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ABSTRACT
Background. Colorectal cancer is a common condition with an uncommon burden
of disease, heterogeneity in manifestation, and no definitive treatment in the advanced
stages. Renewed efforts to unravel the genetic drivers of colorectal cancer progression
are paramount. Early-stage detection contributes to the success of cancer therapy
and increases the likelihood of a favorable prognosis. Here, we have executed a
comprehensive computational workflow aimed at uncovering the discrete stagewise
genomic drivers of colorectal cancer progression.
Methods. Using the TCGA COADREAD expression data and clinical metadata,
we constructed stage-specific linear models as well as contrast models to identify
stage-salient differentially expressed genes. Stage-salient differentially expressed genes
with a significant monotone trend of expression across the stages were identified
as progression-significant biomarkers. The stage-salient genes were benchmarked
using normals-augmented dataset, and cross-referenced with existing knowledge.
The candidate biomarkers were used to construct the feature space for learning an
optimal model for the digital screening of early-stage colorectal cancers. The candidate
biomarkers were also examined for constructing a prognostic model based on survival
analysis.
Results. Among the biomarkers identified are: CRLF1, CALB2, STAC2, UCHL1,
KCNG1 (stage-I salient), KLHL34, LPHN3, GREM2, ADCY5, PLAC2, DMRT3 (stage-
II salient), PIGR, HABP2, SLC26A9 (stage-III salient), GABRD, DKK1, DLX3, CST6,
HOTAIR (stage-IV salient), and CDH3, KRT80, AADACL2, OTOP2, FAM135B,
HSP90AB1 (top linear model genes). In particular the study yielded 31 genes that
are progression-significant such as ESM1, DKK1, SPDYC, IGFBP1, BIRC7, NKD1,
CXCL13, VGLL1, PLAC1, SPERT, UPK2, and interestingly three members of the
LY6G6 family. Significant monotonic linear model genes included HIGD1A, ACADS,
PEX26, and SPIB. A feature space of just seven biomarkers, namely ESM1, DHRS7C,
OTOP3, AADACL2, LPHN3, GABRD, and LPAR1, was sufficient to optimize a
RandomForest model that achieved> 98% balanced accuracy (and performant recall)
of cancer vs. normal on external validation. Design of an optimal multivariate model
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based on survival analysis yielded a prognostic panel of three stage-IV salient genes,
namely HOTAIR, GABRD, and DKK1. Based on the above sparse signatures, we
have developed COADREADx, a web-server for potentially assisting colorectal cancer
screening and patient risk stratification. COADREADx provides uncertainty measures
for its predictions and needs clinical validation. It has been deployed for experimental
non-commercial use at: https://apalanialab.shinyapps.io/coadreadx/.

Subjects Bioinformatics, Genomics, Oncology, Data Mining and Machine Learning
Keywords Differentially expressed genes, Monotonically expressed genes, Stage-salient genes,
Progression-significant genes, Network analysis, Colorectal cancer screening, Risk stratification,
Stagewise linear models, Random forest, Web-server

INTRODUCTION
Colorectal adenocarcinoma (COADREAD), or colorectal cancer, is a common cancer with
about 1.9 million cases and 930,000 deaths occurring in 2020 (Morgan et al., 2023). There
are many lifestyle and environmental drivers of colorectal cancer apart from family history,
making the bulk of its incidence sporadic (Haggar & Boushey, 2009). Some of these drivers
include dietary concerns (Willett, 2005), physical inactivity, obesity (de Jong et al., 2005),
alcohol and tobacco (Zisman et al., 2006), etc. Familial forms of colorectal cancer include
(i) familial adenomatous polyposis (FAP) associated with mutations in the APC tumor
suppressor gene (TSG) (Wilmink, 1997); and (ii) hereditary nonpolyposis colorectal cancer
(HNPCC, Lynch syndrome) associated with mutations in the DNA repair pathway genes,
MSH2 and MLH1 (Haggar & Boushey, 2009). Since survival rates in colorectal cancer
plummet with late-stage of presentation, effective surveillance via access to screening
models is necessary. Early-stage diagnosis of colorectal cancer is essential to secure an
advantageous prognosis, which could help in the clinical management of the disease.

The Cancer Genome Atlas (TCGA) research network has found mutational and
integrative signatures in the multidimensional COADREAD dataset (The Cancer Genome
Atlas Network, 2012), but so far our knowledge with respect to the stage-wise progression
of colorectal cancer has been incomplete and inadequate. It is known that gene expression
profiles of certain markers define cell-type identity (Chen et al., 2018), and even tissue
microenvironment (Luca et al., 2021), it is reasonable to suppose that a community
structure of cell-types drives colorectal cancer progression. Molecular gene signatures
characterize the cell composition of the tumor, and it could be argued that the
tumor progression through stages is in part or whole determined by the complex and
collective changes in gene expression. The AJCC staging of colorectal cancer is based on
histopathology (viz. the TNM staging) (Amin et al., 2017), and it would be interesting to
study the evidence for a molecular basis of cancer progression in discrete stages.

We developed data-driven workflows for discerning the molecular signatures of
colorectal cancer through RNA-Seq transcriptomics. We extended the protocol introduced
in Sarathi & Palaniappan (2019), and identified stage-salient biomarkers. A new class of

Palaniappan et al. (2024), PeerJ, DOI 10.7717/peerj.18347 2/35

https://peerj.com
https://apalanialab.shinyapps.io/coadreadx/
http://dx.doi.org/10.7717/peerj.18347


biomarkers with a significantmonotone trend of differential expression, called progression-
significantDEGs,were also identified. It is noted that the early-stage (i.e., stage-I and stage-II
salient) biomarkers could be useful in development of diagnostics and prognostic models,
whereas progression-significant biomarkers could pinpoint potential therapeutic targets
to halt or reverse the course of cancer (before it does metastasize to a point of no return).
A network analysis grounds the findings in a larger context, lending more evidence for the
molecular origins of stage-wise discrete cancer progression. Based on the above results,
we have developed models for the early-stage screening as well as risk stratification of
colorectal cancer. These models were bundled into COADREADx, a pilot tool for the
digital diagnostic and prognostic screening of colorectal cancers. COADREADx is available
at: https://apalanialab.shinyapps.io/coadreadx/ as a user-friendly interface for academic
use. Source code is available from: https://zenodo.org/doi/10.5281/zenodo.13790219. All
original datasets used in the study were obtained from the public-domain, and all the
intermediate results generated from the study are available as Supplementary Information
(DOI: 10.6084/m9.figshare.20489211.v5). Portions of this text were previously published
as part of a preprint (https://www.medrxiv.org/content/10.1101/2022.08.16.22278877v3).

MATERIAL AND METHODS
The workflow is summarized in Fig. 1 and discussed in detail below. The identification of
stage-salient biomarkers follows the computational protocol developed earlier in our lab
(Sarathi & Palaniappan, 2019).

Data preprocessing
Normalized and log2-transformed Illumina HiSeq RNA-Seq gene expression data for
Colorectal Adenocarcinoma (COADREAD) processed by the RSEM pipeline (Li & Dewey,
2011) were obtained from TCGA via the http://firebrowse.org/portal (accessed 06-01-2019)
(Broad Institute TCGA Genome Data Analysis Center, 2016). The patient barcode (uuid) of
each sample encoded in the variable called ‘Hybridization REF’ was parsed and used to
annotate the controls and cancer samples. To annotate the stage information of the cancer
samples, we obtained the corresponding clinical dataset from http://firebrowse.org/ and
merged the clinical data with the expression data by matching the ‘‘Hybridization REF’’
in the expression data with the aliquot barcode identifier in the clinical data. The cancer
staging is encoded in the attribute ‘‘pathologic_stage’’ of the clinical data. The sub-stages
(A,B,C) were collapsed into the parent stage, resulting in four stages of interest (I, II, III,
IV).We retained a handful of clinical variables related to demographic features, namely age,
sex, height, weight, and vital status. Using this merged dataset, we filtered out genes that
showed little change in expression across all samples (defined as σ <1). We also removed
cancer samples that were missing stage annotation (value ‘NA’ in the ‘‘pathologic stage’’)
from our analysis. Data pre-processing was done with R v4.2.3 (www.r-project.org) and
the final dataset was processed through voom function in R limma v3.54.2 to prepare for
linear modeling (Law et al., 2014).
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Figure 1 Study design for the dissection of discrete stage-wise progression of colorectal cancer. The
identified candidate biomarkers could be used to train machine learning classifiers for the screening and
prognosis of colorectal cancers. Figure created with Biorender.com.

