Ceciamaralia, a new genus of Dorvilleidae (Annelida) from

2 deep waters of the Southwest Atlantic Ocean and an

3 insight in its relationship within the family

4 Rafael de Oliveira Bonaldo^{1,2,3*}, Tatiana Menchini Steiner^{3,4}, André Rinaldo Senna 5 Garraffoni^{2,4}

6

- 7 1 Programa de Pós-Graduação em Biologia Animal, Instituto de Biologia, Universidade
- 8 Estadual de Campinas, Campinas, São Paulo, Brazil.
- 9 ² Laboratório de Evolução de Organismos Meiofaunais, Instituto de Biologia, Universidade
- 10 Estadual de Campinas, Campinas, São Paulo, Brazil.
- 11 ³ Laboratório de Biodiversidade Bentônica Marinha, Departamento de Biologia Animal,
- 12 Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.
- 13 ⁴ Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas,
- 14 Campinas, São Paulo, Brazil.

15

20

23

16 *Corresponding 17 Rafael de Oli

Author: Oliveira Bonaldo

Rafael de Oliveira Bonald

18 Rua Bertrand Russell, 1251 - Cidade Universitária, Campinas - SP, Brazil, 13083-865.

19 Email address: rafael.o.bonaldo@gmail.com

21 Abstract

Dorvilleidae, Chamberlin, 1919 is a family of Annelida grouping some of the smallest

'polychaetes' species, poorly studied worldwide, and with many gaps regarding its diversity

24 and occurrence. Samples obtained in oceanographic campaigns performed in the Southwest

25 Atlantic Ocean (Brazilian coast) revealed a high number of specimens of dorvilleids, unveiling

26 the hidden diversity of this family. A detailed morphological analysis of these organisms has

27 revealed a new genus; Ceciamaralia gen. nov., supported by four synapomorphies in a cladistic

28 <u>analysis. The new genus differ from the remaining</u> Dorvilleidae genera in: i) the robust and

29 enlarged pharynx which are frequently everted, and ii) unique composition of maxillae – with

an elongated pair of serrated basal plates and two pairs of free maxillary plates, the anteriormost

31 <u>plates with an anterior long and thin spine. Ceciamaralia lanai gen. et sp. nov. is characterized</u>

 $\textbf{Excluído:} \ composed$

Excluído: of

Excluído: being

Excluído: .

Excluído: with two new species,

Excluído: which differs from other

Excluído: , composed of

Excluído: with

Excluído: having

41 by the presence of a broad and large dorsal cirrus on a few anterior parapodia and the furcate Excluído: On the other hand 42 chaeta in supra-acicular fascicles. While, Ceciamaralia nonatoi gen. et sp. nov. presents a Excluído: A cladistic analysis supported the monophyly of Ceciamaralia gen. nov. by four synapomorphies related to the unique morphology of its maxillae and pharynx. 43 geniculate chaeta instead of a furcate, absence of dorsal cirri and, in some specimens, absence Excluído: one 44 of palps. This study is part of several taxonomic studies aiming to elucidate and increase the Excluído: recent knowledge of Dorvilleidae. 45 Excluído: to come from the family Excluído: with the objective Key words: Annelida, Eunicida, 'Polychaeta', morphology, new species, new genus, 46 Excluído: to 47 taxonomy, cladistics Comentado [RVWR1]: Already in the title, use another Excluído: within 48 Excluído: n internal Excluído: that Introduction 49 Comentado [RVWR2]: I suggest to also include the Citation of M & B from 1998, as the 2018 is not na 50 The Order Eunicida (Annelida) comprises 'polychaetes' that have a complex, jaw apparatus, update, but a follow up. So many records are also presente in that article as well. 51 composed of ventral mandibles and dorsal maxillae (Zanol et al., 2021). Some of the smallest 52 eunicid species belong to Dorvilleidae Chamberlin, 1919, a family with varied life-styles, from Excluído: to some commensal or parasitic species free-living worms to some commensal and/or parasitic species, inhabiting unconsolidated and 53 Excluído: is characterized mainly by being Excluído: only 54 consolidated substrates, from intertidal zones to greater depths, (Martin & Britayev 2018; Excluído: group 55 Zanol et al., 2021). Excluído: of Excluído: that has the Dorvilleidae differ from the extant families in Eunicida by the presence of the ctenognath-type 56 Comentado [RVWR3]: Yet it is currently acknowledge, jaw apparatus: two or four rows of symmetrical or subsymmetrical denticulate maxillary plates, 57 in the literature the description of such structure as unpaired. I still believe that it is a structure that needs upper comb-like jaws, and an unpaired posterior carrier-like structure (Zanol et al., 2021). 58 further invertigations in the dorvilleid taxa, as it seems that the unpaired statues is a reflex of a fused structure. 59 Despite the small size of some dorvilleids, a great morphological heterogeneity among species Some of the dorvilleid genera (e.g. Anchidorvillea) Bears a maxilae with only the posterior end fused, 60 is observed. Body appendages (like prostomial, parapodial and pygidial), important to the toward the families we can see that several taxa present single CLS with a medial scar to what might 61 identification of species at the first glance, present a diversity of sizes and shapes. Such previously was a unfused structure, while Other genera (such as those small interstitial ones) show no CLS at 62 diversity can also be seen even in the internal structures such as the jaws and maxillary Excluído: . But a more detailed look reveals the 63 apparatus, important for delimiting genera and species within the family (Paxton, 2009). morphological diversity even more, not only in smaller Excluído: h 64 Currently, Dorvilleidae comprises about 200 species distributed in 32 genera, of which 13 are Excluído: of the 65 monotypic, including the most recent described Ikosipodoides Westheide, 2000, while, almost Excluído: of Excluído: them 66 1/3 of the family species belongs to the genus Ophryotrocha Claparède & Mecznikow, 1869 Excluído: . In contrast 67 More than half of the Ophryotrocha diversity was described in the last 25 years (Read & Excluído: includes almost 1/3 of all described species of 68 Fauchald, 2024), as well as other studies encompassing biology, natural history, genetics and Excluído: Excluído: 48 described since 2000 69 systematics of Ophryotrocha (Zhang et al., 2023), Excluído:

Excluído: being a well studied genus including many

Excluído: (Read & Fauchald, 2024)

110 Meanwhile the relationship among genera and species of Dorvilleidae are also understudied. 111 The broadest cladistic study analyzing the relationship within Dorvilleidae was performed by 112 Eibye-Jacobsen & Kristensen (1994) using genera as terminal taxon. A recent cladistic study was conducted to test the monophyly of Eliberidens Wolf, 1986, and its relationship with some 113 other genera (de Oliveira Bonaldo et al., 2022). Phylogenetic studies with molecular data of 114 115 some Dorvilleidae groups were also done, including analysis of Ophryotrocha species and Parougia (Yen & Rouse, 2020; Kvalø Heggøy, Schander & Åkesson, 2007), but the scarcity 116 117 of molecular data and viable specimens to extract such data from are an obstacle to advance in 118 this field. 119 Among the reasons for the scarcity of knowledge on species of this family are: i) the difficulty 120 to perform deep waters sampling; ii) the rarity of some groups in the samples and iii) the lack 121 of taxonomists specialized in this group. This knowledge gap on Dorvilleidae is a worldwide 122 barrier, like on the Brazilian coast, where, currently, there are only sixteen species registered: 123 Dorvillea moniloceras (Moore, 1909), D. sociabilis (Webster, 1879), Eliberidens forceps 124 Wolf, 1986, E. hartmannschroederae Hilbig, 1995, Meiodorvillea hartmanae Bonaldo, Steiner 125 & Amaral, 2022, M. jumarsi Bonaldo, Steiner & Amaral, 2022, M. minuta (Hartman, 1965), 126 M. penhae Bonaldo, Steiner & Amaral, 2022, Ophryotrocha puerillis Claparède & Mecznikow, 1869, Pettiboneia sanmatiensis Orensanz, 1973, Protodorvillea biarticulata Day, 1963, P. 127 128 kefersteini (McIntosh, 1869), Schistomeringos annulata (Moore, 1906), S. anoculatus 129 (Hartman, 1965), S. longicornis (Ehlers, 1901), and S. rudolphi (delle Chiaje, 1828) (Amaral 130 et al., 2006-2022); six of them recorded in two recent taxonomic studies (de Oliveira Bonaldo, 131 Steiner & Amaral, 2022; de Oliveira Bonaldo et al., 2022). 132 Oceanographic campaigns performed in the Southwestern Atlantic Ocean (Brazilian coast) 133 resulted in the sampling of a large number of Dorvilleidae specimens in their samples, allowing 134 to unveil the family diversity in this region. By applying an integrative approach, with light 135 and scanning electron microscopy, and a cladistic analysis, we identified and described a new 136 genus of Dorvilleidae, Ceciamaralia gen. nov. with two new species, Ceciamaralia lanai gen. 137 et sp. nov. and Ceciamaralia nonatoi gen. et sp. nov., that present unique external and internal 138 morphological characters.

