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ABSTRACT

Microbial arsenic (As) transformations play a vital role in both driving the global arsenic
biogeochemical cycle and determining the mobility and toxicity of arsenic in soils.
Due to the complexity of soils, variations in soil characteristics, and the presence and
condition of overlying vegetation, soil microbiomes and their functional pathways
vary from site to site. Consequently, key arsenic-transforming mechanisms in soil
are not well characterized. This study utilized a combination of high-throughput
amplicon sequencing and shotgun metagenomics to identify arsenic-transforming
pathways in surface agricultural soils. The temporal and successional variations of
the soil microbiome and arsenic-transforming bacteria in agricultural soils were
examined during tropical monsoonal dry and wet seasons, with a six-month interval.
Soil microbiomes of both dry and wet seasons were relatively consistent, particularly
the relative abundance of Chloroflexi, Gemmatimonadota, and Bacteroidota. Com-
mon bacterial taxa present at high abundance, and potentially capable of arsenic
transformations, were Bacillus, Streptomyces, and Microvirga. The resulting shotgun
metagenome indicated that among the four key arsenic-functional genes, the arsC
gene exhibited the highest relative abundance, followed by the arsM, aioA, and arrA
genes, in declining sequence. Gene sequencing data based on 16S rRNA predicted only
the arsC and aioA genes. Overall, this study proposed that a cooperative mechanism
involving detoxification through arsenate reduction and arsenic methylation was a
key arsenic transformation in surface agricultural soils with low arsenic concentration
(7.60 to 10.28 mg/kg). This study significantly advances our knowledge of arsenic-
transforming mechanisms interconnected with microbial communities in agricultural
soil, enhancing pollution control measures, mitigating risks, and promoting sustainable
soil management practices.
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INTRODUCTION

Soil is both an important sink and a source of arsenic (As). Mineral soils typically serve as
a reservoir for arsenic, while organic soils can function as both a reservoir and a potential
source of arsenic (Meharg & Meharg, 2021). The distribution of arsenic in soils varies
according to soil particle size fractions and parent materials: however, anthropogenic
activities also contribute to elevated arsenic levels in soils (Osuna-Martinez et al., 2021;
Zou et al., 2023). Background arsenic concentrations in soils, including agricultural soils,
typically range from approximately 2 mg/kg to not more than 20 mg/kg (Xiao et al., 2016;
Dunivin, Miller ¢ Shade, 2018; Zhang et al., 2021). However, arsenic concentrations in
highly contaminated paddy soils and mining soils may reach levels as high as 800 mg/kg to
18,000 mg/kg (Carrillo-Chavez et al., 20145 Luo et al., 2014).

Arsenic primarily exists in the environment in four different forms, namely arsine
(—3), elemental arsenic (0), arsenite (+3), and arsenate (+5), and the common forms
found in soils are arsenite and arsenate. Not only inorganic arsenic, but also organic
arsenic, such as monomethylarsenic (MMA), dimethylarsenic (DMA), and trimethylarsine
(TMAs), can be found in soils (Jia et al., 2013; Ruppert et al., 2013). Due to its carcinogenic
properties, arsenic is listed as a first priority hazardous substance by both the US
Environmental Protection Agency (EPA) and the Agency for Toxic Substances and
Disease Registry (ATSDR) (https:/www.atsdr.cdc.govSPLAndex.html). Acute and chronic
exposure to arsenic adversely affects human health. Chronic exposure to arsenic leads to
the accumulation of arsenic in specific organs, resulting in various toxic effects such as
hepatotoxicity, dermal toxicity, nephrotoxicity, and neurotoxicity (Flora, 2020).

Since the toxicity and mobility of arsenic depend on its oxidation state, microbial arsenic
transformations may play crucial roles in controlling the fate and bioavailability of arsenic
in the environment. Microorganisms cope with arsenic through energy and detoxification
metabolisms (Yan et al., 2019; Irshad et al., 2021). Four major arsenic-transforming
pathways are arsenite oxidation, dissimilatory arsenate reduction, detoxification arsenate
reduction, and arsenic methylation. Arsenite oxidation, the respiratory oxidization of
arsenite to arsenate, is encoded by the aio operon. The aio operon is composed of the
aioA and aioB genes, which respectively encode the large and small subunits of arsenite
oxidase (Lett et al., 2012). Dissimilatory arsenate reduction is catalyzed by the arr operon,
consisting of the arrA and arrB genes which respectively encode the large catalytic and small
subunits of respiratory arsenate reductase (Saltikov ¢ Newman, 2003). Various bacterial
taxa have the ability to utilize arsenate as a final electron acceptor to support their growth.
Microorganisms are also able to perform arsenate reduction through a detoxification
process which is encoded by the ars operon, including the arsC, arsB and acr3 genes
(Rosen, 2002). Detoxification arsenate reduction involves the arsC gene, encoding a small
cytoplasmic arsenate reductase, and this process allows various electron donors to complete
the reaction (Rosen, 2002; Anderson ¢ Cook, 2004). The arsC genes can be divided into
two groups: arsC (grx) and arsC (trx) which use glutaredoxin and thioredoxin as an
electron source, respectively. The evolution of the arsC gene expanded the spectrum of
arsenic resistance, enabling bacteria to detoxify not only arsenite but also arsenate, thereby
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enhancing their detoxification capabilities (Yan et al., 2019). Arsenic methylation is driven
by the arsM gene, encoding arsenite S-adenosylmethionine methyltransferase (Qin et
al., 2006). This particular enzyme transfers methyl groups from S-adenosylmethionine
to arsenite to produce volatile TMAs as the end product. Key arsenic functional genes
commonly used as molecular markers to examine the abundance and diversity of arsenic-
transforming bacteria in various environments are aioA, arrA, arsC, and arsM (Sun et al.,
20045 Quéméneur et al., 20105 Jia et al., 2013; Mirza et al., 2017). Gaining a comprehensive
understanding of arsenic biotransformation pathways is crucial for assessing the microbial
remediation potential and ensuring sustainable soil management practices.

