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High-throughput sequencing provides a fast and cost effective mean to recover genomes
of organisms from all domains of life. However, adequate curation of the assembly results
against potential contamination of non-target organisms requires advanced bioinformatics
approaches and practices. Here, we re-analyzed the sequencing data generated for the
tardigrade Hypsibius dujardini using approaches routinely employed by microbial
ecologists who reconstruct bacterial and archaeal genomes from metagenomic data. We
created a holistic display of the eukaryotic genome assembly using DNA data originating
from two groups and eleven sequencing libraries. By using bacterial single-copy genes, k-
mer frequencies, and coverage values of scaffolds we could identify and characterize
multiple near-complete bacterial genomes, and curate a 182 Mbp draft genome for H.
dujardini supported by RNA-Seq data. Our results indicate that most contaminant scaffolds
were assembled from Moleculo long-read libraries, and most of these contaminants have
differed between library preparations. Our re-analysis shows that visualization and
curation of eukaryotic genome assemblies can benefit from tools designed to address the
needs of today’s microbiologists, who are constantly challenged by the difficulties
associated with the identification of distinct microbial genomes in complex environmental
metagenomes.
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16 Abstract

17 High-throughput sequencing provides a fast and cost effective mean to recover genomes of 
18 organisms from all domains of life. However, adequate curation of the assembly results 
19 against potential contamination of non-target organisms requires advanced bioinformatics 
20 approaches and practices. Here, we re-analyzed the sequencing data generated for the 
21 tardigrade Hypsibius dujardini using approaches routinely employed by microbial 
22 ecologists who reconstruct bacterial and archaeal genomes from metagenomic data. We 
23 created a holistic display of the eukaryotic genome assembly using DNA data originating 
24 from two groups and eleven sequencing libraries. By using bacterial single-copy genes, k-
25 mer frequencies, and coverage values of scaffolds we could identify and characterize 
26 multiple near-complete bacterial genomes, and curate a 182 Mbp draft genome for H. 
27 dujardini supported by RNA-Seq data. Our results indicate that most contaminant scaffolds 
28 were assembled from Moleculo long-read libraries, and most of these contaminants have 
29 differed between library preparations. Our re-analysis shows that visualization and 
30 curation of eukaryotic genome assemblies can benefit from tools designed to address the 
31 needs of today’s microbiologists, who are constantly challenged by the difficulties 
32 associated with the identification of distinct microbial genomes in complex environmental 
33 metagenomes.
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35 Introduction

36 Advances in high-throughput sequencing technologies are revolutionizing the field of 
37 genomics by allowing researchers to generate large amount of data in a short period of 
38 time (Loman & Pallen 2015). These technologies, combined with advances in 
39 computational approaches, help us understand the diversity and functioning of life at 
40 different scales by facilitating the rapid recovery of bacterial, archaeal, and eukaryotic 
41 genomes (Venter et al. 2001; Brown et al. 2015; Schleper et al. 2005). Yet, the recovery of 
42 genomes is not straightforward, and reconstructing bacterial and archaeal versus 
43 eukaryotic genomes present researchers with distinct pitfalls and challenges that result in 
44 different molecular and computational workflows.