Materials & Methods

139

140

Comentado [RVWR4]: And what did they achieved? Comentado [RVWR5]: What they achieved? Comentado [RVWR61: I do understand what you intended to show, but it is not so clear in the way it was written. I suggest something as follow: There are some studied regarding Dorvilleidae genera. some analyzing the Family relatioship Only superficially using the genus as terminal taxons (references). Others focused on a acessing the monophyly of some genera, as example the work by (reference) on Eliberidens. However the deeper studies including morphological and molecular data, were performed Only regarding the genus Ophryotrocha (references), and its relationship with closer genera. Thus, the relationship between the extant genera, as well as the monophyly of monotypic genera, are still understudied and necessary. Excluído: can also be explained by Excluído: sampling in the Comentado [RVWR7]: I understand that you are focusing on the deep-sea issue as a link to the fact your species are from deep-sea sampling. However I tend to partially disagree with you, as many of the monotipic genera are from shallow Waters – some are from interstitial environment (see Westheid and Von Nordhein, 1985), so problem in sampling don't apply to them. Rarity of some groups is na issue, indeed, but this is also directly linked to the lack of sampling efforts for such taxa - which is also a problem linked to the lack of taxonomists. Comentado [RVWR8]: It is a barrier to what? Comentado [RVWR9]: The problem in brazil wasn't the barrier but the lack of a taxonomist dedicated to the group Comentado [RVWR10]: You missed Ophryotrocha zitae Miranda, Raposo & Brasil (2020), and also the Comentado [RVWR11]: According to this reference there are 18 species along the Brazilian coast, not 16. Excluído: have revealed Excluído: specimens of Excluído: dorvilleids Excluído: . Through a detailed morphological analysis of these materials we unveiled the hidden diversity of this Excluído: Utilizing methodologies such as Comentado [RVWR13]: We must need to deconstruct the ideia that Integrative taxonomy is Only When we

Excluído: The

Excluído: , here

Excluído: both

Excluído: (jaw apparatus),

Sampled are	a
-------------	---

158

160

165

167

168 169

173

178

180

182

186

159 The specimens analyzed were collected in two broad oceanographic campaigns

(Environmental Characterization of the Espírito Santo Basin (AMBES) and Assessment of the

161 Environmental Heterogeneity of the Campos Basin (HABITATS) (Lavrado & Brasil 2010))

162 carried out in Brazilian waters (Southwest Atlantic Ocean). The collections were done between

163 2008-2012 in depths ranging from 12 to 3301 meters; the organisms were previously fixed in

164 4% formalin and then preserved in 70% ethanol.

Morphological analysis

166 The external morphology of the specimens was analyzed in a compound microscope ZEISS

Axioscop 2 Plus and drawings were made with camara lucida attached to the microscope. The

images were captured with a ZEISS AxioCam MRc attached to the ZEISS Axio Imager M2

and Axio Zoom V.16. All images and figures were edited using Adobe® Photoshop and

170 Inkscape®.

171 To perform the scanning electron microscopy (SEM) specimens were previously immersed in

ethanol baths at the following concentrations: 50%, 60%, 70% (five min each), 80%, 90%,

95% (15 min each) and in absolute ethanol, in 3 changes (15, 30 and 60 min). Critical point

drying (Balzers CPD-30) was performed at 37 °C, at a 70 BAR of CO₂ gas input. Followed by

gold coating using Sputter Coater SPD-050 (Steiner & Santos, 2004). Stubs were observed in

176 <u>a JEOL JSM-5800 LV scanning electron microscope and images were taken with the software</u>

177 Semafore (v5.2). Critical point drying, gold-coating and SEM analysis were all performed in

the Laboratório de Microscopia Eletrônica, Instituto de Biologia, Universidade Estadual de

179 Campinas (LME-IB/UNICAMP).

The jaw apparatus <u>were</u> analyzed <u>using two</u> different methodologies; i) place the entire

181 specimens on a drop of Hoyer solution (trichloroacetaldehyde) or Aquatex® on a slide and

coverslip, or ii) place the specimens between slide and coverslip, wait for it to dry and analyze

the jaws by tissue transparency (not damaging the specimens, recovering its integrity by putting

it back in the ethanol). All observations were done on the ZEISS Axio Imager M2 and Axioscop

185 <u>2 Plus microscopes.</u>

Cladistic analysis

¹ The letter 'i' was skipped from all illustrations to avoid confusion with scale bars of the images.

Comentado [RVWR14]: I suggest a critical reevaluation of the this section. I understand that you are working with specimens deposited in the collection, but I do like such section in a way to understand the environment and geography of the region Where the specimens were sampled – specially When dealing with specimens so scarce and When you are describing a new genus.

Comentado [RVWR15]: Lavrado and Brasil, 2010 don't enconpass the AMBES sampling methodology, Only those regarding the HABITATS. Please include also a reference for Ambes methodology as well.

Comentado [RVWR16]: But Ambes sampling efforts began Only in 2014-2015

Comentado [RVWR17]: Not sure if ambes and habitats sampled in 12m depth, as far as I remembre the shallower depths were 25m.

Comentado [RVWR18]: If your specimens were kept in 70% etanol, why you rehydrate it, prior to dehydrate it?

Excluído: ethanol

Comentado [RVWR19]: I assume that you used the CO2 as drying agente.

Excluído:

Excluído: and

Excluído: followed

Comentado [RVWR20]: Stub if the name of the piece of metal in which the specimens are attached to. Did you observed the specimens or the piece of metal?

Excluído: the

Excluído: was

Excluído: on the ZEISS Axio Imager M2 and Axioscop 2 Plus microscopes. Two

Excluído: were done

Comentado [RVWR21]:

Comentado [RVWR22]: There is a problem here as you have two diffent techniques in this sentence. Hoyer's sollution is based on the use of the Chloral hydrate – which macerates the tissue, cleaning it and removing all the contrast of the musculature and skins. While the Aquatex don't do this, it is a médium to preserve tissue color and contrast. So both techniques should be treated as separate things.

196 To analyze the relationship of Ceciamaralia gen. nov., with the morphological similar genera 197 of Dorvilleidae, we performed a cladistic analysis utilizing the character matrix and data developed in the study of de Oliveira Bonaldo et al., (2022), which analyzed the cladistic 198 199 relationship of the following genera: Dorvillea Parfitt, 1866, Eliberidens Wolf, 1986, 200 Gymnodorvillea Wainwright & Perkins, 1982 Marycarmenia Núñez, 1998, Meiodorvillea 201 Jumars, 1974, Pettiboneia Orensanz, 1973, Protodorvillea Pettibone, 1961 and Schistomeringos Jumars, 1974. We added five new characters to the matrix (characters 44 to 202 203 47) and inserted a new character state on character 41, to fit *Ceciamaralia* gen. nov. (Table 1). 204 We also followed the methodologies of de Oliveira Bonaldo et al. (2022), keeping the 205 characters coded as binary or multistate, being '-' when the character is non-applicable, and '?' when the state of the character is unknown. All characters are unweighted. The final matrix 206 207 comprised 21 species, including the outgroup (Ninoe jessicae Hernández-Alcántara, Pérez-208 Mendoza & Solís-Weiss, 2006) and 47 morphological characters (Table 2).

209 The character matrix was assembled using the Mesquite® software (Maddison & Maddison,

210 $\,$ 2019) and the parsimony analysis was performed through the software TNT® (Goloboff &

211 Morales, 2023), with the heuristic search by the traditional search function starting with 10000

212 Wagner trees and utilizing the TBR (tree bisection reconnection) algorithm. Finally, to view

and edit the resulting tree we used Winclada® software (Nixon, 2002).

Deposition of specimens

214

216

218

221

223

224

215 The species, SEM stubs and slides, including the type series, were deposited in the Polychaeta

Collection (ZUEC-POL) of the Museu de Diversidade Biológica of the Institute of Biology of

217 the Universidade Estadual de Campinas (MDBio - IB/UNICAMP), Campinas, Brazil. Some

paratypes were deposited in Brazil: Museu de Zoologia of the Universidade de São Paulo, São

219 Paulo (MZUSP) and Museu Nacional do Rio de Janeiro, Rio de Janeiro, Brazil (MNRJ).

220 The electronic version of this article in Portable Document Format (PDF) will represent a

published work according to the International Commission on Zoological Nomenclature

222 (ICZN), and hence the new names contained in the electronic version are effectively published

under that Code from the electronic edition alone. This published work and the nomenclatural

acts it contains have been registered in ZooBank, the online registration system for the ICZN.

225 The ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information

226 viewed through any standard web browser by appending the LSID to the prefix

227 http://zoobank.org/. The LSID for this publication is: urn:lsid:zoobank.org:pub:A1EF2E10-

Excluído: some

Comentado [RVWR23]: Where are

Comentado [RVWR24]: I understand that you followed de Oliveira Bonaldo et al (2022), but I missed the label to the character in the tables 1 and 2 in this document? Despite presenting a table Only with the new characters (44-47) It is better to incude a table with all characters named and stated as supplementary material. Otherwise, other researchers will have to deal with several papers to "assemble" what should be a single table.

Comentado [RVWR25]: I checked de Oleiveira Bonaldo's paper and there are some issues regarding character coding on that paper. There it is stated that "some were

coded as contingent coding (Forey & Kitching 2000), also called C coding (Pleijel 1995) or conditional coding (Hawkins et al., 1997)". However, characters 4, 7, 11, 17, 18, 21, clearly don't follow neither of the character coding treatments described there (de Oliveira Bonaldo (2022) or here.

