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ABSTRACT

Background: Lung adenocarcinoma (LUAD) is a widely occurring cancer with a
high death rate. Radiomics, as a high-throughput method, has a wide range of
applications in different aspects of the management of multiple cancers. However,
the molecular mechanism of LUAD by combining transcriptomics and radiomics in
order to probe LUAD remains unclear.

Methods: The transcriptome data and radiomics features of LUAD were extracted
from the public database. Subsequently, we used weighted gene co-expression
network analysis (WGCNA) and a series of machine learning algorithms including
Random Forest (RF), Least Absolute Shrinkage and Selection Operator (LASSO)
logistic regression, and Support Vector Machines Recursive Feature Elimination
(SVM-REFE) to proceed with the screening of diagnostic genes for LUAD. In addition,
the CIBERSORT and ESTIMATE algorithms were utilized to assess the association of
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these genes with immune profiles. The LASSO algorithm further identified the
features most relevant to the expression levels of LUAD diagnostic genes and
validated the model based on receiver operating characteristic (ROC),
precision-recall (PR), calibration curves and decision curve analysis (DCA) curves.
Finally, RT-qPCR, transwell and cell counting kit-8 (CCK8) based assays were
performed to assess the expression levels and potential functions of the screened
genes in LUAD cell lines.

Results: We screened a total of 214 modular genes with the highest correlation with
LUAD samples based on WGCNA, of which 192 genes were shown to be highly
expressed in LUAD patients. Subsequently, three machine learning algorithms
identified a total of four genes, including UBE2T, TEDC2, RCC1, and FAM136A, as
diagnostic molecules for LUAD, and the ROC curves showed that these diagnostic
molecules had good diagnostic performance (AUC values of 0.989, 0.989, 989, and
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0.987, respectively). The expression of these diagnostic molecules was significantly
higher in tumor samples than in normal para-cancerous tissue samples and also
correlated significantly and negatively with stromal and immune scores. Specifically,
we also constructed a model based on TEDC2 expression consisting of seven
radiomic features. Among them, the ROC and PR curves showed that the model had
an AUC value of up to 0.96, respectively. Knockdown of TEDC2 slowed down the
proliferation, migration and invasion efficiency of LUAD cell lines.

Conclusion: In this study, we screened for diagnostic markers of LUAD and
developed a non-invasive radiomics model by innovatively combining
transcriptomics and radiomics data. These findings contribute to our understanding
of LUAD biology and offer potential avenues for further exploration in clinical
practice.

Subjects Bioinformatics, Inmunology, Respiratory Medicine
Keywords Lung adenocarcinoma, Machine learning, Diagnostic markers, Immune features,
Radiomics

INTRODUCTION
Lung cancer is a frequent cancer, and its survival rate is critically dependent on the stage at
diagnosis (Siegel et al., 2023; Yu et al., 2023b; Ding, Lv ¢ Hua, 2022). Patients at stage
IIIa-IVA of lung cancer normally have a 5-year survival rate ranging from 10-6%, while
that of patients with stage I reaches 7-92% (Chinese Thoracic Society, 2023; Yu et al.,
2023a). Thanks to progress in diagnosis, surgical techniques, radiotherapy, and molecular
therapies, the clinical prognosis for patients with lung adenocarcinoma (LUAD) has
markedly enhanced. Nevertheless, the 5-year survival rate for individuals with LUAD
remains significantly low (Zhang et al., 2019; Jurisic et al., 2020; Mao et al., 2020). This
could be attributed to patients being diagnosed at advanced stages, or to early-stage
patients not being eligible for targeted therapy due to the absence of common molecular
mutations such as EGFR, BRAF V600E, MET, or ALK (Feng et al., 2022). Therefore,
further research into the molecular mechanisms of tumorigenesis and the development of
new, reliable biomarkers is essential to enhance the survival outcomes for LUAD patients.
Radiomics is a high-throughput method for extracting quantitative features from
standard medical imaging (Lambin et al., 2017). It thoroughly examines image properties
and employs sophisticated statistical methods to determine the features most closely linked
to clinical results. This technique builds on extensive research in computer-aided diagnosis
and pattern recognition (Fornacon-Wood et al., 2020). Compared to traditional tissue
sampling methods, radiomics offers several advantages: it is non-invasive, reproducible,
cost-effective, and less susceptible to the variability caused by intratumoral heterogeneity
(Wang et al., 2024; Pan et al., 2023; Chen et al., 2023). As a result, radiomics has broad
applications in various aspects of cancer diagnosis and treatment, though further
validation is required before it can be widely implemented in clinical practice. Currently,
genomics of radiation research has concentrated on identifying and linking known
biological characteristics, including isocitrate dehydrogenase-1 (IDH-1), the epidermal
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growth factor receptor (EGFR), P53 mutations, BRCA1/2, Kirsten rat sarcoma (KRAS),
BRCA1-associated protein 1 (BAP1), as well as other genetic mutations and molecular
subtypes (Kim et al., 2020; Zhang et al., 2020; Li et al., 2018; Gierach et al., 2014; Kang et al.,
2023). As expected, radiomics has been developed to predict pathological relevance in lung
cancer (Fatima, Jaiswal e Sachdeva, 2022). There have been studies that have explored the
combination of radiomics and transcriptomics, with some researchers created a
radiotranscriptomic signature by utilizing serum miRNA levels and CT texture features to
anticipate how patients with non-small cell lung cancer (NSCLC) will respond to
radiotherapy. This special signature has the potential to function as a stand-alone
biomarker in assessing the efficacy of radiation therapy for NSCLC patients (Fan et al.,
2020). However, there is a lack of screening for radiomic biomarkers predictive of LUAD
patients to provide diagnostic and therapeutic value for cancer intervention.

