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ABSTRACT

Chytridiomycosis is a fungal disease responsible for massive amphibian die-offs world-
wide, caused by the fungus Batrachochytrium dendrobatidis (Bd). Potential symbiotic
relationships between frogs and the bacteria residing on their skin—referred to as skin-
bacteria—may inhibit Bd growth, aiding in resistance to this lethal disease. This research
had three main objectives: (1) to detect the presence of Bd in native populations of
Atelopus balios, A. bomolochos, and A. nanay in the central Andes and coastal southern
regions of Ecuador; (2) to identify the culturable skin-bacteria; and (3) to analyze

differences among the bacterial communities in the three Atelopus species studied. Skin
swabs were collected from two populations of A. balios (107-203 m a.s.l.) and one

population each of A. bomolochos and A. nanay (3,064-3,800 m a.s.l.). These swabs

served two purposes: first, to detect Bd using conventional PCR; and second, to isolate
culturable bacteria, which were characterized through DNA sequencing, molecular

phylogeny, and community composition similarity analysis (Jaccard index). Results

showed that Bd was present in all species, with positive Bd PCR amplification found
in 11 of the 12 sampled amphibians. The culturable skin-bacteria were classified into
10 genera: Pseudomonas (31.4%), Stenotrophomonas (14.3%), Acinetobacter (11.4%),
Serratia (11.4%), Aeromonas (5.7%), Brucella (5.7%), Klebsiella (5.7%), Microbacterium
(5.7%), Rhodococcus (5.7%), and Lelliottia (2.9%). The Jaccard index revealed that

bacterial genera were least similar in A. bomolochos and A. balios (] = 0.10), while the
highest similarity at the genus level was between A. bomolochos and A. nanay (J = 0.33).
At the clade-species level, only A. bomolochos and A. nanay show common bacteria (] =
0.13). Culturable bacterial communities of specimens diagnosed as Bd positive (n = 10)
or Bd negative (n=1) share a J value of 0.1 at genus and 0.04 at species-clade level. The
prevalence of Bd and the composition of cutaneous bacteria could be influenced by
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Bd reservoirs, Atelopus biology, and intrinsic environmental conditions. This research
contributes to understanding the relationship between endangered Andean species and
Bd, and explores the potential use of native skin-bacteria as biocontrol agents against
Bd.

Subjects Microbiology, Molecular Biology, Mycology, Parasitology, Zoology
Keywords Amphibia, Chytrid fungi, Central Andes Ecuador, Skin bacteria

INTRODUCTION

A lethal fungal panzootic has devastated the three orders of amphibians (Anura, Urodela,
and Gymnophiona) worldwide, causing massive mortality events (Berger et al., 1998;
Piotrowski, Annis & Longcore, 2004). This decline is primarily attributed to the fungus
Batrachochytrium dendrobatidis (Bd) (Hanlon et al., 2018). Bd is the most recognized
species related to the development of chytridiomycosis, a lethal disease affecting frogs,
toads, and salamanders (Lips Karen, 2016).

Bd reproduces through asexual zoospores, which are equipped with a single flagellum
that facilitates their movement in aquatic environments. Infection occurs when these motile
zoospores contact skin of a susceptible host (Romero-Zambrano et al., 2021; Woodhams
et al., 2018). Clinical signs of chytridiomycosis include lethargy, abnormal posturing,
seizures, severe cutaneous disorders, and ultimately death (Marcum et al., 2010; Van Rooij
et al., 2012). However, there is evidence that some amphibian species demonstrate greater
tolerance to Bd than others, thereby avoiding the development of disease. This resistance
has been linked to synergetic interaction of bacteria metabolites, antimicrobial peptides,
and skin microbiota (Woodhams et al., 2014; Woodhams et al., 2007).

Like other organisms, amphibian skin hosts a layer of microorganism known as the
cutaneous microbiota, which includes viruses, bacteria, and fungi (Bletz et al., 2013;
Rosenthal et al., 2011; Woodhams et al., 2014). To understands the role of cutaneous
microbiota in chytridiomycosis development, previous studies have shown that certain
bacteria can produce secondary metabolites with the potential to either affect positively
or negatively the host fitness (Liew et al., 2017; Morosini et al., 20065 Sun et al., 2023). For
example, the molecules 2,4-diacetylphloroglucinol, produced by Lysobacter gummosus and
indole-3-carboxaldehyde along with violacein produced by Janthinobacterium lividum
demonstrated the potential to interfere with the growth of Bd (Niederle et al., 2019).