Comentado [RVWR26]: Why Only one outgroup?

Comentado [RVWR27]: Please review character 25, as I don't understand how subsymmetrical and asymmetrical can be treated as different states of the length of the prong. In both conditions the prongs length will be unequal.

Excluído: To edit the character matrix,

Excluído: we used

231 4863-49C1-A2E7-CF80BDFE6249. The online version of this work is archived and available 232 from the following digital repositories: PeerJ, PubMed Central SCIE and CLOCKSS. 233 234 Results 235 Taxonomy 236 Phylum Annelida, Lamarck 1802 Order Eunicida, Fauchald 1977 237 238 Family Dorvilleidae Chamberlin, 1919 239 Genus Ceciamaralia gen. nov. 240 241 urn:lsid:zoobank.org:act:22B5ED41-CF25-4A97-8B75-DF336BE1CBE7 242 Type species: Ceciamaralia lanai gen. et sp. nov. described herein. Etymology: Feminine. The genus name "Ceciamaralia" refers to the name Cecilia and the 243 244 surname Amaral from Dr. Antônia Cecília Zacagnini Amaral, a Brazilian researcher who immensely contributed, and still contributes to the enhancement of Annelida knowledge and to 245 246 the formation of zoologists, taxonomists and ecologists, including the three authors of this 247 248 Diagnosis: Prostomium triangular-shaped with anterior margin rounded. A pair of simple 249 antennae, distally clavate, with a long and slender basal portion. A pair of simple, short, small clavate ventrolateral palps, sometimes absent. Two peristomial rings. First two chaetigers 250 251 usually enlarged to accommodate the large pharynx. Pharynx enlarged, normally protracted out 252 of the mouth in preserved specimens. First two parapodia slightly shorter and without 253 appendages. Notopodia represented by a large, and long dorsal cirri (supported by a thin 254 notoacicula) present in few anterior parapodia or entirely absent. Ventral cirri short and 255 papilliform present only in few anterior parapodia. Supra-acicular chaetae: capillaries, and 256 furcate or geniculate accompanying chaeta. Sub-acicular chaeta: compound heterogomph falcigers with serrated, unidentate blades. Two pairs of clavate pygidial cirri. Jaw apparatus 257 258 with paired mandibles, medially connected, without fused or free teeth on the anterior margin. 259 Maxillae composed of a posterior ligament fused to a pair of long and serrated basal plates,

Comentado [RVWR28]: Regarding the description, I suggest to redo them and use a more telegraphic language. In the three descriptions (genus and both species) the constant use and repetition of adverbs (such as moderate, slightly) turn the text more confuse and difficult to read.

A description should be as more precise as it can be. And adverbs such as those used don't bring precision with them, what is slightly for the authors might not be noticed or relevant to the reader.

This is even more problematic, when dealing with this group of small dorvilleids, in which the morphology seems to vary much even among genera. In a quick look, the new genus, Eliberidens and Meiodorvillea are all too similar, so each detail in the morphology counts to help in the differentiation between them, and also as a support to differentiate in future descriptions.

xcluído: One

Comentado [RVWR29]: Short and small are synonymous, choose one of them.

Excluído: One

Excluído: and

Comentado [RVWR30]: In both species you described the palps are present, and here you state that "sometimes absent" what do you mean by absent? Could It be a sexual character? Peharps a reflect on specimens size (I'll return to this below, in C. nonatoi variations). I see that you described the issue in the variations observed after describing C. nonatoi, but have in mind that absence of evidence, is not evidence of absence.

If you trully believe that the species C. nonatoi has palps, then absence of palps is an unanswered question and genera and species shouldn't suffer from a lack of evidence and be described as having a dubious character.

In my opinion, the problem goes beyond: in table 2 (character matrix) you stated as present in C. lanai, but as unknown in C. nonatoi, however you describe palps as present in this species, while there are some specimens in which such appendages are missing.

Retractile palps occur, as example, in *Ophryotrocha*. Could this be the case of the specimens of those specimens without palps? Did you made any SEM

Comentado [RVWR31]: Shorter, longer, smaller, bigger, are comparative adjectives shorter than, longer than, bigger than, and so on. In a manner that they Always must be presented in a comparative way: first ∫

Comentado [RVWR32]: Which appendages?

Excluído: with

Comentado [RVWR33]: When you state a few anterior parapodia, what this mean? Not going beyond 1/3 of body lenght? 1/4, 1/2?

Excluído: capillary

Excluído: and

Excluído: and

Excluído: by

268 followed by a pair of short and serrated free maxillary plates, and a pair of short anteriormost 269

free maxillary plate with a long, thin, spine in the anterior margin. Carrier-like structure absent.

Remarks: Ceciamaralia gen. nov. is distinguished from the other Dorvilleidae genera in: i) maxillae composed by a pair of elongated and serrated basal plates and two pairs of free maxillary plates, the anteriormost with an anterior long and thin spine, ii) its enlarged pharynx which makes the anterior region of the specimens also enlarged when it is retracted; preserved specimens are found usually with pharynx protracted, iii) antennae with a long and slender basal portion and clavate distal end, iv) first two parapodia slightly shorter and without appendages.

The differences of Ceciamaralia gen. nov. compared to other genera of Dorvilleidae are analyzed in the Discussion section.

279

280

281

282

283

284

285

286

287

288

289

290

291

292

297

270

271

272

273

274

275

276

277

278

Ceciamaralia lanai gen. et sp. nov. (Figs. 1-4)

urn:lsid:zoobank.org:act:3E16785F-8EDD-47E7-8CF4-34D5BD1F4062

Diagnosis: One pair of antennae and one pair of palps. Pharynx enlarged making the anterior region enlarged when it is retracted. First two parapodia without appendages. Long and large dorsal cirri with a thin notoacicula present in parapodia 3 to 6-9. Small, ventral, papilliform cirri present in parapodia 3 to 6-9, eventually extending over 1 or 2 more parapodia. Supraacicular chaeta: slender capillary and furcate, the latter with small asymmetrical prongs and serrated shaft in anterior region, smooth with longer straight prongs in posterior region. Subacicular chaetae: three compound heterogomph falcigers with short and robust serrated unidentate blades, slightly crescent in size. Maxillae composed by a posterior ligament fused to a pair of long and serrated basal plates, followed by one pair of short and serrated free maxillary plates, and one pair of short anteriormost free maxillary plates with a long, thin spine on the anterior margin.

293 Type locality: Continental slope, off Espírito Santo State, Brazil, 39°10'17.35"W, 294 19°36'26.24"S, muddy.

295 Type specimens: Holotype: ZUEC-POL XXX (39°10'17.35"W, 19°36'26.24"S, 392 m, 296 muddy, 14 Dez 2011); Paratypes: ZUEC-POL XXX (39°10'17.35"W, 19°36'26.24"S, 392 m,

muddy, 14 Dez 2011); ZUEC-POL XXX (38°1'8.43"W, 19°34'20.42"S, 450 m, sandy mud, 9

Excluído: one

Excluído: well

Excluído: one

Excluído: by

Comentado [RVWR34]: If you are going to address this in the discussion section, then becomes repetitive to list the characters as you did before. In my opinion the key characters that differentiate the new genus are described in the diagnosis. I suggest to shorten the previous paragraphs in a more telegraphic form. Something as "Ceciamaralia gen. nov. differ from remaining Dorvilleidae genera in: maxillary morphology and organization, pharynx morphology and size, antennae morphology, and first two parapodia structure and appendages.

And, as there are some differences in the morphology in both species, I suggest to increase this remarks by explaining the differences observed in some structures, e.g. the accompanying chaeta in the supraacicular fascicle, or the distribution of longer dorsal cirri. They also can increase the remarks by explaining what did they observed as regionalization of certain structures, in other words, furcate chaetae with subequal prongs do occur in a certain region of the body or it happens throught the whole body. I suggest as an example to take one of Pettibone's paper, describing new genera of Scaleworms (Polynoidae or Sigalionidae), as examples of good remarks section in describing new genera.

Comentado [RVWR35]: The diagnosis of the species is repetitive with the genus diagnosis, and also with the diagnose of the other new species. Restrict the text in only presenting the key characters that differentiate the C. lanai, from C. nonatoi.

Another issue is that you present some characters, with large variation as a diagnostic character. I'm referring to the small ventral cirri. If I have two worms and in both the ventral papilliform cirri occur up to the sixth parapodia. How can this character can be useful in differentiate them?

Comentado [RVWR36]: In this case you have specimens from 143m down to 450m in depth. This is a highly variable depth. So I disagree in using the bathymetry as type locality, as the specimens can be found in several other depths,. In this case, the term continental slope I believe it is more informative than the depth itself.

Excluído: 392 m

Comentado [RVWR37]: In the red tagged entries, the number of observed specimens is missing. If was only 1 specimens, then please insert 1 spm.