While arsenic-functional genes and their associated microbial taxa in soils, especially in
paddy fields, have been previously investigated (Xiao et al., 2016; Zhang et al., 2021; Zhou
et al., 2022), the findings have shown both variations and similarities across different soil
types. This is possibly because of different environmental factors across locations and
a high proportion of uncultured arsenic-transforming microorganisms existing in soils.
Biogeography of arsenic-functional genes revealed that according to detection of various
genes in different proportions across soils, the composition of microbial communities
plays a role in determining local arsenic toxicity and biogeochemistry (Dunivin, Yeh ¢
Shade, 2019). Moreover, microbial arsenic transformations could have an impact on the
arsenic biogeochemical cycle in soils with low levels of arsenic. A previous study suggested
a high potential for arsenic biotransformations in paddy soils where arsenic concentrations
were below 15 mg/kg (Xiao et al., 2016). Arsenic-resistant bacteria were also isolated from
soils with 2.58 mg/kg (Dunivin, Miller ¢ Shade, 2018), and a global survey of arsenic
genes revealed that the proportions of arsenic genes varied across the soils, indicating
the importance of local soil microbiomes in arsenic transformations (Dunivin, Yeh &
Shade, 2019). The use of omics technologies and computational analysis has significantly
advanced our understanding of arsenic-transforming mechanisms and the microbial
response to various levels of arsenic. Consequently, this study employed high-throughput
sequencing and PCR-based approaches, targeting both 16S rRNA and arsenic-functional
genes, to identify arsenic-transforming pathways in agricultural soil. The objectives of
this study were to investigate temporal and successional variations of the soil microbiome
and arsenic-transforming bacteria in agricultural soils of the monsoonal tropics during
the dry and wet seasons, and to unveil the microbial mechanisms that control arsenic
transformations. Identification of arsenic-transforming pathways coupled with analyses
of microbial communities will provide in-depth knowledge of the arsenic biogeochemical
cycling in sustaining soil quality.

MATERIALS AND METHODS

Sampling site characteristics and sample collection

The sampling site was an agricultural area located in Samphran District, Nakhon Pathom
Province, Thailand. The land is mainly used for banana cultivation. Chemical fertilizers
and pesticides are applied once per month. The study area is surrounded by factories.
According to Thai regulations, the arsenic concentration in soil within residential areas
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and agricultural areas should not exceed 6 and 25 mg/kg, respectively. Since the study
area is located in a residential zone and has the potential for arsenic contamination due
to anthropogenic activities, an investigation into arsenic genes associated with the soil
microbiome was conducted. Surface soil samples (0-15 cm depth) were collected from
three plots across the study area. For each plot, approximately 100 g of surface soil were
randomly collected from three locations. In order to make a composite sample, the collected
soil samples from three locations from each plot were subsequently pooled and mixed on
site. Each composite sample was subsequently analyzed for soil properties. The samples
were collected in plastic bags and kept on ice during transportation. The soil samples were
collected in February (T1) and August (T2) 2021, respectively representing soils during
both the dry and wet seasons.

Analysis of soil properties

Soil samples were also collected for the analysis of soil properties which were conducted
by Central Laboratory (Thailand) Co., Ltd., according to standard protocols. Soil pH and
moisture were analyzed according to the method of analysis of chemical fertilizer B.E.
2559 method 1.02.01 and method 1.04.01, respectively. Total organic carbon (TOC) was
measured according to the manual on organic fertilizer analysis, APSRDO. Total nitrogen
(TN) and total phosphorus (TP) were analyzed by an in-house method based on AOAC
(2019). Arsenic (As) and cadmium (Cd) concentrations were respectively analyzed by
inductively coupled plasma optical emission spectroscopy (ICP-OES) and inductively
coupled plasma mass spectrometry (ICP-MS), according to an in-house method based
on AOAC (2019). Copper (Cu) and zinc (Zn) concentrations were analyzed by ICP-OES,
according to an in-house method based on official methods of analysis of fertilizers, Japan
(1987). The concentrations of arsenic, cadmium, copper, and zinc were analyzed due to
their common prevalence in polluted soils and their toxicity to impacted living organisms
(Gong et al., 2020). Soil texture was analyzed by mechanical analysis through the pipette
method (Olmstead, Alexander ¢ Middleton, 1930).

DNA extraction

Total genomic DNA was extracted using a DNeasy PowerSoil Pro Kit (Qiagen, Hilden,
Germany), following the manufacturer’s protocols. For each sample, multiple soil samples
were separately extracted. The quantity and quality of extracted DNA were estimated by
a NanoDrop™ One spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA)
and agarose gel electrophoresis. The extracted DNA from each sample were subsequently
pooled and used for downstream processes.

Analysis of 16S rRNA gene sequencing

Library construction and sequencing of the V3-V4 hypervariable regions of the bacteria
16S rRNA gene were prepared using primers 341F and 806R. Triplicate samples were
conducted for each sample (T1_1, T1_2, T1_3 and T2_1, T2_2, T2_3). The 16S rRNA gene
libraries and sequencing were prepared by Novogene Co., Ltd. (Beijing, China), using an
[lumina NovaSeq 6000 platform, following the manufacturer’s protocol. The Illumina
platform generated 250 bp paired-end raw reads. Raw data of 16S rRNA gene amplicon
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sequences were deposited in the Sequence Read Archive (SRA) under the Bioproject
number PRJNA980983.