Historically, chemical treatment has been the primary method for the treatment of
chytridiomycosis, yet there is a risk of adverse effect on the amphibian skin (Garner et al.,
2009; Thumsovd et al., 2024). In response, recent attention has shifted towards the potential
of anti-Bd bacteria. This information is limited in Ecuador, with only one related study
reporting the anti-Bd bacteria J. lividum, Pseudomonas fluorescens and Serratia sp., isolated
from the high-land frog Gastrotheca riobambae (Bresciano et al., 2015). These bacteria
have been described as a potential source of amphibian probiotics and Bd bio-controllers
(Becker ¢ Harris, 2010; Rebollar, Martinez-Ugalde ¢ Orta, 2020). Furthermore, studies
indicate that using autochthonous bacteria—naturally occurring in the amphibian’s native
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environment—can effectively prevent disease in the host species from which they are
isolated. However, their effectiveness may not extend to other species (Bates et al., 2018;
Becker et al., 2011; Harris et al., 2009; Rebollar, Martinez-Ugalde & Orta, 2020).

In Ecuador, the presence of Bd has been documented in eight out of the 24 provinces
and in three out of the four regions (except for Galapagos). Bd has been identified in
amphibian species within various families, including Bufonidae, Centrolenidae, Hylidae,
Hemiphractidae, Craugastoridae and Leptodactylidae (Riascos-Flores et al., 2024). Notably,
the Bufonidae family, which includes a significant number of threatened species, has
experienced severe population declines that are potentially linked to Bd (Ortega-Andrade et
al., 2021). Of these species, the genus Atelopus is highly threatened, with 25 species (44.6%)
at risk (Ortega-Andrade et al., 2021).

This research had three aims: (1) to detect of the presence of Bd in native populations
of Atelopus balios, A. bomolochos, and A. nanay in the central Andes and coastal southern
regions of Ecuador; (2) to identify the culturable skin-bacteria; and (3) to determine
the differences between the culturable bacterial communities characterized in the three
Atelopus species studied. A. nanay is known to inhabit exclusively Cajas National Park
(about 285 km?) in Azuay Province (IUCN, 2018), while the distribution of A. balios is
confined to a threatened area of approximately 55 km? (Pérez-Lara ¢» Ramirez-Jaramillo,
2020). A. bomolochos, believed extinct until 2015, has to date been found only within the
“Municipal conservation and sustainable use area” in the Cordillera Oriental of Azuay
province (Ron, 2021; Ron ¢ Merino, 2000). This study is expected to provide insights for the
development of integrated conservation strategies, particularly in the realm of microbiota
research and its role in amphibian health and disease resistance.

MATERIALS & METHODS

Study species and sampling sites

Data were collected as previously described in Yanez-Galarza (2022). The three Atelopus
species are endemic from Ecuador and considered as critically endangered (CR) by the
IUCN (Ortega-Andrade et al., 2021). Skin swabs were collected from two populations of
the lowland inhabitant A. balios on Guayas province: “Cerro Las Hayas”(502.72452,
W79.61892) and “Estero Arenas” (502.75077, W79.61269), in southwestern coastal
Ecuador. Moreover, two highland inhabitant species were studied: A. bomolochos

on “Cerro Negro” (S03.15675, W78.84538) and A. nanay in “Cajas National Park”
(502.88337, W79.30685), both located in Azuay province (Fig. 1). A field research
permit (MAATE-DBI-CM-2021-0177) was obtained from the Ministry of Environment
from Ecuador. Geographic data for the map in Fig. 1 were downloaded from SAVGIS
http:/fwww.savgis.orglecuador.htm.

Sampling strategy

Due to the limited number of adult specimens in the sampled areas (Cdceres-Andrade, 2014;
Ortega-Andrade et al., 2021), amphibian sampling required a collaborative effort involving
a team of four to seven people. Amphibians were located through visual encounter survey
conducted along longitudinal transect surveys near permanent streams. To mitigate the
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Figure 1 Map showing the studied locations in the highlands and coastal area of Ecuador. T, tempera-
ture. RH, relative humidity. m a.s.l., meters above sea level. Photographs by H. Mauricio Ortega-Andrade.