Formatado: Cor da fonte: Vermelho

307 2012; ZUEC-POL (slide, 38°41'18.43"W, 19°34'20.42"S, 450 m, sandy mud, 09 Dec 2011); 308 ZUEC-POL XXX (slide, 39°36'9.34"W, 19°49'6.26"S, 181 m, mud, 29 Jun 2013); ZUEC-POL 309 XXX (slide, 39°30'25.97"W, 19°45'53.43"S, 143 m, muddy, 27 Jun 2013); MZUSP (2 specimens, 39°53'47.1"W, 20°35'16.23"S, 410 m, muddy, 8 Jan 2012); MNRJ (2 specimens, 310 39°53'47.1"W, 20°35'16.23"S, 410 m, muddy, 08 Jan 2012). SEM Material: (1 stub with 3 311 312 specimens - 39°53'47.1"W, 20°35'16.23"S, 410 m, muddy, 8 Jan 2012; 40°14'14.08"W, 313 21°4'4.56" S, 141 m, sandy, 11 Jul 2013). 314 Etymology: Masculine. The specific epithet "lanai" is a reference and tribute to Dr. Paulo da 315 Cunha Lana (in memorian), a Brazilian polychaetologist who immensely contributed to the increase of knowledge of Annelida in Brazil and worldwide, and was the supervisor of the 316 317 senior author of this paper. 318 Description of holotype: Cylindrical body (Fig. 1A). Complete specimen, 46 chaetigers, 4.18 319 mm long and maximum width of 0.22 mm in the anterior region, excluding parapodia. Anterior 320 region more robust and wider than the rest of the body to accommodate the enlarged pharynx 321 (Fig. 1A). Prostomium triangular, anterior margin broadly rounded. Ocelli absent. One pair of 322 simple antennae, distally clavate, with a long and slender basal portion, inserted dorsally in the 323 middle of prostomium, with approximately same length of the prostomium (Figs. 1B, 3A and 324 4A). One pair of simple, short, and small clavate palps inserted ventrolaterally on the base of 325 prostomium, slightly shorter than 1/2 the length of prostomium (Figs. 1B, 3A,B and 4A). Two 326 peristomial rings without appendages, posterior ring longer and wider than the anterior. (Figs. 1B, 3A,B and 4A,B). 327 328 Parapodia cylindrical, small, and barrel shaped. First two parapodia smaller than the following, 329 without appendages (Figs. 1B and 4A,B). Anterior region with notopodia represented by a large 330 and long dorsal cirri (with a thin notoacicula) present from the third to the seventh chaetiger, 331 inserted on the base of parapodia; dorsal cirrus reaching approximately 2.5 times the length of 332 parapodium (Figs. 1D, 3B,D and 4D). Ventral cirri short and papilliform inserted in the middle of parapodium and present from the third to the seventh parapodium (Figs. 1D, 3B,D and 333 334 4B,D). Following parapodia slightly larger, longer, and without appendages (Fig 1E, 3E and 335 4E).

Dec 2011); ZUEC-POL XXX (39°36'8.52"W, 19°49'7.27"S, 158 m, sandy muddy, 14 Jan

2012); ZUEC-POL XXX (3 specimens - 39°30'25.23"W, 19°45'54.56"S, 144 m, muddy, 15 Jan

2012); ZUEC-POL XXX (2 specimens - 39°53'47.1"W, 20°35'16.23"S, 410 m, muddy, 8 Jan

304

305

306

Formatado: Cor da fonte: Vermelho

Formatado: Cor da fonte: Vermelho

Excluído: refers to the surname

Excluído: of

Excluído: with

Comentado [RVWR38]: If we have in mind that the genus diagnose is the enlargement in the anterior region, describe maximum width only of anterior region is somewhat uninformative. I suggest to also include the width measurement in a median segment, in order to achieve the ratio between both widths.

I also suggest to include in the methodology where the measurement were taken. This maximum width was in the first segment? Second segments?... The length was made having what as landmarks?

Comentado [RVWR39]: How wide?

Comentado [RVWR40]: Ok, but this is restricted up to the fourth segment. When you describe anterior region enlarged, seems too dubious as anterior can be the anterior half, the anteriormost third portion, and so on. If the enlargement is a character to delimitate the species, then describe it in number: how many segments are enlarged? What are the observed variation in the number of enlarged segments in the specimens of your sample?

Comentado [RVWR41]: This could be an effect from the sampling procedures?

Excluído: -shaped with

Comentado [RVWR42]:

Comentado [RVWR43]: I wonder, how the sampling treatment can influence the length of this structure. In other words, were the worms anesthetized or placed directly in the fixative?

Comentado [RVWR44]: How much smaller?

Excluído: 3º

Excluído: 7°

Excluído: parapodium

Comentado [RVWR45]: I disagree. In the photos of figure 1 the length seems to be half the length of the parapodial lobe. How this can be short for a ventral cirri?

If you intend to continue to use the short designation, than use it in a comparative way: shorter than parapodial lobe.

I also disagree with the papilliform, as in the photos seems much more like a digitiform than papilliform.

Excluído: 3

Excluído: 7°

345 Supra-acicular chaetae: one long, thin and serrated capillary (Fig. 2A,C) and one furcate with Comentado [RVWR46]: What do you mean by 346 subsymmetrical prongs, one slightly shorter and more robust than the other; tip of both prongs subsemmetrical prongs? Observing the photos, the prongs are unequal in length and in width. One prong is 347 blunt (Figs. 2C, 3G and 4G); furcate of first chaetigers with smaller prongs and with prominent short and wide, while the other is longer and slender. When you describe them as subsymmetrical, one cand 348 serrated shaft below the shorter prong (Figs. 2A,B and 3F). Sub-acicular chaetae: three imagine that they are almost equal - and here there is another issue: about symmetry there are only two compound heterogomph facilgers with slightly crescent size, the ventralmost short and 349 conditions: symmetrical when they are equal) or asymmetrical (when they are not equal), subsymmetry 350 dorsalmost Jong; shafts bifid with a moderately serration in the distal end; blades short, robust, is nothing less than an asymmetric state. 351 serrated, and unidentate (Figs. 2A-D, 3J and 4F,G). One serrated cultriform chaeta occasionally Comentado [RVWR47]: This is a good diagnostic character for this species, having this different furcate 352 replacing the ventralmost compound in the posteriormost chaetigers (Figs. 3H and 4F). chaetae in the first chaetiger. Comentado [RVWR48]: Did you mean: increasing in length from the ventral to the dorsal region? 353 Posterior region moniliform. Pygidium truncate and shorter than the previous chaetigers. Two 354 pairs of clavate pygidial cirri, dorsal pair rather longer than the length of pygidium, ventral pair Comentado [RVWR49]: What do you mean by 355 half the length of the dorsal (Figs. 1A,C, 3C and 4C). moderate? Excluído: longest 356 Paired mandibles medially connected in a region strongly sclerotized; anterior region slightly Excluído: blades Comentado [RVWR50]: This simple chaetae begins at 357 broader and less sclerotized than the slender posterior region (Figs. 2E,F and 3K). Maxillae which segment? This character can be also informative to differentiate species. 358 composed by one pair of elongated and serrated basal plates with small, uniform, sharp teeth, Another issue, the holotype has 46 segments. If this 359 in the inner margin, posteriorly fused to a weakly sclerotized, posterior, elongated ligament. chaeta only occur from segment 41, them if I don't have the last six segments, I'll not observe this character. In 360 Basal plates followed by two pairs of free maxillary plates anteriorly; first pair with internal time, it is important to know/understand, the range of occurrence of some characters such as this 361 margin serrated uniformly, second and anteriormost pair with a long, thin, and prominent spine Excluído: last posterior 362 on its anterior margin (Figs. 2E,F and 3L). Excluído: and Comentado [RVWR51]: Observing the figures you 363 Variation: Complete specimens ranging from 2.9 mm to 7.6 mm in length and 33 to 61 used to illustrate this species, the pygidium is equal or 1/3 longer than the previous chaetigers. 364 chaetigers. All specimens ranging from 0.135 µm to 0.26 µm wide. Dorsal cirri present from Comentado [RVWR52]: The anterior region it is not 365 chaetiger 3 to the 6-9. The presence of ventral cirri usually follows the parapodia in which the slightly! Comparing the measurements in the photos you used, the anterior region is equal in length and 366 dorsal cirrus is present, but in some specimens the ventral cirri can be present in one or two Excluído: and 367 subsequent parapodia. The presence of the cultriform chaeta is occasional and in some Excluído: Excluído: anteriorly 368 specimens it is absent. The enlarged pharynx is characteristic of the genus and it appears Excluído: uniformly 369 protracted out of the mouth in most preserved specimens (Figs. 3B and 4B) but when it is Excluído: and 370 retracted the specimen presents an enlarged anterior region to accommodate the pharynx (Fig. Comentado [RVWR53]: At which segment? 371 1A and 3A). Comentado [RVWR54]: Is there any relation between Excluído: chaetiger 372 Location and bathymetrics: Off States of Espírito Santo and Rio de Janeiro, Brazil, 141 - 450 Excluído: the following Comentado [RVWR55]: Again, any relation between 373 m, substrates: mud, sandy mud, muddy or sandy. Comentado [RVWR56]: Are you referring to the 374 Remarks: Ceciamaralia lanai gen. et sp. nov. presents a unique morphology making it easily Comentado [RVWR57]: It seems to me that C. Ianai i Comentado [RVWR58]: A remarks is a discussion 375 differentiated from other dorvilleids, as well as from its congener, Ceciamaralia nonatoi gen.

