67 of TLSs18. Lee JW employed Stromal Vascular Fraction Spheroid-Based Immunotherapy, which 

68 resulted in the formation TLS-like structures, thereby enhancing antigen-specific immune 

69 responses and anti-tumor immunity in mice19. While immunohistochemistry remains the 

70 conventional method for TLS detection20, there's an escalating need for more definitive 

71 approaches to assess TLS levels through transcriptomic analysis of tumor biopsies or excised 

72 samples. A gene signature encompassing CCL2, CCL4, CCL5, CCL8, CXCL9, CXCL10, 

73 CXCL11, CXCL13, CCL18, CCL19, and CCL21 has been formulated and employed to classify 

74 tumors as either TLS+ or TLS-21. Tumors categorized as TLS+ have shown a reduced risk of 

75 early recurrence in hepatocellular carcinoma21. This has led to our initiative to establish a refined 

76 TLS signature for COADREAD, aiming to analyze TLS neogenesis through a multi-omics lens 

77 and thereby enhance the scope of future clinical research. 
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78 Nevertheless, the intricacies of how TLSs interact with COADREAD, as well as the interplay 

79 among immune cells within TLSs, especially on the single cell level, remain enigmatic. 

80 Moreover, the contribution of TLSs in modulating responses to immune therapy is yet to be fully 

81 elucidated. 

82 In this research endeavor, our objective was to amalgamate single-cell and bulk RNA 

83 sequencing data to elucidate the role of TLSs, particularly their potential as biomarkers for 

84 predicting ICI outcomes in patients with COADREAD. Additionally, our study sought to unravel 

85 the molecular and immune characteristics of TLSs, assessing their impact on the prognosis for 

86 COADREAD patients. To this end, we have devised TLS Score, which could serve as an 

87 invaluable tool in the realm of personalized precision medicine, aiding clinicians in tailoring 

88 treatment strategies.

89

90 Materials & Methods

91 Data Sources and Analysis Workflow

92 The study's analytical process was depicted in Figure 1. We obtained the CRC_EMTAB8107 

93 scRNA-seq dataset for COADREAD from the GEO Database 

94 (https://www.ncbi.nlm.nih.gov/geo/)22, which includes 7 instances of colorectal carcinoma. 

95 Furthermore, the TCGA database (https://portal.gdc.cancer.gov) was used to obtain the bulk 

96 RNA-seq data and clinical profiles of 380 COADREAD patients23. We also sourced datasets 

97 GSE17538 (n =238) and GSE39582 (n =566) from the GEO repository.

98 Single-Cell Dataset Processing and Cluster Identification

99 For the scRNA-seq dataset, we employed Seurat (v4.1.1) in the R programming environment24. 

100 Initial steps included quality assessment using the �Seurat� package, leading to the exclusion of 

101 cells not meeting specific criteria: (1) nFeature_RNA range of 200 to 7500; (2) nCount_RNA 

102 range of 200 to 35,000; (3) a mitochondrial gene content of ≥10%. This filtration yielded a 

103 dataset comprising 66,050 cells and 21,753 genes. Following actions involved batch 

104 normalization using the 'harmony' package and data scaling with the 'ScaleData' function. The 

105 top 28 principal components were extracted by performing Principal Component Analysis (PCA) 

106 on the 2,000 genes with the highest variability. UMAP was used for unsupervised clustering to 

107 visualize clusters on a two-dimensional plane25. The function 'FindAllMarkers' was used to 

108 evaluate gene expression variations among clusters, considering the criteria of |log2 (fold

109 change) | > 1, an adjusted p-value < 0.05, and a resolution of 0.5. Cell subpopulations were 

110 annotated employing the �SingleR� package, CellMarker database26, and PanglaoDB database27.

111 Following this, the �FindAllMarkers� function in the R environment was employed to identify 

112 genes differentially expressed across the various cell types. We used the GSVA package (version 

113 1.40.1) to calculate GSVA scores for 50 hallmark gene sets obtained from the Molecular 

114 Signatures Database (MSigDB) (https://www.gsea-msigdb.org/gsea/msigdb) 28. Concurrently, 

115 we obtained a set of 39 TLSRGs as outlined in PMID: 3109290429, and applied the GSVA 

116 package to calculate their scores. Based on the median score, cell clusters were segregated into 

117 groups with high and low TLS scores.
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118 Furthermore, to discern the relationship between TLS and Hallmark scores, and to analyze the 

119 clustering of TLS scores with Hallmark pathways, we used a heat map representation. The 

120 creation of heat maps and correlation heat maps was facilitated by the �pheatmap� and �corrplot� 

121 packages. All threshold values for these analyses were set as per the default specifications 

122 detailed in the package vignettes.

123 Elaborate Analysis of Bulk RNA-Sequencing Data

124 Formulation of the Prognostic TLSRGs Signature

125 We initiated our analysis by amalgamating the bulk RNA-seq datasets, rectifying batch effects 

126 using the �limma� and �sva� packages. Subsequently, a log2 transformation was applied to 

127 standardize the data. The relationship between TLSRGs expression levels and patient overall 

128 survival (OS) was scrutinized using univariate Cox regression analysis, utilizing the �survival� 

129 package in R (version 3.2�13) (https://CRAN.Rproject.org/package=survival).

130 Consensus Clustering for Prognostic TLSRGs

131 We used the R package 'ConsensusClusterPlus' to perform unsupervised clustering analysis on 

132 COADREAD patients, stratifying them based on the expression of prognostic-TLSRGs. By 

133 employing the K-means algorithm, we identified the optimal number of clusters ranging from 2 

134 to 10. This process was reiterated 1,000 times to affirm the stability and reliability of our results.

135 Clinicopathological Traits

136 Investigating the clinical implications, we analyzed the correlation between the molecular 

137 subtypes and clinicopathological features, subsequently visualized in a heatmap. The 

138 clinicopathological features that were examined included the patient's age, sex, tumor grade, and 

139 stage of tumor node metastasis (TNM). The �survminer� packages in R facilitated our survival 

140 analysis.

141 Pathway Enrichment Analysis

142 To elucidate the TIME characteristics in various molecular subtypes, GSVA was employed 

143 utilizing gene sets from hallmark, KEGG, and Reactome obtained from the MSigDB database.

144 Immune Infiltration

145 The stromal score, immune score, and ESTIMATE score in tumor tissues were quantified using 

146 the �estimate� R package30 by employing the ESTIMATE algorithm from the ESTIMATE 

147 project (https://sourceforge.net/projects/estimateproject/). Furthermore, we utilized ssGSEA to 

148 delineate the immune infiltration pattern in COADREAD by employing marker genes for 23 

149 immune cell types 31.

150 Analysis of Differentially Expressed Genes

151 The �limma� package was utilized to identify differentially expressed genes (DEGs) among 

152 clusters, specifically targeting those with an adjusted p-value <0.05 and |log2 (Fold Change)>1. 