In this study, we took the expression profile and radiomics features of LUAD as the
starting point, used multiple machine learning analysis methods to identify biomarkers for
the diagnosis, prognosis monitoring and tumor immunology of LUAD, and developed a
radiomics model of LUAD for non-invasive testing of biomarkers. This innovatively
combines imaging histology and transcriptomics data, which not only provides a
comprehensive picture of tumor characteristics, but also significantly improves the
accuracy and clinical application potential of LUAD early detection.

MATERIALS AND METHODS

Selection and processing of transcriptomics cohorts

The TCGA-LUAD cohort was selected from the TCGA database (https://portal.gdc.
cancer.gov) to acquire transcriptomics data and clinicopathological information in FPKM
form, and a total of 572 samples (including 513 tumor samples and 59 para-cancerous
tissue samples) were included in this cohort. In this research, the RNA-sequencing data
from TCGA was transformed into transcripts per kilobase million (TPM) values,
facilitating better comparability between TCGA samples and microarray datasets (Wagner,
Kin & Lynch, 2012). Transcriptome data of LUAD samples were obtained from the Gene
Expression Omnibus (GEO, https://portal.gdc.cancer.gov) database using the search
numbers GSE31210 and GSE30219. The dataset numbered GSE31210 included 20 normal
samples and 226 tumor samples. The cohort with search number GSE30219 included 14
normal samples and 293 tumor samples. The downloaded data in the GEO database were
processed by the R package oligo (Carvalho & Irizarry, 2010) according to the uniform
data preprocessing routine.

Construction of co-expression networks

Weighted gene co-expression network analysis (WGCNA) identifies gene modules that are
significantly associated with characterized phenotypes by constructing gene co-expression
networks, which helps us to identify a set of potential candidate genes that are most
relevant to LUAD (Langfelder ¢» Horvath, 2008). Thus, in this study, based on the
characteristic that gene co-expression analysis is sensitive to abnormal values, the Median
Absolute Deviation (MAD) of all protein coding genes in the whole genome was

Huang et al. (2024), PeerdJ, DOI 10.7717/peerj.18310 3/23


https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31210
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30219
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31210
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30219
http://dx.doi.org/10.7717/peerj.18310
https://peerj.com/

Peer/

calculated, and the genes with MAD greater than the top 70% were submitted to the
“WGCNA” package (Langfelder & Horvath, 2008) for weighted gene co-expression
network development. The distance-based adjacency index of the sample was calculated
and the default parameters are defined to generate the module. After cluster analysis of
modules, a heatmap of correlation between modules and traits was constructed.