45 For instance, difficulties associated with the cultivation of bacterial and archaeal organisms 
46 (Schloss & Handelsman 2003) have persuaded microbiologists to reconstruct genomes 
47 directly from the environment through assembly-based metagenomics workflows and 
48 genome binning. This workflow commonly entails (1) whole sequencing of environmental 
49 genetic material, (2) assembly of short reads into contiguous DNA segments (contigs), and 
50 (3) identification of draft genomes by binning contigs that originate from the same 
51 organism. Due to the extensive diversity of bacteria and archaea in most environmental 
52 samples (Gans et al. 2005; Rusch et al. 2007), the field of metagenomics has rapidly evolved 
53 to accurately delineate genomes in assembly results. Today, microbiologists often exploit 
54 two essential properties of bacterial and archaeal genomes to improve the “binning” step: 
55 (1) k-mer frequencies that are somewhat preserved throughout a single microbial genome 
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56 (Pride et al. 2003), to identify contigs that likely originate from the same genome (Teeling 
57 et al. 2004), and (2) a set of genes that occur in the vast majority of bacterial genomes as a 
58 single copy, to estimate the level of completion and contamination of genome bins (Wu & 
59 Eisen 2008; Campbell et al. 2013; Parks et al. 2015). These properties, along with 
60 differential coverage of contigs across multiple samples when such data exist, are routinely 
61 used to identify coherent microbial draft genomes in metagenomic assemblies (Albertsen 
62 et al. 2013; Alneberg et al. 2014; Kang et al. 2015; Eren et al. 2015).
63
64 On the other hand, researchers who study eukaryotic genomes generally focus on the 
65 recovery of a single organism, which, in most cases, simplifies the identification of the 
66 target genome in assembly results. However, sequences of bacterial origin can contaminate 
67 eukaryotic genome assembly results due to their occurrence in samples (Chapman et al. 
68 2010; Artamonova & Mushegian 2013), DNA extraction kits (Salter et al. 2014), or 
69 laboratory environments (Laurence et al. 2014; Strong et al. 2014). One of the major 
70 challenges of working with eukaryotic genomes is the extent of repeat regions that 
71 complicate the assembly process (Richard et al. 2008). To optimize the assembly, 
72 researchers often employ multiple library preparations for sequencing (Ekblom & Wolf 
73 2014; Gnerre et al. 2010), which may increase the potential sources of post-DNA extraction 
74 contamination. Contaminants in assembly results can eventually contaminate public 
75 databases (Merchant et al. 2014), and impair scientific findings (Artamonova et al. 2015). 
76 The detection and removal of contaminants poses a major bioinformatics challenge. To 
77 identify undesired contigs in a genomic assembly, scientists can simply compare their 
78 assembly results to public sequence databases for positive hits to unexpected taxa (Ekblom 
79 & Wolf 2014), use k-mer coverage plots to identify distinct genomes (Percudani 2013), or 
80 employ scatter plots to partition contigs based on their GC-content and coverage (Kumar et 
81 al. 2013). However, advanced solutions developed for accurate identification of microbial 
82 genomes in complex metagenomic assemblies can leverage these approaches further, and 
83 offer enhanced curation options for eukaryotic assemblies.
84
85 The first release of a tardigrade genome by Boothby et al. (2015) demonstrates a striking 
86 example of the importance of careful screening for contaminants in eukaryotic genome 
87 assemblies. Tardigrades are microscopic animals occurring in a wide range of ecosystems 
88 and they exhibit extended capabilities to survive in harsh conditions that would be fatal to 
89 most animals (Ramløv & Westh 2001; Jönsson et al. 2005, 2008; Horikawa et al. 2013). 
90 Boothby and his colleagues generated a composite DNA sequencing dataset from a culture 
91 of the tardigrade Hypsibius dujardini by exploiting some of the best practices of high-
92 throughput sequencing available today (Boothby et al. 2015). In their assembled tardigrade 
93 genome, the authors detected a large number of genes originating from bacteria, making up 
94 approximately one-sixth of the gene pool, and suggested that horizontal gene transfers 
95 (HGTs) could explain the unique ability of tardigrades to withstand extreme ranges of 
96 temperature, pressure, and radiation. However, Koutsovoulos et al.’s subsequent analysis 
97 of Boothby et al.'s assembly suggested that it contained extensive bacterial contamination, 
98 casting doubt on the extended HGT hypothesis (Koutsovoulos et al. 2015). By applying two-
99 dimensional scatterplots on their own assembly results (which were also contaminated 

