Caribbean *Bulimulus* revisited: physical moves and molecular traces (Mollusca, Gastropoda, Bulimulidae) (#8906)

First submission

Please read the **Important notes** below, and the **Review guidance** on the next page. When ready **submit online**. The manuscript starts on page 3.

Important notes

Editor and deadline

James Reimer / 21 Feb 2016

Files 2 Figure file(s)

5 Table file(s)

Please visit the overview page to **download and review** the files

not included in this review pdf.

Declarations One or more DNA sequences were reported.

Please in full read before you begin

How to review

When ready <u>submit your review online</u>. The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this **pdf** and upload it as part of your review

To finish, enter your editorial recommendation (accept, revise or reject) and submit.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to **PeerJ standard**, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (See <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within **Scope of** the journal.
- Research question well defined, relevant & meaningful. It is stated how research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Negative/inconclusive results accepted.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.
- Conclusion well stated, linked to original research question & limited to supporting results.
- Speculation is welcome, but should be identified as such.

The above is the editorial criteria summary. To view in full visit https://peerj.com/about/editorial-criteria/

Caribbean *Bulimulus* revisited: physical moves and molecular traces (Mollusca, Gastropoda, Bulimulidae)

Abraham SH Breure

Twenty-five samples of *Bulimulus* species are studied, partly from localities within their known distribution range, partly based on interceptions where the material originates from localities where the species seem to be recently introduced and non-native. Molecular study of cytochrome oxidase 1 (CO1) reveals the origin of some of these introductions, but is less conclusive for others. Four different methods for species delimitation were applied, which did not result in unambiguous species hypotheses. For a rapid identification of morphologically indistinct species, a more comprehensive database of sequences is needed.

- 1 Caribbean Bulimulus revisited: physical moves and molecular traces (Mollusca, Gastro-
- 2 poda, Bulimulidae)
- 3 Abraham S. H. Breure
- 4 Naturalis Biodiversity Center, Leiden, The Netherlands
- 5 Royal Belgian Institute of Natural Sciences, Brussels, Belgium
- 6 (ashbreure@gmail.com).
- 7 Key words
- 8 Orthalicoidea, distribution, alien species, phylogenetics, West Indies, Florida, Central
- 9 America, Ecuador.
- 10 Abstract
- 11 Twenty-five samples of *Bulimulus* species are studied, partly from localities within their
- 12 known distribution range, partly based on interceptions where the material originates
- 13 from localities where the species seem to be recently introduced and non-native. Molec-
- 14 ular study of cytochrome oxidase 1 (CO1) reveals the origin of some of these introduc-
- 15 tions, but is less conclusive for others. Four different methods for species delimitation
- were applied, which did not result in unambiguous species hypotheses. For a rapid iden-
- 17 tification of morphologically indistinct species, a more comprehensive database of se-
- 18 quences is needed.

19 Introduction

20	The genus Bulimulus is widespread in the Caribbean region, and on the mainland of Central
21	America; also a number of species do occur in dispersed regions of South America (Breure,
22	1974; Breure & Borrero, 2008; Linares & Vera, 2012; Cuezzo et al., 2013; Ramírez et al., 2003;
23	Simone, 2006; Thompson, 2011). Breure (1974) presented a revision of the Caribbean species,
24	with a key to species, based on external shell morphology only. One of the most common
25	species, Bulimulus guadalupensis (Bruguière, 1789), was reported then mainly from the Wind-
26	ward Group and supposedly imported on Jamaica, and Hispaniola. Shortly afterwards it was re-
27	ported as being introduced on Curação (Breure, 1975). This very variable species, however, did
28	not show infraspecific differentiation using measurements of the shells (Breure, 1974: 21). An-
29	other Caribbean species, B. diaphanus (Pfeiffer, 1855), was divided into two subspecies ranging
30	from Hispaniola to St. Croix, and from St. Martin to Iles des Saintes respectively (Breure, 1974).
31	Anatomical data of Bulimulus species are scarce (Breure, 1978; Miquel, 1991) and mainly con-
32	cern the mainland species. Molecular data has become available during the past decades, the
33	most extensive treatment of this genus by Breure & Romero (2012) provides seven sequences,
34	of which five from Caribbean. In order to obtain more insight in phylogenetic relations and zoo-
35	geographical patterns, additional molecular data from Bulimulus species throughout the distribu-
36	tion range are needed. In recent years reports of introduced Bulimulus taxa throughout the Car-
37	ibbean and in the U.S.A. have increased (D. Robinson, pers. commun.). The author frequently
38	received photographs of Bulimulus species for identification. Species of this genus—for which
39	more than 100 names are available (Breure, 1979)—typically possess few reliable external char-

- 40 acters, and are thus difficult to recognise from a photograph alone. Most of photos were from
- 41 material captured by the U.S. Dept of Agriculture (USDA) at border sites, which were considered
- 42 alien species, often with unclear provenance. Moreover, some Florida populations of *Bulimulus*
- 43 have not been well documented as yet.
- The aim of this paper is provide additional molecular and occurrence data on Caribbean (sensu
- 45 lato, incl. Florida) B. guadalupensis and B. diaphanus, and to test whether recent imports of Bu-
- 46 limulus species in the U.S.A. can be traced back to a South American origin. A second aim is to
- 47 test whether different species delimitation methods may be helpful to untangle morphologically
- 48 very similar species (cf. Prévot et al., 2013).
- 49 Material and methods
- 50 Intercepted or collected material of *Bulimulus* species was received originating from Argentina,
- 51 Bahamas, Barbados, Colombia, Dominica, Dominican Republic, Ecuador, Guadeloupe, Haiti,
- Honduras, Jamaica, Paraguay, St. Kitts and Nevis, and the U.S.A. Collection data, accession
- 53 numbers for museum vouchers and GenBank accession numbers of all sequenced material is
- 54 listed in Table 1. All tissue samples were taken from snail feet and transferred to 96% ethanol.
- 55 Whole genomic DNA was extracted with DNeasy kit (Quiagen Inc.) following the manufacturer's
- 56 protocol. Fragments of mitochondrial cytochrome oxidase 1 (CO1) were amplified using the
- 57 Folmer primers (Folmer et al., 1994), as described in Breure & Romero (2012). New sequences
- 58 obtained during the present study are indicated in Table 1. Sequences were aligned using