Full-size DOI: 10.7717/peerj.18347/fig-1

Linear modelling
Linear modeling of expression across cancer stages relative to the baseline expression (i.e.,
in normal tissue controls) was performed for each gene using R limma v3.54.2 (Ritchie et
al., 2015). The following linear model was fit for each gene’s expression based on the design
matrix shown in Fig. 2A:

y =α+β1x1+β2x2+β3x3+β4x4 (1)

where the independent variables are indicator variables of the sample’s stage, the intercept
α is the baseline expression estimated from the controls, and β i are the estimated stagewise
log fold-change (lfc) coefficients relative to controls. The linear model was subjected to
empirical Bayes adjustment to obtain moderated t-statistics (McCarthy & Smyth, 2009).
To account for multiple hypothesis testing and the false discovery rate, the p-values of the
F-statistic of the linear fit were adjusted using the method ofHochberg & Benjamini (1990).
The linear trends across cancer stages for the top significant genes were visualized using
boxplots to ascertain the regulation status of the gene relative to the control.

Pairwise contrasts
To perform contrasts, a slightly modified design matrix shown in Fig. 2B was used, which
would give rise to the following linear model of expression for each gene:

y =β0x0+β1x1+β2x2+β3x3+β4x4 (2)

where the controls themselves constitute one of the indicator variables, and the β i are all
coefficients estimated only from the corresponding samples. Our first contrast of interest,
between each stage and the control, was achieved using the contrast matrix shown in
Table 1. Four contrasts were obtained, one for each stage vs control. A threshold of |lfc|>2
was applied to each contrast to identify genes differentially expressed with respect to the
control. Genes could be differentially expressed in any combination of the stages. In the
first pass, we identified genes whose |lfc|>2 for any stage. For the genes that passed, we
identified the stage that showed the highest |lfc| for each gene and assigned the gene as
specific to that stage for the rest of our analysis.
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Figure 2 Design matrices used for (A) linear modeling ; and (B) between-stages contrasts. C: Control,
S1: Stage-I, S2: Stage-II, S3: Stage-III, S4: Stage-IV.

Full-size DOI: 10.7717/peerj.18347/fig-2

Table 1 Coefficients of the contrasts matrix for stage-control modeling of the expressionmatrix.

Clinical annotation STAGE - CONTROL CONTRASTS

I II III IV

Control −1 −1 −1 −1
Stage1 1 0 0 0
Stage2 0 1 0 0
Stage3 0 0 1 0
Stage4 0 0 0 1

Table 2 Coefficients of the contrasts matrix for between-stages modelling of the annotated expression
matrix.

Clinical annotation CONTRAST BETWEEN STAGES

(I, II) (I, III (II, III) (I, IV) (II, IV) (III, IV)

Control 0 0 0 0 0 0
Stage1 −1 −1 0 −1 0 0
Stage2 1 0 −1 0 −1 0
Stage3 0 1 1 0 0 −1
Stage4 0 0 0 1 1 1

Significance analysis
We applied four-pronged criteria to establish the salience of the stage-specific differentially
expressed genes. (i) Adj. p-value of the contrast with respect to the control < 0.001 (ii)–(iv)
P-value of the contrast with respect to other stages < 0.05. Six such contrasts are possible.

To obtain the above p-values (ii)–(iv), we used the contrast matrix shown in Table 2,
which was supplied as an argument to the contrastsFit function in limma.

To deal with any sparsity of progression-significant genes salient to any stage,we defined
the ‘‘pval_pdt’’ of a given gene in a certain stage as the product of the p_values of its
expression contrast in that stage vs each of the other stages (e.g., pval_pdt of gene x in stage
1 is (pval(gene x in st1 vs st2))*(pval(gene x in st1 vs st3))*(pval(gene x in st1 vs st4)).
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Monotonic expression
The linear model in Eq. (1) would not be sufficient to identify genes with an monotonic,
trend of expression in sync with disease progression, which could uncover stage-agnostic
expression of progression-significant driver genes. Towards this end, we used a model of
gene expression where the cancer stage was treated as a numeric variable:

y = aX+b (3)

where X takes a value in (0,1,2,3,4) corresponding to the sample stage: (control, I, II, III,
IV), respectively. It was noted the mean gene expression could show the following patterns
of monotonic expression across cancer stages:

(i) monotonic upregulation, where mean expression follows:
control <I <II <III <IV.
(ii) monotonic downregulation, where mean expression follows:
control >I >II >III >IV.
The sets of genes conforming to either (i) or (ii) were identified to yield monotonically

upregulated and monotonically downregulated genes. These two sets were merged, and
the final set of genes was evaluated using the adj. p-values from the model given by Eq. (3)
to yield genes with significant monotonic patterns of expression.

Models for cancer screening and prognosis
Validation of biomarkers with normals-augmented dataset
To study the reliability of findings when a reasonable number of controls are used, we
augmented the TCGA cohort with the COADREAD dataset from RNAseqDB (Wang
et al., 2018) (accessed 12-06-2022) that couples TCGA data with 339 normals from the
Genotype-Tissue Expression (GTEx) database (GTEx Consortium, 2013). The consolidated
dataset was subjected to the same biomarker protocol to identify stage-salient genes, and
the results compared with those obtained with the TCGA dataset.

Development of diagnostic model
The different classes of biomarkers discussed above, including stage-salient genes and
monotonically expressed genes, could be used as the feature space to trainmachine learning
(ML) algorithms to solve the binary classification problem of cancer v/s normal samples
(Muthamilselvan, Ramasami Sundhar Baabu & Palaniappan, 2023). Towards this, we split
the TCGA dataset in the ratio 0.8:0.2 stratified on the outcome class (‘cancer’ or ‘normal’),
and extracted the features of interest. To reduce the dimensionality of the feature space,
feature selection techniques such as R Boruta v8.0.0 (Kursa & Rudnicki, 2010) and recursive
feature elimination (in R caret v6.0.94 Kuhn, 2008) were applied to the train dataset and a
consensus reduced feature space was obtained. Different ML algorithms were trained on
this feature space and hyperparameters optimized by cross-validation. The performance of
the ML algorithms was evaluated on the holdout testset to determine the best ML model.
The best-performing ML model was then validated on external out-of-domain cohorts.

Development of prognostic model
To study the prognostic significance of the identified stage-salient genes, we used the
patient ‘OS’ (‘Overall Survival’) attribute in the clinical metadata of the TCGA cohort
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(accessed 06-01-2019). Survival analysis was performed according to the protocol outlined
in Muthamilselvan & Palaniappan (2023). Univariate Cox regression analysis of the top
stage-salient genes was executed to screen the prognostically significant ones, using the R
survival library v3.5.7 (Therneau & Lumley, 2015). Genes with p-value < 0.05 were regarded
as candidate genes for building a multivariate Cox regression model. This was done using
backward variable selection based on the model’s Akaike Information Criterion (AIC)
metric (Gerds, Scheike & Andersen, 2012). The procedure yielded an optimal prognostic
signature of size n, given by the following equation:

Risk score=β1 ∗gene1+·· · · ·+βi ∗genei+·· · · ·+βn ∗genen (4)

where the β i are the coefficients for the expression of the ith gene. The median risk
score from the above distribution was used to classify TCGA COADREAD patients into
high-risk and low-risk groups, as implemented in R survminer library v0.4.9 (Kassambara et
al., 2017). Kaplan–Meier analysis was then performed to assess significance in survival rate
variations between the high-risk and low-risk groups, and thereby qualify the biomarker
signature.