153 The �clusterProfiler� R package was used to perform Gene Ontology (GO) and Kyoto 

154 Encyclopedia of Genes and Genomes (KEGG) analyses. To discern DEGs with prognostic 

155 significance, univariate Cox regression analysis was executed, with results presented in a forest 

156 plot. Additionally, the GSCA datasets (https: //bioinfo.life.hust.edu.cn/GSCA/#/based) 32 were 

157 used to perform mutation, SNV, CNV, and Methylation analyses on these prognostic genes.
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158 Refinement of the TLS Score System

159 We employed the �ConsensusClusterPlus� package in R for unsupervised consensus clustering 

160 to categorize COADREAD patients into distinct molecular subtypes. The classification was 

161 determined by analyzing the expression patterns of previously identified prognostic TLS-DEGs. 

162 The clustering process involved the K-means algorithm, assessing optimal cluster numbers from 

163 k = 2-10. This procedure was iteratively performed 1,000 times for robust stability of results. 

164 Kaplan-Meier plots elucidated significant prognostic variations between the clusters. 

165 Additionally, a heatmap delineated the interplay between clinical attributes, gene expression 

166 profiles, and clustering outcomes. The TLS score, computed via the GSVA package using 16

167 pivotal prognostic TLS-DEGs, facilitated subsequent survival analysis. This analysis discerned 

168 the prognostic predictive capability of the TLS score in COADREAD cases. A Sankey diagram 

169 illustrated the intricate associations among signature genes, scoring, and prognostic 

170 categorization.

171 Comprehensive Immune Landscape Analysis Utilizing the TLS Score

172 To further understand the TLS score's implications, we created a correlation heatmap

173 showcasing its association with immune cell infiltration levels. Moreover, the interrelations 

174 between the TLS score and various cytokines, chemokines, and their receptors were visualized 

175 through additional heatmaps. The GSVA method was pivotal in correlating the TLS score with 

176 50 hallmark pathways, with the findings depicted using R�s "ggplot2" package. We also gathered 

177 and analyzed mRNA expression data of immune checkpoints and gene mutation information 

178 from the TCGA-COADREAD cohorts. This led to the calculation of mean normalized 

179 expression levels of immune checkpoints per sample, subsequently normalized to convey their 

180 relative expression magnitudes.

181 Analysis of MSI, TMB, CSCs, and Somatic Mutations

182 We conducted an in-depth analysis of MSI, CSC markers, and TMB across varying TLS score 

183 groups. For this, somatic mutation data specific to COADREAD patients were extracted from the 

184 TCGA database. To discern somatic mutations between different TLS score groups, we utilized 

185 the �maftools� package to construct detailed waterfall plots. A comparative analysis of the 

186 somatic mutation variances across the TLS score groups was then conducted using forest plots.

187 Evaluation of Immunotherapy Response and Chemotherapy Sensitivity

188 The predictive relevance of the TLS score for immunotherapy response was investigated using 

189 transcriptomic data from two distinct cohorts. The dataset GSE135222 includes information from 

190 patients with advanced non-small cell lung carcinoma who received treatments targeting anti-

191 PD-1/PD-L1. Meanwhile, GSE176307 includes transcriptomic information from patients with 

192 Metastatic Urothelial Cancer. The prognostic significance of the TLS score in COADREAD was 

193 evaluated using Kaplan-Meier analysis in the R package. Moreover, by utilizing the 

194 CancerRxGene database (https://www.cancerrxgene.org/) 33, we calculated the IC50 values for 

195 different target-therapeutic medications in relation to the TLS score. This estimation was 

196 performed using the �pRRophetic� package in R, offering insights into the chemotherapy 

197 sensitivity linked to the TLS score.
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198 RNA Extraction and Quantitative Real-Time PCR

199 Total RNA from colorectal cells was isolated employing the Trizol method (Invitrogen) as per 

200 the manufacturer's instructions. Subsequent reverse transcription to synthesize cDNA was 

201 conducted using Prime Script RT reagent Kit (RR047A, Takara). Gene expression was measured 

202 using TB Green Premix Ex Taq (RR420A, Takara), and GAPDH was used as the reference for 

203 normalization. Details of the primers used are provided in Supplementary Table 1.

204 Cultivation of Cell Lines and Reagent Preparation

205 The Chinese Academy of Sciences Cell Bank (Shanghai, China) provided several colorectal 

206 cancer cell lines, namely NCM460, HCT116, HT29, and LOVO. Each cell line underwent STR 

207 profiling for authentication and was confirmed to be free of mycoplasma contamination 

208 (https://www.cellb ank.org.cn/). NCM460 and HCT116 were cultured in RPMI 1640 medium 

209 (Gibco) with the addition of 10% FBS, whereas HT29 and LOVO were maintained in DMEM 

210 (Gibco) with a 10% FBS enrichment. Cultures were incubated at 37°C in a humidified 

211 atmosphere with 5% CO2.

212 Targeted Knockdown of TLS-Related Genes

213 To conduct gene silencing experiments, HCT116 and HT29 cells were plated at a density of 

214 3×10^5 cells per 60 mm dish. Following 24 hours of incubation, the medium was replaced with 

215 fresh growth medium. Next, the cells were transfected with siRNAs that targeted C5AR1, APOE, 

216 CYP1B1, and SPP1, or a control siRNA obtained from Genepharma in Shanghai, China. This 

217 transfection was performed using Lipofectamine RNAiMax (13778075, Life Technologies). 

218 After transfection, the cells were cultured in RPMI 1640 or DMEM, with the addition of 10% 

219 FBS, for at least 24 hours. The siRNA sequences are listed in Supplementary Table 1.

220 Cell Proliferation Assessment

221 Cells were seeded in 96-well plates at a concentration of 3,000 cells per well. The growth of cells 

222 was observed for a period of 24 hours using a Cell Counting Kit-8 (CCK-8) from Dojindo, 

223 following the manufacturer's provided instructions. A microplate reader (Thermo Fisher, USA) 

224 was used to acquire absorbance measurements at 450 nm. GraphPad Prism version 9.5.0 was 

225 utilized for conducting data analysis.

226 Transwell Migration Assay

227 To perform migration experiments, a total of 100,000 cells were placed in the top

228 compartment of a Transwell device on a Matrigel layer (Corning), utilizing either RPMI 1640 or 

229 DMEM excluding FBS. The bottom section contained 600 μL of the corresponding solution 

230 enriched with 20% FBS. After a 24-hour incubation period, cells were fixed and stained with 

231 crystal violet. Cells remaining in the upper chamber were carefully removed, and the migrated 

232 cells were imaged for further analysis.