100 with bacterial sequences), Koutsovoulos et al. reported a curated draft genome of H. 
101 dujardini.
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102 Here we re-analyzed the raw sequencing data generated by Boothby et al. (2015) and 
103 Koutsovoulos et al. (2015) using anvi’o, an analysis and visualization platform originally 
104 designed for the identification and assessment of bacterial genomes in metagenomic 
105 assemblies (Eren et al. 2015). In our analysis, we relied on bacterial single-copy genes to 
106 assess the occurrence of bacterial genomes in assembly results, used k-mer frequencies to 
107 organize contigs, combined all sequencing data for each library preparation method from 
108 both groups into a single display, and overlaid RNA-Seq data (courtesy of Itai Yanai) over 
109 contigs to confirm the origin of contigs.

110 Material and methods

111 Genome assemblies, and raw sequencing data for DNA and RNA. Boothby et al. 
112 constructed three paired-end Illumina libraries (insert sizes of 0.3, 0.5 and 0.8 kbp) for 2 x 
113 100 paired-end sequencing on a HiSeq2000 and six single-end long-read libraries (five 
114 Illumina Moleculo libraries sequenced by the Illumina “long read” DNA sequencing service, 
115 and one PacBio SMRT library sequenced using the P6-C4 chemistry and a 1 X 240 movie), 
116 which altogether provided a co-assembly of 252.5 Mbp (Boothby et al. 2015). The 
117 tardigrade genome released by Boothby et al. (2015), along with the nine sequencing data 
118 used for its assembly, are available at http://weatherby.genetics.utah.edu/seq_transf. 
119 Independently, Koutsovoulos et al. generated a 0.3 kbp insert library and a 1.1 kbp insert 
120 mate-pair library for 2 x 100 paired end sequencing on a HiSeq2000 that provided a co-
121 assembly of 185.8 Mbp (Koutsovoulos et al. 2015). These authors subsequently curated a 
122 135 Mbp draft genome by removing potential bacterial contamination (Koutsovoulos et al. 
123 2015). The tardigrade raw assembly and curated draft genome released by Koutsovoulos et 
124 al. (2015) are available at http://badger.bio.ed.ac.uk/H_dujardini, and their two 
125 sequencing datasets are available from the ENA, under study accession PRJEB11910. 
126 Itai Yanai (Technion - Israel Institute of Technology, http://yanailab.technion.ac.il/) 
127 graciously provided RNA-seq data generated from a H. dujardini culture, which will be 
128 available under the accession ID accession GSE70185 upon their publication.

129 Quality filtering and read mapping. We used illumina-utils (Eren et al. 2013) (available 
130 from http://github.com/meren/illumina-utils) for quality filtering of short Illumina reads 
131 using ‘iu-filter-quality-minoche’ script with default parameters, which implements the 
132 quality filtering described by Minoche et al. (Minoche et al. 2011). Bowtie2 v2.2.4 
133 (Langmead & Salzberg 2012) with default parameters mapped all reads to assemblies. We 
134 used samtools v1.2 (Li et al. 2009) to generate BAM files from mapping results. 