Benchmarking
Principal component analysis (PCA) was performed using prcomp in R. We used the
rand function to choose 100 random genes. In order to visualize significant outlier genes
with a large effect size, volcano plots were obtained by plotting the (−log10)-transformed
p-value vs. the log fold-change of gene expression. Heat maps of significant stage-salient
differentially expressed genes were visualized using R pheatmap v1.0.12 and clustered
using R hclust function. Novelty of the identified stage-salient genes was ascertained
by screening against curated databases, including the Cancer Gene Census (CGC at
https://cancer.sanger.ac.uk/cosmic; accessed 01-12-23) (Futreal et al., 2004), Network of
Cancer Genes NCG7.0 (accessed 01-12-23) (Repana et al., 2019), and the Clinical Trials
Registry (http://www.clinicaltrials.gov; accessed 01-12-23). STRINGdb was used to translate
the findings into network-level insights (Szklarczyk et al., 2021). To perform immuno-cyte
infiltration analysis, we used Cibersort and estimated the proportion of tumor-infiltrating
immune cells in TCGA COADREAD samples based on gene expression signatures
(Amin et al., 2017; Newman et al., 2019). Cibersort’s inbuilt LM22 signature estimated
the proportion of 22 standard immune cell types; setting the number of permutations
to 100 allowed the calculation of sample-wise statistical significance with respect to the
estimated values. The immuno-cyte patterns of significant samples were analyzed to provide
a snapshot of immune ecotypes at play in significant tumor and normal samples, which
would increase our basic understanding of colorectal cancer pathologies and advance
rational therapies. The cell-type correlation matrix computed from the proportions
of cell-types across significant samples was used to identify substantial co-occurrence
patterns. The relative abundance of immunocytes between tumor and normal samples was
compared to pinpoint significant differentially elevated or depressed tumor-infiltrating
immune cells.
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Table 3 Stagewise distribution of colorectal cancer samples.

TCGA Stage TNM classification # Cases

1 T1a N0 M0 56 57
1A T1b N0 M0 1
2 T2 N0 M0 18
2A T2 N0 M0 110
2B T2 N0 M0 6
2C T2 N0 M0 2

136

3 T3 N0 M0 9
3A T4 N0 M0 10
3B – 59
3C – 35

113

4 – 27
4A T(any) N1 M0 23
4B T(any) N(any) M1 2

52

CONTROL – 51
NA – 19

Table 4 Statistical summary of clinical meta-data associated with the TCGA COADREAD transcriptome.Numeric attributes are presented as
mean± standard deviation. Nominal attributes (gender and vital status) are presented as counts. BMI could be calculated for patients with both
height and weight data.

Characteristic Control STAGEOF CRC NA Overall

I II III IV

Number of samples 51 57 136 113 52 19 428
Age (years) 69.1± 14.1 65.8± 12.6 66.7± 12.9 63.1± 13.2 60.6± 13.3 65.4± 12.2 65.1± 13.3
Weight (kg) 79.3± 25.3 83.9± 19.4 78.3± 23.3 81.3± 20.2 82.2± 17.4 83.6± 26.2 80.7± 21.5
Height (cm) 169.3± 9.5 172.1± 11.0 167.0± 13.0 169.0± 11.0 172.0± 11.1 170.9± 12.3 169.2± 11.7
BMI (kg/m2) 27.4± 7.0 28.5± 6.1 29.7± 25.1 28.3± 6.3 28.7± 5.6 28.1± 6.0 28.8± 15.3
Gender Male 23 34 72 61 30 11 231

Female 28 23 64 52 22 8 197
Vital status Alive 44 55 122 100 36 15 372

Dead 7 2 14 13 16 4 56

RESULTS
The gene expression matrix from TCGA consisted of 20,502 genes × 428 samples. Upon
data pre-processing, the gene expression matrix consisted of 18,212 genes × 409 samples,
with an additional vector denoting the sample stage. This dataset is made available as
File S1. Table 3 shows the distribution of TCGA samples with the corresponding AJCC
staging. Table 4 shows a summary of patient demographic characteristics, with mean age
∼65 years and mean body mass index (BMI)∼29 hinting at etiological roles of ageing and
obesity.

After preprocessing with voom in limma, (Law et al., 2014), the dataset yielded 9,433
significant genes (adj. P <1E-5) in the linear modeling, suggesting the existence of a linear
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Table 5 Stage-wise lfc, and inferred regulation status of the top ten genes from the linear modelling analysis, ranked by adjusted p-value of the
linear model. A mixture of both upregulated and downregulated genes was obtained, shown separately here.

Gene Stage I lfc (β1) Stage II lfc (β2) Stage III lfc (β3) Stage IV lfc (β4) Adj. p-val Regulation status

CDH3 6.5572 6.4729 6.4325 6.4874 1.06E−156 UP
KRT80 6.8613 6.6695 6.9847 7.2830 4.39E−143 UP
ETV4 5.6165 5.5937 5.5175 5.8992 8.28E−131 UP
ESM1 5.7276 5.9611 5.9339 6.4049 2.56E−130 UP
JUB 3.1785 3.1473 3.1536 3.0750 7.78E−102 UP
MTHFD1L 2.6099 2.5692 2.5300 2.5766 2.10E−100 UP
OTOP2 −9.9507 −10.030 −9.9761 −9.9196 4.62E−139 DOWN
AADACL2 −3.3481 −3.4103 −3.3285 −3.3960 4.99E−131 DOWN
DHRS7C −3.4279 −3.5170 −3.5209 −3.5196 3.14E−130 DOWN
OTOP3 −5.3795 −5.2544 −5.1438 −5.1531 1.80E−125 DOWN

trend in their expression across cancer stages. Such an observation could be explained by
cancer hallmarks that typically worsen with progression, for e.g., genome-wide instabilitya
cancer hallmark, Hanahan &Weinberg (2011). Some top-ranked upregulated genes from
the linear modeling included CDH3, KRT80, ETV4 and ESM1. CDH13 was notably a top
upregulated gene obtained from the linear modeling of hepatocellular carcinoma (only
after GABRD and PLVAP) in an earlier analysis (Sarathi & Palaniappan, 2019); these
observations point to a consistent role for members of the cadherin gene family in cancer
progression in gastrointestinal cancers. The top downregulated genes included OTOP2,
OTOP3, AADACL2 and DHRS7C. Table 5 shows the log-fold changes of the top ten
genes in with respect to normal samples,and Boxplots of the expression of the top 9 genes
indicated a progressive net increase in expression across cancer stages relative to control for
up-regulated genes, while repressed expression across cancer stages relative to control was
the hallmark of downregulated genes (Fig. 3). A constant trend of regulation across stages
underscores the stage-specific basis of cancer progression. It is noted that the linear trend
identified needs to be validated with a model for monotonic expression (see Methods),
and some stage-specific genes might exhibit maximal differential expression in stages other
than stage 4 (Fig. 4).

The samples were visualized using a PCA of the top 100 genes from the linear model
(Fig. 5A). Separate and distinct clusters of the controls and cancer samples suggested
considerable changes in gene expression in cancer samples. In contrast, the PCA plot of
randomly sampled 100 genes (Fig. 5B) failed to distinguish the cancer and control samples,
highlighting the potential of stagewise linear models in identifying cancer-specific genes
(File S2).

Differences in gene expression constitute the basis of cell-type identities, and it may
not be surprising that differences in gene expression drive cancer progression through the
AJCC stages. In the first pass, we eliminated 15,970 genes with |lfc|<2 in all stages (Table
1). We binned the remaining genes into different partitions, to obtain stage-specific genes
of varying sizes (Fig. 6). To establish salience, we applied the second contrast (Table 3)
and checked for filter criteria (ii)–(iv) stated in the Methods section. Genes that passed

Palaniappan et al. (2024), PeerJ, DOI 10.7717/peerj.18347 9/35

https://peerj.com
https://figshare.com/articles/online_resource/A_comprehensive_algorithmic_dissection_yields_biomarker_discovery_and_insights_into_the_discrete_stage-wise_progression_of_colorectal_cancer/20489211/5
http://dx.doi.org/10.7717/peerj.18347


Figure 3 Expression trends of the top 9 DEGs from the linear modeling. Row-1: CDH3, KRT80,
OTOP2; Row-2: AADACL2, ETV4, ESM1; Row-3: DHRS7C, OTOP3, JUB. In each plot, expression trends
in the control samples are shown first, followed by stage-wise trends in progressive fashion. It can be
observed that some genes are downregulated to near-zero expression as CRC progresses (notably OTOP2,
OTOP3, AADACL2 and DHRS7C).

Full-size DOI: 10.7717/peerj.18347/fig-3

all filters were identified as stage-salient DEGs. This process yielded 71 stage-I salient, 2
stage-II salient, 0 stage-III salient and 59 stage-IV salient genes (File S3).