233 Statistical Methodology

234 The statistical analysis was conducted using R software (version 4.1.2). Correlation

235 assessments were conducted using Pearson or Spearman correlation coefficients. The

236 Wilcoxon test was applied for comparisons between two groups. The overall survival (OS) 

237 across various subgroups was analyzed using Kaplan-Meier survival curves and log-rank tests. 
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238 Univariate Cox regression analyses were utilized to estimate prognostic values. The data from 

239 the qRT-PCR analysis were examined utilizing the t-test of Student. A p-value less than 0.05 was 

240 deemed to be statistically significant, with an asterisk (*) representing p-values less than 0.05, 

241 two asterisks (**) representing p-values less than 0.01, and three asterisks (***) representing p-

242 values less than 0.001.

243 Ethical Consideration

244 The authors conducted this study without the participation of any humans or animals.

245

246 Results

247 Flowchart of this study was shown in figure 1.

248 Analysis of Single Cell Sequencing Data

249 Dimensionality Reduction

250 In our initial step, the single-cell sequencing data from the CRC_EMTAB8107 dataset, were 

251 subjected to an integration analysis to consolidate information across different samples, 

252 Supplementary Figure 1 exhibited the minimal batch effects and 19 distinct clusters categorized 

253 by the UMAP algorithm. Further, we examined the expression of specific surface marker genes 

254 across these clusters. This analysis enabled the identification of 10 unique cell types, 

255 encompassing malignant cells, CD4+ T cells, plasma cells, fibroblasts, CD8+ T cells, 

256 monocytes-macrophages, B cells, endothelial cells, mast cells, and dendritic cells, as depicted in 

257 Figure 2A.

258 Landscape of Transcriptome

259 In the realm of gene expression, Figure 2B highlighted the top five genes making the most 

260 significant contributions. Specifically, in malignant cells, the genes exhibiting the highest 

261 expression levels included C19orf33, KRT19, TSPAN8, AGR2, and LGALS4. In stark contrast, 

262 genes such as SRGN, RGS1, TSC22D3, CXCR4, and CD52 were among the least expressed. 

263 Within CD8+ T cells, genes like CCL5, NKG7, GZMA, CCL4, and GNLY were highly expressed, 

264 while others including CALD1, CST3, SPARCL1, GSN, and IFITM3 showed minimal expression. 

265 For monocytes-macrophages, the top expressed genes were AIF1, TYROBP, C1QA, FCER1G, 

266 and C1QB, whereas genes like TRAC, CALD1, IL32, CD69, and FKBP11 were the least 

267 expressed.

268 Pathway Enrichment Analysis

269 The GSVA brought to light Hallmark pathways that were predominantly enriched in each cell 

270 type (see Figure 2C). In malignant cells, pathways such as mTORC1 signaling, Glycolysis, 

271 Xenobiotic metabolism, fatty acid metabolism, were notably prevalent. Fibroblasts showed a 

272 significant enrichment of the Epithelial mesenchymal transition pathway. The monocytes-

273 macrophages were enriched in pathways such as Complement, IL2-STAT5 signaling, 

274 Inflammatory response, and Interferon response pathways.

275 Cell-Type Specific Expression of TLS Insights 

276 Employing the "FindAllMarkers" function, a total of 39 TLSRGs were analyzed. This detailed 

277 examination culminated in deciphering the expression patterns of TLSRGs across various cell 
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278 types (Figure 2D). Focusing on cell-specific expression, MS4A1 emerged as a gene 

279 predominantly expressed in B cells, while its expression remained minimal in other cell types. In 

280 the realm of CD8+ T cells, genes like CCL4 and CCL5 showcased high expression levels, 

281 contrasting with their subdued expression in other cells. Additionally, TNFRSF17 was notably 

282 expressed in plasma cells, yet exhibited low expression in other cell types.

283 GSVA-Based TLS Score Calculation

284 Utilizing the UMAP cell annotation map, we calculated the TLS score for each cell through the 

285 GSVA method, as illustrated in Figure 2E. Subsequently, cells were categorized into clusters 

286 with low and high TLS scores based on their median expression levels, depicted in Figure 2F. 

287 Predominantly, malignant cells and fibroblasts were found in the low TLS score cluster, whereas 

288 T cells and monocyte-macrophages were more prevalent in the high TLS score cluster.

289 Cell Cluster Distribution and TLS Score Visualization

290 This distribution was further detailed through box plots representing TLS scores across different 

291 cell clusters (Figure 2G), where CD8+ T cells received the highest scores, and Mast cells the 

292 lowest. The distribution patterns of cell types within these clusters were effectively represented 

293 in a Composition chart based on cell count and proportion (Figure 2H-I), highlighting the 

294 tendency of malignant cells and fibroblasts to fall into the low scoring group, in contrast to 

295 monocyte-macrophages and CD8+ T cells which were more commonly found in the high scoring 

296 group.

297 TLS Score Correlation with Hallmark Pathways

298 Further analysis revealed a significant correlation between the TLS score and specific Hallmark 

299 pathway scores (Figure 2J). In malignant cells, the TLS score showed a positive correlation with 

300 pathways such as apoptosis and KRAS signaling up. In monocyte-macrophages, a positive 

301 correlation was observed with the Inflammatory response, interferon gamma response, IL2-

302 STAT5 signaling pathways. For dendritic cells, the TLS score positively correlated with 

303 pathways including Inflammatory response, Interferon gamma response, Interferon alpha 

304 response. We identified hallmark pathways that were differentially expressed between high- and 

305 low-TLS score clusters, as shown in Figure 2K. These enriched pathways in high-score group 

306 included Inflammatory response, Interferon gamma response, Interferon alpha response, 

307 markedly distinct compared to the low-TLS score group.

308 Comprehensive Analysis of TLSRGs in COADREAD

309 TLS Molecular Subtypes: Identification and Analysis

310 Our exploration focused on discerning the TLS patterns in COADREAD tumorigenesis. To this 

311 end, we examined 1,184 COADREAD patient samples sourced from the TCGA and GEO 

312 databases (including GSE39582 and GSE17538). Survival analysis pinpointed 12 TLSRGs 

313 (CCL2, CCL20, CXCR3, IL1R1, TIGIT, SGPP2, ICOS, CCL8, CXCL9, CXCL11, CXCL10, 

314 CXCL13) significantly correlated with the overall survival (OS) in COADREAD patients (Figure 

315 3B, p < 0.05). We then constructed a TLS network to delineate the interrelationships among 

316 TLSRGs and their prognostic values (Figure 3A). Univariate Cox regression analysis on these 

317 genes revealed positive associations of CCL20, CXCR3, TIGIT, SGPP2, ICOS, CXCL9, CXCL11, 
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318 CXCL10, and CXCL13 with patient survival, while CCL2, CCL8, and IL1R1 showed negative 

319 associations.