59 MAFFT as implemented in Geneious 7.1.3 (Biomatters Ltd.). The substitution model selected by 60 ¡Modeltest 2.1 (Posada, 2008), using the Akaike Information Criterion, was GTR+I+G. 61 Phylogenetic trees were inferred by application of Neighbor-Joining (NJ), Maximum Likelihood 62 (ML), Maximum Parsimony (MP), and Bayesian Inference (BI) methods. NJ trees were con-63 structed using MEGA6 (Tamura et al., 2013) with Kimura 2-parameter (K2P) and 500 bootstrap 64 replicates. ML trees were inferred using PhyML 3.0 (Guindon et al., 2010), with four substitution 65 rate categories considered, and gamma shape parameters, transition/transversation ratios, and 66 nucleotide frequencies were estimated from the data. Nodal support of topologies was inferred 67 by calculating aLRT statistics. MP trees were constructed using MEGA6 (Tamura et al., 2013), 68 resulting in a most parsimous tree with length = 906; the consistency index is 0.445100 for all 69 parsimony-informative sites. The tree was obtained using Subtree-Pruning-Regrafting and 500 70 bootstraps. BI trees were constructed using MrBayes 3.2.2 (Ronquist & Huelsenbeck, 2003), 71 based on a cold chain and three incrementally heated chains (T = 0.2), running for 1,100,000 72 generations with a sample frequency of 200. The burn-in rate was 25% and the remaining trees 73 were used for building a consensus tree and calculating the Bayesian posterior clade probabili-74 ties (Larget & Simon, 1999). Both ML and BI software were used as implemented in Geneious 75 7.1.3 (Biomatters Ltd.). All trees were rooted with an outgroup of *Drymaeus vexillum* (Broderip, 76 1832) and Neopetraeus tessellatus (Shuttleworth, 1854), for which sequences were retrieved 77 from GenBank (Breure & Romero, 2012). Branch support was considered as well-supported if 78 higher than 70 (bootstrapping: bs), resp. 0.9 (posterior probabilities: pp).

79 Evolutionary analysis of the original alignment was further explored by using SplitsTree4 v. 80 4.12.6 (Huson & Bryant, 2006). This program produces phylogenetic graphs with split networks; 81 the K2P parameter was used in combination with the Neighbor-Net setting. Species delimitation 82 was investigated using different methods, both with the original alignment and with a subset us-83 ing only B. guadalupensis, B. diaphanus, and B. sporadicus: (1) Classical barcode gap analysis 84 (BGA) using K2P-distances (a) 3% threshold, (b) 4% stylommatophoran threshold (both methods 85 following Prévot et al., 2013, who also cite references debating the use of K2P); (2) Species De-86 limiting as implemented in Geneious 7.1.3. (Biomatters Ltd.) (SDG); (3) Genealogical Sorting In-87 dex (GSI); (4) Automated Bar code Gap Discovery (ABGD). 88 BGA was explored using Estimates of Evolutionary Divergence between Sequences (EDS) and 89 estimates of Net Evolutionary Divergence between Group of Sequences (NEDGS). These were 90 conducted in MEGA6 (Tamura et al., 2013) by calculating the number of base substitutions per 91 site from between sequences. Standard error estimate(s) were obtained by a bootstrap proce-92 dure (500 replicates). Analyses were conducted using the Maximum Composite Likelihood 93 model (Tamura et al., 2004). Codon positions included were 1st+2nd+3rd+Noncoding and all positions containing gaps and missing data were eliminated, resulting in 585 positions in the final 94 95 dataset analysed. 96 The SDG plug-in in Geneious v. 7.1.3 allows evaluating the phylogenetic exclusivity of each pu-97 tative species interpreted as a clade by testing the probability that this exclusivity or monophyly 98 has occurred by chance in a coalescent process. It further assesses the probability with which a 99 putative species can be diagnosed successfully on a phylogenetic tree by comparing intra- and

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

interspecific genetic distances and its ration. SDG calculates values of P ID(strict), i.e. the mean probability and its confidence interval of making a correct identification of an unknown specimen of a clade (not as sister of this clade) using placement on a tree (Masters et al., 2011). The method also calculates Rosenberg's PAB (Rosenberg, 2007), a test for taxonomic distinctiveness based on the null hypothesis that monophyly is a chance outcome of random branching, and Rodrigo's P(Randomly Distinct) (Rodrigo et al., 2008), which is the probability that a clade has the observed degree of distinctiveness due to random coalescence. The GSI method quantifies the historical relationships among groups of (putative) taxa by measuring the exclusive ancestry of a group using a rooted tree topology. A group is defined as a set of commonly labeled branch tips and exclusivity is the amount of ancestry for a group that is common to only members of the group, measured on a scale (the index), with a level of support (p-value). In the initial stages of divergence the values are at or near 0, at the final stages of genealogical sorting the values reach 1, representing exclusive ancestry (i.e. monophyly) (Cummings et al., 2008). The ABGD method sorts the sequences into hypothetical species based on the barcode gap, which can be observed whenever the divergence among organisms belonging to the same species is smaller than divergence among organisms from different species. ABGD uses a range of prior intraspecific divergence to infer from the data a model-based one-sided confidence limit for intraspecific divergence. The method then detects the barcode gap as the first significant gap beyond this limit and uses it to partition the data. The aligned dataset was uploaded to the website (http://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html) and run with K2P distances under

default settings. These settings are a Prior Intraspecific divergence ranging from Pmin = 0.001 to

Pmax 0.1 in ten steps, a relative gap width X = 1.5, and a distance distribution Nb bins = 20

(Puillandre et al., 2012).