Full-size Gl DOI: 10.7717/peerj.18317/fig-1

risk of collecting transient bacteria, each specimen was captured using new disposable

nitrile gloves and rinsed with sterilized ultrapure water (Lauer et al., 2008). The swabbing
procedure was performed in accordance with the protocols established by Angulo et al.
(2006). Duplicates of CITOSWAB Series@®) and a microbiological collection and transport
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system (Amies Charcoal gel swabs) were used for each specimen. Control samples were
obtained by exposing a sterile swab to the open air at the study sites for 5 s to capture
environmental microbes present in the surrounding air. The first swab of each duplicate
and the control swabs were immediately stored in their transport system according to
manufacturer’s specifications and stored at —4 °C for bacterial isolation. The second swab
was preserved in a 1.5 mL cryovial containing 400 wL of lysis buffer (Tris-HCI 0.18 M;
EDTA 10 mM, SDS 1%, pH 8.2), refrigerated at —4 °C and processed for DNA isolation
within 24 h after sampling in a field lab (Riascos-Flores et al., 2024). In this process, samples
used for DNA extraction and subsequent PCR reaction for the presence of Bd were also
considered negatives controls for this study. After sampling, specimens were released at the
same place of capture. No specimens were euthanized.

Bacterial isolation

Each swab was plated using the streaking method on Luria-Bertani (LB) agar (37 g/L) in
duplicate and incubated at 30 °C for 48 h. Bacterial morphotypes were defined according
to the macroscopic characteristics of the obtained colonies (i.e., color and form). Single
colonies of each bacterial morphotype per sample were streaked on fresh LB agar to obtain
axenic cultures. Each isolate was cryopreserved in Mueller Hinton broth (21 g/L) with 30%
glycerol at —80 °C.

DNA isolation and PCR amplification

DNA extraction for Bd detection was performed according to the protocol described by
Riascos-Flores et al. (2024). PCR amplification was performed using a miniPCR™ minil6
thermal cycler. The specific primers ITS1-3 Chytr-F (5'-CCTTGATATAATACAGTGTG
CCATATGTC-3') and 5.8S Chytr-R (5'-AGCCAAGAGATCCGTTGTCAA-3") (Boyle et al.,
2004) were used, resulting in a 146 bp amplicon. Reactions contained 7.5 pL of autoclaved
MilliQ H,O, 1 nL of each primer at a concentration of 10 mM, 12.5 pL of TagMan
Environmental Master Mix 2.0, and 3 pL of DNA for a total volume of 25 pL per reaction.
The thermal cycle was programmed in the miniPCR App v2.0 software with the following
conditions: initial denaturation at 95 °C for 120 s, 35 cycles of denaturation at 95 °C for
60 s, annealing at 60 °C for 30 s and extension at 72 °C for 30 s, and final extension at
72 °C for 300 s.

Molecular identification of bacteria

Bacterial DNA isolation was performed following the protocol for isolating genomic
DNA from gram-positive and gram-negative bacteria of the modified Promega Wizard®)
genomic DNA purification kit. PCR amplification was performed using a miniPCR ™
minil6 thermal cycler. The 16S bacterial rRNA of each bacterial morphotype isolated from
each sample was amplified using the primers 16s-F (5'-GGAGGCAGCAGTAGGGAATA-
3/) and 16s-R (5'-TGACGGGCGGTGAGTACAAG-3") (Persson ¢» Olsen, 2005). The PCR
master mix contained 15.5 pL of sterile MilliQ H,O, 2.5 pL of Invitrogen’s 10X Buffer
Green, 0.75 pL of MgCl,, 0.5 L of dNTPs, 0.5 wL of each primer (10 uM), 0.1 pL of
Invitrogen’s Platinum Taq DNA Polymerase, and 5 pL of DNA (25 ng/nL) for a final
volume of 25 pL per reaction. PCR conditions were as follows: initial denaturation at
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95 °C for 300 s, 34 cycles of denaturation at 94 °C for 60 s, annealing at 54 °C for 45 s and
extension at 70 °C for 60 s, followed by a final extension at 70 °C for 480 s.

PCR products were visualized by electrophoresis in a blueGel ™ electrophoresis with
built-in transilluminator equipment, using 2% agarose gel in TBE 1X with 1X GelGreen
™ nucleic acid stain. The 100 bp DNA ladder (Promega, Madison, W1, USA) was used to
confirm the size of the amplified products. Bd (146 bp) and bacteria (1,062 bp). Amplicons
were purified from agarose gel using the Wizard®) SV Gel and PCR Clean-Up System
from Promega.