320 Based on the 12 prognostic TLSRGs, we employed a consensus clustering algorithm to divide 

321 COADREAD patients into two distinct molecular subtypes, namely Cluster A and Cluster B, 

322 with the analysis suggesting k=2 as the optimal cluster number (Figure 3D). Patients in subtype 

323 B exhibited significantly higher survival rates compared to those in subtype A, as demonstrated 

324 by the log-rank test (p = 0.001; Figure 3C). A notable divergence in the expression patterns of 

325 TLSRGs was observed between clusters A and B (Figure 3E). Particularly, a subset of TLSRGs, 

326 including CXCL9, CXCL10, CXCL11, CXCL13, ICOS, TIGIT, among others, were found to be 

327 predominantly upregulated in cluster B (p < 0.05). Further, we profiled the associations of 

328 TLSRG expression with various clinical characteristics such as age, disease stage, gender, 

329 recurrence, metastasis, fustat, and futime across the different subtypes (Figure 3F). This

330 profiling provided insights into the clinical relevance of TLSRG expression variations in distinct 

331 patient subgroups. To enhance the distinct biological traits of the subtypes, our study 

332 incorporated a comprehensive GSVA enrichment analysis using Hallmark, KEGG, and 

333 Reactome pathway databases. Collectively, these comprehensive pathway analyses consistently 

334 underscored the prominence of interferon gamma response, interferon alpha response, 

335 chemokine signaling pathway, and cytokine-cytokine receptor interaction pathways in subtype B. 

336 These pathways were critically linked to immune activation 34, further delineating the distinct 

337 immunological landscape of subtype B. (Figure 3G-I).

338 The PCA analysis reinforced the significant transcriptional distinctions between subtype A 

339 and B (Figure 3 J). To delve deeper into the role of TLSRGs in shaping the TIME, we quantified 

340 human immune cell subsets in each COADREAD sample. As depicted in Figure 3 K, cluster B 

341 was characterized by elevated stromal, immune, and ESTIMATE scores. A more granular 

342 examination through ssGSEA revealed marked disparities in immune cell infiltration between 

343 subtypes A and B (Figure 3L). Specifically, subtype B demonstrated notably higher infiltration 

344 levels of activated B cells, activated CD4+ T cells, activated CD8+ T cells, activated dendritic 

345 cells, macrophages, natural killer T cells, natural killer cells, T follicular helper cells, Type 1 T-

346 helper cells, and Type 2 T-helper cells compared to subtype A.

347 From these observations, it can be inferred that subtype B was significantly enriched in 

348 immune activation pathways, which appears to be intricately linked with the dynamics of TIME. 

349 In the quest to decode the biological intricacies of TLS subtypes, we scrutinized 189 DEGs 

350 between subtypes A and B. These were visually represented through a volcano plot (Figures 4A, 

351 |logFC|>1, p < 0.05). To identify pertinent biological pathways, we engaged in comprehensive 

352 GO and KEGG enrichment analyses. The GO and KEGG enrichment analysis pinpointed the 

353 DEGs' significant involvement in pathways such as cytokine-cytokine receptor interaction, 

354 upregulation of cytokine production, lymphocyte-mediated immunity, and adaptive immune 

355 responses founded on somatic leukocyte proliferation (Figures 4 B, C). A cnetplot was 

356 constructed to visualize the interplay within these pathways, highlighting the top 5 pathways 

357 (Figure 4 D).
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358 Identification of TLS gene subtypes

359 In the continuum of our research, a univariate Cox regression analysis was conducted to evaluate 

360 the prognostic significance of the 189 identified DEGs. This rigorous analysis led to the isolation 

361 of 16 key signature genes closely associated with overall survival (OS) in COADREAD patients 

362 (p < 0.001). These genes, namely HOXC6, SFRP2, CYP1B1, GAS1, SPOCK1, SPP1, POSTN, 

363 MARCO, VSIG4, THBS2, OLR1, COL10A1, FAP, GZMB, C5AR1, and APOE, were depicted in a 

364 forest plot for clarity (Sup-Figure 2 A).

365 Subsequently, COADREAD patients were stratified into two distinct groups based on the 

366 expression profiles of these 16 prognostic genes, utilizing a consensus clustering algorithm. The 

367 partitioning suggested that k=2 was an optimal division, forming two gene clusters, namely A 

368 and B (Figure 4 E). Survival analysis revealed a noteworthy finding: patients in subtype B 

369 exhibited a significantly enhanced survival probability compared to those in subtype A (log-rank 

370 test, p < 0.001; Figure 4 F). The box-map analysis highlighted that most of the signature genes, 

371 including APOE, VSIG4, C5AR1, CYP1B1, and SPP1, were predominantly 11 upregulated in 

372 cluster B (Figure 4 G, p < 0.05). Moreover, we extended our analysis to explore the correlation 

373 of these gene expressions with various clinical features such as age, stage, gender, recurrence, 

374 metastasis, fustat, and futime, stratifying them across the molecular subtypes (Figure 4 H).

375 Construction of TLS score

376 In advancing our study, a TLS score was formulated based on GSVA of the 16 identified 

377 signature genes. This scoring system facilitated the stratification of patients into two distinct 

378 genomic subtypes: those with low and high TLS scores. Survival analysis revealed a critical 

379 insight; patients categorized in the low-score group exhibited a markedly higher survival 

380 probability compared to their high-score counterparts (Figure 4 I, p < 0.001). A Sankey diagram 

381 was employed to eloquently depict the patient distribution across the two TLS molecular 

382 subtypes, gene subtypes, and score groups, alongside their respective prognostic implications 

383 (Figure 4 J).

384 Association of TLS score with immune infiltration

385 Spearman correlation analysis established a positive correlation between the TLS score and the 

386 infiltration of 23 different immune cells. This correlation suggested an augmented immune 

387 component presence in the TIME of patients within the high-score cluster, potentially indicating 

388 a more favorable immune prognosis (Figure 4 K, p < 0.05). Building upon these findings, we 

389 delved deeper into the association of TLS with cytokine-chemokine interaction networks. 

390 Notably, the high-score TLS cluster demonstrated significant enrichment in chemokines and 

391 their receptors, interleukins, and interferons along with their respective receptors (Fig. 4 L). The 

392 hallmark pathway analysis revealed a significant positive correlation12 of the TLS score with 

393 pathways indicative of immune activation. These pathways included interferon gamma response, 

394 interferon alpha response, inflammatory response, and IL-2 STAT5 signaling. Conversely, an 

395 inverse correlation was observed between the TLS score and pathways typically associated with 

396 malignancy, such as peroxisome proliferation, MYC target activation, oxidative phosphorylation, 
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397 fatty acid metabolism, and DNA repair mechanisms (Fig. 4 M). These findings underscored the 

398 strong association of the TLS score with predominantly immune-activated pathways.