135 Processing of contigs, visualization and genome binning. We processed BAM files and 
136 raw genome assemblies using anvi’o v1.2.2 (available from 
137 http://github.com/meren/anvio), generated anvi’o contig databases, profiled BAM files, 
138 and merged resulting profiles using default parameters and following the metagenomic 
139 workflow outlined in Eren et al (2015). In addition, we mapped and profiled the RNA-seq 
140 data to identify scaffolds with transcriptomic activity, and exported the table for 
141 proportion of each scaffold covered by transcripts using anvi’o script ‘get-db-table-as-
142 matrix’. We used the supplementary material published by Boothby et al. (2015) (“Dataset 
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143 S1” in the original publication) to identify scaffolds with proposed HGTs. We included the 
144 RNA-seq results and scaffolds with HGTs into our visualization as an additional data file. 
145 The URL http://merenlab.org/data/ reports anvi’o files to regenerate Figure 1 and Figure 
146 2, our curation of the tardigrade genome from Boothby et al.’s assembly (which is also 
147 available in NCBI via the bioproject ID PRJNA309530), and the FASTA files for bacterial 
148 genomes we identified in the Boothby et al. and Koutsovoulos et al. assemblies. To finalize 
149 the anvi’o generated SVG files for publication, we used Inkscape v0.91 (available from 
150 https://inkscape.org/).
151
152 Predicting number of bacterial genomes. To estimate the number of bacterial genomes 
153 in a given collection of scaffolds in a raw assembly or in a curated genome bin, and to 
154 visualize the distribution of HMM hits for each bacterial single-copy gene, we used the 
155 anvi’o script ‘gen-stats-for-single-copy-genes’, which reports the most frequent number in 
156 the list of number of hits per single-copy gene as the estimated number of bacterial 
157 genomes in a collection of scaffolds. The script uses HMMer v3.1b2 (Eddy 2011) to search 
158 for Hidden Markov Profiles (HMMs) of 139 bacterial single-copy genes identified by 
159 Campbell et al (2013), and the R library ‘ggplot’ v1.0.0 (R Development Core Team 2011; 
160 Ginestet 2011) to plot results.

161 Taxonomical and functional annotation of bacterial genomes. After binning, we 
162 uploaded bacterial draft genomes recovered from the assembly into the RAST server (Aziz 
163 et al. 2008), and used the RAST best taxonomic hits and FigFams to infer the taxonomy of 
164 genome bins and functions they harbor.

165 Results and Discussion

166 Boothby et al. generated sequencing data from a tardigrade culture using three short read 
167 (Illumina) and six long read (Moleculo and PacBio) libraries, which altogether provided a 
168 co-assembly of 252.5 Mbp (Boothby et al. 2015). Using this assembly without any curation, 
169 authors suggested that 6,663 genes were entered into the tardigrade genome through 
170 HGTs. Independently, Koutsovoulos et al. generated sequencing data from another 
171 tardigrade culture using two short read Illumina libraries that provided a co-assembly of 
172 185.8 Mbp, from which they could curate a 135 Mbp tardigrade draft genome by removing 
173 potential bacterial contamination using two-dimensional scatterplots of scaffolds with 
174 respect to their GC-content and coverage  (Koutsovoulos et al. 2015). 

175 A holistic view of the data

176 The use of multiple library preparations and sequencing strategies is likely to result in 
177 more optimal assembly results (Gnerre et al. 2010). Hence, we focused on the scaffolds 
178 generated by Boothby et al. (2015) as a foundation to maximize the recovery of the 
179 tardigrade genome. To provide a holistic understanding of the composite sequencing data 
180 generated by the two teams, we mapped the raw data from the nine DNA sequencing 
181 libraries from Boothby et al., and the two Illumina libraries from Koutsovoulos et al. (2015) 
182 on this assembly. Anvi’o generated a hierarchical clustering of scaffolds by combining the 
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183 tetra-nucleotide frequency and coverage of each scaffold across the 11 DNA sequencing 
184 libraries (Eren et al. 2015). Besides visualizing the coverage of each scaffold in each sample, 
185 we highlighted scaffolds with HGTs identified by Boothby et al. on the resulting 
186 organization of scaffolds, and visualized RNA-seq mapping results. Figure 1 displays the 
187 anvi’o merged profile that represents all this information in a single display. 

188 A larger draft genome for H. dujardini

189 Through the anvi’o interactive interface we selected 14,961 scaffolds from the Boothby et 
190 al. assembly that recruited large number of short-reads in a consistent manner (Fig. 1). 
191 This 182.2 Mbp selection with consistent coverage (#1 in Fig. 1) represents our curation of 
192 the tardigrade draft genome from Boothby et al.’s assembly. The remaining 7,535 scaffolds, 
193 which total about 70 Mbp of the assembly, harbored 96.1% of HGTs identified by Boothby 
194 et al. These scaffolds recruited only 0.05% of the reads from the RNA-Seq data, highlighting 
195 the extent of contamination in the original assembly. This finding is in agreement with 
196 Koutsovoulos et al.’s findings; however, our curated draft genome is 47 Mbp larger than the 
197 draft genome released by Koutsovoulos et al. (2015). The portion of scaffolds covered by 
198 RNA-Seq data suggests that the additional 47 Mbp still originate from the tardigrade 
199 genome. Thus, our selection is likely to be a more complete draft genome for H. dujardini 
200 than that of Koutsovoulos et al., most probably due to Boothby et al.’s inclusion of longer 
201 reads.