For the data preprocessing step, the characteristics of the raw sequences (length, quantity,
and quality score) were evaluated using FastQC version 0.11.8 (Andrews, 2010). Adapter
sequences, including barcode and primer sequences, were subsequently trimmed using
Cutadapt version 3.5 (Martin, 2011). The minimum length of the trimmed sequences was
200 bp. Amplicon sequence variants (ASVs) were identified using the Divisive Amplicon
Denoising Algorithm 2 (DADA2) (Callahan et al., 2016). All analyzed sequences were
truncated at 223 bp for forward reads and 219 bp for reverse reads. A classifier was
generated for taxonomic assignment with minimum and maximum length of 380 bp and
470 bp, respectively. Taxonomic information was assigned to all ASVs based on the SILVA
138 SSU database (Quast et al., 2013). ASVs assigned as neither Bacteria nor Archaea were
removed. Before the analyzed ASVs were normalized, ASVs with doubletons sequences
were eliminated. Alpha rarefaction curves were conducted and alpha diversity indices
(e.g., Chaol and Simpson’s index) were calculated. All the 16S rRNA gene analyses were
conducted using the Quantitative Insights Into Microbial Ecology2 (QIIME2) software
version 2021.8 (Bolyen et al., 2019). To determine significant difference of microbial taxa
between the dry and wet seasons, a two-tailed test was conducted (p-value < 0.05). Principal
Coordinates Analysis (PCoA) based on Bray—Curtis dissimilarities were generated by
QIIME2 version 2021.8 and visualized by the RStudio program. To examine the significant
difference between microbial groups, permutational multivariate analysis of variance
(PERMANOVA) was conducted using QIIME2 version 2021.8.

Analysis of arsenic specific gene sequencing

Library construction and sequencing of the arsenic functional genes were prepared using
specific primers, targeting the aioA, arrA, arsC, and arsM genes (Table S1). The libraries and
sequencing were prepared by BTSeq™ Contiguous Sequencing Service, using an Enzymatic
Preparation Kit (EP Kit) (Celemics, Korea), following the manufacturer’s protocol. An
[llumina MiSeq platform was used to generate 150 bp paired-end raw reads. Raw data of
arsenic specific gene amplicon sequences were deposited in the Sequence Read Archive
(SRA) under the Bioproject number PRJNA980983.

The qualities of raw sequences (length, quantity, and quality score) were assessed using
FastQC version 0.11.8 (Andrews, 2010). Pair-ended reads were joined using the Mothur
software (Schloss et al., 2009). The joined sequences were subsequently compared against
the previously collected arsenic functional gene sequences from the GenBank database
using the blastx tool (Camacho et al., 2009). The merged sequences were evaluated based
on the criteria of 80% coverages and 80% similarities. For each gene, the analyzed sequences
were clustered into 97% operational taxonomic units (OTUs) (Zhang et al., 2015; Yang et
al., 2020) using the CD-HIT program version 4.8.1 (Li ¢» Godzik, 2006). Representative
OTU sequences of each gene were selected and verified using the blastn tool (Camacho et
al., 2009). The verified OTU sequences were included in phylogenetic analysis. Neighbor-
joining trees were constructed using MUSCLE alignment (Edgar, 2004; Tamura, Nei &
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Kumar, 2004) and were generated with the maximum composite likelihood method with
1,000 bootstrap values, using the MEGA X software (Kumar et al., 2018).

Analysis of shotgun metagenomic sequencing

Library construction and sequencing of the DNA samples (T1_1to T1_3and T2_1to T2_3)
were undertaken by Novogene Co., Ltd. (Beijing, China), using an Illumina NovaSeq6000
platform, following the manufacturer’s protocol. The Illumina platform generated 150 bp
paired-end raw reads. Raw metagenomic sequencing data were deposited in the Sequence
Read Archive (SRA) under the Bioproject number PRINA980983.

The length and quality scores of raw reads were assessed using FastQC version 0.11.8
(Andrews, 2010). After removing adapter sequences, the analyzed sequences were trimmed
using Trimmomatic version 0.36 (Bolger, Lohse ¢& Usadel, 2014). To obtain high-quality
sequences, trimming was performed with a quality score cutoff of Phred score >= 20 and
a minimum length of 100 bp. Obtained clean reads were assembled into contigs using the
metaSPAdes software version 3.15.4 (Nurk et al., 2017). The assembly was performed using
multiple k-mer lengths (21, 33, 55, and 77), and the k-mer length of 77 was selected for
further analysis. The quality of the assembled contigs was assessed using the QUAST tool
version 5.2.0 (Gurevich et al., 2013). The qualified contigs were then annotated using Prokka
software version 1.14.6 (Seemann, 2014). The taxonomic profiles were created by mapping
metagenomic reads against the standard Kraken2 database. Normalization was employed
by scaling with the smallest number of total reads. The qualified contigs were aligned against
the customized aioA, arsC, arrA, and arsM database. To construct a customized database
of arsenic-related genes, complete protein sequences of bacteria for the aioA, arsC, arrA,
and arsM genes were collected from the National Center for Biotechnology Information
(NCBI). Subsequently, redundant bacterial sequences were discarded, retaining only the
unique ones. To count gene abundance, the annotated contigs were subsequently mapped
against the clean reads obtained from data preprocessing using the Bowtie 2 algorithm
version 2.2.1 (Langmead ¢ Salzberg, 2012) and the samtools software version 1.16.1 (Li et
al., 2009). The abundance of arsenic functional genes was retrieved using the BEDTools
software version 2.30.0 (Quinlan ¢ Hall, 2010). The abundance of arsenic functional genes
was then normalized using the Fragments Per Kilobase of transcript per Million fragments
mapped (FPKM) method (Trapnell et al., 2010). The abundances of each gene across two
seasons were compared using a pair ¢-test.

RESULTS

Characteristics of agricultural soils

The agricultural soil samples were collected from both the dry (T1) and wet (T2) seasons
which were 6 months apart. Although the proportions of sand, silt, and clay varied, the soil
texture of both T1 and T2 samples was classified as clay (Table 1). Soil pH suggested that
the soil remained neutral throughout the year. The concentrations of arsenic, cadmium,
and copper in both soil samples were comparable, while the concentration of zinc was
much higher in T1 than T2 (Table 1). Total organic carbon (TOC) and total phosphorus
(TP) in both soils were detected at low concentrations, while total nitrogen (TN) was not
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Table 1 Soil properties of the dry (T1) and wet (T2) seasons.