Comentado [RVWR59]: Forget this. Here you are

389 between them is the presence of furcate chaeta in C. lanai gen. et sp. nov.. The posterior region 390 of specimens is usually moniliform. 391 Ceciamaralia nonatoi gen. et sp. nov. (Figs. 5-7) 392 urn:lsid:zoobank.org:act:EFF6CD0C-2071-48A2-915D-6F2F8530A343 393 394 Diagnosis: One pair of antennae. One pair of palps, sometimes absent. Pharynx enlarged 395 making the anterior region enlarged when it is retracted. First two parapodia without 396 appendages. Dorsal cirri absent. Small ventral papilliform cirrus present in parapodia 3 to 5-7. 397 Supra-acicular chaetae: slender capillary and geniculate. chaetae: three compound 398 heterogomph falcigers with short and robust serrated unidentate blades, all almost of the same length. Maxillae composed by a posterior ligament fused to a pair of long and serrated basal 399 400 plates, followed by one pair of short and serrated free maxillary plates, and one pair of short 401 anteriormost free maxillary plates with a long, thin spine on the anterior margin. Type locality: Off Espírito Santo State, Brazil, 40°12'52.126"W, 21°11'12.073"S, 680 m. 402 403 Type specimens: Holotype: ZUEC-POL XXX (40°12'52.126"W, 21°11'12.073"S, 680 m 04 404 Feb 2009). Paratypes: ZUEC-POL XXX (40°12'52.126"W, 21°11'12.073"S, 680 m 04 Feb 405 2009); ZUEC-POL XXX (2 specimens, 40°1'55.373"W, 21°47'26.771"S, 780 m, 06 Feb 2009), ZUEC-POL XXX (3 specimens, 41°18'33,045"W, 23°39'21.880"S, 692.7 m, 28 Jan 2009); 406 ZUEC-POL XXX (2 specimens 40°26'37.449"W, 22°33'35.143"S, 401 m, 31 Jan 2009); 407 ZUEC-POL XXX (40°26'40.289"W, 22°33'33.805"S, 393.4 m, 11 Jul 2008); ZUEC-POL XXX 408 (40°17'33.343"W, 22°25'59.389"S, 387.1 m, 31 Jan 2009); ZUEC-POL XXX (40°5'18.066"W, 409 410 21°44'21.493"S, 401.6 m, 07 Jul 2008); ZUEC-POL XXX (3 specimens - 39°30'4.65"W, 411 19°46'34.99"S, 428 m, muddy, 14 Jan 2012); ZUEC-POL (slide - 40°2'13.825"W, 412 21°47'26.324"S, 730.5 m, 28 Jun 2008); MZUSP XXX (41°18'33.045"W, 23°39'21.880"S, 413 692.7 m, 28 Jan 2009); MZUSP XXX (40°12'52.126"W, 21°11'12.073"S 680 m, 04 Feb 2009); 414 MNRJ XXX (38°41'19.8"W, 19°34'20.47"S, 449 m, mud, 30 Jun 2013); MNRJ XXX 415 (40°1'45.543"W, 22°19'45.730"S, 701.7 m, 30 Jan 2009); MNRJ XXX (40°26'37.585"W, 416 22°33'35.276"S, 400 m, 31 Jan 2009); ZUEC-POL XXX (3 specimens, 40° 2' 13,825" W, 21° 417 47' 26,324" S, 730.5 m, 28 Jun 2008). SEM Material: ZUEC-POL XXX (one stub with three

specimens 40°2'13.825"W, 21°47'26.324"S, 730.5 m, 28 Jun 2008 / 40°12'52.126"W,

et sp. nov., by its large and long dorsal cirri in few anterior chaetigers. Another difference

388

418

Comentado [RVWR60]: Large dorsal cirri also occur, as an example, in Schistomeringos. How having long dorsal cirri is used to easly differentiate both species?

Comentado [RVWR61]: In contrast to what? What is observed in C. nonatoi in the region where furcate chaetae occur?

Comentado [RVWR62]: In contrast to?

Comentado [RVWR63]: Same comment I made for this section in the previous species.

Comentado [RVWR64]: If the majority of your species are from Campos Basin – in the state of Rio de Janeiro – and so, it is more common there. Why did you choose Espirito Santo (there are, at least, 10 species from RJ against 3 from ES)?

In my opinion, RJ clearly is more representative as type locality to this species, than ES.

Comentado [RVWR65]: In the red tagged entries, the number of observed specimens is missing. If was only 1 specimens, then please insert 1 spm.

Formatado: Cor da fonte: Vermelho

Comentado [RVWR66]:

Formatado: Cor da fonte: Vermelho

Comentado [RVWR67]: This specimen is strange. According to this coordinates the sampling location is in a place with a depth circa 50m. And also this would be the single record of the species for the continental shelf. All others would be in the continental slope.

Formatado: Realce

Formatado: Cor da fonte: Vermelho

Formatado: Cor da fonte: Vermelho

425 **Description of holotype:** Cylindrical body (Fig. 5A). Complete specimen with 55 chaetigers, 426 6.27 mm long and maximum width of 0.41 mm in the anterior region (0.25 µm in the posterior 427 region), excluding parapodia. Anterior region more robust and wider than the rest of the body Comentado [RVWR68]: Same issue I commented in the previous species. 428 to accommodate the enlarged pharynx (Fig. 5A). Prostomium triangular, with anterior margin Comentado [RVWR69]: As I wrote before, the 429 describtion sometimes is too generalistic. What anterior broadly rounded. Ocelli absent. One pair of simple antennae, distally clavate, with a long and means? Half of the body? one third of the body? 430 slender basal portion, inserted dorsally in the middle of prostomium, with approximately same And I call attention because by observing the photos 1A 431 length of the prostomium (Figs. 5B,C, 6A,B, 7A,B). One pair of simple, short, and clavate and 5A, it seems to have a difference in the number of enlarged segments, or at least in how this enlargement 432 palps, inserted ventrolaterally on the base of prostomium, slightly shorter than 1/2 the length occur. In C. lanai, the body width seems to narrow gradually, while in C. nonatoi the width abruptly 433 of prostomium (Fig. 1B). Two peristomial rings without appendages, posterior ring wider and 434 longer than the anterior (Figs. 5B, C, 6A,B and 7A,B). Excluído: -shaped Excluído: and small 435 Parapodia cylindrical, small, and barrel shaped. First two parapodia smaller than the following, Excluído: without appendages (Figs. 5B, 6A and 7B). Dorsal cirri absent in all parapodia. Ventral cirri 436 Excluído: small short and papilliform inserted in the middle of the parapodium and present from the third to the 437 Comentado [RVWR70]: I disagree with this description. A papillae usually is something small, in this case the VC is 1/3 the length of the parapodial lobes (and here I 438 sixth chaetiger (Figs. 5E, 6D and 7B,_C). Following parapodia larger, longer, without agree to say that is short, but not papiliform) and has a 439 appendages (Figs. 6E and 7D). cylindric shape. Excluído: 3º Supra-acicular chaetae: one long, thin and serrated capillary (Figs. 5F and 7F,G) and one 440 Comentado [RVWR71]: Larger and longen than what? 441 geniculate chaeta with distal region robust and slightly serrated (Figs. 5F,G 6F and 7C,F). Sub-Excluído: 69 Excluído: parapodium 442 acicular chaetae: three compound heterogomph falcigers with almost equal length, being the Excluído: slightly 443 ventralmost slightly shorter; shafts bifid with a subtle serration in the distal end; blades short, Excluído: and 444 robust, serrated and unidentate (Figs. 5F,G, 6G,H and 7E,G). One serrated cultriform chaeta Excluído: blades 445 occasionally replacing the ventralmost compound in the last posterior chaetigers (Figs. 5G, 6J Comentado [RVWR72]: And this happen in all chaetigers? Or might start from a given region of the 446 and 7C). body? 447 Posterior region moniliform. Pygidium truncate and shorter than the previous chaetigers. Two Comentado [RVWR73]: Observing the photo 5A the moniliform condition starts at chaetiger 5, so, anterior, 448 pairs of clavate pygidial cirri; dorsal pair rather longer than the length of pygidium and ventral middle, and posterior region are all monilliforms. 449 pair half the length of the dorsal (Figs. 5D, 6C). Excluído:

Excluído: refers to the surname of

21°11'12.073"S 680 m, 04 Feb 2009 / 39°30'4.65"W, 19°46'34.99"S, 428 m, muddy, 14 Jan

Etymology: Masculine. The specific epithet "nonatoi" is a reference and tribute to Dr.

Edmundo Ferraz Nonato (in memorian), one of the greatest Brazilian naturalists and

oceanographer who was the pioneer of Brazilian polychaetology, responsible for the formation

419

420

421

422

423

424

2012).

and inspiration of generations of zoologists.

Paired mandibles medially connected in a region strongly sclerotized; anterior region slightly broader and less sclerotized than the slender posterior region (Figs. 5J and 6K). Maxillae composed by one pair of elongated and serrated basal plates, with small uniform and sharp teeth in the inner margin, posteriorly fused to a weakly sclerotized clongated ligament. Basal plates anteriorly followed by two pairs of free maxillary plates; first pair with internal margin uniformly serrated and second and anteriormost pair with a long, thin and prominent spine on its anterior margin (Figs. 5H,J and 6L).