Pathway annotation analysis

The data of the two queues downloaded from the GEO database were merged, and the
RNA data of LUAD samples and normal samples were submitted to the R package
“limma” (Ritchie et al., 2015) for difference analysis. The threshold of differentially
expressed genes (DEGs) was defined as adj. p < 0.05 and | log2FC | > 1. Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was performed by
importing the DEGs into the “clusterProfiler” package (Wu et al., 2021). The complete
expression profile was loaded into clusterProfiler package for gene set enrichment analysis
(GSEA). The results of GO and KEGG analysis were visualized as bars by ggplot2 package.
GSEA enrichment maps were generated by gseaplot2.

Machine learning analysis

Machine learning analysis was performed to select diagnostic markers for LUAD,
including Random Forest (RF), Least Absolute Shrinkage and Selection Operator (LASSO)
logistic regression and Support Vector Machines Recursive Feature Elimination (SVM-
RFE). RF is an integrated learning method based on decision trees that efficiently handles
high-dimensional data and provides an importance score for each feature. With the
importance score of RF, we can filter out the genes with the most discriminative ability in
the classification task, reduce the spatial dimensionality of features, and provide the
generalization ability of the model (Hu ¢ Szymczak, 2023). In this study, the
‘randomForest’ package in R was used to grow a forest of 610 trees using the default
settings (Alderden et al., 2018). The glmnet function of “glmnet” package was used to
perform the LASSO Cox regression model analysis, in which the parameters were
family = “binomial”, alpha = 1, and nlambda = 100 (Engebretsen ¢» Bohlin, 2019). The
LASSO algorithm is able to select a small number of important features while avoiding
overfit and to further improve the stability and prediction ability of the model (Jiang ¢
Jiang, 2023). In addition, in the SVM-RFE, the SVM classifier was constructed using R
package 1071, which the parameters were kernel = “linear”, and “cost = 1”. This is due to
the ability of the SVM-RFE method to finely select features through a recursive process to
ensure that the selected features have the maximum contribution to the model
performance and thus optimize the feature set (Sanz et al., 2018). The genes jointly selected
by the above machine learning algorithms were regarded as diagnostic markers of LUAD.

Analysis of immune system characteristics

We used the CIBERSORT and ESTIMATE algorithms, respectively, to further evaluate the
association between the screened diagnostic markers and the tumor microenvironment.
The documents required for CIBERSORT analysis were prepared in advance, including the
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official LM22, gene expression matrix and CIBERSORT code (Newman et al., 2015). The
results of CIBERSORT were analyzed by Pearson correlation analysis together with the
LUAD markers. The gene expression matrix of LUAD was converted into a GCT format
file and read into ESTIMATE (Yoshihara et al., 2013). The immune, stromal and
ESTIMATE scores of the sample were calculated by the estimateScore() function. Pearson
correlation analysis was also performed to calculate the correlation coefficient between
each score and each diagnostic marker screened.

Extraction of radiomics feature

Three regions of interest (ROIs) of gross tumor volume from TCGA-LUAD were manually
segmented using ITK-SNAP (version 3.8.0) by a radiologist with more than 5 years of
experience. A total of 107 radiomic features: including 14 shape features, 18 firstorder
statistical features, and 75 texture features (including 16 Gray level size zone matrix
features, 14 Gray level dependence matrix features, 24 Gray level cooccurrence matrix
features, 16 Gray level run length matrix features, and five neighbouring gray tone
difference matrix features), were collected from the ROIs based on CT images applying
PyRadiomics (version 3.0) (van Griethuysen et al., 2017). It should be noted that the SD of
original shape Flatness and original shape Least Axis Length was 0 and were not
considered in the subsequent analysis. The Z-score algorithm was used to normalize the
radiomic features for further analysis.

Construction of the radiomics model

Feature selection was realized applying LASSO regression analysis. To establish a robust
binary classification model, we used the generalized linear model network (glmnet) with a
binomial distribution for the logit link function. During the model training process, we set
1,000 different lambda values (nlambda = 1,000) and chose LASSO regression (alpha = 1)
as the regularization method. To select the optimal regularization parameter lambda, we
performed five-fold cross-validation (nfolds = 5) and used deviance as the evaluation
metric. The cross-validation was carried out using the “cv.glmnet” function. Finally, we
identified features related to TEDC2 expression from radiomic features and established the
corresponding model. The formula for calculating radiomics score (Rad score) was
obtained:

n

Rad score = Z B; x feature; + intercept
i=1
In the formula, f refers to the feature coefficient (p), and intercept within the radiomics
signature was determined according to the average value of the included models.