Considering the sparsity of genes passing the filters for stages 2 and 3, we applied the
pval_pdt, described in the Methods section, and extracted the top 10 genes for each stage.
For stages 1 and 4, all these top 10 genes figured in the 71 and 59 genes that had been
identified as stage-salient DEGs, respectively. For stage 2, we took the two genes that
passed the filtering and appended genes with the lowest pval_pdt to obtain 10 genes. For
stage 3, we used the 17 genes with pval_pdt < 0.125E−3. The top 10 genes from each
stage are shown in Table 6, and the entire set of 157 stage-salient DEGs are presented in
File S3. It is significant that GABRD emerges as a stage-IV salient gene in COADREAD,
reinforcing its identification as a stage-IV salient gene in hepatocellular carcinoma (Sarathi
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Figure 4 Illustration of dichotomy in expression trends of stage-salient genes (namely, consistent dif-
ferential upregulation and consistent differential downregulation). Each stage is represented by one up-
regulated gene (column 1) and one downregulated gene (column 2). (A) Stage-I: ADAMTSL1 & ARNTL2;
(B) Stage-II: KLHL34 & CEP72; (C) Stage-III: ENPP3 & FAM40B; (D) Stage-IV: ADAM6 & ADAM1.
Note that the expression of ADAM6 is provided in log_10 units.

Full-size DOI: 10.7717/peerj.18347/fig-4
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Figure 5 Visualizing samples in principal components space. (A) Top 100 genes of the linear model;
and (B) 100 randomly chosen genes. Only the top two principal components are used.

Full-size DOI: 10.7717/peerj.18347/fig-5

Figure 6 Distribution of genes based on stage-specificity.Of the 2,242 DEGs, 1,379 appear significant
in all the stages. It can be clearly seen that the early-stages (stages 1 and 2) share fewer DEGs with the late-
stages (stages 3 and 4), flagging extra factors necessary for cancer progression to metastasis.

Full-size DOI: 10.7717/peerj.18347/fig-6

& Palaniappan, 2019), and suggesting a driver role in the metastasis of gastrointestinal
cancers more generally.

Visualizing the lfc expression of stage-salient genes revealed systematic progressive
expression across stages (Fig. 7). The heatmap was clustered using stage-wise expression
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Table 6 Top ten stage-salient DEGs in each stage, ordered by significance. Such genes could represent
molecular evidence for the discrete progression of colorectal cancer.

Rank Stage 1 Stage 2 Stage 3 Stage 4

1 CALB2 FADS6 PIGR UPK2
2 TMEM59L EEF1A2 MLXIPL HOTAIR
3 JPH3 KLHL34 TUBAL3 LY6G6C
4 STAC2 DMRT3 COMP C6orf15
5 NKX3.2 GREM2 SLC26A9 DLX3
6 UCHL1 CCBP2 CES3 CST6
7 KCNG1 ADCY5 TRY6 VGLL1
8 CRLF1 PLAC2 HABP2 GABRD
9 C5orf23 GPC5 NAT2 DKK1
10 FBXO27 LPHN3 HES5 TMEM40

differences w.r.to controls and showed an early-stage (stages 1 & 2) vs late-stage (stages 3
& 4) separation, arguing for the role of progression-significant genes in driving colorectal
cancer. Clustering the genes of Table 6 yielded the following observations: (i) substantial
co-clustering of stage-I with stage-II, and of stage-III with stage-IV is seen; (ii) stage-I
and stage-IV genes do not intermingle; (iii) DMRT3 is the only stage-II salient gene to
co-cluster with stage-IV salient genes (File S4). Further,many of the stage-4 salient genes are
proto-oncogenes, steadily over-expressed in the cancer phenotype untometastasis, whereas
most of the early-stage (stages 1 and 2) salient genes are tumor suppressor genes, which are
differentially down-regulated in the cancer phenotype. Even though these observations are
selective and sparse, it is tempting to infer the implications for the progression pathway
of colorectal cancer—initially disabling the damage-control mechanisms innate to the cell
and then progressively spiraling out of control.

The results of the numeric model (Eq. (3)) sorted by significance are presented in
File S5. The monotonic analysis yielded 1,944 monotonically expressed genes (MEGs;
1,389 upregulated and 555 downregulated). These are factors with a constant expression
trend agnostic of stage. Applying an adj. p-value cutoff < 0.05 yielded 1,058 significant
MEGs (noted in File S6). Examining the overlap of these significantMEGswith stage-salient
DEGs yielded 31 progression-significant driver genes (Table 7; expression visualized in
File S7). As expected, most of these biomarkers (27) are stage-4 salient DEGs, and most of
them (27) are also consistently upregulated, signifying persistent unchecked cellular damage
progressing to metastasis. Significant MEGs that are also significant (adj.p-val < 1E−5) in
the linear and numeric models (1,186 and 997 genes, respectively) are presented in File S8.
Some of the top 200 genes from the linear model (by adj. p-value) are also significant
MEGs; these 18 genes can be found in File S9. The intersection between the top 200 genes
from the numeric model and the significant monotonically expressed genes yielded 39
genes (presented in File S10). A total of 36 genes were found common to the top 200 of
both the linear and the numeric (ordinal) models (File S11). Three stage-salient DEGs
figured in the top 200 genes from the numeric model, namely CES3, LPHN3, andWSCD1.
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Figure 7 Heatmap of the lfc (with respect to control samples) of top 40 genes. Stage-salient genes ex-
press maximal salience in one of the stages. It is striking that all the ten stage-IV salient genes show mono-
tonic progressive upregulation (for e.g., GABRD). The gradient of expression is shown in the color key.

Full-size DOI: 10.7717/peerj.18347/fig-7

Two of the top 200 genes of the linear model were also stage-salient MEGs, namely GABRD
and ESM1.

Normals-augmented validation
To examine any negative results with the inclusion of more controls in teasing out stage-
specific markers, we augmented the dataset using RNAseqDB, which added 339 normal
colorectal samples. We noted that the RNAseqDB preprocessing protocol eliminated
non-coding transcripts from consideration, ignoring possible expression salience of
non-coding RNA biomarkers like HOTAIR. Application of our whole protocol to this
controls-augmented dataset yielded a linear model, 1925 stage-specific DEGs (755 stage-I,
418 stage-II, 163 stage-III and 589 stage-IV), and 105 stage-salient markers (40 stage-I, 6
stage-II, 2 stage-III and 57 stage-IV). These are presented in File S12.We found a substantial
consensus of stage-salient genes between the two datasets, with 70 biomarkers in common
(Table 8; highlighted in File S12). Notably six of the top stage-I salient genes and nine of
the top stage-IV salient genes were identified as salient to the respective stages with the
normals-augmented dataset as well, providing robust validation for these biomarkers.

In addition, we identified a colonic cancer dataset with stage-annotation from the Gene
Expression Omnibus (GEO) database (Barret et al., 2013), namely GSE39582, provided
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Table 7 Progression-significant driver genes, obtained by the overlap of significant MEGs with stage-salient DEGs. A total of 31 genes sorted by
the direction of fold-change (up- or downregulation) and corrected significance from the numeric model are shown. Only four genes in this group
are monotonically downregulated, namely PIGR, ADH6, ATOH1, and CXCL13, while all the rest are potential proto-oncogene MEGs. It is seen that
there are four stage-III salient DEGs (PIGR, DSG3, C2orf48, BIRC70) while all the rest are stage-IV salient DEGs.

S No. Symbol Gene Stage Status Adj.p-val

1 ESM1 Endothelial cell-specific molecule 1 IV UP 3.234E−16
2 GABRD Gamma-aminobutyric acid receptor subunit delta IV UP 7.320E−11
3 LOC283867 Putative Long Intergenic Non-Protein Coding RNA 922 IV UP 2.628E−10
4 LY6G6E Lymphocyte antigen 6 family member G6E IV UP 1.628E−09
5 LY6G6F Lymphocyte antigen 6 family member G6F IV UP 8.717E−09
6 SPERT Spermatid-associated protein IV UP 3.018E−08
7 LY6G6C Lymphocyte antigen 6 family member G6C IV UP 3.287E−07
8 C2orf48 Uncharacterized protein C2orf48 III UP 4.499E−07
9 TH Tyrosine 3-monooxygenase IV UP 6.419E−07
10 NKD1 Protein naked cuticle homolog 1 IV UP 5.896E−06
11 VGLL1 Transcription cofactor vestigial-like protein 1 IV UP 2.085E−05
12 PLAC1 Placenta-specific protein 1 IV UP 2.822E−05
13 COL9A3 Collagen alpha-3(IX) chain IV UP 8.310E−05
14 SERPINE1 Plasminogen activator inhibitor 1 IV UP 1.009E−04
15 DSG3 Desmoglein-3 III UP 1.039E−04
16 IGFBP1 Insulin-like growth factor-binding protein 1 IV UP 5.645E−04
17 HOTAIR HOX antisense intergenic RNA IV UP 6.808E−04
18 ISM2 Isthmin-2 IV UP 1.377E−03
19 LOC100133545 C6orf15 IV UP 1.471E−03
20 DLX3 Homeobox protein DLX-3 IV UP 1.561E−03
21 C6orf15 Uncharacterized protein C6orf15 IV UP 4.187E−03
22 KRTAP3.1 Keratin-associated protein 3-1 IV UP 7.076E−03
23 UPK2 Uroplakin-2 IV UP 8.241E−03
24 C7orf52 N-acetyltransferase 16 IV UP 1.145E−02
25 DKK1 Dickkopf-related protein 1 IV UP 1.621E−02
26 SPDYC Speedy protein C IV UP 1.653E−02
27 BIRC7 Baculoviral IAP repeat-containing protein 7 III UP 2.918E−02
28 PIGR Polymeric immunoglobulin receptor III DOWN 1.226E−26
29 ADH6 Alcohol dehydrogenase 6 IV DOWN 6.270E−15
30 ATOH1 Protein atonal homolog 1 IV DOWN 7.378E−07
31 CXCL13 C−X−Cmotif chemokine 13 IV DOWN 4.675E−06