Variation: Complete specimens ranging from 3.23 to 6.27 mm in length and 46 to 62 chaetigers. A variation within this species, which was observed through the analysis of some specimens, is the presence or absence of palps. *Ceciamaralia nonatoi* sp. nov. has small and fragile palps, but many specimens do not present it (Figs. 5C and 7A,B). The small size of palps and the enlarged pharynx protracted out of the mouth are obstacles to better observe the scar of a possible broken palp. Therefore, it is debatable if it is a variation or a methodological problem, so we decided to diagnose the species with presence/absence of palps. The ventral cirri are always present, from the parapodia 3 to 5-7. The presence of the cultriform chaeta is occasional and in some specimens it is absent.

478 Location and bathymetrics: Off States of Espírito Santo and Rio de Janeiro, Brazil, 387.1 479 780 meters deep, substrates: mud or muddy.

Remarks: Ceciamaralia nonatoi sp. nov. differs from its congener by the absence of dorsal cirri and by the presence of a geniculate chaeta instead a furcate in the supra-acicular fascicle. The variation on the length of the blades of compound chaeta is very subtle in Ceciamaralia nonatoi gen. et sp. nov., while in Ceciamaralia lanai gen. et sp. nov. it is more distinguished. The bathymetric distribution is also a difference between the two species, Ceciamaralia nonatoi gen. et sp. nov. is registered in deeper waters (387.1 - 780 m) than Ceciamaralia lanai gen. et sp. nov. (141 - 450 m).

488 Cladistic results

The cladistic analysis resulted in one most parsimonious cladogram from 50,149 rearrangements, with best score (length) of 83 steps, consistency index (ci) of 73, retention index (ri) of 86 (Fig. 7). The cladogram shows the monophyly of *Ceciamaralia* gen. nov., supported by the following synapomorphies: character 41: only two free maxillary plates;

Excluído: posterior

Comentado [RVWR74]: Did you try to do a SEM of a worm "without" palps?

How many specimens didn't show palps?

Comentado [RVWR75]: Ok but where this cultriform occur? From which segment? Is there any relation between the presence of this chaetae and the number of chaetigers?

Excluído: than Ceciamaralia

Comentado [RVWR76]: Uhmmm not sure if you can use the term difference to describe both species bathymetry. If one goes down to 450, and the other starts at 380. This region between 380 and 450 is a common place for both species.

Comentado [RVWR77]: Why didn't you used the morphology of the buccal apparatus as differentiate character, the mandibles are obviously different between both species.

Comentado [RVWR78]: Why didn't you used other support index for tree and nodes?

495 character 45: enlarged pharynx/enlarged anterior region; character 46: ventral cirrus present 496 only in few anterior parapodia and character 47: presence of a long and thin spine on the 497 anteriormost maxillary plate.

The inclusion of Ceciamaralia lanai gen. et sp. nov. and Ceciamaralia nonatoi gen. et sp. nov. as well as the addition of four new characters on the matrix of characters in the study of de Oliveira Bonaldo et al., (2022) did not substantially affect the results obtained in the previous study. Ceciamaralia gen. nov. was placed as a sister group of all other genera analyzed, except Eliberidens and Gymnodorvillea, in presenting the synapomorphy of the

character 22: the chaeta which accompany the capillary in the supra-acicular fascicle does not

change along the body.

506 Discussion

498

499

500 501

502

503

504

505

509

510

507 At a first glance, Ceciamaralia gen. nov. specimens are hard to differentiate from other small 508 sized dorvilleids, but a closer look reveals their specific morphology, which will be discussed below.

Prostomium appendages

511 Ceciamaralia gen. nov. presents a triangular prostomium, like in the close related genera 512 Protodorvillea, Meiodorvillea, Eliberidens, and Pettiboneia (Eibye-Jacobsen & Kristensen, 513 1994; de Oliveira Bonaldo et al., 2022). Protodorvillea has long and biarticulated palps, while 514 Ceciamaralia gen. nov. has simple, small, clavate palps, when present. The palps of 515 Pettiboneia are shorter than Protodorvillea but are still biarticulated and also longer and larger 516 than the palps of Ceciamaralia gen. nov. The small clavate palps in Ceciamaralia gen. nov.

517 are similar to those observed in Meiodorvillea and Eliberidens. The antennae are described here as simple and clavate, as in some Dorvilleidae genera, but, in Ceciamaralia gen. nov. are 518

unique by having a longer and slender basal portion than the antennae from other genera. 519

520 Parapodial appendages

> Ceciamaralia gen. nov. presents small papilliform ventral cirri only in few anterior parapodia, while Meiodorvillea and Eliberidens forceps Wolf, 1986 present it in all parapodia, except on the first. Meanwhile, Eliberidens hartmannschroederae Hilbig, 1995 does not have ventral cirri

524 at all.

521

522

523

Comentado [RVWR79]: Was placed or was recovered?

Excluído: by

Comentado [RVWR80]: Here we have a problem. Figures 2B and C. clearly shows two different accompanying chaetae, so there is a change! There are two different types of furcate chaetae. As in de Oliveira Bonaldo et al., (2022) there are no description and discussion of the characters. I cannot say/understand how flexible you were with such type of

Comentado [RVWR81R80]:

Comentado [RVWR82]: This entire discussion about characters needs to be reformulated, as at times the discussion becomes shallow and only two genera are compared - even though the character discussed is present in many other genera in the family. While in other characters the discussion becomes comprehensive, but there is no closure to summarize what is discussed

Another problem with this discussion is that Dorvilleidae has more than 31 genera and the discussion is only based on 7 different genera. What was the reason for focusing on these genera only?

Excluído:

Comentado [RVWR83]: If you are using subheads to organize the text, then follow them. Don't say "prostomium appendages" and start describing the body. Describe the prostomial appendages.

Excluído: cylindrical and small size body, with small body appendages and p

Excluído: triangularly shaped

Excluído: . Those genera also appear closely related in cladistics studies

Comentado [RVWR84]: Papilliform and small are the

Excluído: and papilliform

Excluído: , on the other hand

Pettiboneia and Ceciamaralia gen. nov. also share the presence of dorsal cirri in anterior parapodia inserted at the base of parapodia, but they have two evident differences: i) Ceciamaralia gen. nov. presents the dorsal cirri from parapodium three reaching the 9th, while in Pettiboneia it is present from parapodium 2 reaching at least the 7th, but in some species it can reach as far as the 25th, as in Pettiboneia sanmartini Aguirrezabalaga & Ceberio, 2003; ii) Ceciamaralia lanai gen. et sp. nov. has a very long and large dorsal cirri, reaching more than three times the length of parapodia, while in Pettiboneia it is distinctively slender and shorter. In contrast, Ceciamaralia nonatoi gen. et sp. nov. does not have dorsal cirri. Dorvillea also presents cylindrical dorsal cirri, but they are biarticulated and absent only in the first parapodium.

Dorsal cirrus x notopodial lobe x branchiae

The presence of the dorsal cirri in Ceciamaralia lanai gen. et sp. nov. generated a debate regarding the origin of this appendage. It resembles the same structure observed in species of Pettiboneia, Diaphorosoma Wolf, 1986 and Westheideia Wolf, 1986, but they are named differently. All species of these genera present this cylindrical appendage inserted at the base of parapodia. In Diaphorosoma magnavena Wolf, 1986 and Westheideia minutimala Wolf, 1986, it is described as a notopodium bearing an internal acicula, and the former having an internal vascular loop, similar to a branchia. It is important to note that both species also present an appendage described as branchia inserted distally in neuropodium, also having a vascular loop in *D. magnavena*. The notopodium in *Pettiboneia* species is described as a dorsal cirrus, also having internal acicula; some species, like P. dibranchiata (Armstrong & Jumars, 1978), also has a distal appendage in the neuropodium described as branchia, exactly like in D. magnavena and W. minutimala. Analyzing the notopodium in specimens of Ceciamaralia lanai gen. et. sp. nov., it shows a vascularized tissue and an acicula barely visible, so we decided to describe it as a dorsal cirrus because of its position and by what it is described as in the literature. But it is important to evidence the similarities with a branchia mainly because of the presence of vascular tissue and size of the structure.

Chaetae

535

536

537

538

539

540

541 542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

The presence and format of furcate and geniculate chaeta shows a great diversity in Dorvilleidae. Of the two species of *Ceciamaralia* gen. nov., *C. lanai* gen. et sp. nov. has furcate chaeta, while *C. nonatoi* gen. et sp. nov. has geniculate chaeta. This variation can also

Excluído: 3

Comentado [RVWR85]: What about Schistomeringos?

Comentado [RVWR86]: You assigned a subhead for parapodium appendages and treat dorsal cirri as separate. I have no problem if you want to give a greater focus in DC, but then remove the content related to DC in the previous section and treat all the subject in this section.

Comentado [RVWR87]: This is the mess you are dealing with. The first question to be erect is, are these structures homologues, and why they are/aren't? Within Dorvilleidae, the parapodia is higly reduced to a single lobe (the neuropodia). In other families (such as Hesionidae, some Syllids, and some genera of Polynoidae), this type of parapodia is called sesquiramous: where the notopodia is reduced to the notoacicula (this is also seem in other Eunicida as well). In a first glace, you look the acicula supporting an appendage and it is plausible to think that it is the notopodia 'modified'.