T1 T2
pH 7.3 7.0
soil texture Clay Clay
(sand, silt, and clay) (1.72%, 34.00%, and 64.28%) (1.84%, 37.07%, and 61.09%)
arsenic (As) 10.28 7.60
(mg/kg)
cadmium (Cd) <0.05 0.03
(mg/kg)
copper (Cu) 43.90 60.30
(mg/kg)
zinc (Zn) 1,503.60 65.81
(mg/kg)
total nitrogen (TN) Not detected Not detected
(%)
total organic carbon (TOC) (%) 1.30 1.40
total phosphorus (TP) 0.30 0.30
(%)
moisture content 21.10 19.20
(%)

detected (Table 1). Overall, the soil properties during both seasons were similar, except for

the apparently elevated zinc concentration in the dry season.

Soil microbiomes of the dry and wet seasons

The 16S rRNA gene sequencing generated 152,505 to 189,101 raw reads per sample, and

they were normalized to obtain a total of 82,109 high-quality reads for downstream analysis

(Table S2). Rarefaction curves indicated that sequencing depth was optimal (Fig. S1). The
numbers of ASVsin T1 and T2 samples were 2,000 to 2,100 and 1,600 to 1,900, respectively.
Species richness and evenness of the dry and wet samples were comparable (Table S3).
Principal coordinate analysis (PCoA) based on Bray—Curtis distance and PERMANOVA
suggested that although soil microbiomes of each season were separately clustered (Fig. S2),

they were not significantly different (p-value > 0.05). Overall, the soil microbiome was

consistent throughout the year.

Although Archaea were detected in T1 (~3%) and T2 (~7%) samples, Bacteria were
the dominant domain found in both T1 (~97%) and T2 (~93%). The major bacterial
phyla found in T1 and T2 samples were Actinobacteriota, Proteobacteria, Firmicutes,
Chloroflexi, and Acidobacteriota (Fig. 1A). Other detected phyla found in T1 and T2
soils were Myxococcota, Gemmatimonadota, Nitrospirota, Crenarchaeota, Bacteroidota, and

Cyanobacteria. Although microbial profiles and their relative abundance at the phylum

level were similar in both soil microbiomes, statistical analysis indicated that the abundance

of Actinobacteriota, Proteobacteria, Firmicutes, Acidobacteriota, Myxococcota, Nitrospirota,

Crenarchaeota, and Cyanobacteria in T1 and T2 were significantly different (p-value < 0.05)

(Fig. 1A).
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Figure 1 Relative abundance of soil microbiomes of the dry (T1_1, T1_2,and T1_3) and wet (T2_1,
T2_2,and T2_3) seasons at the phylum level. Phyla that accounted for less than 1% of the total abun-
dance were merged into the “others” category. Significant differences between the relative abundance of
each phylum are indicated by an asterisk (*) (A). Heatmap based on the abundance of microbial taxa at
the genus level with more than 1% ASVs at least in one sample. The color intensity indicates the relative
abundance of microbial taxa (B).

Full-size Gl DOL: 10.7717/peerj.18383/fig-1
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For better insight into the dynamics of agricultural soil microbiomes, microbial taxa
and their abundance were analyzed at the genus level (Fig. 1B). A total of 27 genera present
at greater than 1% of the total microbial abundance in at least one samples were identified.
Due to the limitation of the database to identify microbial taxa at the genus level, those
in which the genus remained unclassified were identified at the lowest taxonomic rank.
Common bacterial taxa highly detected in both T1 and T2 soils were Bacillus (~11%),
uncultured_Roseiflexaceae (~6%), and Streptomyces (~4%) (Fig. 1B). Microvirga (~2%)
was also consistently present in soils of both the dry and wet seasons. The relative abundance
of these taxa in soils from both seasons was not significantly different. Interestingly, the
abundance of members of the archaeal phylum Crenarchaeota, including Candidatus
Nitrocosmicus, Nitrososphaeraceae, and Candidatus Nitrososphaera, was significantly
higher in T2 than in T1 (p-value < 0.05) (Fig. 1B).

Taxonomic profiles retrieved from metagenomics analysis revealed that top five
phyla found in soils from both seasons were Actinobacteria, Proteobacteria, Firmicutes,
Planctomycetes, and Bacteroidetes (Fig. 53). Among the detected genera, Streptomyces were
the most abundant, followed by Nocardioides, Micromonospora, Bacillus, and Pseudomonas,
respectively (Fig. 54).

Communities of arsenic-transforming bacteria

The arsenic-functional genes, aioA, arsC, arrA, and arsM, were investigated to study the
communities of arsenite-oxidizing bacteria, detoxification arsenate-reducing bacteria,
dissimilatory arsenate-reducing bacteria, and arsenic methylation bacteria, respectively.
PCR screening of the aioA, arsC, arrA, and arsM genes showed that the arsC gene was
undetectable. Instead of common culture-independent techniques, such as clone library
construction, high-throughput sequencing of the aioA, arrA, and arsM genes was employed
to explore the communities of arsenic-transforming bacteria. High-throughput sequencing
of the aioA, arrA, and arsM genes produced 54,654 to 138,093 raw reads per sample
(Table S4).