by the Carte d’identité des tumeurs, Ligue Nationale contre le Cancer, France (accessed
12-08-2022) (Marisa et al., 2013). The dataset had a large number of stage-II (271) and
stage-III samples (210), relative to stage-I (38) and stage-IV (60) samples. However, only
two normal samples were available, so the dataset was augmented with 308 normal colonic
tissue samples from the GTEx (accessed 12-10-2022). The augmented dataset was subjected
to batch correction using ComBat (Leek et al., 2012), and antilog2 was taken to obtain the
necessary counts for input to voom and the protocol described in the Methods was applied.
The results are presented in File S13. Five stage-IV salient genes, namely CYP24A1, FGF19,
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Table 8 Comparison of the stage-wise salient biomarkers identified with the TCGA and the RNAse-
qDB datasets. The pval_pdt measure was applied to identify the top ten stage-2 salient and stage-3 salient
genes. A substantial stage-wise consensus could be observed. The intersection of the top-10 stage-salient
genes in each dataset is shown as ‘Top-10 overlap.’

Stage No. of stage-salient biomarkers Size of consensus Top-10 overlap

TCGA RNAseqDB

I 71 40 25 CALB2, STAC2,
UCHL1, KCNG1

II 10 10 5 KLHL34, LPHN3
III 17 10 7 HABP2, SLC26A9
IV 59 57 33 UPK2, LY6G6C,

C6orf15, DLX3,
CST6, VGLL1

NKD1, COL9A3, and EDNRA are common to both the analyses. In addition, six stage-I
salient genes, namely CPXM2, NPR3, PALM, PRDM6, TAGLN, and TPM2 are identified
as stage-IV salient here. However the concordance between the markers from the reference
TCGA dataset and GSE39582 is not extensive, and merits discussion. Foremost, GSE39582
is limited to colon cancer samples, which might differ in some features from rectal cancers,
thereby missing some variation that is captured in the TCGACOADREAD dataset. Second,
we would like to note that out-of-domain cohorts might be sensitive to distribution shifts
in gene expression, which require measurement calibration with an adequate number of
normals from the same (new) cohort. Since there were few normal samples in the original
GSE39582 dataset, this might significantly skew the extension of gene signatures established
with the reference TCGA cohort. The addition of 308 normal colonic samples available in
the GTEx does not mitigate this issue, since (i) these are from an entirely different cohort,
and (ii) normal rectal tissue samples remain unaccounted for. In addition, the applicability
of candidate biomarker signatures to new cohorts might be bounded by bioinformatic
problems pertaining to data curation and processing. The contrarian findings prompted
us to seek robust validation of the models developed below.

Development of a diagnostic aid for colorectal cancer screening
We combined the 157 stage-salient genes, top ten genes from linear modeling, and the
18 genes that were both linear and monotonically expressed into a single expression
feature-space of 185 genes. The TCGA dataset was randomly split into a train dataset
of 287 cancer and 41 normal samples, and a holdout testset of 71 cancer and 10 normal
samples. Application of the feature selection techniques yielded a consensus feature space of
just seven essential features, viz. four of the top ten linearmodelling genes (ESM1,DHRS7C,
OTOP3, AADACL2), two stage-salient genes (stage-2 salient LPHN3 and stage-4 salient
GABRD) and one linearly monotonic gene (LPAR1). Using these features, four different
ML models were trained, and hyperparameters optimized. The models were ranked on
their performance on the training and holdout test sets (Table 9), and the Random Forest
and 2-layer neural network models were identified for blind external validation.

Palaniappan et al. (2024), PeerJ, DOI 10.7717/peerj.18347 16/35

https://peerj.com
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39582
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39582
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39582
http://dx.doi.org/10.7717/peerj.18347


Table 9 A summary of the models used for building a classifier capable of discriminating between cancer and normal samples based on the ex-
pression of seven features: ESM1, DHRS7C, OTOP3, AADACL2, LPHN3, GABRD, and LPAR1. Performance in terms of balanced accuracy (aver-
age of the accuracy on either class) is reported. All models achieved ‘perfection’ on the holdout testset, with marginal performance variation on the
training set.

S.No Classifier Hyperparameters of interest Optimal
hyperparameters

Performance (bal. acc.)

Training Testing

1 SVM (radial kernel) cost, gamma 0.5, 0.1 99.97 100
2 Random Forest ntree (#trees in the forest), mtry

(#candidate variables randomly
sampled for splitting)

500, 2.83 100 100

3 Neural Networks (1-layer) size, decay 1, 1 99.97 100
4 Neural Networks (2-layer) #units in hidden layer 1, #units

in hidden layer 2
4,1 100 100

Table 10 Blind evaluation of the best-performingMLmodels on external independent datasets. Ran-
dom Forest model was clearly better than the Neural Network 2-layer model on the external validation.
Bal. acc. refers to balanced accuracy (average of sensitivity (recall) and specificity).

S.No Model Bal. acc. Specificity Precision Recall F1-score MCC

1 Random forest 98.27 96.43 91.13 100 95.36 93.74
2 Neural network

(2layer)
96.15 93.18 84.21 99.12 91.06 87.98

Two external datasets were chosen for blind validation: (i) Rectal_cancer_MSK (Chatila
et al., 2022) with 113 mRNA-Seq expression samples, obtained from 738 primary rectal
tumors (https://www.cbioportal.org/; accessed 02-09-2023; accessed 02-09-2023) and (ii)
308 normal colon samples from the GTEx (accessed 12-10-2022). It is noted that the
microarray-based GEO datasets benchmarked in our study, namely GSE25071, GSE21510,
and GSE39582 were limited in the coverage of the gene-space, lacking expression values
for some of the seven features used in the models, and not further considered. The
hyperparameter-optimized Random Forest and 2-layer neural network models were
re-built on the full TCGA dataset and evaluated on the external datasets (Table 10).
All the cancer samples were correctly predicted by the Random Forest model, yielding
‘perfect’ recall. There were just eleven misclassified instances out of the 421 samples in the
combined external dataset, and all such instances were normal colon tissue samples, leading
to a balanced accuracy of 98.27%. The Random Forest model outperformed the 2-layer
Neural network model on all the metrics considered, including sensitivity, specificity,
F1-score, and Matthews correlation coefficient (MCC).

Development of a prognostic model for colorectal cancer
All the 157 stage-salient genes were subjected to univariate Cox regression analysis, and
the significant biomarkers (P < 0.05) are presented in File S14. Of the top stage-salient
genes, five emerged significant, namely JPH3, HOTAIR, CST6, GABRD, and DKK1 (all
P < 0.03). HOTAIR, CST6, GABRD, and DKK1 are stage-IV salient, while JPH3 is stage-I
salient (Fig. 8). Multivariate Cox regression analysis with feature selection yielded an
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Figure 8 Survival analysis of prognostically significant stage-salient genes.Univariate Cox regression
analysis of (A) HOTAIR , (B) GABRD, (C) DKK1; and (D) construction of optimal multivariate panel
comprising the above biomarkers. Over-expression of the prognostic biomarkers has a significant effect on
the survival probabilities (P < 0.05), and elevates the patient risk. Red - high-risk, blue - low-risk; colored
dashed lines represent corresponding 95% confidence intervals.