124 Results

138

139

- 125 Occurrence data
- 126 For the most common Caribbean Bulimulus species, B. guadalupensis (Bruguière, 1789), new 127 introductions are now traced back to the following Neotropical countries: Ecuador (USDA 128 110210), Costa Rica (USDA 110245), and Honduras (USDA 110162). All introductions were sig-129 naled via an 'U-loop', viz. the interception at U.S.A.-borders testified that the species was present 130 in the country of departure of the flight or shipment concerned (in all cases no stop-overs were 131 made). However, precise locations within those countries are difficult to pinpoint. Another new 132 record for a population of this species is in Florida, Dade County, Miami, near Coconut Grove (USDA 110205-6), and near Coral Gables (USDA 110208), where specimens have been col-133 134 lected by D.G. Robinson in respectively 1999 and 2010. The status of B. guadalupensis on Ja-135 maica was confirmed as "introduced by humans" by Rosenberg & Muratov (2006: 140); see also 136 under Phylogenetic analyses. 137 Another introduction of Bulimulus in Florida concerns a species that was originally reported from

Jacksonville by B. Frank and H. Lee in 2009 (H. Lee, pers. commun.). Because the original spot was near a container company, it was surmised to be an alien species from an unknown source

area. Additional surveys in Jacksonville soon revealed that this, then unidentified, species was present in other spots as well and that it dispersal has taken place by rail. So far more than 20 populations have been discovered in and around Jacksonville along railroads, as far as 300 km as the crow flies SSW of Jacksonville. The species was identified by ANSP-USDA as *B. sporadicus* (d'Orbigny, 1835) (Frank & Lee, 2014), matching with specimens identified earlier as such from Houston, Texas (RMNH 114266) (D. Robinson, pers. commun.; Breure & Romero, 2012). This species is referred to in the present paper as *B. cf. sporadicus*, see Discussion.

Phylogenetic analyses

The NJ, ML and BI trees resulted in similar topologies (Figs 1-2; NJ: Supplementary information Fig. 1). The 17 sequences of *B. guadalupensis* fall into two sister groups that are both well-supported (bs: 100 (NJ), (ML); pp: 1.0 and 0.92 respectively). The MP tree (Supplementary information Fig. 2) also supports the division of *B. guadalupensis* into two groups (bs: 99), and suggests that the Florida population is likely from a Puerto Rico or Hispaniola source population. In the MP tree the clade with sequences from Puerto Rico (Guayabo), Honduras and Ecuador has relatively strong support (bs: 87). *B. hummelincki* and *B. diaphanus* from St. Kitts appear as paraphyletic in the same clade (bs: 71 (NJ), 78 (ML); pp: 0.99), which is sister group to all other *Bulimulus* species analysed in this study, except *B. gracilis* which is basally in all topologies. Within this second, weakly supported clade different topologies do occur, with polytomies in ML and BI. However, all methods suggest that *B. diaphanus* intercepted from the Bahamas is more closely related to the Central American *B. comeus* than to the other sequences of *B. diaphanus*. The lat-

161 Jamaican/Haitian specimens. 162 Detailed analysis of the alignment shows that B. quadalupensis sequences from the following 163 populations can be arranged into two groups of haplotypes (h): (Group A) (h1) DR1 – Dominican 164 Republic, La Cantera (USDA 110198); DR2 – Dominican Republic, 4 km S Cabrera (USDA 165 110200); DR3 – Dominican Republic, Come Pan (USDA 110197); DR5 – Dominican Republic, 166 Santo Domingo (RMNH 106983); PR1 – Puerto Rico, Isla Viegues, Punta Arenas (USDA 167 110196); DO1 – Dominica, Bellevue Chopin (USDA 100706); DO2 – Dominica, Pointe Michel 168 (USDA 100713); FL – U.S.A., Florida, Miami, Coral Gables (USDA 110208). The second haplo-169 type (h2) differs in only one basepair at the following populations: PR2 - Puerto Rico, Isla 170 Viegues, Florida (USDA 110199). A third haplotype (h3) links the populations at PR3 – Puerto Rico, Guayabo (USDA 110195) and those in EC - Ecuador (USDA 110210) and HO - Honduras 171 172 (USDA 110162); there is a two basepair difference with h2. Group B links the following popula-173 tions: (h4) GU - Guadeloupe, Saint-Anne (USDA 110209); (h5) DR4 - Dominican Republic, Las 174 Terrenas (USDA 110201, 11 bp differences with h4); (h6) BA – Barbados, Sandy Lane (USDA 175 110207, 15 bp differences with h5, 13 bp with h4). The sequence from JA – Jamaica, Lucea 176 (USDA 110194), although incomplete, is likely (nearly) identical to those from Barbados. In Split-177 sTrees4 group A appears to be rather homogeneous, while group B is more reticulated (Fig. 3). 178 This was reflected in the higher values for group B in the BGA, both in EDS and NEDGS (Sup-179 plementary information, Table 4).

ter are not a homogenous group, however, as the Nevis specimen is slightly differing from the