Sequencing data processing

For Bd detection the purified products were sent to Macrogen Co. Ltd. (South Korea) for
Sanger DNA sequencing. Sequences were trimmed, edited, and assembled using Geneious
v.5.4.7 software. For 16S rRNA sequences were identified using BLAST/n against the
complete GenBank nucleotide database with default parameter settings (Flechas et al.,
2012).

Taxonomy and phylogenetic analysis of the 16S rRNA gene

The 16S rRNA consensus sequences obtained and additional 135 sequences (>1,000 bp)
from bacteria from Genbank were aligned using Geneious v.5.4.7. Additionally, the
Synechococcus elongatus sequence (AB871649) was used as an outgroup.

Mesquite v3.0 was used to export the aligned matrix in NEXUS format for MrBayes with
the default parameterization. jModelTest2 software was used to test the best nucleotide
substitution model on the CIPRES platform https:/iwvww.phylo.org/.

Once the best nucleotide substitution model was stablished, the phylogenetic analysis
was performed with Bayesian methods on the aligned matrix in MrBayes v3.2.2 in CIPRES.
The following parameters were configured: two parallel sections of the Metropolis coupled
Monte Carlo Markov chain, two independent runs, 20 million generations, with three hot
chains (temperature 0.2), saving a tree and its statistics every 1,000 generations; and a burn
fraction of 25% of the trees.

Tracer v1.7.1 software was used to validate the phylogenetic models based on the
distribution pattern and stability of the likelihood values evaluated from the Effective
Sample Size (ESS > 200) parameter estimates across generations.

The taxonomic assignation was based on the Basic Local Alignment Search Tool
(BLAST/n) similarity and the phylogenetic position of each sample to bacterial lineages.
Unconfirmed genetic samples were labeled with “affinis” (aff.) or “confer” (cf.) to refer to
similar or comparative taxonomic identities. Samples that formed a cluster with a probable
species and showed a support value > 0.7 and <0.9 were labelled as “affinis” (aff.). Samples
that either formed a cluster with a probable species and showed a support value <0.7, or
clustered alone but closely with a clade suggesting a close genetic relationship, were labeled
as “confer” (cf.).
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Community composition

A similarity analysis was performed to compare the composition of culturable bacterial
communities among species and between positive and negative samples with the Jaccard
coefficient (J) in PAST software (Hammer et al., 2001).

RESULTS

Bd detection in native populations

A total of 12 specimens sampled from Atelopus toads were swabbed. Bd was detected
across all four sampling sites and in all three Atelopus species, showing a prevalence of
91.7% (11 out of 12). Specifically, positive BD was found in two individuals of A. nanay
(HMOA 2397, HMOA 2390) from Cajas National Park, two A. bomolochos from Cerro
Negro, and seven A. balios—five from Cerro Las Hayas (HMOA 2415-2419) and two from
Estero Arenas (HMOA 2420-42421). No signs of chytridiomycosis were observed in any
of the specimens, including the deceased individual identified as HMOA 2399 of A. nanay,
which tested positive for Bd. This specimen was found dead beneath a rock in a stream
at Cajas National Park. Only one A. nanay specimen, HMOA 2398, tested negative for
Bd. Additionally, no amplification was detected in the negative control swabs from each
location.

Bacterial taxonomy and phylogeny identification of culturable skin-
bacteria
Identification of 16S rRNA from a total of 35 bacteria morphotypes through BLAST/n search
yielded 11 genera (Acinetobacter, Aeromonas, Brucella, Klebsiella, Lelliottia, Microbacterium,
Pantoea, Pseudomonas, Rhodococcus, Serratia, and Stenotrophomonas) belonging to 10
families, 6 orders, 3 classes, and 2 phyla (Table 52). However, maximum scores, percentage
of query coverage, and percentage identity of genetic samples coincided with multiple
sequences from different species. One hundred seventy sequences were downloaded from
GenBank to recover the phylogeny, based on BLAST/n similitude for the 16S rRNA gene.
The best topology (log-likelihood-16777.01) was obtained from a matrix with an
extended set of 1349 characters (Fig. 2, Fig. S1). It allowed to identify 22 clades belonging
to 10 genera: Pseudomonas (31.4%), Stenotrophomonas (14.3%), Acinetobacter (11.4%),
Serratia (11.4%), Aeromonas (5.7%), Brucella (5.7%), Klebsiella (5.7%), Microbacterium
(5.7%), Rhodococcus (5.7%), and Lelliottia (2.9%) (Fig. 3 and Table S2). Pantoea was
renamed as Klebsiella based on the phylogenetic position (Fig. 2). No attachment of
bacterial DNA sequences from this study to BLAST/n suggested species was observed, and
Bayesian posterior probabilities <0.7 were also noted. Hence, one (2.9%) of the samples
were assigned as affinis, whereas 28 (80%) were assigned as confer.