Full-size DOI: 10.7717/peerj.18347/fig-8

optimal panel of three genes, namely HOTAIR, GABRD, and DKK1, with a model p-value
∼5e−04, and individual significances ∼0.0086, 0.0053, and 0.0238, respectively (i.e., all
p-values < 0.05). The multivariate risk model was given by:

Risk-score = 0.14872 * HOTAIR + 0.4423 * GABRD + 0.10877 * DKK1
The hazard rate for all the prognostic factors significantly exceeded 1.0, indicating that

the constituents of the biomarker panel elevated the prognostic risk, suggesting possible
oncogenic roles in line with their overexpression. The distribution of risk scores yielded a
medianmaxstat value of 2.74 for patient risk stratification. Further, the Kaplan–Meier curve
of the multivariate model suggested that the high-risk group was significantly associated
(p-value <0.0014) with a poorer overall survival than the low-risk group (Fig. 12D). The
model yielded an acceptable Concordance index (C-index) ∼0.71 ± 0.05, suggesting
further application as a novel prognostic panel (Svoboda et al., 2014; Niu et al., 2020; Sui
et al., 2019). It is significant (and perhaps not surprising) that the identified prognostic
panel is entirely composed of stage-IV salient biomarkers, suggesting that the distance to
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Figure 9 Expression trends of candidate hub-driver genes. (A) GRIN2A and (B) EIF2B5.
Full-size DOI: 10.7717/peerj.18347/fig-9

metastasis is the single dominant factor in the stratification and determination of prognosis
of colorectal cancer.

DISCUSSION
To clarify the sum of findings from our studies, we began by looking at the canonical
CRC drivers, APC and MSH2, which are both implicated in familial CRC. APC and MSH2
are both significantly differentially expressed (adj.p-values ∼7.35e−13 and 2.06e−18
respectively). The expression patterns of these two genes (File S15) showed that APC was
downregulated in the cancer phenotype, flagging its key role as a known TSG.

We then looked at the hub-driver genes identified in a previous study of CRC network
analyses (Palaniappan, Ramar & Ramalingam, 2016), and found that GRIN2A and EIF2B5
were significantly differentially expressed in the cancer samples (adj.p-values ∼2.14e−37
and 2.32e−13, respectively). GRIN2A is a TSG with least expression in stage 2 (Fig. 9A),
reinforcing its role as a hub driver gene for stage 2 progression. EIF2B5 is an oncogene with
maximal expression in stage 3 (Fig. 9B), again according with its identified role as a major
hub driver gene for progression to advanced stages of colorectal cancer.

An analysis of the top genes from our linear model uncovered certain interesting
observations. The top gene hit, CDH3 (Cadherin 3 or P-Cadherin), has been found to
be overexpressed in a great majority of pancreatic ductal adenocarcinomas (PDACs)
(Taniuchi et al., 2005), lending support to its key role in gastrointestinal cancers. Further,
hypomethylation of the CDH3 promoter has been found in addition to (and the cause of)
increased expression of CDH3 in both breast cancer (Paredes et al., 2005) and advanced
colorectal cancer (Hibi et al., 2009). This can be due to the fact that over-expression of P
cadherin leads to high motility of cells, which enables the cancer cells to metastasize.

There is emerging evidence for the role of KRT80 in head and neck squamous cell
carcinoma (Zhao et al., 2022), but it is not a known cancer driver (https://www.intogen.org/
search?gene=KRT80). The gene OTOP2 has been identified as a TSG, as it was significantly
downregulated in the cancer phenotype. Another independent study also found that
wild type p53 regulated OTOP2 transcription in cells, and increased levels of OTOP2
suppressed tumorigenesis in vitro (Qu et al., 2019). OTOP3 belongs to the same family of
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otopetrin proton channels, but there is no published evidence for its role in any cancer
(https://www.intogen.org/search?gene=OTOP3).

AADACL2 is not a known cancer driver, but there is evidence for its role in a comorbid
breast-colorectal cancer phenotype (Pande et al., 2018). ETV4, another top candidate in
our linear model, has shown significant promise as a therapeutic target. A previous study
found that ETV4 knockdown in metastatic murine prostate cancer cells abrogates the
metastatic phenotype but does not affect tumor size (Aytes et al., 2013). According to our
model, ETV4 showsmaximal expression in stage 4 and is concordant with amolecular basis
for cancer stages. ETV4 is also a designated cancer gene in the COSMIC census (Forbes et
al., 2016).

ESM1 was found to be clearly overexpressed in clear cell renal cell carcinoma (Leroy et
al., 2010), and is also one among the 59 stage-4 salient genes from our study. Moreover,
ESM1 is also an MEG identified in our study, placing it as a very significant driver of
CRC progression. DHRS7C has been recently implicated in signaling pathways involved
in glucose metabolism (Ruiz et al., 2018). It exerts its effects via mTORC2, a complex
known to be at the heart of metabolic reprogramming (Masui, Cavenee & Mischel,
2014). Mysteriously DHRS7C was seen downregulated in colorectal cancer, given that
its upregulation is necessary for glucose uptake. These observations merit experimental
investigations to ascertain the precise nature of the molecular biology in question.

Some studies reveal that the LIM-domain-containing JUB serves as an oncogene
in CRC by promoting the epithelial-mesenchymal transition (EMT), a critical process
in the metastatic transition (Liang et al., 2014). The gene MTHFD1L coding for
methylenetetrahydrofolate dehydrogenase 1–like is significantly overexpressed in the
colorectal cancer phenotype. Studies show that MTHFD1L contributes to the production
and accumulation of NADPH to levels that are sufficient to combat oxidative stress in
cancer cells. The elevation of oxidative stress through MTHFD1L knockdown or the use of
methotrexate, an antifolate drug, sensitizes cancer cells to sorafenib, a targeted therapy for
hepatocellular carcinoma (Lee et al., 2017).

Comparing the transcriptomic stage-specific patterns of colorectal cancer samples
identified here with their methylomic stage-specific patterns (Muthamilselvan,
Raghavendran & Palaniappan, 2022), we uncovered interesting connections. Some of the
stage-salient genes here were also identified as stage-specific differentially methylated genes,
namely: BAI3, TPM2, ZSCAN18, ZNF415 (Stage-I); PLAC2, DMRT3 (Stage-II); PIGR,
TUBAL3 (Stage-III); and CST6 (Stage-IV). GABRD was earlier found to be significantly
differentially methylated in all stages except stage-IV, suggesting that methylation precedes
the stage-4 salient change in gene expression observed in this study. In the other direction,
GPX3, identified as a stage-I salient gene here, was detected as differentially methylated in
stage-2, suggesting the interpretation that change in its expression is necessary for cancer
metastasis and mesenchymal transition. The details for the above analysis are presented in
File S16.
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Stage-1 salient DEGs
The genes CALB2 and TMEM59L cluster together in Fig. 7 with the least stage-I expression,
suggesting the hypothesis that they function as tumor suppressor genes. This is supported
in the literature, specifically that cells in which CALB2 is silenced do not respond to
5-flourouracil, a favored treatment for CRC, indicating that CALB2 expression is necessary
for 5-flourouracil induced apoptosis (Stevenson et al., 2011). Another study found that
heterozygosity in SNP513 of Intron 9 of the gene CALB2 might be a predictive marker for
CRC (Vonlanthen et al., 2007). It has also been noted that increased TMEM59L expression
was a pro-apoptotic indicator of cell death during oxidative stress in neuronal cells (Zheng
et al., 2017). Regarding SOX2 and SOX10, it is noteworthy that the Cancer Genome
Atlas Network observed SOX9 as a novel gene with significant recurrent mutations in
COADREAD (The Cancer Genome Atlas Network, 2012).

Stage-2 salient DEGs
KLHL34 was found to be hypermethylated in Locally Advanced Rectal Cancer, and
knockdown of KLHL34 lowered colony formation, increased cytotoxicity, and increased
radiation induced caspase 3 activity in LoVo cells (Ha et al., 2015). CCBP2, encoding the
Chemokine decoy receptor D6, has an inhibitory effect on breast cancer malignancies
due to its action to sequester pro-malignant chemokines (Yang et al., 2013). The lncRNA
PLAC2 induces cell cycle arrest in glioma by binding to Ribosomal Protein RP L36 in a
mechanism involving STAT1 (Hu et al., 2018). GPC5 was found to be overexpressed in the
lung cancer phenotype (Li & Yang, 2011), in lymphoma, and in gastric cancer.