180 Fig. 4 shows the network relations of the other species. B. diaphanus shows up in three different 181 branches; the specimen from Nevis (RMNH.MOL.114174) is related to B. hummelincki Breure, 182 1974 and corresponds to B. diaphanus fraterculus (Potiez & Michaud, 1835) (Breure, 1974). The 183 specimens from Haiti (RMNH.MOL.114274) and Jamaica (RMNH.MOL.114173) are nearly iden-184 tical, and correspond to B. d. diaphanus (Pfeiffer, 1855). The third sample from Bahamas (ANSP 185 A22054) seems to be more closely related to the Central American B. corneus (Sowerby I, 186 1833); this sample may be misidentified. The three samples of *B. sporadicus* (d'Orbigny, 1835) 187 appear to be partly unrelated; the specimens from Paraguay (RMNH.MOL.336661) and inter-188 cepted at Houston are on neighbouring branches (bootstrap 56; not shown). The sample from 189 Florida (RMNH.MOL.336660), identified as the same species, is branching off B. d. diaphanus 190 (bootstrap 86; not shown); this is corroborated in the MP tree, where the clade of B. sporadicus 191 (Florida) and B. diaphanus (Haiti, Jamaica) has moderate support (bs: 72; not shown). 192 In the analyses using different species delimitation methods, the two groups within B. quadalu-193 pensis may be distinguised using BGA with a 3% threshold, while at 4% threshold the differ-194 ence is only marginal. Haplotype h4 shows a maximum distance of 0.041±0.008. In the SDG 195 method using ML the B group has a relatively high intraspecific/interspecific ratio, but a relatively 196 low P ID(strict) and non-significant values of Rosenberg's PAB and Rodrigo's P(RD); however, us-197 ing BI the two groups are significantly different using the latter parameter, although the other pa-198 rameters hardly differ (Table 2, Supplementary information Table 3). The ABGD method resulted 199 in one group for the recursive partition with a prior of 0.1; 13 with 0.060; 14 with 0.036; 17 with 200 0.022, 0.013, 0.008, 0.005, 0.003, and 0.002; 19 groups were found with prior 0.001. The initial

partition was stable on 17 groups at prior values of 0.022 and below. Of the two *B. guadalupen-sis* groups only group A is recognised with this method (Table 2, Supplementary information Table 4). On the contrary, in the GSI method both group A and B had a value of 1.00 (monophyly) with both ML and BI; all values were statistically significant, thus GSI suggests two species. Also within *B. diaphanus* two groups are suggested, but only one of these groups (from Jamaica and Haiti) has a significant value of 1.00. The analysed samples of *B. sporadicus* prove not to be monophyletic (Table 2, Supplementary information Table 5).

Discussion

Bulimulus guadalupensis is known to be very variable morphologically, although measurements on samples throughout its distribution area led Breure (1974) conclude that "no infraspecific differentiation occurs". The results on this species reported in the present paper are not univocal, the two groups that are discernable depend on the species delimitation method chosen. Thus drawing nomenclatoral conclusions would – in the absence of clear external morphological differences – hinge totally on ambiguous molecular data. Since the locality data are often also not informative (e.g., in case of introduction or interception), no nomenclatorial conclusions can be drawn.

For *B. diaphanus* Breure (1974) recognised two subspecies, of which the samples studied in this paper from Haiti and Jamaica may be assigned to the nominate taxon, and the Nevis sample to

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

B. diaphanus fraterculus (Potiez & Michaud, 1835); more fresh tissue samples from different localities within its distribution range are needed to confirm the phylogenetic basis for the morphological differences reported earlier by Breure (1974). The polyphyly of samples of *B. diaphanus* in this study is possibly an indication of the presence of cryptic species in this group, but also here lack of data prevent me from drawing nomenclatoral conclusions.

The occurrence of alien species in Florida seems to follow a 'burst-diminishing pattern', also observed in other introduced species, from becoming very common after the introduction to diminishing to (nearly) gone after some time (B. Frank, pers. comm.). The Miami population of B. quadalupensis lasts currently at least ten years. The Jacksonville population of B. aff. sporadicus was only recently discovered and seems thriving, at least within the city limits, possibly resulting from the potential absence of natural enemies (such as Euglandina snails). Simberloff & Gibbons (2004) have suggested that population collapses of introduced species may simply be temporary lows during a more or less regular boom-and-burst cycle. The time span of such a process may vary from species to species due to specific conditions, and is as yet unknown for these Bulimulus. Other introductions of these species in the Caribbean are less well documented. In Curação (Breure, 1975) a population of B. quadalupensis is still present, but only in gardens in some suburban areas outside Willemstad (G. van Buurt, pers. commun.). From the network analysis (Fig. 4) it could be deduced that the introductions in Ecuador and Honduras may be traced back to the population in Puerto Rico, Guayabo, which may be linked to - in this case - export activities at the industrial park where the collection was made (Cf. Cowie et al., 2008). However, Bulimulus

239 species are not considered to be high-risk exotics (Cowie et al., 2009). The introduction in Ja-240 maica of this species may be linked to a population on a different island, and in this case molec-241 ular evidence suggests it may be traced to Barbados. 242 The phylogenetic analyses also provide some insights in the populations identified as B. spo-243 radicus (d'Orbigny, 1835). It may be noted that only one is from a natural population, viz. 244 Paraguay, Concepción, albeit a somewhat aberrant specimen through damage of the shell at a 245 juvenile stage (Fig. 5). The two other populations sampled are alien in the U.S.A. (Houston, inter-246 cepted by USDA; Jacksonville). This species is widespread in its area of origin and has been recorded from Bolivia, Brazil (Mato Grosso, Rio Grande do Sul, Santa Catarina), Paraguay, and 247 Uruguay (Agudo-Padrón, 2014; Agudo-Padrón et al., 2014; Simone, 2006). In Uruguay and Ar-248 249 gentina (Provs. Buenos Aires, Chaco, Cordoba, Corrientes, Entre Rios, Formosa, Missiones, Tu-250 cumán) this taxon is replaced by the very similar B. bonariensis (Rafinesque, 1833) (Cuezzo et 251 al., 2013; Scarabino, 2003). Miguel (1991) and Cuezzo et al. (2013) consider these taxa as syn-252 onyms, with Rafinesque's name having priority. However, the intraspecific variation within the 253 large distribution range of this species makes it likely to be a species complex. Thus it may war-254 rant a more detailed study, including molecular research, to clarify the possible existence of 255 closely related taxa which may be difficult to distinguish on the basis of shell morphology alone. 256 This study shows that use of different species delimiting methods may produce different species 257 hypotheses, and are thus are of limited value to arrive at an unequivocal taxonomic interpretation 258 of these Bulimulus species, as was also observed by Prévot et al. (2013). In this case the rela-259 tive low number of samples analysed, and the use of only one genetic marker, makes it hard to

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

convert the results into solid taxonomic decisions. Therefore it is suggested that the application 260 of species delimitation methods may be of limited value as such, and should be complemented by other evidence, e.g. morphological studies. Finally, the present study sheds some light on the usefulness of the barcoding method for rapid

identification of intercepted snails of this group. Although the results strongly suggests that some of the physical moves (i.e. introduction as alien species in a distinct country) can be traced back to a source within the known distribution area, it is also clear that this holds true for the better known species only (e.g., B. guadalupensis). For others, especially for taxa that are morphologically very similar, the extent and reliability of the current database in GenBank is insufficient, especially with respect to areas where Bulimulus species are known to be native. In a wider perspective, where the effects of the global economy on non-marine gastropod introductions are becoming more and more manifest (Robinson, 1999), this is a problematic conclusion.