202 The origin of bacterial contamination

203 Our mapping results indicate the presence of non-target sequences in the assembly that 
204 recruit reads only from long-read libraries. One interpretation could be that most of the 
205 contamination in Boothby et al.’s assembly originated from Moleculo libraries, post DNA-
206 extraction (Fig. 1). However, a recent study shows that the majority of long reads from 
207 Moleculo libraries originated from low-abundance organisms in samples (Sharon et al. 
208 2015), while another study suggests relatively more sequencing bias in Moleculo library 
209 preparation results (Kuleshov et al. 2015). Therefore another interpretation of the 
210 mapping results can be that the bacterial contaminants were present in the sample in low 
211 abundances pre-DNA extraction, and individual Moleculo library preparations resulted in 
212 long reads originating from different parts of this rare community. Regardless, long reads 
213 considerably improved Boothby et al.’s assembly, which resulted in a larger tardigrade 
214 genome following the removal of non-target sequences. While these results reiterate that 
215 the use of long-read libraries is essential to generate more comprehensive assemblies, they 
216 also suggest that extra care should be taken to better mitigate the presence of non-target 
217 sequences in assembly results when long-read libraries are used for sequencing.

218 We identified three near-complete bacterial genomes affiliated to Chitinophaga and 
219 Thermosinus in Boothby et al.’s assembly (Fig. 1). Surprisingly, Boothby et al. identified only 
220 a small portion of these complete bacterial genomes as sources of HGTs while applying a 
221 metric specifically designed to detect foreign DNA in eukaryotic genomes. For instance, 
222 none of the 4,459 genes in bacterial draft genome #2 (selection #3 in Fig. 1) were reported 
223 in Boothby et al.’s findings as HGTs. Although this falls outside of the scope of our study, 
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224 this oddity may indicate a potential flaw in metrics commonly used to quantify foreign DNA 
225 in eukaryotic genomes. We also processed and visualized the raw assembly from 
226 Koutsovoulos et al. (2015) using anvi’o (Figure S1) and recovered eight bacterial genomes, 
227 however, we found no taxonomical overlap between high-completion bacterial genomes 
228 from the two sequencing projects (Table S1).
229
230 Interestingly, one bacterial genome (selection #2 in Fig. 1) was detected in DNA libraries 
231 from both groups, as well as in the RNA-seq data, suggesting that the related bacterial 
232 population was in all samples prior to the DNA/RNA extraction step. This genome is 
233 affiliated to Chitinophaga, and harbors genes coding for chitin degradation and utilization 
234 (Table S2). Chitin occurs naturally in the feeding apparatus of tardigrades (Guidetti et al. 
235 2015), and might be a source of carbon for its microbial inhabitants. The genome also 
236 harbors genes coding for the biosynthesis of tryptophan, an essential amino acid for 
237 animals (Crawford 1989; Zelante et al. 2013), proteorhodopsin, host invasion and 
238 intracellular resistance, dormancy and sporulation, and oxidative stress. Although this 
239 genome may belong to a tardigrade symbiont, the generation of the data does not allow us 
240 to rule out the possibility that it may be associated with the food source. Nevertheless, this 
241 finding suggests that there may be cases where non-target genomes in an assembly can 
242 provide clues about the lifestyle of a given host.