Stage-3 salient DEGs
Copy number polymorphisms of TRY6 gene have been found in breast cancer (Wagner et
al., 2007). HABP2 gene overexpression has been observed in lung adenocarcinoma and has
been proposed as a novel biomarker for the same (Wang et al., 2002).

Stage-4 salient DEGs
The lncRNA HOTAIR was found to be significantly overexpressed in HCC, and a potential
biomarker for lymph node metastasis in HCC (Geng et al., 2011), and later implicated
in different cancers (Hajjari & Salavaty, 2015). Another widely-cited study (Gupta et al.,
2010) showed that enforced HOTAIR gene expression in epithelial cancer cells induces
chromatin reprogramming and an increased metastatic state, while inhibition of HOTAIR
inhibits cancer invasiveness. These accounts of the role of HOTAIR in metastasis accord
with our findings that HOTAIR is a stage-4 salient significantly monotonically expressed
biomarker. GWAS analysis identified a strong association of C6orf15 with occurrence of
follicular lymphoma (Skibola et al., 2009). Promoter methylation of cell free DNA of the
CST6 gene was found to be a potential plasma biomarker for Breast Cancer (Chimonidou
et al., 2013). Expression of VGLL1 and its intronic miRNA miR-934 are associated with
sporadic and BRCA1-associated triple negative basal-like breast carcinomas (Castilla et
al., 2014). Expression of DKK1, an inhibitor of osteoblast differentiation, was found to be
associated with the presence of bone lesions in patients with multiple myeloma (Tian et
al., 2003). TMEM40 has been found to be a potential biomarker in patients with Bladder
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cancer, serving as an oncogene and a possible therapeutic target (Zhang et al., 2018). The
emergence of the C,E, and Fmembers of the Lymphocyte Antigen 6 (LY6) family (Loughner
et al., 2016; Upadhyay, 2019) as monotonically expressed proto-oncogenes holds promise
for immunotherapy. There is a substantial evidence base for GABRD (Gross, Kreisberg
& Ideker, 2015), which is a key component of both the screening and prognostic models
developed here. Consistent expression trends in GABRD and other stage-salient MEG
DEGs provide unmistakable evidence for the existence of molecular signatures in CRC
progression.

Benchmarking with curated databases
We found 13 of the top 200 genes from the linear model documented in the CGC v84
as known cancer genes (Table 11). Two genes, MACC1 and SALL4, were specifically
documented for colorectal cancer. HSP90AB1 had been earlier identified as a top MEG
in HCC (Sarathi & Palaniappan, 2019). Screening the 157 stage-salient genes against the
NCG7.0, which is a curated database of cancer drivers and healthy drivers, yielded 28
genes, of which eight were in the top 40 stage-salient genes (File S17). All the hits were
documented to carry mutations in their coding region (vs noncoding region). Three
were canonical oncogene drivers, namely HOXC11, SOX2, and KCNJ5, while the rest 25
are putative oncogenes and putative tumor suppressors in almost equal measure. Two
stage-salient genes, namely CNTN1 and BAI3 (ADGRB3) were documented as putative
tumor suppressor genes involved in gastric adenocarcinoma, providing specific support
for our findings. PIGR is identified as an essential healthy driver (Olafsson et al., 2020),
signifying that mutations in this gene confer an exceptional protective effect, and its
down-regulation could drive tumorigenic processes. Intriguingly, the stage-salient genes
C5ORF23 (NPR3), SOX2, and KCNJ5 are the only instances where the documentation
is dissonant with our primary findings; these three were marked as putative oncogenes,
though they are identified as down-regulated here. Further investigations in this direction
are warranted to set the literature straight. Documentary evidence for drugs targeting
any of these genes is absent, emphasizing the value of the present study in pinpointing
novel candidates for diagnosis, therapy and prognosis. To perform a systematic analysis of
therapeutic interventions based on these targets, we consulted ClinicalTrials.gov for clinical
trials targeting stage-salient genes. Ten genes from the top stage-salient genes are being
pursued in clinical trials, either as target or endpoint, colorectal or other cancers. Details of
clinical trials alongwith the current status/phase of each trial are provided in File S18. DKK1
and HOTAIR are the only stage-4 salient genes implicated as targets/endpoints in clinical
trials. DKK1 is involved in three clinical trials for colorectal and gastric cancers. HOTAIR is
the target of a clinical trial for thyroid cancer (ctgov:NCT03469544) (Abudoureyimu et al.,
2016). HOTAIR is documented in the NONCODE database (http://www.noncode.org/) as
disease-associated, specifically with colorectal cancer (ID: NONHSAG011264.3), validating
its role in oncogenic processes. It is notable that GABRD is not a target in any of the
registered clinical trials, flagging a prime potential interest for future efforts. LPHN3, a
stage-2 salient gene, is targeted in four clinical trials aimed against metastatic colorectal
cancer, to explore possible therapeutic efficacy in thwarting cancer progression prior to
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Table 11 Summary of top 200 genes of the linear model documented in the CGC. These are cancer
driver genes with known experimental evidence. In the case of FAM135B, FEV, CBFB, and CTNND2, the
regulatory status inferred here is at odds with their documented cancer role, thereby indicating potential
anomalous regulation whose resolution would be tractable to experimental investigation.

Gene symbol Illustrative tumors Documented role Status

ETV4 Ewing sarcoma, prostate carcinoma oncogene, fusion UP
CBFB acute myeloid leukemia TSG, fusion UP
KIAA1549 pilocytic astrocytoma fusion UP
HSP90AB1 non-Hodgkin’s lymphoma fusion UP
MACC1 hepatocellular carcinoma, CRC oncogene UP
SET T-cell acute lymphoblastic leukemia oncogene, fusion UP
MET papillary renal, head-neck squamous cell oncogene UP
SALL4 CRC, breast cancer, prostate cancer, glioblastoma,

melanoma
oncogene UP

FAM135B small cell lung cancer, esophageal cancer oncogene DOWN
FEV Ewing sarcoma oncogene, fusion DOWN
CDH10 Melanoma TSG DOWN
PHOX2B Neuroblastoma TSG DOWN
CTNND2 prostate adenocarcinoma,

GIST (gastrointestinal stromal tumor)
oncogene DOWN

irreversible outcomes. FADS6 (a stage-II salient gene) is an endpoint in a clinical trial to
treat colorectal adenomatous polyps, which is a precursor to malignant lesions. CALB2 and
C5orf23 (NPR3) are each involved in one clinical trial related to colorectal cancer. Some
stage-salient genes are being pursued in treatment of cancers in other cell types/tissues,
underlining the role played by certain genes in contributing to general cancer hallmark
processes (Hanahan &Weinberg, 2011). Specifically NAT2 is a target in nine different
clinical trials against diverse cancers, significantly highlighting its essential role in driving
hallmark processes in unrelated cancers.

Insights from network analysis
Stage-wise network analysis of colorectal cancer progression has shed light on certain
genes potentially underlying progression (Rahiminejad et al., 2022). The strength of the
computational evidence for the candidate biomarkers identified herein urged a network
analysis to examine the findings in a larger context. The intersection between the sets
of all stage-salient biomarkers and the significant MEGs might highlight monotonically
enriched pathways essential to the pathophysiology of colorectal cancers. Hence the 31
stage-salient MEGs were chosen to reconstruct the STRING network, with 50 interactors
in the first shell and 10 interactors in the second shell. This yielded a PPI with 235 edges
with an extremely significant enrichment p-value < 1.0e−16 (Fig. 10). A Gene Ontology
(Ashburner et al., 2000) analysis of this reconstructed network showed enrichment for
the Wnt-Frizzled-LRP5/6 complex component at p-value < 1E-04. An analysis with
KEGG (Kanehisa et al., 2016) showed enrichment for 2-oxocarboxylic acid metabolism
at p-value ∼0.001, indicating a Warburg-shift in metabolism. An analysis with Reactome
(Sidiropoulos et al., 2017) showed significant enrichment of SMAD2/3 and SMAD4 MH2
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Figure 10 Network reconstruction of perturbed pathways with monotonic expression enrichment
based on the seed set of stage-salient MEGs in TCGA COADREAD. Evidence from known interactions
(curated databases, experimentally determined) or predicted from gene neighborhood, gene fusions or
gene co-occurrence were used in identifying edges. Colored nodes indicate query proteins and first shell of
interactors, whereas white nodes indicate second shell of interactors.

Full-size DOI: 10.7717/peerj.18347/fig-10

Domain Mutants in Cancer (p-value < 0.01). These observations in toto provide striking
evidence for the involvement of these biomarkers in driving CRC progression.