399 Association of TLS score with MSI, TMB, CSC, and somatic mutations

400 Cancer Stem Cells (CSCs), which were acknowledged for their significant roles due to their 

401 selfrenewal capacity and differentiation potential 35. We delved into the relationship between the 

402 TLS score and CSC indices, including mDNAsi and mRNAsi. Our analysis, as depicted in 

403 Figure 5 A, revealed a notable negative linear correlation between the TLS score and the 

404 mDNAsi index (R = -0.18, p = 6e-04). This trend was further demonstrated by the lower 

405 mDNAsi observed in the high TLS score cluster compared to the low TLS score cluster (p < 0.01; 

406 Figure 5 B). Similarly, Figure 5 D presented a negative linear correlation between the TLS score 

407 and the mRNAsi index (R = -0.63, p = 0), with the high TLS score cluster exhibiting 

408 significantly lower mRNAsi than its low-score counterpart (p < 0.0001; Figure 5 E). Heat maps 

409 further corroborate these findings, illustrating the inverse relationship between both mDNAsi and 

410 mRNAsi index values and the TLS score (Figure 5 C, Figure 5 F). These insights suggested that 

411 COADREAD patients with a higher TLS score may exhibit reduced stem cell characteristics and 

412 diminished cell differentiation capabilities. 

413 In the context of Microsatellite Instability (MSI), a promising genomic biomarker for 

414 gauging13 patient responsiveness to immunotherapy36, our findings revealed a significantly 

415 higher MSI in the high TLS score cluster compared to the low (p < 0.05; Figure 5 H). Spearman 

416 correlation analysis further substantiates this, indicating a positive association between MSI and 

417 TLS score (R = 0.18, p = 7e-04; Figure 5 G). The positive correlation between MSI expression 

418 and TLS score was also visually represented in a heat map (Figure 5 I). This pattern suggested a 

419 potential link with enhanced immunotherapy efficacy.

420 Regarding Tumor Mutational Burden (TMB), which served as an indicator of cancer mutation 

421 volume and has clinical relevance with ICIs outcomes37, our data analysis from 

422 TCGACOADREAD cohorts indicated a higher TMB in the high TLS score cluster than in the 

423 low score cluster (p < 0.001; Figure 5 K). Spearman's analysis corroborated a positive 

424 relationship between TMB and TLS score (R = 0.2, p = 1e-04; Figure 5 J), with a heat map 

425 further illustrating this correlation (Figure 5 L). These findings were particularly noteworthy for 

426 patients with higher TMB who typically show more benefit from ICIs.

427 Our analysis extended to the somatic mutation landscape within the two distinct TLS score 

428 clusters. In the high TLS score cluster, the predominant mutated genes were TP53, TTN, APC, 

429 KRAS, SYNE1, MUC16, PIK3CA, OBSCN, FAT4, and RYR2. Conversely, the low TLS score 

430 cluster was characterized by mutations primarily in APC, TP53, KRAS, TTN, SYNE1, PIK3CA, 

431 FAT4, MUC16, OBSCN, and MUC4. Notably, the mutation frequency across these genes was 

432 more pronounced in the high TLS score cluster, as illustrated in Figures 5 M-N. Additionally, a 

433 forest plot detailed the top 12 genes exhibiting the most significant differences in mutation 

434 frequency between the high and low score clusters (Figures 5 O). This led to the inference that 

435 gene mutation frequency in the high TLS score cluster was not only higher but also more14 

436 diverse. Detailed SNV, CNV, and methylation profiles of prognostic TLS-DEGs in 

PeerJ reviewing PDF | (2024:06:102472:2:0:NEW 16 Sep 2024)

Manuscript to be reviewed



437 COADREAD patients were depicted in supplementary Figures 2-3. Analysis revealed significant 

438 disparities in recurrence/ metastasis, stage, and fustat between the low- and high-TLS score 

439 clusters (Figure 5 P-S).

440 Interplay of TLS Score and Immune Checkpoints Expression

441 Subsequent research focused on the expression levels of immune checkpoints in relation to TLS 

442 scores. Elevated expression of key immune checkpoints, including PDCD1 (PD-1), CD274 (PD-

443 L1), CTLA4, TIGIT, and LAG3, was predominantly observed in the high-score cluster, as 

444 depicted in Figure 5 T. This trend suggested that TLS score was potentially served as a 

445 predictive marker for immunotherapy efficacy.

446 Evaluating TLS Score as a Predictor for PD-L1 Blockade Immunotherapy

447 In the realm of T-cell immunotherapy, a promising approach for cancer treatment, we explored 

448 the significance of the TLS score in COADREAD, building on prior findings and our current 

449 results38. Within the GSE135222 cohort, a notable observation was the higher progression rate 

450 (100%) in patients with lower TLS scores compared to those with higher scores (75%) (Figure 5 

451 V). Furthermore, a markedly prolonged progression-free survival (PFS) was evident in patients 

452 with higher TLS scores (Figure 5 U, p = 0.0061). Analyzing the GSE176307 cohort, which 

453 comprised 90 patients treated with anti-PD-L1 receptor blockers, revealed a spectrum of 

454 responses ranging from complete response (CR) and partial response (PR) to stable disease (SD) 

455 and progressive disease (PD). Significantly, patients exhibiting CR/PR had elevated TLS scores 

456 compared to those with SD/PD (Figure 5 X). In this cohort, patients in the high-TLS cluster 

457 demonstrated substantial clinical benefits and notably longer overall survival (OS) than

458 15 their low-TLS counterparts (Figure 5 W, p = 0.018).

459 Analysis of Drug Susceptibility in Relation to TLS Score

460 Subsequent to establishing the TLS score as an effective predictor for immunotherapy

461 response, our study delved into the variances in IC50 values for various targeted anticancer drugs 

462 across low- and high-TLS clusters. Intriguingly, patients within the high-TLS cluster exhibited 

463 notably lower IC50 values for a range of anticancer agents, namely A.770041, AP.24534, 

464 AG.014699, AICAR, ABT.263, and AMG.706 (Figure 5 Y). These findings underscored the 

465 potential utility of the TLS score as a guiding metric in selecting appropriate anticancer drugs.

466 Impact of TLSRGs on Colorectal Cancer Cell Behavior In Vitro

467 In our investigation, RT-q PCR was utilized to ascertain the expression levels of C5AR1, APOE, 

468 CYP1B1, and SPP1 in a standard colon cell line and three colorectal cancer cell lines (Figure 6 

469 A-D). These four genes were markedly upregulated in cancer cells compared to normal cells. We 

470 employed siRNA techniques targeting C5AR1, APOE, CYP1B1, and SPP1. This was conducted 

471 in HCT116 and HT29 cell lines, selecting siRNA-1 and siRNA-2 for further analysis based on 

472 their transfection efficiency exceeding 70% (Sup-Figure 4 A-H). A CCK8 assay was 

473 subsequently performed to evaluate cell proliferation. Results demonstrated that the knockdown 

474 of APOE, C5AR1, CYP1B1, and SPP1 significantly impeded the proliferation of both

475 HCT116 and HT29 cells (Figure 6 E-L). The Transwell assay was conducted to assess cellular 

476 invasion capabilities. Notably, the suppression of APOE, C5AR1, CYP1B1, and SPP1 led to a 
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477 marked reduction in the invasion capacity of HCT116 and HT29 cells (Figure 6 M-N). 