But what defines a parapodial lobe?

After increasing the number of specimens – of different species – observed and studied, it turns out that the fist idea, of that lobe being a notopodia might be incorrect, and one can argue that the acicula is supporting only a dorsal cirri.

But them, what defines a dorsal cirri? The same path can be done to think about that structure being or not a branchia.

It turns that you must better investigate this issue, and do histology would be greatly appreciate. But for instance I believe you can only propose your idea of homologues between these structures and explain why you consider your idea proper. So synthetize the text, perhaps present a small table with the different names and literatures for this same structure, would be better as a accompanying your explanation about what you consider that structure to be and why.

Comentado [RVWR88]: This sentence is quite confuse. Please re-write it.

567 be observed in species of Meiodorvillea, M. minuta posses furcate and M. apalpata posses 568 geniculate, while M. penhae and M. jumarsi present both types. 569 The blades of compound chaeta of Ceciamaralia gen. nov. are smaller, straighter and more 570 robust than species of other genera in which the dorsalmost compound chaeta can be very long 571 and spiniger. 572 Jaw apparatus 573 The jaw apparatus of Ceciamaralia gen. nov. presents a distinct and specific morphology 574 differing from all other species of the family. Protodorvillea and Dorvillea present a broad and 575 robust jaw apparatus with a maxillae composed by strong basal plates, carrier-like structure 576 and four rows of many robust maxillary plates. The maxillae of *Pettiboneia* and *Meiodorvillea* 577 is smaller presenting only two rows of similar maxillary plates (species of Pettiboneia has some 578 poorly sclerotized additional plates and they lack basal plates). On the other hand, the maxillae 579 of Eliberidens does not have maxillary plates at all, it is composed only of superior and inferior 580 long basal plates. The jaw apparatus of Ceciamaralia gen. nov. presents the posterior ligament 581 fused to only one pair of long and serrated basal plates followed anteriorly by two maxillary 582 plates, and the anteriormost presenting a long and thin distinct spine. 583 Cladistic 584 The scarcity of knowledge of Dorvilleidae impacts its phylogenetic analysis. But some studies 585 were performed to elucidate relationships within the family; the most comprehensive were a 586 cladistic one carried out by Eibye-Jacosbsen & Kristensen (1994) where they utilized all known 587 genera of Dorvilleidae at that time as terminal taxa. Even with slow progress, molecular data 588 is already aiding in the clarification of phylogenetic relationships of dorvilleids, mainly 589 Ophryotrocha (Heggøy, Schander & Åkesson, 2007), which is the genus with more sequence data. The gap in molecular data of other genera of the family opens space to specific cladistic 590 591 studies with morphological data like Pleijel & Eide (2007), de Oliveira Bonaldo et al., (2022) 592 and this present one. Those studies aid not only the current knowledge of the relationship of 593 some taxa but also keep subsidizing data and results to future studies and discussion about the

Ceciamaralia gen. nov. morphologically resembles other small sized dorvilleids presented in

the cladistics analysis by de Oliveira Bonaldo et al., 2022 hence we included both new species

described here in that study. The new genus appeared as monophyletic by the specific

594

595

596

597

Dorvilleidae.

Comentado [RVWR89]: This type of chaetae are not restricted to this two genera only.

Comentado [RVWR90]: Not in that study, but in the matrix resulted from that study.

synapomorphies discussed previously, which ranked it as a new genus, mainly the unique maxillae with only two maxillary plates, being the anteriormost presenting a specific long and thin spine and the enlarged pharynx making the anterior region enlarged when it is retracted, which is not observed in others species of the family. The results of de Oliveira Bonaldo et al., 2022 placed *Meiodorvillea* as a sister group of all other genera presented in the analysis except *Eliberidens* and *Gymnodorvillea*. The inclusion of the *Ceciamaralia* gen. nov species and the new characters in the analysis did not affect the previous relationship results among the genera and the monophyly of them.

Present and future

The incentive towards taxonomic studies and projects resulted in the first description of a new genus of Dorvilleidae in almost 25 years, presented here. Dorvilleids present a great morphological diversity, but its taxonomic knowledge is still limited by the reasons mentioned before and the lack of incentive for taxonomist studies. This incentive is very important to aid researchers to better comprehend and classify those organisms, because their identification and description is not an easy task.

The study of small annelids has some obstacles like the difficulty to collect and identify them, but with the continuous increase of scientific advancements and the development of new techniques and tools, researchers can perform new and more detailed analyses of those unidentified species. These studies increase not only the systematic knowledge of the species but also reveal the great hidden biodiversity of the group.

In Brazil only sixteen species were registered before the present study, but this number does not reflect the true diversity of this family along the coast. The lack of knowledge and difficulty of collecting them highlight the importance of museum collections since they preserve the organisms previously described and also keeps unidentified organisms, which can hold many biological and ecological information aiding in several fields of study, mainly taxonomy and ecology. The specific identification of the organisms reveals records and occurrences of them aiding in biogeographical studies and ecological patterns subsidizing data of potential distribution (Budaeva et al., 2024).

Morphological analysis can reveal new or different characters and structures supporting a refined description, reveal new species and aid the understanding of the phylogenetic relationship of the species of the group, as was demonstrated in the present study. That is why

Excluído: here

Comentado [RVWR91]: Ok, but why you restricted your analysis only with 8 other genera of Dorvilleidae, and didn't include all 31 genera?

Comentado [RVWR92]: I see where you intend to reach, but this paragraph is quite confuse and repetitive. Rethink it and rewrite.

Comentado [RVWR93]: Such as...?

Comentado [RVWR94]: Check again

Excluído: on

Excluído: Brazilian

632 the formation of taxonomists is important as well as encouraging them to identify, describe and 633 study those neglected groups, enhancing the discovery of their biodiversity and knowledge. 634 This study is a partial result obtained through the current Ph.D thesis of the first author, which 635 is focused on the taxonomic study of Dorvilleidae; preliminary morphological analysis of museum materials indicates several new registers of the family for the Brazilian coast and also 636 potential new species to the family. In addition, we highlight the importance of the effort to 637 collect new and fresh organisms since they can provide current biodiversity data and can also 638 639 provide more accurate genetic information through molecular studies, since some groups like 640 the Dorvilleidae family present a huge gap in those data. 641 642 Key to species of Ceciamaralia gen. nov. 643 1a) Presence of a long and large dorsal cirri in parapodia 3 to 7-9 and furcate chaeta in supra-644 645 1b) Absence of dorsal cirri and presence of geniculate chaeta in the supra-acicular 646 647 Acknowledgements 648 649 We would like to thank all people involved in the collection of the material (projects AMBES 650 and HABITATS) and also the MDBio for providing access to it. We would like to thank the 651 access to equipment and assistance provided by the Electron Microscope Laboratory (LME/UNICAMP). We also thank Dr. Yasmina Shah Esmaeili for providing language 652 653 revision. Finally we also thank all funding agencies. 654 **Funding Statement** 655 656 This study was financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior 657 - Brasil (CAPES) - Finance Code 001 to Rafael de Oliveira Bonaldo; Conselho Nacional de 658 Desenvolvimento Científico e Tecnológico - CNPq (301551/2019-7) and The São Paulo Research Foundation - FAPESP (2018/10313-0). 659

Excluído: in view of the fact that

Comentado [RVWR95]: Ok, but your subheading is present and future, I see a lot of present, but I don't see anything for the future. What are your expectations for the future?