The phylogenetic tree of the aioA sequences revealed that the majority of the aioA
sequences retrieved from both soil samples were closely related to uncultured aioA clones
previously recovered from diverse environments, such as arsenic-contaminated soil,
groundwater, and aquatic sediment (Fig. 2). While the main retrieved aioA sequences
from T1 were closely related to uncultured aioA clones, a minor portion of those from T2
was closely related to aioA sequence belonging to Microvirga sp. (Fig. 2). Most analyzed
arrA sequences from both soil samples were closely associated with uncultured arrA
clones previously discovered in paddy soils, Mekong Delta sediments, a cache valley basin,
and arsenic contaminated sediment (Fig. 3). None of the arrA sequences from T2 was
associated with known dissimilatory arsenate-reducing bacteria, while those from T1 were
closely related to the arrA gene belonging to Geotalea uraniireducens and Desulfuromonas
sp. WB3 (Fig. 3). Phylogenetic analysis also demonstrated that the majority of the arsM
sequences retrieved from both soil samples were closely associated with uncultured arsM
clones previously reported (Fig. 4). The analyzed arsM sequences from T1 were closely
related to those of uncultured clones found in estuary sediments, rhizosphere soils, paddy
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soils, and river water affected by acid mine drainage, while the analyzed arsM sequences
from T2 were closely associated with those of uncultured clones previously retrieved
from estuary sediments, rice rhizosphere soil, and paddy soil. The only known arsenic
methylation bacteria closely related to the arsM sequences from both soil samples were
Rhodopseudomonas palustris, which were isolated from soil near a tin mine (Fig. 4).
Overall, the results suggested that the communities of arsenic-transforming bacteria in
both soil samples were broadly comparable. The analysis of arsenic-transforming bacterial
communities in agricultural soils of both seasons demonstrated that the majority of arsenite-
oxidizing bacteria, dissimilatory arsenate-reducing bacteria, and arsenic methylation
bacteria found in this study was closely associated with uncultured arsenic-transforming

bacteria recovered from various environments.

Prediction of arsenic-transforming pathways

Based on the resulting 16S rRNA gene sequences, arsenic-functional genes were predicted
by the PICRUSt2 software against the KEGG database. Although arsenic functional genes
were found in both T1 and T2, they accounted for only ~0.3% of the total predicted genes.
To compare the relative abundance of arsenic functional genes across all samples, only
the detected arsenic functional genes were extracted and normalized. The results showed
that the proportion of arsenic functional genes in the soils of both dry and wet seasons
was relatively consistent (Fig. 5). A paired t-test revealed no significant difference (p-value
>0.05) in the abundances of each arsenic functional gene between T1 and T2, suggesting
comparable potential arsenic-transforming pathways in soil across both seasons. A large
proportion of the ars operon (e.g., arsC, ARSC1, ARSC2, ACR3, arsB, and arsA), responsible
for arsenic detoxification mechanisms, was found in the soils analyzed in this study. As for
arsenic-functional genes responsible for energy metabolism, the aioA and aioB genes were
detected at very low abundance in both T1 and T2 soils (Fig. 5). Based on the prediction of
arsenic pathways through the 16S rRNA gene sequences, arsenic detoxification mechanisms
predominated. Since the arsenic cycle in soils is associated with the nitrogen cycle (Feng et
al., 2023), genes involved in nitrogen metabolism enzymes were also retrieved (Table S5).
Nitrate reduction was highly detected across all soil samples.

Metagenomics sequencing generated a high volume of sequences which were
subsequently quality-verified and trimmed of adapter sequences (Table S6). Thirteen
arsenic-functional genes in the soil microbiomes were detected and their abundance were
normalized by the FPKM method. The results indicated that the overall proportion of
arsenic-functional genes in soils of the dry and wet seasons were comparable (Fig. 6). Both
arsenic detoxification (e.g., arsC, arsA, and acr3) and metabolism (e.g., aioA, aioB, and arrA)
pathways were identified: however, the relative abundance of arsenic detoxification genes
was higher than arsenic metabolism genes. Among the four key functional marker genes,
the relative abundance of the arsC gene was greatest, followed sequentially by the arsM,
aioA, and arrA genes. While the metagenomics analysis of agricultural soil microbiomes
identified all four key arsenic-functional genes, the PICRUSt2 prediction tool discovered
only the arsC and the aioA genes (Figs. 5 and 6). Based on shotgun metagenomics analysis,
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Figure 2 Neighbor-joining phylogenetic tree of the aioA sequences. The bootstrap values that are
greater than 50% are shown at the branch points. The relative abundances of each OTU are shown in
parentheses. The accession numbers of the reference sequences are shown in parentheses.
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Figure 3 Neighbor-joining phylogenetic tree of the arrA sequences. The bootstrap values that are
greater than 50% are shown at the branch points. The relative abundances of each OTU are shown in

parentheses. The accession numbers of the reference sequences are shown in parentheses.
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Figure 4 Neighbor-joining phylogenetic tree of the arsM sequences. The bootstrap values that are
greater than 50% are shown at the branch points. The relative abundances of each OTU are shown in

parentheses. The accession numbers of the reference sequences are shown in parentheses.
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Figure 5 Relative abundance of predicted arsenic-function genes based on 16S rRNA gene sequencing
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detoxification arsenate reduction and arsenic methylation pathways may cooperatively
mitigate arsenic levels in the soil.