Acknowledgements

The following colleagues are thankfully acknowledged for allowing material to be sequenced: F.J. Borrero (Philadelphia), U. Drechsel (Ascunción), B. Frank (Jacksonville), M.G. Cuezzo (Tucumán), D.G. Robinson (Philadelphia). D. Groenenberg discussed some items during preparation of the manuscript, and K.K. Beentjes provided assistance in the Naturalis Biodiversity Center molecular lab, and I am highly grateful for their input. G. van Buurt (Willemstad) and B. Frank

278	provided useful information on local occurrence data. Two anynonymous reviewers made useful
279	suggestions on an earlier draft of this paper.
280	References
281	Agudo-Padrón I. 2014. Inventario sistemático de los moluscos continentales ocurrentes en el
282	Estado de Santa Catarina, Brasil / Inventário sistemático dos moluscos continentais ocorrentes
283	no Estado de Santa Catarina, Brasil. <i>Bioma</i> 2(21): 6-23.
284	Agudo-Padrón I, Souza da Luz J, Kleba Lisboa L, Zerminiani ME. 2014. Additional twelve new
285	records to inventory of continental mollusc species from Santa Catarina State / SC, Central
286	Southern Brazil. Boletin de la Asociación Argentina de Malacología 3 (2): 11-20.
287	Blaxter ML. 2004. The promise of a DNA taxonomy. <i>Philosophical transactions of the Royal So-</i>
288	ciety of London B 359: 669-679. http://dx.doi.org/10.1098/rstb.2003.1447
289	Breure ASH. 1974. Caribbean land molluscs: Bulimulidae I. Bulimulus. Studies on the Fauna of
290	Curaçao and other Caribbean Islands 45: 1-80.
291	Breure ASH. 1975. Bulimulus guadalupensis (Bruguière, 1789), een nieuwe soort voor de
292	malacofauna van Curacao. Correspondentieblad van de Nederlandse Malacologische
293	Vereniging 166: 440-441.

- Breure ASH. 1978. Notes on and descriptions of Bulimulidae (Mollusca, Gastropoda).
- 295 Zoologische Verhandelingen Leiden 164: 1-255.

296 Breure ASH. 1979. Systematics, phylogeny and zoogeography of Bulimulinae (Mollusca). 297 Zoologische Verhandelingen Leiden 168: 1-215. 298 Breure ASH, Romero PD. 2012. Support and surprises: molecular phylogeny of the land snail 299 superfamily Orthalicoidea using a three-locus gene analysis with a divergent time analysis and 300 ancestral area reconstruction (Gastropoda: Stylommatophora). Archiv für Molluskenkunde 141: 301 1-20. http://dx.doi.org/10.1127/arch.moll/1869-0963/141/001-020 302 Cowie RD, Hayes KA, Tran CT, Meyer WM III. 2008. The horticultural industry as a vector of 303 alien snails and slugs: widespread invasions in Hawaii. International Journal of Pest Manage-304 ment 54: 267-276. http://dx.doi.org/10.1080/09670870802403986 Cowie RH, Dillon RT jr, Robinson DG, Smith JW. 2009. Alien non-marine snails and slugs of pri-305 306 ority quarantine importance in the United States: A preliminary risk assessment. American Malacological Bulletin 27: 113-132. http://dx.doi.org/10.4003/006.027.0210 307 308 Cuezzo MG, Miranda MJ, Constanza Ovando XM. 2013. Species catalogue of Orthalicoidea in 309 Argentina (Gastropoda: Stylommatophora). *Malacologia* 56: 135-191. 310 http://dx.doi.org/10.4002/040.056.0210 311 Cummings MP, Neel MC, Shaw KL. 2008. A genealogical approach to quantifying lineage diver-312 gence. Evolution 62: 2411-2422. http://dx.doi.org/10.1111/j.1558-5646.2008.00442.x 313 Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. 1994. DNA primers for amplification of mito-314 chondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Ma-315 rine Biology and Biotechnology 3: 294-299.

316	Frank B, Lee H. 2014. Bulimulus sporadicus (d'Orbigny, 1835). Available at http://www.jaxshell-
317	s.org/gallery5.htm (accessed 30 June 2014).
318	Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New algoriths and
319	methods to estimate maximum-likelihood phylogenies: assessing the performance of PhylML
320	3.0. Systematic Biology 59: 307-321. http://dx.doi.org/10.1093/sysbio/syq010
321	Huson DH, Bryant D. 2006. Apllication of phylogenetic networks in evolutionary studies. Molecu-
322	lar Biology and Evolution 23: 254-267. http://dx.doi.org/10.1093/molbev/msj030
323	Larget B, Simon DL. 1999. Markov chain Monte Carlo algoritms for the Bayesian analysis of phy
324	logenetic trees. Molecular Biology and Evolution 16: 750-759. http://dx.doi.org/10.1093/oxford-
325	journals.molbev.a026160
326	Linares EL, Vera ML. 2012. Catálogo de los moluscos continentales de Colombia. Biblioteca
327	José Jerónimo Triana 23. Universidad Nacional de Colombia, Bogotá.
328	Masters BC, Fan V, Ross HA. 2011. Species delimitation: a Geneious plugin for the exploration
329	of species boundaries. Molecular Ecology Resources 11: 154-157.
330	http://dx.doi.org/10.1111/j.1755-0998.2010.02896.x
331	Miquel SE. 1991. El género <i>Bulimulus</i> Leach, 1814 (Mollusca, Gastropoda, Stylommatophora)
332	en la República Argentina. Studies on Neotropical Fauna en Environment 26: 93-112. http://dx
333	doi.org/10.1080/01650529109360839