Isolated nodes in the network included GABRD, DLX3, ISM2, LY6G6C & E, SPYDC,
UPK2, C2orf48, PIGR, KRTAP3-1, C7orf52 (NAT16), SPERT, and PLAC1. All the isolated
nodes are proto-oncogenic (see Table 7), hence could provide targets for inhibition
in personalized cancer medicine. An outlier component (not in the giant connected
component) was made of the CXCL chemokine family, stemming from CXCL13—a
recently recognized immune checkpoint with a key role in tumor progression (Yang et al.,
2021; Ren et al., 2022). This component could constitute a novel target for upregulation in
CRC immunotherapy. A drug-repurposing search with the DrugGeneBadger (Wang et al.,
2019) for each of the 31 stage-salient MEGs yielded drugs (small molecules with q-values
< 0.05) to pharmacologically alter the expression of these identified biomarkers. The search
revealed that curcumin is effective against at least 13 of these targets, and piperlongumine
against eight of these targets. Six biomarkers (HOTAIR, ISM2, KRTAP3-1, SPDYC,
LY6G6F, and NKD1) found no drug available in LINCS1000 (Subramanian et al., 2017) to
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modulate their expression, and these constitute potential novel targets for drug discovery
against metastatic transition in CRC.

A network specific to colon cancer could be obtained using the results for GSE39582,
and is presented in File S19. Enrichment analysis of this network with Gene Ontology
indicated significance for Arp2/3 complex-mediated actin nucleation (p-value ∼1e−4),
which is known to contribute to invasive colorectal cancer (Zheng et al., 2023). A KEGG
analysis showed enrichment for oxidative phosphorylation (p-value ∼1e−20), with a
prominent clustering of NDUF and COX gene families. A Reactome analysis showed a
minor enrichment of enzymatic protein conjugation processes (UBE2I, UBA2, SAE1) that
monitor intracellular proteins and cell states (p-value ∼0.02). These findings indicate an
enrichment of proliferation-independent metabolism-rewiring pathways necessary for
colorectal cancer progression, and could be contrasted with the analyses in Marisa et al.
(2013).

Immune-cell infiltration analysis
Deconvolution of the TCGA samples based on the LM22 immno-cyte signature with 100
permutations yielded 107 samples with significance (P < 0.05), including eleven controls.
These samples, with their TCGA identifiers, are presented in File S20. The significant
samples were analyzed for the relative abundance of the 22 immune cell types. A heatmap
of the sample-wise immune cell-type proportions was generated (File S21A), and the
clustering patterns of the cell-types across samples was visualized using a dendrogram. We
observed the following clusters: mast cells resting and plasma cells; mast cells activated
and neutrophils; T cells CD8, T cells follicular helper, and macrophages M1; T cells CD4
memory resting and B cells naive. The macrophages M0 and M2 were clear outgroups
in the dendrogram. A normalized stacked bar chart of the sample-wise immnuo-cyte
fractions revealed substantial variations in immune cell-type composition between normal
and cancer samples (File S21B). To investigate further, we analyzed the differences in
distribution of cell proportions between normal and tumor samples for each immune
cell-type (File S21C; data presented in File S20). Eight of the 22 immunocyte types showed
significant distribution differences (adj. P < 0.05). Specifically, we found the infiltration
of four immune cell-types preferentially enriched in tumor samples, namely macrophages
M0, T cells CD4 memory activated, mast cells activated, and neutrophils, while four other
immune cell-types were preferentially depleted in tumor samples, namely macrophages
M2, T cells CD4 memory resting, mast cells resting, and plasma cells. In particular,
macrophages M0 exhibited both the largest effect size (>2.0) and the greatest significance
(<1E-07) of infiltration in tumor samples. The preferential enrichment of mast cells
activated and T cells CD4 memory activated versus the preferential depletion of mast
cells resting and T cells CD4 resting suggested that tumorigenesis activates resting immune
cell-types, potentiating their infiltration of the tumormicroenvironment. To integrate these
observations, we computed the correlation matrix of the immune cell-types based on their
sample-wise proportions over both normal and tumor samples (File S21D). The largest
positive correlations were exhibited by T cells follicular helper with T cells CD8 (Pearson’s
ρ ∼0.52), and with macrophages M1 (Pearson’s ρ ∼0.45), reinforcing their clustering in
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the dendrogram. Intriguingly, the largest negative correlation (in magnitude) was exhibited
by macrophages M0 and T cells CD4 memory resting (Pearson’s ρ ∼−0.51) (File S21D).
Given that macrophages M0 are preferentially enriched in tumor samples whereas T cells
CD4 resting and mast cells resting (Pearson’s ρ ∼−0.47 with macrophages M0) are both
preferentially depleted, these observations cohere and could hold preliminary significance
for immunotherapy. Discovery of multicellular immunocyte community structures could
pave the way for personalized immunotherapy in CRC treatment (Sarathi & Palaniappan,
2019; Ge et al., 2019).

COADREADx
Based on the external validation, the Random Forest model was identified as the best model
for screening early-stage cancer. Coupled with the prognostic model, these could aid the
risk stratification of patient samples. With this application in mind, we have deployed
COADREADx, an experimental web service for the screening of patient samples as ‘cancer’
or ‘normal’, and subsequent prognostication in the case of ‘cancer’. COADREADx has
been implemented using R-Shiny (https://shiny.rstudio.com/), and is available for academic
use at: https://apalanialab.shinyapps.io/coadreadx/. A help document with sample input
files for different use-cases, and a companion how-to video have been made available
on the landing page. To aid the effective interpretation of COADREADx predictions,
the prediction probability for the predicted diagnostic class is provided, yielding a level
of confidence in the prediction. Similarly the risk stratification of ‘cancer’ samples is
accompanied by the quantile of the estimated risk-score as well as its fold-change from the
median value of the risk score distribution. These values suggest the strength of evidence
for the predicted risk class.

In summary, we have performed a novel de novo analysis of the TCGA COADREAD
gene expression dataset, and identified multiple interesting classes of biomarkers. The
biomarkers have been validated with alternative datasets, network analysis and immune
cell infiltration analysis. Some of the biomarkers could suggest novel hypotheses for targeted
therapy and immunotherapy. Using purifying techniques, we have carved feature spaces
from these biomarkers to build screening and prognostic models of colorectal cancer.
The screening model has been externally validated, while the prognostic model has been
bootstrapped for confidence. Both the models have been deployed via COADREADx, a
web-server designed to return confidence estimates for all its predictions. Phenomena
of distribution drift and shift in new samples and out-of-domain cohorts challenge the
applicability of COADREADx, which might need refinement in the light of such evidence.
Further validation of themodels on colon cancer samplesmight also bewarranted. Enabling
risk stratification is vital to treatment strategy and clinical management of the cancer.
Thus experimental validation and further improvement of COADREADx is necessary
to demonstrate its clinical utility for screening and prognosis purposes. It is reckoned
that the availability of such software-as-medical-devices could ease the accessibility to
effective surveillance technologies for early detection of colorectal cancer (Muthamilselvan,
Ramasami Sundhar Baabu & Palaniappan, 2023).
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CONCLUSIONS
We have identified stage-salient signatures of colorectal cancer, and developed multiple
workflows toward their computational validation. Early-stage biomarkers present prime
targets for potential pharmacological intervention, while modulating the expression of
progression-significant biomarkers (for e.g., by inhibiting the overexpressed ones or
activating the expression of downregulated ones) could possibly block the progression of
colorectal cancer. A model for the early-stage screening of colorectal cancer was created
using seven consensus biomarkers (namely ESM1, DHRS7C, OTOP3, AADACL2, LPHN3,
GABRD, and LPAR1), and yielded >98% balanced accuracy on external validation. A
survival analysis protocol yielded a prognostic panel of three stage-IV salient genes (namely
HOTAIR, GABRD, and DKK1) for patient risk stratification, suggesting that high-risk
prognosis could be extracted from the oncogenic signature of these metastasis-salient
genes. The weight of the evidence presented herein suggests a central role for molecular
factors in cancer progression. COADREADx, provides an experimental set of tools for
colorectal cancer screening and prognosis based on the candidate biomarkers identified in
our study. Our findings will need experimental validation and testing in prospective cohorts
for translation to the clinic, and set the stage for further exploration of signature panels on
the overall path to securing the best intervention for the condition. The hypothesis-agnostic
study design also provides a framework for the investigation of other cancers, and more
generally, progressive degenerative conditions.
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