243 Best practices to assess bacterial contamination

244 Initial assessment of the occurrence of bacterial single-copy genes in eukaryotic assemblies 
245 can provide a quick estimation of the number of bacterial genomes that occur in assembly 
246 results. The use of bacterial single-copy genes can give much more accurate representation 
247 of potential bacterial contamination than screening for 16S rRNA genes alone, as they are 
248 less likely to be found in co-assembly results (Miller et al. 2011; Delmont et al. 2015). 
249 Although Boothby et al. reported the lack of 16S rRNA genes in their assembly (Boothby et 
250 al. 2015), anvi’o estimated that it contained at least 10 complete bacterial genomes (Fig. 2) 
251 using a bacterial single-copy gene collection (Campbell et al. 2013). This simple yet 
252 powerful step could identify cases of extensive contamination, and alert researchers to be 
253 diligent in identifying scaffolds originating from bacterial organisms. Figure 2 also 
254 summarizes the HMM hits in scaffolds found in curated tardigrade genomes from our 
255 analysis and Koutsovoulos et al.’s study. We observed that the average significance score 
256 for the remaining HMM hits for bacterial single-copy genes in curated genomes was 4.2 
257 times lower in average compared to the HMM hits in assembly results (Table S3). The 
258 decrease in the significance scores, and the very similar patterns of occurrence of HMM hits 
259 between the two curation efforts suggest that some of the HMM profiles may not be specific 
260 enough to be identified only in bacteria.

261 Two-dimensional scatterplots have a long history of identifying distinct genomes in 
262 assembly results (Tyson et al. 2004) and continue to be used for delineating microbial 
263 genomes in metagenomic assemblies (Albertsen et al. 2013; Cantor et al. 2015), as well as 
264 detecting contamination in eukaryotic assembly results (Kumar et al. 2013). Although 
265 scatterplots can describe the organization of contigs in assembly results, they suffer from 
266 limited number of dimensions they can display, and their inability to depict complex 
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267 supporting data that can improve the identification of individual genomes. These 
268 limitations are particularly problematic in sequencing projects covering multiple 
269 sequencing libraries, where displaying mapping results from each library can help 
270 detecting sources of contaminants. Despite their successful applications, two dimensional 
271 scatter plots limit researchers to the use of simple characteristics of the data that can be 
272 represented on an axis (such as GC-content). In contrast, clustering scaffolds, and 
273 overlaying multiple layers of independent information produce more comprehensive 
274 visualizations that display multiple aspects of the data.

275 Conclusions

276 The field of genomics requires advanced computational approaches to take best advantage 
277 of constantly evolving ways to generate sequencing data. The need for de novo 
278 reconstruction of microbial genomes from environmental samples through shotgun 
279 metagenomics data has given raise to advanced techniques and software platforms that can 
280 make sense of complex assemblies (Wu et al. 2014; Dick et al. 2009; Alneberg et al. 2014; 
281 Kang et al. 2015; Eren et al. 2015). Our study demonstrates that these approaches can be 
282 effectively used in eukaryotic assembly projects for curation purposes.
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289 Figure and table legends

290 Figure 1. Holistic assessment of the tardigrade genome release from Boothby et al. (2015). 
291 Dendrogram in the center organizes scaffolds based on sequence composition and 
292 coverage values in data from 11 DNA libraries. Scaffolds larger than 40 kbp were split into 
293 sections of 20 kbp for visualization purposes. Splits are displayed in the first inner circle 
294 and GC-content (0-71%) in the second circle. In the following 11 layers, each bar 
295 represents the portion of scaffolds covered by short reads in a given sample. The next layer 
296 shows the same information for RNA-Seq data. Scaffolds harboring genes used by Boothby 
297 et al. to support the expended HGT hypothesis is shown in the next layer. Finally, the 
298 outermost layer shows our selections of scaffolds as draft genome bins: the curated 
299 tardigrade genome (selection #1), as well as three near-complete bacterial genomes 
300 originating from various contamination sources (selection #2, #3, and #4).