DISCUSSION

Agricultural soil microbiomes and arsenic-transforming bacteria

The levels of arsenic, cadmium, and copper detected in the soils analyzed in this study were
within the range of background levels found in soils elsewhere (Sabet Aghlidi et al., 2020; Liu
et al., 2022). Previous studies indicated that zinc concentrations in agricultural soils ranged
from 10 to 300 mg/kg (Barber, 1995; Noulas, Tziouvalekas ¢ Karyotis, 2018). However, the
extremely high concentration of zinc in the T1 sample cannot be clearly explained due
to the lack of sufficient information. The co-occurrence of cadmium, copper, zinc, and
arsenic could impact their availability in the soils due to competitive adsorption on soil
particles (Lu ¢» Xu, 2009; Gong et al., 2020). However, the specific interactions among these
elements are complex, and their availability can vary depending on specific environmental
factors and soil conditions. While iron is another element associated with arsenic mobility
in soil, a prior study indicated that, in comparison to the clay fraction, both iron and
organic matter have a marginal influence on the overall stability and accumulation of
arsenic in agricultural soils (Dousova et al., 2016). To assess the impact of these metal
elements, including arsenic, on human health, further analysis of their concentrations
in banana products is warranted. Low levels of soil nutrients (i.e., TOC, TP, and TN)
suggest that they may have been absorbed by crops. Additionally, the absence of nitrogen
in both soil samples could be due to microbial nitrification and denitrification (Del Prado
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et al., 2006), as supported by the high abundance of nitrogen-related functional enzymes,
including reductase and ammonia monooxygenase (Table S5). Nitrospira, nitrite-oxidizing
bacteria, play key roles in nitrification, were also detected in the analyzed soils (Fig. 2A)
(Daims & Wagner, 2018).

The concentrations of arsenic in both soil samples analyzed in this study were in the range
of those found in background soils (~2 to 20 mg/kg) (Xiao et al., 2016; Dunivin, Miller
& Shade, 2018; Zhang et al., 2021). A previous study showed that coarse sand particles
enriched arsenic, while clay particles were the primary source of increased arsenic in soils
(Zou et al., 2023). Among different soil particle size fractions, clay harbored the highest
abundance of arsenic functional genes, such as the arrA, arsC, and arsM genes (Zou
et al., 2023). The high proportion of clay in our analyzed soils may have contributed
to the release of arsenic from the soil, favoring the occurrence arsenic-transforming
bacteria. Although the arsenic concentrations of the soils in both dry and wet seasons
were relatively low, arsenic-transforming bacteria were commonly detected. Although it is
complicated to compare taxonomic profiles resulting from the analysis of the 16S rRNA
gene and shotgun metagenomics due to differences in technical issues and databases, the
top three phyla highly detected by both analyses were Actinobacteria, Proteobacteria, and
Firmicutes, respectively (Fig. 1A and Fig. S3). Arsenic-transforming bacteria are ubiquitous
in terrestrial environments, especially paddy soils, and arsenate-resistant bacteria affiliated
with Proteobacteria, Bacteroidetes, and Firmicutes have been widely isolated from soils
without the detection of arsenic (Jackson, Dugas ¢» Harrison, 2005; Xiao et al., 20165 Zhang
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et al., 2021). Moreover, the major bacterial taxa (i.e., Actinobacteriota, Proteobacteria,
Firmicutes) found in this study were highly dominant in banana plantation soils, possibly
contributing to the degradation of various organic compounds (Chou et al., 2017; Kaushal
etal., 2022).

Agricultural soil microbiomes analyzed in this study were comparable to those previously
reported. However, the proportion of dominant phyla varied across soils due to differences
in soil characteristics, nutrient loads, and vegetation (Zhao et al., 2019; Liu et al., 2021).
The abundance of Chloroflexi, Gemmatimonadota, and Bacteroidota showed no statistical
difference between the two seasons, indicating their succession throughout the year. A
previous study demonstrated that while the relative abundance of Gemmatimonadetes
significantly increased, Chloroflexi and Bacteroidetes in soils were not significantly different
during restoration stages (Liu et al., 2021). The phyla Chloroflexi and Bacteroidetes may
constitute a core soil microbiome sustaining soil health.

Common bacterial taxa highly detected in both T1 and T2 soils were Bacillus, uncultured
Roseiflexaceae, and Streptomyces (Fig. 1B and Fig. S4). Based on the presence of the arsC,
arrA, arsM, and aioA genes, members of the genus Bacillus have versatile metabolisms in
arsenic transformations (Afkar et al., 2003; Huang et al., 2018; Marwa et al., 2019; Mujawar,
Vaigankar ¢ Dubey, 2021). Bacillus sp. has been suggested for the purpose of arsenic
bioremediation (Kabiraj et al., 2022). Although the association between Roseiflexaceae and
arsenic transformation is not known, this genus is involved in carbon dioxide assimilation
and has a positive impact on plant growth (Shi et al., 2020). Roseiflexaceae are one of the
five keystone taxa found in a long-term fertilized soils used for maize cultivation, and
are responsible for enhancing phosphorus flow and preventing the movement of toxic
aluminum and manganese from the soil to the crops (Wang et al., 2022). Streptomyces sp.,
previously isolated from the rice rhizosphere, harbors the arsM gene, indicating its role in
arsenic methylation (Kuramata et al., 2015). In addition, both Bacillus sp. and Streptomyces
sp. were detected at high abundance in healthy banana plantation soils and they are
associated with the suppression of banana pathogens (Zhou et al., 2019; Jamil et al., 2022;
Kaushal et al., 2022), possibly facilitating banana growth. The genus Microvirga was also
consistently detected across the soil samples (Fig. 1B and Fig. S4). Members of this genus
are distributed across a broad range of environments, including those as diverse as polar
soils and hot spring sediments, and they are reported to exhibit both arsenate reduction
and arsenite oxidation ability (Tapase et al., 2017; Liu et al., 20205 Zhu et al., 2021). The
genus Nocardioides was highly abundant, as detected by shotgun metagenomics (Fig. 54).
Verification of its arsC gene indicated its ability in arsenate reduction (Bagade et al., 2016).