334	Posada D. 2008. jModelTest: Phylogenetic model averaging. Molecular Biology and Evolution
335	25: 1253-1256. http://dx.doi.org/10.1093/molbev/msn083
336	Prévot V, Jordaens K, Sonet G, Backeljau T. 2013. Exploring species level taxonomy and
337	species delimitation methods in the facultatively self-fertilizing land snail genus Rumina (Gas-
338	tropoda: Pulmonata). <i>PLoS ONE</i> 8(4): e60736. http://dx.doi.org/10.1371/journal.pone.0060736
339	Puillandre N, Lambert A, Brouillet S, Achaz G. 2012. ABGD, Automated Barcode Gap Discovery
340	for primary species delimitation. <i>Molecular Ecology</i> 21: 1864-1877.
341	http://dx.doi.org/10.1111/j.1365-294X.2011.05239.x
342	Robinson DG. 1999. Alien invasions: the effects of the global economy on non-marine gastropod
343	introductions into the United States. Malacologia 41: 413-438.
344	Rodrigo A, Bertels F, Heled J, Noder R, Shearman H, Tsai P. 2007. The perils of plenty: what are
345	we going to do with all these genes? Philosophical Transactions of the Royal Society B 363:
346	3893-3902. http://dx.doi.org/10.1098/rstb.2008.0173
347	Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed
348	models. <i>Bioinformatics</i> 19: 1572-1574. http://dx.doi.org/10.1093/bioinformatics/btg180
349	Rosenberg NA. 2007. Statistical tests for taxonomic distinctiveness from observations of mono-
350	phyly. <i>Evolution</i> 61: 317-323. http://dx.doi.org/10.1111/j.1558-5646.2007.00023.x

351	Rosenberg G, Muratov I. 2006. Status report on the terrestrial Mollusc of Jamaica. <i>Proceedings</i>
352	of the Academy of Natural Sciences of Philadelphia 155: 117-161.
353	http://dx.doi.org/10.1635/i0097-3157-155-1-117.1
354	Scarabino F. 2003. Lista sistemática de los Gastropoda terrestres de Uruguay. Comunicaciones
355	de la Sociedad Malacológica del Uruguay 8: 203-214.
356	Simberloff D, Gibbons L. 2004. Now you see them, now you don't! - population crashes of estab
357	lished introduced species. Biological Invasions 6: 161-172.
358	http://dx.doi.org/10.1023/B:BINV.0000022133.49752.46
359	Simone LRL. 2006. Land and freshwater molluscs of Brazil. EGB/Fapesp, São Paulo: 1-390.
360	Tamura K, Nei M, Kumar S. 2004. Prospects for inferring very large phylogenies by using the
361	neighbor-joining method. Proceedings of the National Academy of Sciences (USA) 101: 11030-
362	11035. http://dx.doi.org/10.1073/pnas.0404206101

- 364 Genetics Analysis version 6.0. Molecular Biology and Evolution 30: 2725-2729.
- 365 http://dx.doi.org/10.1093/molbev/mst197
- Thompson FE. 2011. An annotated checklist and bibliography of the land and freshwater snails
- of Mexico and Central America. Bulletin Florida Museum of Natural History 50: 1-299.

368	
369	[Legends.]
370	Fig. 1. Maximum-likelyhood phylogeny for <i>Bulimulus</i> species, based on 654bp cytochrome oxi-
371	dase I mitochondrial DNA. Bootstrap values of 70 and above are presented to the left of the
0,1	
372	nodes indicated by black dots. Scale bar in substitutions/site.

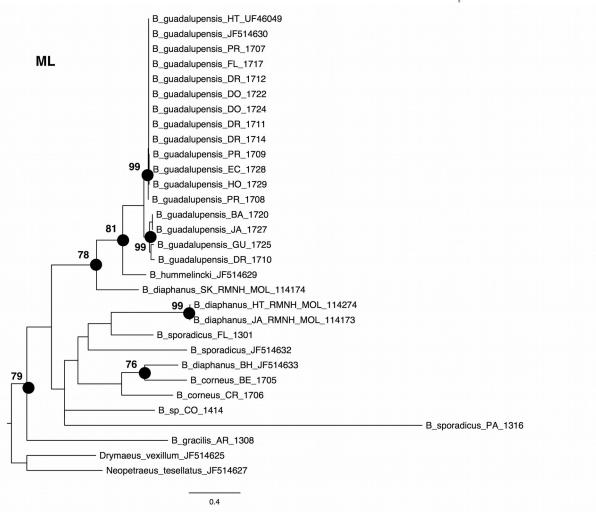
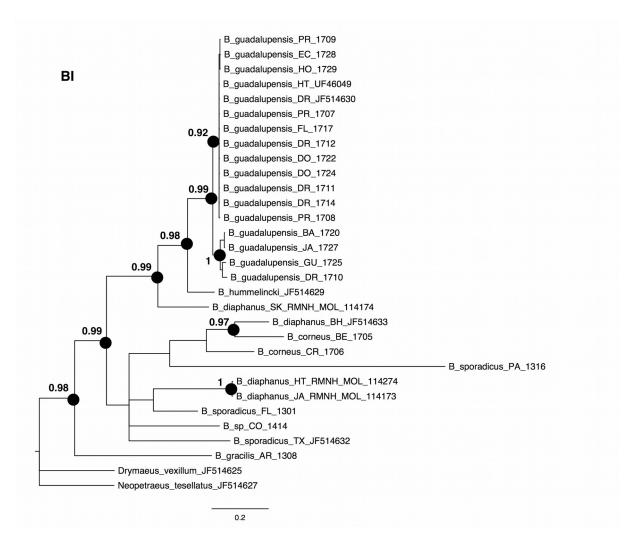
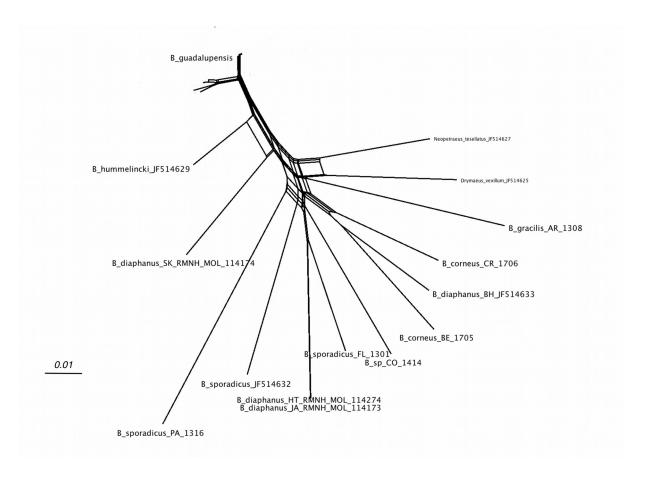