301 Figure 2. Figure 2: Occurrence of the 139 bacterial single-copy genes reported by Campbell 
302 et al. (2013) across scaffold collections. The top two plots display the frequency and 
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303 distribution of single-copy genes in the raw tardigrade genomic assembly generated by 
304 Boothby et al. (2015), and Koutsovoulos et al. (2015), respectively. The bottom two plots 
305 display the same information for each of the curated tardigrade genomes. Each bar 
306 represents the squared-root normalized number of significant hits per single-copy gene. 
307 The same information is visualized as box-plots on the left side of each plot.

308 Figure S1. Visualization and curation of the raw tardigrade genome assembly from 
309 Koutsovoulos et al. (2015). In the left panel (curation step I), 24,841 scaffolds that were 
310 longer than 1 kbp from the raw assembly were clustered based on sequence composition 
311 and coverage values in data from the two Illumina sequencing libraries (the inner 
312 dendrogram). Scaffolds longer than 40 kbp were split into sections of 20 kbp for 
313 visualization purposes. The second layer shows the GC-content for each scaffold. The next 
314 two view layers represent the log-normalized mean coverage values for scaffolds in the two 
315 sequencing datasets. Finally, our scaffold selections (tardigrade draft 01 and six bacterial 
316 draft genomes) are displayed in the outer layer. In the right panel (curation step II), the 
317 15,839 scaffolds from the tardigrade selection from step I were clustered based on 
318 sequence composition only for more precise curation. Additional scaffold selections 
319 (tardigrade draft 02 and two bacterial draft genomes) are displayed in the outer layer.

320 Table S1. Summary of H. dujardini and bacterial genomes identified from the raw assembly 
321 results of Boothby et al. (2015) and Koutsovoulos et al. (2015). * Inferred from Boothby et 
322 al. (2015) and Koutsovoulos et al. (2015) publications. ** Scores were calculated using 
323 bacterial single copy genes from Campbell et al. (2013) and are only used to assess 
324 bacterial contamination levels in the eukaryotic assembly results.

325 Table S2. Summary of functions identified by RAST in the bacterial draft genome #2 
326 (selection #3 in Fig. 1).

327 Table S3. Summary of HMM hits for each bacterial single-copy gene (collection of 139 from 
328 Campbell et al. (2013)) identified in 1) the raw assembly by Boothby et al. (2015), 2) the 
329 raw assembly by Koutsovoulos et al. (2015), 3) the curated draft genome of Hypsibius 
330 dujardini  from Boothby et al. assembly in this study, and 4) the curated draft genome of H. 
331 dujardini from Koutsovoulos et al. (2015).
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1
Holistic assessment of the tardigrade genome release from Boothby et al. (2015).

Dendrogram in the center organizes scaffolds based on sequence composition and coverage

values in data from 11 DNA libraries. Scaffolds larger than 40 kbp were split into sections of

20 kbp for visualization purposes. Splits are displayed in the first inner circle and GC-content

(0-71%) in the second circle. In the following 11 layers, each bar represents the portion of

scaffolds covered by short reads in a given sample. The next layer shows the same

information for RNA-Seq data. Scaffolds harboring genes used by Boothby et al. to support

the expended HGT hypothesis is shown in the next layer. Finally, the outermost layer shows

our selections of scaffolds as draft genome bins: the curated tardigrade genome (selection

#1), as well as three near-complete bacterial genomes originating from various

contamination sources (selection #2, #3, and #4).
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2
Occurrence of the 139 bacterial single-copy genes reported by Campbell et al. (2013)
across scaffold collections.

The top two plots display the frequency and distribution of single-copy genes in the raw

tardigrade genomic assembly generated by Boothby et al. (2015), and Koutsovoulos et al.

(2015), respectively. The bottom two plots display the same information for each of the

curated tardigrade genomes. Each bar represents the squared-root normalized number of

significant hits per single-copy gene. The same information is visualized as box-plots on the

left side of each plot.
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