The abundance of Crenarchaeota, especially Candidatus Nitrocosmicus, Nitrososphaer-
aceae, and Candidatus Nitrososphaera, was significantly higher in T2 than T1 (Fig. 1).
Members of Crenarchaeota are commonly found in soils, playing an important role
in ammonia oxidation (Gornish et al., 2020; Behnke et al., 2021). These archaeal taxa
potentially drive the nitrogen cycle in the agricultural soils subjected to routine fertilizer
application. A previous study showed that among the detected archaeal taxa, Candidatus
Nitrocosmicus and Nitrososphaeraceae were dominant across topsoil (0-10 cm depth)
of ten years of restoring eucalypt woodland (Yan et al., 2020). Although Candidatus
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Nitrocosmicus, Nitrososphaeraceae, and Candidatus Nitrososphaera were also present in
the top soils of our dry and wet season samples, they were more abundant in T2 than T1
(Fig. 1B). The increased relative abundance of these archaeal taxa was likely associated with
the substantial reduction of zinc concentration in the T2 soil (Table 1). Increasing zinc
application to 500 mg/kg in topsoil (0-15 cm depth) inhibited the transcriptional response
of archaeal ammonia oxidation (Vasileiadis et al., 2012).

Among the four key arsenic-functional genes representing respective arsenic-
transforming bacterial communities, the arsC gene was undetectable by PCR amplification
possibly due to the limitation of specific primers used in this study. However, the presence
of the arsC was retrieved from the analysis of 16S rRNA gene sequences through the
PICRUSt2 software and shotgun metagenomics (Figs. 5 and 6). It is also possible that the
arsC gene present in the analyzed soil is likely related to those of uncultured bacteria,
making it undetectable using the available specific arsC primers.

The phylogenetic trees of aioA, arrA, and arsM revealed that the majority of aioA,
arrA, and arsM sequences recovered from the analyzed soils were closely related to
uncultured sequences previously found in diverse environments (Figs. 2, 3 and 4). This
indicates the ubiquity of arsenic-transforming bacteria in the environment. However, due
to the limitation of culture techniques, further exploration is still needed to gain in-depth
knowledge of their association with arsenic metabolisms. Our results also showed that a few
minor retrieved aioA sequences from the T2 sample were closely related to the known aioA
sequence of Microvirga sp. The genus Microvirga, previously isolated from polluted soils, is
capable of performing arsenite oxidation through the aioA gene (Tapase et al., 2017; Tapase
& Kodam, 2018). Some minor detected arrA sequences from the T1 sample were associated
with the known dissimilatory arsenate-reducing bacteria, Geotalea uraniireducens and
Desulfuromonas sp. WB3, which were respectively isolated from paddy field soil and
anoxic sediment (Osborne et al., 2015; Qiao et al., 2018). Rhodopseudomonas palustris was
identified as the sole known arsenic methylation bacterium, exhibiting a close relationship
with the arsM sequences from both T1 and T2 samples. Rhodopseudomonas palustris,
well-known arsenic methylation bacterium harboring the arsM gene, was commonly
found in paddy soils (Xiao et al., 2016; Afroz et al., 2019).

Potential arsenic-transforming pathways in agricultural soils

The presence of potential arsenic-transforming pathways in agricultural soils were predicted
by both the analysis of 16S rRNA gene sequences and by shotgun metagenomics. Both
analyses indicated that arsenic detoxification, as evidenced by the significant detection of a
large proportion of the ars operon, played a pivotal role in driving the arsenic cycle in the
agricultural soil (Figs. 5 and 6). In other arsenic-contaminated and uncontaminated soils
(arsenic levels < 20 mg/kg) analyzed by metagenomics, arsenic detoxification overcame
arsenic energy metabolisms (Xiao et al., 2016; Dunivin, Yeh ¢ Shade, 2019). Based on the
identified detoxification arsenic-functional genes, arsenate reduction conferred by the
arsC gene was a dominant pathway. The arsC mechanism is the most extensive-studied
arsenic detoxification and resistance. Arsenate exhibited maximal adsorption on clays
under low pH conditions, but its adsorption capacity decreased as the pH increased
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(Goldberg, 2002). Given that arsenate serves as a substrate for arsenate reduction, it could
be released from the soils analyzed in this study, enhancing the abundance and activity
of the arsC gene. The properties of our analyzed soils, including pH and texture, could
enhance the availability of arsenate for arsenate-reducing bacteria. The abundance and
expression of the arsC gene in surface soils were generally high (Luo et al., 2014; Xiao et
al., 2016). By analyzing the genome of aerobic arsenate-reducing bacteria isolated from
arsenic-contaminated soil, together with the arsC gene, the arsH, arsB, and arsR genes
controlling the regulation of arsenate reduction were identified (Tian ¢ Jing, 2014). The
detoxification arsenate reduction involves the cytoplasmic reduction of arsenate to arsenite
by the arsC gene. Then, the produced arsenite is transported out of the bacterial cell
through a specialized arsenite-pump which were mediated by the arsA/arsB or acr3 genes
(Singh et al., 2021). The large proportion of arsC, arsA, arsB, and acr3 genes identified by
both the PICRUSt2 program and the FPKM method supported that detoxification arsenate
reduction within the soil was an important arsenic-transforming pathway. Cultivation-
independent studies proposed that the arsC (grx) gene was less tolerant to high arsenic
concentrations compared to the arsC (trx) gene, and increased levels of arsenic in a specific
area led to a higher prevalence of the arsC (trx) gene (Escudero et al., 2013; Kurth et al.,
2017). However, in this current study, the relative abundance of the arsC (#rx) gene was
higher in soils with low arsenic concentrations than the arsC (grx) gene (Fig. 6). The arsC
(trx) gene is commonly found in Gram-positive bacteria (Mukhopadhyay et al., 2002). The
high abundance of the genera Bacillus and Streptomyces, Gram-positive bacteria, possibly
contributed to the higher relative abundance of the arsC (#rx) than the arsC (grx) genes.
The high abundance of arsR gene detected by the PICRUSt2 program possibly because the
arsR genes across various bacterial strains are highly conserved (Xu et al., 1998). Overall
results suggest that the detoxification arsenate reduction pathway is widespread in soils,
both those with arsenic contamination (88.93-646.61 mg/kg) and those without (less than
15 mg/kg) (Xiao et al., 2016; Zhou et al., 2022).