Comparison between culturable bacteria communities

Clustering by the UPGMA hierarchical method (see Fig. 4, section a and b) show two
major clusters: one composed by the culturable bacterial communities from the highlands
and the other from the lowlands. This indicates that bacterial communities are grouped
according to their respective environments (Fig. 4). Results from the Jaccard similarity
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coefficient (J) show that bacterial genera were least similar in A. bomolochos and A. balios
(J =0.10), while the highest similarity at the genus level was between A. bormolochos and

A. nanay (] =0.33). At the clade-species level, only A. bomolochos and A. nanay show
common bacteria, with a Jaccard similarity of ] =0.13 (Table S3).

Culturable bacterial communities of specimens diagnosed as Bd positive (n=10) or
Bd negative (n = 1) share a J value of 0.1 at genus and 0.04 at species-clade level. The
genera Pseudomonas was the only genus found in both infected and uninfected individuals.
In contrast, Acinetobacter, Aeromonas, Brucella, Klebsiella, Lelliottia, Microbacterium,
Rhodococcus, Serratia and Stenotrophomonas were only found in infected toads (Fig. 4).

DISCUSSION
Detection of Bd in native species

Bd presence and skin culturable bacteria communities were analyzed in native populations
of three critically endangered Atelopus species in Central Andes and coastal Ecuador. The
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decline of A. bomolochos has been linked to Bd infection, evidenced by the histological
diagnosis of a museum specimen collected in 1980 (Ron & Merino, 2000). Since its
rediscovery in 2015, there have been no reports of Bd with this population. However,
our study shows that specimens from Cerro Negro are infected by Bd, representing another
threat to this population, which already faces habitat alteration (Siavichay, 2018).

For the A. nanay population in the Cajas National Park, this study represents the
second report of Bd in individuals from the area (Cdceres-Andrade, 2014). Moreover,
the detection of Bd in one individual found dead, highlights ongoing risk but does not
conclusively attribute death directly related to chytriomycosis. The persistence of Bd in
Cajas National Park can be attributed to a “latent” stage of the fungus, which enables
survival outside of hosts (Mitchell et al., 2008) as well as suitable biotic and/or abiotic
conditions for its development (Lambertini et al., 2021). Non-declining amphibian species
(i.e., Gastrotheca spp. and Pristimantis spp.) may act as Bd reservoirs (Hudson et al., 2019).
Cool temperatures at high tropical elevations, such as in Cajas National Park and Cerro
Negro have been described to favor the growth of Bd (Lambertini et al., 2021; Piotrowski,
Annis & Longcore, 2017).

This study represents the first report of Bd infection in A. balios, a lowland rainforest
inhabitant species, in Guayas province. This represents the lowest elevation site for Bd
presence reported in Ecuador, at 107 m above sea level. Additionally, a previous Bd
detection in the amphibian population was recorded 35.7 km from our sampling site,
at an elevation of 350 m above sea level (IUCN SSC Amphibian Specialist Group, 2018;
Pérez-Lara ¢& Ramirez-Jaramillo, 2020).

Differences in cultivable microbiota

As expected, culturable bacterial communities diverged between Atelopus species. Despite
belong to the same genus, the sampled species exhibited distinct environmental and
biological characteristics including host immunity, skin toxin production and frequency
of skin shedding. These characteristics are likely to have influenced the composition of
their microbiota, which was observed to vary across species. This study is consistent with
previous evidence that amphibian skin bacterial communities tend to be host species-
specific (Kruger, 2020; McKenzie et al., 2012b; Solomon et al., 2017; Walke et al., 2017). The
higher similarity value (J) between A. bomolochos and A. nanay may be linked to their
biogeography, which is restricted to highland forests and paramos in the central Andes
of Ecuador. In contrast, A. balios is distributed in a completely different environment, in
tropical conditions. Other studies have indicated that tropical habitats provide optimal
conditions for bacterial diversity and richness (Bresciano et al., 2015; Nottingham et al.,
2018).