Fig. 2. Bayesian phylogeny for *Bulimulus* species using MrBayes, based on the same dataset as



- 374 shown in Fig. 1. Posterior probabilities of 0.9 or above are indicated by black dots at the nodes.
- 375 Scale bar in substitutions/site.

- Fig. 3. SplitsTree NeighborNet network of Bulimulus guadalupensis (Broderip, 1789), based on
- 377 K2P distances and EqualAngle representation. Label explanation given in text.

- Fig. 4. SplitsTree NeighborNet network of all Bulimulus species from the analysed dataset,
- 379 based on K2P distances and EqualAngle representation. Label explanation given in text.

- Fig. 5. Bulimulus sporadicus (d'Orbigny, 1835), Paraguay, Concepción. U. Drechsel leg. RMNH.-
- 381 MOL.336661 (shell height 31.3 mm). A, living specimen (photo by courtesy U. Drechsel). B, dif-

ferent views of the shell, arrow indicating the place where the carination starts.

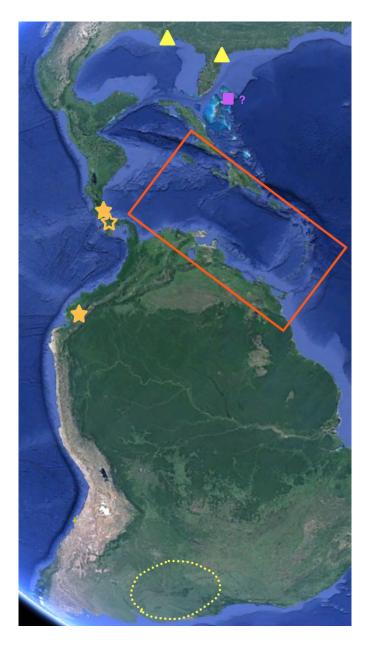


Fig. 6. Distribution of A – *Bulimulus guadalupensis* (orange), and B – *B. diaphanus* (purple) in the West Indies. Dotted lines denote generalised distribution area, solid symbols sampled localities. Note that the Haitian locality is only an approximation

Fig. 7. Distribution of Bulimulus sporadicus (yellow), B. guadalupensis, and B. diaphanus in the

Neotropics. Red square is area enlarged in Fig. 6. Open symbol is a locality not sampled; other

388 symbols, see legends of Fig. 6.

390

391

392

393

394

Table 1. Material used in this paper. Abbreviations for vouchers: ANSP, Academy of Natural Sciences, Philadelphia, U.S.A.; CMC, Cincinnati Museum, Cincinnati, U.S.A.; IML, Instituto Miguel Lillo, Tucumán, Argentina; RMNH, Naturalis Biodiversity Center (NBC), Leiden, the Netherlands; UF, Florida Museum of Natural History, Gainesville, U.S.A.; USDA, United States Department of Agriculture, Malacology Collection, ANSP, Philadelphia, U.S.A. Other abbreviations: LabID, NBC molecular laboratorium code, including a two-letter locality code; MOTU, molecular operational