Metagenomic analysis demonstrated that the second most prevalent arsenic-
transforming pathway was arsenic methylation mediated by the arsM gene (Fig. 6).
Biogeography of soil microbiomes revealed that the arsM gene was unexpectedly abundant,
especially in cultivation-independent samples (Dunivin, Yeh ¢ Shade, 2019). In paddy soils
with low arsenic concentrations (less than 15 mg/kg) and polluted soils with extremely high
arsenic concentration (88.93-646.61 mg/kg), arsenic methylation was also identified as the
second most prominent process, following detoxification through arsenate reduction (Xiao
et al., 2016; Zhou et al., 2022). Previous studies demonstrated that arsenic methylation was
active under aerobic, anaerobic, and facultative conditions (Wang et al., 2014). In silico
analysis also suggested that the arsM gene sequences are widespread in the environment and
are conserved across various living organisms (Kabiraj et al., 2023). The arsM gene catalyzed
the conversion of arsenite to volatile methyl arsenic to complete arsenic methylation process
(Qin et al., 2006). Consequently, in surface soil, detoxification through arsenate reduction
leads to the production of arsenite, which is subsequently methylated by arsenic methylation
process. This suggests a cooperative mechanism between detoxification arsenate reduction
and arsenic methylation in the surface soil from the agricultural area with low arsenic level.
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Significant coexistence of the arsC and arsM genes was previously found in paddy soils
(Zhang et al., 2015; Yang et al., 2020). The mechanism of detoxification arsenate reduction
and arsenic methylation was also identified in a plant body, primarily in its root (Ma et al.,
2016).

The genes involved in methylation and reduction processes exhibited higher abundance
compared to those associated with the oxidation process (Figs. 5 and 6). Arsenate is
typically more abundant in soils compared to arsenite. Since arsenic methylation genes are
commonly found in soils (Dunivin, Yeh ¢ Shade, 2019), they may compete with arsenite
oxidation genes for the arsenite produced during arsenate reduction. Additionally, arsenite
is more mobile compared to arsenate. The arsenite produced through arsenate reduction
could potentially leach into the aquatic environment. Consequently, due to the available
arsenic substrate and the prevalence of arsenic methylation genes in soils, both arsenate
reduction and arsenic methylation are likely to play roles in arsenic transformations in
soils.

Since the abundance of genes mediating nitrate reduction mechanisms was highly
detected (Table S5), it suggests the potential for arsenite oxidation coupled with nitrate
reduction process. Due to the soil texture, the presence of clay could create anoxic
conditions, facilitating the conditions for arsenite oxidation coupled with nitrate reduction.
Previous studies suggested that co-occurrence of arsenite oxidation and nitrate reduction
was an important process controlling arsenic availability in paddy soils (Li et al., 2019; Feng
et al., 2023).

While shotgun metagenomics identified all four arsenic-transforming mechanisms:
detoxification arsenate reduction (arsC), arsenite oxidation (aioA), arsenic methylation
(arsM), and dissimilatory arsenate reduction (arrA), the analysis of 16S rRNA gene
sequences found only the first two pathways. The use of shotgun metagenomics allows for
broader detection of environmental patterns and variations in the abundance of arsenic-
functional genes, as it targets all genes irrespective of primer coverage and specificity.
Although the accuracy of PICRUSt2 in predicting microbial functions has improved, it
is more suitable for human microbiome than soil microbiome samples (Langille et al.,
2013; Sun, Jones ¢ Fodor, 2020). Consequently, some functional genes, including those
associated with arsenic, can be overlooked by using the PICRUSt2 prediction tool.

CONCLUSIONS

Microbial arsenic-transforming genes are important in understanding environmental
arsenic pathways and evaluating bioremediation potential. Consequently, this study
combined high-throughput amplicon sequencing and shotgun metagenomic sequencing
to identify potential arsenic-transforming pathways in surface agricultural soils of the
dry and wet seasons with a six-month interval. The soil microbiomes showed a relatively
consistent composition during both the dry and wet seasons, exemplified by the year-
round relative abundance of Chloroflexi, Gemmatimonadota, and Bacteroidota. Among
the prevalent bacterial taxa, Bacillus, Streptomyces, and Microvirga were frequently found
and potentially exhibited the ability to undergo arsenic transformations. Phylogenetic
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analyses of the aioA, arrA, and arsM genes suggested that they were closely related to
those of uncultured bacteria previously recovered from various environments. Due to the
presence of a significant number of uncultured microorganisms in the environment that
possess arsenic functional genes, the current selection of primers for detecting these genes
is inadequate. Shotgun metagenomic sequencing technology was then utilized to obtain
comprehensive information about functional genes across the entire environment. The
shotgun metagenome showed that, among the four key functional marker genes, the arsC
gene was the highest abundance, followed by the arsM, aioA, and arrA genes, respectively.
However, due to the limitation of the database, the PICRUSt2 prediction tool identified
only the arsC and aioA genes. Although arsenite oxidation (aioA), dissimilatory arsenate
reduction (arrA), arsenate detoxification reduction (arsC), and arsenic methylation (arsM)
can occur, the latter two detoxification mechanisms are proposed as the key processes in the
analyzed soils. Overall, this study indicates that the biogeochemical cycle of arsenic in the
surface soil of agricultural areas with low arsenic levels is primarily driven by a cooperative
process involving detoxification through arsenate reduction and arsenic methylation.
Unlike previous studies that focused primarily on arsenic transformations in high-arsenic
environments, this study demonstrates that in surface agricultural soils with low arsenic
levels, the biogeochemical cycle of arsenic is predominantly driven by a cooperative process
involving detoxification through arsenate reduction and arsenic methylation. Further
investigation is needed to understand the activity of arsenic transformations, which could
be accomplished through a microcosm study coupled with metatranscriptomic analysis.
This study expands our understanding of arsenic-transforming mechanisms, and provides
valuable insights that could contribute to sustainable soil management.
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