Previous studies described the isolation of Acinetobacter, Aeromonas, Brucella,
Microbacterium, Klebsiella, Pseudomonas, Rhodococcus, Serratia and Stenotrophomonas
from the skin of different hosts (Barra, Simmaco ¢ Boman, 1998; Bates et al., 2018; Becker
et al., 2021; Bresciano et al., 2015; Catenazzi et al., 2018; Flechas et al., 2017; Kanchan et al.,
2021; Khalifa, AIMalki ¢ Bekhet, 2021; Latheef et al., 2020a). To date, there have been no
reports of Lelliottia isolations from amphibian skin. Of the ten genera identified, two
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(Pseudomonas and Rhodococcus) were present in A. bomolochos, two(Pseudomonas and
Serratia) in A. nanay, and all ten, except Rhodococcus, in A. balios. This last finding can
be compared with other lowland toads such as Atelopus aff. limosus, A. spurrelli, and

A. elegans. Flechas et al. (2012) identified eight genera of culturable skin bacteria. These
were isolated from A. elegans (n = 82), five from A. aff. limosus (n = 80), and six from
A. spurrelli (n =78). Three of these bacteria are shared with A. balios (Acinetobacter,
Pseudomonas, Stenotrophomonas). Subsequently, Flechas et al. (2017) identified 22 genera
distributed among the same Atelopus species in the wild, with 19 genera isolated from
A. elegans (n =5), four from A. aff. limosus (n = 8), and five from A. spurrelli (n=>5). Six
of the bacteria were found to be shared with A. balios, namely Pseudomonas, Acinetobacter,
Stenotrophomonas, Microbacterium, Klebsiella and Aeromonas.

The effect of Bd on skin microbiota composition remains debated
Some studies have found no variation in the skin microbiota caused by Bd (Belden et al.,
2015; Kruger, 2020), while others have reported changes in the function and structure
of the skin microbiota (Becker et al., 2015; Jani ¢ Briggs, 2014; Walke et al., 2015). Our
study results indicate that individuals infected with Bd and those uninfected host distinct
culturable bacterial communities. However, due to the limited number of individuals
evaluated, we recommend conducting a more extensive sampling campaign and analysis.

Although we could not confirm the bacterial strains at the species level, some
isolates belong to genera known for their anti-Bd properties, such as Acinetobacter,
Pseudomonas, Serratia, and Stenotrophomonas (Bresciano et al., 2015). However, we did
not find Janthinobacterium in our samples (Niederle et al., 2019). Among the probable
species found is Serratia marcescens, known to produce a potent antifungal metabolite.
This bacterium had shown up to 100% inhibition against Bd (Becker et al., 2021). Other
potential bacteria who have demonstrate its capability to inhibit Bd and modulate the
host’s ability to survive to chytridiomycosis are Serratia marcescens, and Pseudomonas (e.g.,
P. entomophila, P. azotoformans, P. fluorescens) (Catenazzi et al., 2018; Robak ¢ Richards-
Zawacki, 2018). In contrast, some bacteria identified are known amphibian pathogens,
such as Brucella and Aeromonas hydrophila. Brucella has been reported in amphibians, with
demonstrated zoonotic potential (Rouzic et al., 2021). Other genera may play a synergetic
role with Bd within the skin microbiota. For example, Microbacterium has been shown to
produce nutritive compounds, which promotes the Bd growth (Becker et al., 2015). On the
other hand, Aeromonas hydrophila is well known for causing ‘red leg’ disease (Densmiore ¢
Earl Green, 2007), and has recently associated with severe pathological clinical signs in eggs
and adult frog individuals (Khalifa, AIMalki ¢» Bekhet, 2021).

CONCLUSIONS

This study represents the first comprehensive investigation of the skin microbiota of
critically endangered Atelopus species in Ecuador. The results revealed a prevalence of
Bd infection across these species in areas known as the last refuges for these critically
endangered populations. These findings highlight the urgent need for conservation

Yanez Galarza et al. (2024), PeerJ, DOI 10.7717/peerj.18317 11/19


https://peerj.com
http://dx.doi.org/10.7717/peerj.18317

Peer

efforts to better understand this zoonotic disease and generate valuable information
for conservation strategies.

A total of ten bacterial genera were identified from the skin of the Atelopus species,
including Pseudomonas, which has previously been noted for its potential to inhibit Bd
infections. Conversely, other identified bacteria revealed the presence of potential emerging
pathogens. Overall, this study highlights the need for further research involving additional
individuals from the region, focusing on different populations and other species.
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