478 Furthermore, an unexpected observation was the considerable decrease in PD-L1 expression in 

479 both HCT116 and HT29 cells following the knockdown of these genes. This reduction in PD-L1 

480 expression could hint at the potential of combining TLS inducers with PD-L1 inhibitors as a 

481 therapeutic strategy (Figure 6 P-Q). Additionally, the immunohistochemical data from the HPA 

482 database revealed an elevated protein expression of APOE, C5AR1, CYP1B1, and SPP1 in the 

483 stroma of COADREAD tissue (Figure 6 O).

484

485 Discussion

486 Globally, the prevalence of COADREAD, a leading form of cancer, is escalating in numerous 

487 nations. Recent endeavors in COADREAD management have been substantial; however, the 

488 disease's heterogeneous nature and its aggressive tendencies continue to pose challenges in 

489 prognostic evaluations 1,3,5. Identifying new biomarkers is thus imperative and urgent, offering a 

490 pathway to tailor patient-specific treatments and enhance prognostic accuracy.

491 While immune checkpoint inhibitors and chimeric antigen receptor T cell therapies are 

492 established as safe for various cancer types, their efficacy limitations underscore the need to 

493 explore additional cellular pathways for more effective treatment strategies39. Recent studies 

494 have linked the development of tertiary lymphoid structures (TLS) with improved clinical 

495 outcomes across several cancer types, and these structures are believed to enhance the efficacy of 

496 immunotherapies15-17. In colorectal cancers, which exhibit significant tumor heterogeneity, only 

497 certain molecular subtypes respond to immunotherapy4-6. Therefore, TLS could potentially 

498 provide insights into predicting and selecting COADREAD patients for immunotherapy, and in 

499 addressing immunotherapy resistance, particularly in groups with traditionally low response rates.

500 In contrast to bulk RNA-sequencing, which gauges average gene expression levels in cell 

501 populations, scRNA-seq has risen as a pivotal technique. It facilitates the delineation of cellular 

502 subpopulations, pinpointing distinctive biomarkers, and understanding the heterogeneity across 

503 different cell types in an array of cancers9.

504 Thus, this study undertook an extensive analysis combining both bulk RNA-seq and scRNA-

505 seq. Our approach encompassed clustering analysis, examination of TLS-associated DEGs, 

506 assessment of immune infiltration and mutation landscapes, and screening for prognostic genes.     

507 This comprehensive methodology enabled us to formulate a TLS score, demonstrating 

508 substantial predictive accuracy for immunotherapy effectiveness in COADREAD. Initially, our 

509 scRNA-seq analysis on COADREAD samples delineated two distinct TLS score clusters. In the 

510 cluster with elevated scores, we noted a significant enrichment of critical immune activation 

511 markers, such as inflammatory response, interferon-gamma and alpha responses, and TNFA 

512 signaling through NFKB pathways, aligning with earlier findings34. Further, a higher prevalence 

513 of monocytes, macrophages, and CD8+ T cells was evident in the high score group compared to 

514 the low-score group, which predominantly consisted of malignant cells and fibroblasts. This 

515 distribution implied that the high-score group harbors a more robust anti-tumor immune cell 

516 congregation, thereby intensifying anti-tumor responses. This observation was in concordance 

PeerJ reviewing PDF | (2024:06:102472:2:0:NEW 16 Sep 2024)

Manuscript to be reviewed



517 with recent literature suggesting TLS�s role in invigorating antitumor immunity and boosting 

518 immunotherapy efficacy11,15,18, reinforcing the concept of TLSs as indicative of �hot tumors�.

519 Subsequently, our investigation led to the identification of 12 TLSRGs with prognostic 

520 significance. Utilizing these genes, we stratified COADREAD patients into two distinct clusters. 

521 Our study distinguished 189 DEGs between the two identified clusters, leading to the isolation of 

522 16 genes intimately linked with overall survival (OS). we segregated COADREAD patients into 

523 two gene clusters based on these 16 prognostic genes. Leveraging this groundwork, we crafted a 

524 TLS score model using GSVA. This model incorporated 16 pivotal TLS-DEGs: HOXC6, SFRP2, 

525 CYP1B1, GAS1, SPOCK1, SPP1, POSTN, MARCO, VSIG4, THBS2, OLR1, COL10A1, FAP,

526 GZMB, C5AR1, and APOE. Their prognostic relevance in various malignancies was further 

527 corroborated by previous research.

528 The role of HOXC6 in nonmetastatic CRC is noteworthy, its heightened expression correlates 

529 significantly with increased immunogenicity40. Within an aging microenvironment, sFRP2 has 

530 been identified as a driver of melanoma metastasis and resistance to therapies41. The enzyme 

531 CYP1B1 played a crucial role in the advancement and progression of castration-resistant prostate 

532 cancer42. Interestingly, GAS1 impeded colorectal tumorigenesis through WNT signaling, 

533 influencing CD143+ cancer-associated fibroblasts42. As a potential cancer prognostic marker, 

534 SPOCK1 enhanced proliferation and metastasis in gallbladder cancer cells via the PI3K/AKT 

535 pathway43. The protein SPP1, known for its upregulation of PD-L1, contributed to lung cancer�s 

536 ability to evade immune detection44. POSTN, by augmenting M2 macrophages and cancer-

537 associated fibroblasts, facilitated ovarian cancer metastasis45. In lung cancer, targeting MARCO 

538 on immunosuppressive macrophages has shown promise, hindered regulatory T cells while 

539 bolstering cytotoxic lymphocyte functions46. Finally, VSIG4, which regulated immune 

540 homeostasis by modulating complement pathways and T-cell differentiation, presented a double-

541 edged sword. While it curbed immune-mediated inflammatory diseases, it simultaneously aided 

542 in cancer progression, positioning it as a novel target in cancer immunotherapy47. In the context 

543 of early-stage lung adenocarcinoma, THBS2+ cancer-associated fibroblasts have been pinpointed 

544 as crucial facilitators of the disease's aggressiveness through multi-scale integrative analyses48. 