662

References

- 663 Aguirrezabalaga F, Ceberio A. 2003. Dorvilleidae (Polychaeta) from the Capbreton Canyon
- 664 (Bay of Biscay, NE Atlantic) with the description of *Pettiboneia sanmartini* sp. nov. *Cahiers*
- 665 de Biologie Marine 44(1), 41-48.
- 666 AMARAL ACZ, NALLIN SAH, STEINER TM, FORRONI TO, GOMES-FILHO D,
- 667 ARAÚJO GR, FREITAS R, COSTA CAO, RUTA C, GOMES KRE, BONALDO RO. 2006-
- 668 2022. Catálogo das espécies de Annelida "Polychaeta" do Brasil. (available from:
- 669 http://www.ib.unicamp.br/museu zoologia/files/lab museu zoologia/Catalogo Polychaeta
- 670 Amaral et al 2022.pdf (accessed in 28 July 2023).
- 671 Armstrong JW, Jumars PA. 1978. Branchiate Dorvilleidae (Polychaeta) from the North Pacific.
- 672 Bulletin, Southern California Academy of Sciences, 77(3), 133-138.
- 673 Martin D, Britayev TA. 1998. Symbiotic polychaetes: review of known species. In: Ansell A,
- 674 Gibson R, Barnes M, Press U. eds. Oceanography and Marine Biology: an annual review.
- 675 35(36), 217-340.
- 676 Budaeva N, Agne S, Ribeiro PA. et al. 2024. Wide-spread dispersal in a deep-sea brooding
- 677 polychaete: the role of natural history collections in assessing the distribution in quill worms
- 678 (Onuphidae, Annelida). Front Zool 21, 1. https://doi.org/10.1186/s12983-023-00520-0.
- 679 Chamberlin RV. 1919. The Annelida Polychaeta. Memoirs of the Museum of Comparative
- 680 Zoology at Harvard College. 48: 1–514. https://doi.org/10.5962/bhl.title.49195
- 681 Claparède E, Mecznikow E. 1869. Beiträge zur Kenntnis der Entwickelungsgeschichte der
- 682 Chaetopoden. Zeitschrift für wissenschaftliche Zoologie. 19, 163–205.
- 683 Day JH. 1963. The polychaete fauna of South Africa. Part 8: New species and records from
- 684 grab samples and dredging. Bulletin of the British Museum (Natural History), Series Zoology.
- 685 10(7): 381–445.
- 686 de Oliveira Bonaldo R, Menchini Steiner T, Zacagnini Amaral AC. 2022. Revision of
- 687 Meiodorvillea Jumars, 1974 (Annelida: Dorvilleidae) including descriptions of three new
- species from the Southwestern Atlantic Ocean. *Plos one*, 17(3), e0264081.
- de Oliveira Bonaldo R, Steiner TM, Garraffoni ARS, Amaral ACZ. 2022. First record of the
- 690 genus Eliberidens (Annelida: Dorvilleidae) from the Southwestern Atlantic Ocean and cladistic
- analysis of the genus. Zoologischer Anzeiger. 301, 115-126.
- 692 delle Chiaje S. 1828. Memorie sulla storia e notomia degli animali senza vertebre del Regno di
- 693 Napoli. Stamperia della Società Tipografica Napoli. 3: 1–232.
- 694 Ehlers E. 1901. Die Polychaeten des magellanischen und chilenischen Strandes. Ein
- 695 faunistischer Versuch. Festschrift zur Feier des Hundertfu infzigja hrigen Bestehens des

- 696 Koniglichen Gesellschaft der Wis-senschaften zu Gottingen, Abhandlungen der
- 697 Mathematisch-Physikalischen Klasse. 1–232, 25 plates.
- 698 Eibye-Jacobsen D, Kristensen RM. 1994. A new genus and species of Dorvilleidae (Annelida,
- 699 Polychaeta) from Bermuda, with a phylogenetic analysis of Dorvilleidae, Iphitimidae and
- 700 Dinophilidae. Zool Scr. 23(2): 107–131.
- 701 Fauchald K. 1977. The polychaete worms. Definitions and keys to the orders, families and
- 702 genera. Natural History Museum of Los Angeles County, Science Series.
- 703 Goloboff PA, Morales ME. 2023. TNT version 1.6, with a graphical interface for MacOS and
- 704 Linux, including new routines in parallel. Cladistics, 39(2), 144-153. DOI 10.1111/cla.12524.
- 705 Hartman O. 1965. Deep-water benthic polychaetous annelids off New England to Bermuda and
- 706 other North Atlantic areas. Occasional Papers of the Allan Hancock Foundation. 28: 1-384.
- 707 Hernández-Alcántara P, Pérez-Mendoza AY, Solís-Weiss V. 2006. Description of three new
- 708 species of Ninoe and Cenogenus (Polychaeta: Lumbrineridae) from the Mexican Pacific.
- 709 Scientia Marina, 70(S3), 81-90.
- 710 Hilbig B. 1995. A new polychaete Eliberidens hartmannschroederae sp. n. Polychaeta
- 711 Dorvilleidae from the US Atlantic continental slope. Mitt. Hambg. Zool. Mus. Inst. 92 (April),
- 712 85–88.
- 713 Jumars PA. 1974. A generic revision of the Dorvilleidae (Polychaeta), with six new species
- 714 from the deep North Pacific. Zool. J. Linn. Soc. 54(2): 101–135. https://doi.org/10.1111/j.1096-
- 715 3642.1974.tb00794.x.
- 716 Kvalø Heggøy K, Schander C, Åkesson B. 2007. The phylogeny of the annelid genus
- 717 Ophryotrocha (Dorvilleidae). Marine Biology Research, 3(6), 412-420.
- 718 https://doi.org/10.1080/17451000701695361.
- 719 Lamarck JBD. 1802. Discours d'Ouverture, Prononcé le 27 floréal An 10, au Muséum
- 720 d'Histoire naturelle. Recherches sur l'organisation des corps vivans. Bulletin Scientifique de la
- 721 France et de la Belgique, 483-517.
- 722 Lavrado HP, Brasil ACS. 2010. In: Lavrado, H.P., Brasil, A.C.S. (Eds.), Biodiversidade da
- 723 região oceânica da Bacia de Campos: Macrofauna, p. 232. Rio de Janeiro, SAG Serv.
- 724 Maddison WP, Maddison DR. 2019. Mesquite: a Modular System for Evolutionary Analysis.
- 725 Version 3.61, 2019.
- 726 McIntosh WC. 1869. On the structure of the British nemerteans, and some new British annelids.
- 727 Trans. R. Soc. Edinb. 25 (2), 305–433.
- 728 Moore JP. 1906. Additional new species of Polychaeta from the North pacific. In: *Proceedings*
- 729 of the Academy of Natural Sciences of Philadelphia, vol. 58, pp. 217–260.

- 730 Moore JP. 1909. Polychaetous annelids from Monterey Bay and San Diego, California. Proc
- 731 *Acad Nat Sci Phila*. 61: 235–295. https://doi.org/10.5852/ejt.2021.736.1251.
- Nixon KC. 2002. WinClada Ver. 1.00. 08. Published by the Author, Ithaca, NY.
- 733 Núñez J. 1998. Marycarmenia lysandrae, a new genus and interstitial species (Polychaeta:
- 734 Dorvilleidae) from Madeira. Bull. Mar. Sci. 62 (1), 115–119.
- 735 Orensanz JM. 1973. Los anelidos poliquetos de la provincia biogeografica Argentina. III.
- 736 Dorvilleidae. *Physis Seccion A Los oceanos y sus organismos*. 32(85): 325–342.
- Parfitt E. 1866. Description of a Nereis new to science. Zoologist. 21: 113–114.
- 738 Paxton H. 2009. Phylogeny of Eunicida (Annelida) based on morphology of jaws.
- 739 *Zoosymposia*. 2 (1), 241–264. https://doi.org/10.11646/zoosymposia.2.1.18.
- 740 Pettibone MH. 1961. New species of polychaete worms from the Atlantic Ocean, with a
- 741 revision of the Dorvilleidae. Proceedings of the Biological Society of Washington, 74(19), 167-
- 742 186.
- 743 Pleijel F, Eide R. 1996. The phylogeny of *Ophryotrocha* (Dorvilleidae: Eunicida: Polychaeta).
- 744 Journal of Natural History. 30(5), 647-659. https://doi.org/10.1080/00222939600770361.
- 745 Read G, Fauchald K. 2024. World Polychaeta database. Dorvilleidae Chamberlin, 1919.
- 746 Accessed through: World Register of Marine Species. Available a
- 747 https://www.marinespecies.org/aphia.php?p=taxdetails&id=971 (accessed 31 Jan 2024).
- 748 Steiner TM, Santos CSG. 2004. A new species of Neanthes (Annelida, Polychaeta, Nereididae)
- 749 from Brazil, and some remarks on Neanthes bruaca Lana & Sovierzoski, 1987. Beaufortia. 54
- 750 (2), 39–57.
- 751 Wainwright SC, Perkins TH. 1982. Gymnodorvillea floridana, a new genus and species of
- 752 Dorvilleidae (Polychaeta) from Southeastern Florida. *Proc. Biol. Soc. Wash.* 95 (4), 694–701.
- 753 Webster HE. 1879. The Annelida Chaetopoda of the Virginian coast. Transactions of the
- 754 *Albany Institute*. 9: 202–269.
- 755 Westheide W. 2000. Ikosipodoides seychellensis, a new genus and species of interstitial
- 756 polychaetes (Dorvilleidae) from the island of Mahé, Indian Ocean. Cahiers de biologie marine,
- 757 41(1), 19-24.
- 758 Wolf PS. 1986. Four new genera of Dorvilleidae (Annelida: Polychaeta) from the Gulf of
- 759 Mexico. Proc Biol Soc Wash. 99(4): 616-626.
- 760 Yen NK, Rouse GW. 2020. Phylogeny, biogeography and systematics of Pacific vent, methane
- 761 seep, and whale-fall Parougia (Dorvilleidae: Annelida), with eight new species. Invertebrate
- 762 Systematics, 34(2), 200-233.

Código de campo alterado

Código de campo alterado

- 763 Zanol J, Carrera-Parra LF, Steiner TM, Amaral ACZ, Wiklund H, Ravara A, et al. 2021 The
- 764 Current State of Eunicida (Annelida) Systematics and Biodiversity. Diversity 13(2): 74.
- 765 https://doi.org/https://doi.org/10.3390/d13020074.
- 766 Zhang D, Zhou Y, Yen N, Hiley AS, Rouse GW. 2023. Ophryotrocha (Dorvilleidae,
- 767 Polychaeta, Annelida) from deep-sea hydrothermal vents, with the description of five new
- species. European Journal of Taxonomy, 864, 167-194.