моти	LabID	Species			Voucher	Locality				Collector(s)	CO1
s1	FL 1301	Bulimulus	sporadicus	(d'Orbiany, 1	RMNH.MOL.	USA	Florida	Nassau Coun	S Callahan	H.Lee&EW Ca	KP117235
	AR_1308	Bulimulus	gracilis	Hylton Scott,	IML-BD368	Argentina	Salta		Sierra Colora	E. Salas O.	KP117237
s2	PA_1316	Bulimulus	sporadicus	(d'Orbigny, 1	RMNH.MOL. 336661	Paraguay	Concepcion		Garay-Cue	U.Drechsel	KP117238
	CO_1414	Bulimulus	sp.		CMC-FJB78	Colombia	Magdalena		Santa Marta,	FJ Borrero	KP117236
gA	PR_1707	Bulimulus	guadalupens	(Bruguiere 17	USDA 11019	Puerto Rico		Huamaco	Isla Vieques,	DGRobinson	KP117239
gA	PR_1708	Bulimulus	guadalupens	(Bruguiere 17	USDA 11019	Puerto Rico		Huamaco	Isla Vieques,	DGRobinson	KP117249
gA	PR_1709	Bulimulus	guadalupens	(Bruguiere 17	USDA 11019	Puerto Rico		Bayamon	Guayabo, Am	DGRobinson	KP117246
gA		Bulimulus	guadalupens	(Bruguiere 17	RMNH.MOL.1	Dominican R	epublic		Santo Domin	J. Grego	JF514630
gB	DR_1710	Bulimulus	guadalupens	(Bruguiere 17	USDA 11020	Dominican R	epublic	Samana	Las Terrenas	DGRobinson	KP117253
gA	DR_1711	Bulimulus	guadalupens	(Bruguiere 17	USDA 11019	Dominican R	epublic	Samana	Come Pan	DGRobinson	KP117244
gA	DR_1712	Bulimulus	guadalupens	(Bruguiere 17	USDA 11019	Dominican R	epublic	Espaillat	La Cantera	DGRobinson	KP117241
gA	DR_1714	Bulimulus	guadalupens	(Bruguiere 17	USDA 11020	Dominican R	epublic		4 km S Cabre	DGRobinson	KP117245
gA	FL_1717	Bulimulus	guadalupens	(Bruguiere 17	USDA 11020	USA	Florida	Dade	Miami, Coral	DGRobinson	KP117240
gB	BA_1720	Bulimulus	guadalupens	(Bruguiere 17	USDA 11020	Barbados	St.Thomas		Sandy Lane	DGRobinson	KP117250
gA	DO_1722	Bulimulus	guadalupens	(Bruguiere 17	USDA 10070	Dominica	St.George		Bellevue Cho	DGRobinson	KP117242
gA	DO_1724	Bulimulus	guadalupens	(Bruguiere 17	USDA 10071	Dominica	St.Luke		Pointe Miche	DGRobinson	KP117243
gB	GU_1725	Bulimulus	guadalupens	(Bruguiere 17	USDA 11020	Guadeloupe	Grande-Terr	e	Sainte-Anne	DGRobinson	KP117252
gB	JA_1727	Bulimulus	guadalupens	(Bruguiere 17	USDA 11019	Jamaica		Hanover	Lucea, weste	DGRobinson	KP117251
gA	EC_1728	Bulimulus	guadalupens	(Bruguiere 17	USDA 11021	Ecuador			(USDA interce	A.Hansen	KP117247
gA	HO_1729	Bulimulus	guadalupens	(Bruguiere 17	USDA 11016	Honduras		ElParaiso	Yuscaran, km	H.Deschamps	KP117248
d1		Bulimulus	diaphanus	(Pfeiffer, 1855)	RMNH.MOL. 114173	Jamaica		St. Ann	Runaway Bay	DGRobinson	KP117232
d2		Bulimulus	diaphanus	(Pfeiffer, 1855)	RMNH.MOL. 114174	St. Kitts & Nevis	Nevis		Herbert Heights	DGRobinson	KP117233
d1		Bulimulus	diaphanus	(Pfeiffer, 1855)	RMNH.MOL. 114274	Haiti			(USDA interception)	D. Valleso	KP117231
d3		Bulimulus	diaphanus	(Pfeiffer, 1855)	ANSP A22054	Bahamas			(USDA interception)	G. Watkins	JF514633

395 taxonomic unit sensu Blaxter, 2004.

396 Table 2. Number of putative species delimited by different methods applied to the dataset. BGA,

Putative species	ВС	GA	SI	OG	ABGD	GSI	
	3%	4%	ML	ВІ		ML	ВІ
gA	+	-	+	+	+	+	+
gB	+	-	-	+	-	+	+
d1	+	+	-	+	+	+	+
d2	+	+	nc	nc	+	nc	nc
d3	+	+	nc	nc	+	nc	nc
s1	+	+	nc	nc	+	nc	nc
s2	+	+	nc	nc	+	nc	nc
s3	+	+	nc	nc	+	nc	nc

- 397 Barcode gap analysis; SDG, species delimiting in Geneious; ABGD, Automated barcode gap
- 398 discovery; GSI, Genealogical sorting index.

399	Supplementary information, Figure 1. Neighbour-joining phylogeny for <i>Bulimulus</i> species, based
400	on 654bp cytochrome oxidase I mitochondrila DNA. Bootstrap values of 70 and above are pre-
401	sented to the left of the nodes indicated by black dots. Scale bar in substitutions/site. (JPEG file
402	Supplementary information, Figure 2. Maximum-parsimony phylogeny for <i>Bulimulus</i> species,
403	based on 654bp cytochrome oxidase I mitochondrila DNA. Bootstrap values of 90 and above are
404	presented to the left of the nodes indicated by black dots. (JPEG file).
405	Supplementary information, Table 1. Delimitation of MOTUs using K2P distances and standard
406	error at 3% threshold. gA and gB, <i>Bulimulus guadalupensis</i> group A respectively B. (XLSX file).
407	Supplementary information, Table 2. Delimitation of MOTUs using K2P distances and standard
408	error at 4% threshold. gA and gB, <i>Bulimulus guadalupensis</i> group A respectively B. (XLSX file).
109	Supplementary information, Table 3. Species delimiting as implemented in Geneious, using ML
410	and BI for both the total dataset and a subgroup of MOTUs. Closest species, Intraspecific dis-
411	tance, Interspecies distance, ratio of Intra/Interspecific, P ID(strict), Rosenberg's $P_{\scriptscriptstyle AB}$, and Ro-

412	drigo's P(RD) are indicated. Colours code for significance. c, d, g, gr, hu, s, and sp. correspond
413	with the respective taxon names; NA, not applicable. (XLSX file).

- Supplementary information, Table 4. Mean p-distances between and within (diagonal) the different MOTUs based on the dataset analysed. EDS, Estimates of Evolutionary Divergence between Sequences; NEDGS, Net Evolutionary Divergence between Group of Sequences. c, d, g, gr, hu, s, and sp. correspond with the respective taxon names; n/c, not calculated. Colours code the corresponding groups. (XLSX file).
- Supplementary information, Table 5. Results for different combinations of MOTUs, using rooted trees of both ML and BI analyses, in terms of genealogical sorting index and corresponding p-values based on a permutation test of 10,000 replicates. Colours code the corresponding groups. (XLSX file).