545 Research revealed that silencing OLR1 attenuates glycolytic metabolism, thereby inhibiting 

546 proliferation and chemoresistance in colon cancer cells49. COL10A1 has been identified as a 

547 promoter of gastric cancer invasion and metastasis, primarily through the process of epithelial-

548 to-mesenchymal transition50. FAP appeared to exacerbate malignancy outcomes through various 

549 mechanisms, including extracellular matrix remodeling, intracellular signaling, angiogenesis, 

550 epithelial-to-mesenchymal transition, and immunosuppression 51. GZMB stood out as a primary 

551 indicator of cytotoxic T-cell activity, with GZMB+ T-cells being pivotal in antitumor immunity 

552 52. The intracellular C5a/C5aR1 complex was found to stabilize β-catenin, thereby facilitating 

553 colorectal tumorigenesis 53. Furthermore, APOE, secreted by prostate tumor cells, has been 

554 linked to cellular senescence and is associated with adverse prognoses 54. This study presented, 

555 for the first time, an extensive exploration of the roles of these TLS signature genes in 

556 COADREAD. 

PeerJ reviewing PDF | (2024:06:102472:2:0:NEW 16 Sep 2024)

Manuscript to be reviewed



557 Subsequent findings indicated that individuals with higher TLS scores potentially derive 

558 greater benefit from anti-PD-1 therapies and targeted treatment approaches. Intriguingly, we 

559 observed a contrasting prognosis associated with TLS scores in patients undergoing 

560 immunotherapy versus those who were not. This aligns with the observed higher rates of 

561 immune cell infiltration, immune checkpoint expression, MSI index, TMB index, and somatic 

562 mutations in the high-TLS score cohort. Furthermore, a significant positive correlation was noted 

563 between most immune activation-related pathways and TLS scores. Existing literature supported 

564 the notion that both immunotherapy and chemotherapy can promote the development of tertiary 

565 lymphoid structures, including the proliferation of CD8+ T cells, thereby bolstering anti-tumor 

566 immunity11,14,17,19. This aligned with our RNA-seq data analysis. Similarly, our single-cell data 

567 model corroborated this, indicating enhanced anti-tumor immune cell infiltration and pathway 

568 activation in the high-score group. These insights underscored the pivotal role of TLS status in 

569 determining the efficacy of immunotherapy and other immune-based treatments.

570 This study provides important insights into the prognostic and therapeutic potential of TLS-

571 related gene profiles in colorectal cancer. However, several limitations must be acknowledged to 

572 fully contextualize the findings and guide future research efforts. A primary limitation is the 

573 reliance on RNA sequencing data without direct histopathological validation of TLS presence. 

574 While TLS-related gene signatures were identified, their correlation with actual TLS structures 

575 in the tumor microenvironment was not confirmed. Future studies should incorporate 

576 histopathological validation, such as immunohistochemistry or immunofluorescence, to directly 

577 assess TLS formation and establish a clearer link between gene signatures and TLS presence.

578 Additionally, while this study provides a comprehensive analysis of TLS-related gene 

579 signatures, it does not explore the underlying mechanisms that drive TLS formation or their 

580 functional impact on immune responses. Mechanistic insights into how TLSs form and interact 

581 with immune cells within the tumor microenvironment are crucial for understanding their role in 

582 modulating immune activity and influencing patient outcomes. Future research should focus on 

583 functional assays and mechanistic studies using in vitro and in vivo models to investigate these 

584 pathways.

585 Another limitation stems from the reliance on publicly available datasets from GEO and 

586 TCGA, which introduces potential biases. These datasets may not fully represent the diversity of 

587 colorectal cancer populations, particularly in terms of ethnicity, disease stage, and treatment 

588 history, which could limit the generalizability of the findings. Validation in more diverse patient 

589 cohorts, ideally through prospective multicenter studies, will be necessary to ensure the 

590 applicability of the TLS score across broader clinical settings.

591 Moreover, the study did not explicitly control for confounding variables such as tumor stage, 

592 treatment history, or patient demographics, which could influence the TLS score�s correlation 

593 with immunotherapy efficacy. These factors might have affected the outcomes and should be 

594 considered in future research. Stratifying patients or adjusting for confounders in statistical 

595 analyses will help ensure more accurate conclusions about the clinical utility of the TLS score.
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596 A further limitation is the absence of functional validation, which makes some conclusions 

597 speculative. Although the bioinformatics analysis suggests that TLS presence correlates with 

598 immune responses, direct experimental validation is needed to confirm these findings. Future 

599 studies should employ functional assays, such as co-culture systems or animal models, to test the 

600 biological role of TLSs in modulating immune responses and treatment outcomes.

601 The clinical relevance of the TLS score remains somewhat unclear, as we did not fully clarify 

602 its association with key biomarkers such as immune responses, tumor mutational burden (TMB), 

603 microsatellite instability (MSI), and specific gene signatures. While immune response markers 

604 were shown to correlate with higher TLS scores, the relationships with TMB and MSI need 

605 further exploration. Future research should refine the TLS score, better delineating its 

606 associations with these biomarkers and validating its use in clinical decision-making.

607 The complexity of the bioinformatics approach used in this study may also pose challenges for 

608 replication. However, we have provided all necessary methodological details, along with 

609 publicly available data and code, to ensure that other researchers can replicate and build upon 

610 these findings.

611 Additionally, the findings of this study have not been validated in clinical trials, limiting their 

612 immediate applicability in clinical practice. Prospective clinical trials will be essential to 

613 evaluate the TLS score�s ability to predict treatment responses and guide personalized therapy in 

614 colorectal cancer patients. Such trials would also help assess the long-term utility of TLS-related 

615 biomarkers in predicting recurrence and survival outcomes, which were not covered by the 

616 current study.

617 Finally, while this study offers a broad assessment of TLS-related gene profiles, the global 

618 nature of the analysis may dilute the focus. A more targeted approach, investigating specific 

619 hypotheses related to TLS function or its relevance in immunotherapy, would yield more 

620 actionable conclusions. Future research should aim for a deeper exploration of particular aspects 

621 of TLS biology that have the most clinical significance.

622 In conclusion, while this study provides valuable insights into TLS-related gene profiles in 

623 colorectal cancer, addressing these limitations in future research will significantly enhance the 

624 robustness and clinical relevance of TLS as a prognostic and therapeutic marker.

625 Conclusions

626 In this study, we elucidated the distinct features of TLS within the COADREAD framework. 

627 Utilizing a quadratic clustering-based TLS score model, our approach enabled the assessment of 

628 TLS dynamics at an individual level. This method also facilitated predictions regarding the 

629 effectiveness of immunotherapy and other immune-based treatments in COADREAD cases. 

630 Consequently, a deeper comprehension of TLS patterns, combined with the application of the 

631 TLS scoring system, held promise for guiding clinical decisions and enhancing the prognosis for 

632 patients with colorectal cancer.

633
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Figure 1
Flowchart of this study

(A) The CRC_EMTAB8107 scRNA-seq dataset was downloaded from the GEO Database
(https://www.ncbi.nlm.nih.gov/geo/), and the Hallmark pathways were retrieved from the
MsigDB database ( https://www.gsea-msigdb.org/gsea/msigdb/index.jsp ). (B-E) The
GSE17538 and GSE39582 datasets were downloaded from the GEO database, and the
COADREAD dataset was retrieved from the TCGA database (https://portal.gdc.cancer.gov).
Hallmark, KEGG, and Reactome pathways were all sourced from the MsigDB database. (F)
The datasets for analyzing MSI, TMB, CSCs, and somatic mutations were sourced from the
TCGA_COADREAD database. (G) The immunotherapy datasets GSE135222 and GSE176307
were obtained from the GEO database. Drug sensitivity analyses were performed using the
GSE17538, GSE39582 datasets from the GEO database, the COADREAD dataset from TCGA,
and data from the CancerRxGene database (https://www.cancerrxgene.org/). (H) The
immunohistochemistry results were retrieved from the HPA database (
https://www.proteinatlas.org ).
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Figure 2
Figure 2

Figure 2 Construction of TLS score revealing high cellular heterogeneity in COADREAD based
on single cell RNA sequencing (scRNA-seq) data. (A) Reduced dimensionality and cluster
analysis. The COADREAD dataset cells might be classified into 19 clusters by UMAP, which
included B cells, dendritic cells, endothelial cells, fibroblasts, malignant cells, mono-
macrophages, mast cells, plasma cells, CD8+T cells and CD4+T cells. (B) The volcano plot
displaying differential expression genes across various cell types, with the top five shown. (C)
The heatmap displayed the score of significantly enriched Hallmark pathways across each
tumor infiltrating cell type. The bar represented the row-scaled pathway enrichment level.
(D) The dot plot displayed the expression levels of 39 TLSRGs across various cell types. (E)
Identification and landscape of TLS score. The TLS score of each cell type was calculated by
GSVA. The expression of TLS gene cluster in each cell type was visualized by UMAP plot. (F)
Grouping by TLS score. The cell clusters were divided into high- and low score groups and
displayed by UMAP plot. (G) Comparison of TLS score among cell clusters. Box plots showed
the TLS score of every cell cluster and were sorted by ascending order. (H-I) Quantization of
cell number and proportion in TLS score clusters. Cell number and proportion of each cell
cluster was compared between high- and low- TLS groups by composition chart. (J)
Correlation of TLS score with Hallmark pathways. The heatmap showed the correlation of TLS
score with Hallmark pathway scores across all cell clusters. (K) Enrichment of Hallmark
pathways. The comparison of Hallmark pathway score between high- and low- score group
was showed by heatmap.
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Figure 3
Figure 3

Figure 3 Construction and biological analysis of TLS molecular subtypes in colorectal
carcinoma. (A) UniCox regression analysis and mutual correlations among TLSRGs in 1184
colorectal cancer samples. Spearman correlation analyses were used. The line between two
TLSRGs indicated their interaction, and the stronger the correlation, the thicker the line.
green line represented positive correlation and yellow line represented negative correlation.
(B) Kaplan–Meier plot and log-rank tests were conducted for survival analyses of those
TLSRGs (CCL2, CCL20, CXCR3, IL1R1, TIGIT, SGPP2, ICOS, CCL8, CXCL9, CXCL11, CXCL10,
CXCL13). (C) Survival analyses for two different clusters. (D) Consensus clustering matrix for
k = 2. (E) The abundance of TLSRGs in two clusters. (F) The heat-map showed the
associations of clinicopathologic characteristics with molecular subtypes. Purple color
indicated up-regulation and green color indicated down-regulation. GSVA enrichment
analyses of Hallmark (G), KEGG (H), and Reactome (I) pathways in subtype A and B. Purple
color indicated more enriched pathways and green color indicated less enriched pathways. (J)
PCA presented a great difference in transcriptomes between different TLS molecular
subtypes. (K) Differences in the stromal, immune and ESTIMATE score between different TLS
clusters. (L) The abundance of tumor infiltrating immune cells in cluster A and B.
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Figure 4
Figure 4

Figure 4 Construction of TLS gene subtypes and TLS score, following integrative analysis.
(A)189 TLS-DEGs shown in the volcano plot. (B) Functional annotation for TLS-DEGs using GO
enrichment analysis. The size of the plots represented the number of genes enriched. (B) The
pathways were grouped by biological process (BP), cellular component (CC), and molecular
function (MF). (C) Functional annotation for TLS-DEGs using KEGG enrichment analysis. The
size of the plots represented the number of genes enriched. (D) The chord graph showed the
5 vital pathways and corresponding genes of KEGG analysis. (E) Identification of two gene
subtypes (k=2) and their correlation area through consensus clustering analysis of the 16
genes. (F) Survival analysis of the two gene subtypes. (G) Expression of the 16 genes in
different subtypes. (H) The heat-map showed the associations of clinicopathologic
characteristics with gene subtypes. (I) TLS scores were calculated based on the 16 TLS-DEGs
by GSVA, and survival analyses were performed in high- and low-score group. (J) Sankey
diagram displayed the relationship of molecular subtypes, gene subtypes, TLS scores and
survival outcomes. (K) The TLS score was positively associated with all over tumor infiltrating
immune cells. (L) GSVA analysis for cytokines, chemokines, and their receptors in high- and
low-TLS score clusters. (M) Correlation of TLS score with 50 hallmark pathway scores by
GSVA.
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Figure 5
Figure 5

Figure 5 Mutations landscape, Clinical significance, Immunotherapy response and drug
susceptibility of TLS score. Correlation (A), expression (B) and the distribution (C) of TLS
score with mDNAsi index. Correlation (D), expression (E) and the distribution (F) of TLS score
with mRNAsi index. Correlation (G), expression (H) and the distribution (I) of TLS score with
MSI index. Correlation (J), expression (K) and the distribution (L) of TLS score with TMB index.
The waterfall plot of somatic mutation characteristics in high-and low-TLS score groups. High
score group contained 172 COADREAD samples (M) and low score group contained 198
COADREAD samples (N). (O) Mutational variation in high-and low-score clusters, Forest plot
shows the HRs of 2 score clusters. Differences between TLS score clusters in fustat (P),
gender (Q), recurrence/ metastasis (R), stage (S) and the expression of immune checkpoints
(T). Difference of survival analyses (U), response to anti-PD-1/PD-L1 therapy (V) between low-
and high-TLS clusters in non-small cell lung carcinoma cohort (GSE135222). Differences of
survival analyses (W), response to anti-PD-1 therapy (X) between low- and high-TLS clusters
in Metastatic Urothelial carcinoma cohort (GSE176307). (Y) The Box diagram showed the
differences of drug sensitivity (IC50) to targeted therapy between high-and low-TLS score
clusters.
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Figure 6
Cell experiment and tissue expression verification.

Validation of the expression of C5AR1 (A), APOE (B), CYP1B1 (C), SPP1 (D) in a normal colon
cell line (NCM460) and three COADREAD cell lines (HCT116, HCT29, and VOLO) by qRT-PCR.
(EL) CCK8 assay. After knockdown of C5AR1 (E, I), APOE (F, J), CYP1B1 (G, K), and SPP1 (H, L),
the HCT 116 cells and HT 29 cells showed significant reduction in viability separately. The
invasion capacity of HCT116 cells and HCT29 cells decreased significantly after APOE, C5AR1,
CYP1B1, and SPP1 knockdown (M-N). Immunohistochemistry showing the protein expressions
of APOE, C5AR, CYP1B1, and SPP1 based on the Human Protein Atlas (HPA) database (O).
After knockdown of APOE, C5AR, CYP1B1, and SPP1, the HCT 116 cells and HT 29 cells
showed significant reduction of PD-L1 expression separately (P-Q).
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