Source of cells and RT-qPCR

Human LUAD cells A549 and human normal lung epithelial cells BEAS-2B were
commercially purchased from The American Type Culture Collection (ATCC), thawed
and cultured according to the supplied product instructions. Cells were cultivated at 37 °C
in a DMEM (PM150210) medium that includes 10% fetal bovine serum (FBS), 1%
glutamine, and a 1% solution of antibiotic/antifungal agents, with a controlled atmosphere
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Table 1 Primers of genes.

Gene Forward primer sequence (5'-3') Reverse primer sequence (5'-3')
UBE2T ATCCCTCAACATCGCAACTGT CAGCCTCTGGTAGATTATCAAGC
TEDC2 ATGCACACCCAGTCCACAAG CCGGCCTTAGTGATGCCTC

RCC1 CGGTGTGATTGGACTGTTGGA CACCAAGTGGTCGTTTCCTGA
FAM136A TGCAGGGTCTCATGTTCCG GCTCCTTACTCCCAGCATCTATT
GAPDH CTGGGCTACACTGAGCACC AAGTGGTCGTTGAGGGCAATG

of 5% CO,. Total RNA was separated using E.Z.N.A. Total RNA Kit I (Omega Bio-Tek,
Norcross, USA), followed by reverse transcription of total RNA into cDNA with the use of
PrimeScript RT Master Mix (TaKaRa, Japan). qRT-PCR was carried out using the SYBR
Green RT-PCR kit (Vazyme, Nanjing, China). Relative mRNA expression was quantified
by the 27#*“t method and normalized to GAPDH. Each primer sequence is described in
Table 1.

Transwell assay

siRNA for TEDC2 was synthesized by GenePharma (Shanghai, China) and transfected
into A549 cells seeded in six-well plates using Lipofectamine 2000 according to the
prescribed protocol. After transfection, 200 pL of A549 cells were transferred to the upper
chamber without matrigel and the upper chamber coated with Matrigel, respectively, and
complete medium containing 10% FBS was added to the lower chamber for 24 h. Crystal
violet was used for cell staining for 30 min after harvesting the cells in the lower chamber.
Infiltrating cells were quantified under a microscope. Cells in four random fields were
intercepted, and photographs were taken using an inverted microscope and the number
counted.

Cell counting Kit-8 assay

Cell counting kit-8 (CCK8) assay for assessing cell viability of LUAD cell lines after
silencing TEDC2. The A549 cells were seeded into a 96-well plate during the exponential
growth phase at a density of 1 x 10* cells per well and incubated at 37 °C and 5% CO, for
48 h. Following this incubation period, 10 pL of CCK8 was added to the cell culture and
incubated at 37 °C for 2 h. The measurements of optical density (OD) were taken at a
wavelength of 450 nm (OD 450) using a microplate reader manufactured by Bio-Rad
Laboratories Inc. The data presented are the average results from three separate
experiments.

Statistical analysis

Statistical tests were performed in R software (version 3.6.0). Cox regression analysis was
run using the “survival” package and diagnostic efficiency was evaluated by generating
receiver operating characteristic (ROC) curves using the “ROCR” package. Student’s t-test
or Wilcoxon rank-sum test was used to analyze continuous variables, Pearson correlation
analysis was used to assess the correlation between variables, and log-rank test was used to
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compare the differences in survival time between different groups of patients. A p
value < 0.05 indicated statistical significance.

RESULTS

Identification and functional characterization of LUAD-related gene
modules

WGCNA showed that stable average connectivity was achieved with a fit R* = 0.85 for the
scale-free topological model, corresponding to a soft threshold of 7 (Figs. SIA-S1B). After
executing WGCNA, 15 gene modules were obtained (Fig. S2C). The turquoise module has
the largest pool of similarly expressed genes (Fig. S2D). The correlation between module
expression profile and LUAD showed that blue was the module with the strongest
correlation with LUAD, and correlation coefficient between module membership (MM)
and gene significance (GS) reached 0.66, and 214 key genes in the blue module were
identified using MM > 0.7 and GS > 0.4 as the screening criteria (Figs. 1A, 1B). These genes
were significantly annotated in pathways, cellular components, biological processes,
molecular functions associated with the cell cycle (Figs. 1C-1F). Therefore, the blue
module may be the module that mediates the cell cycle of LUAD.

Cell cycle progression was hyperactive in LUAD

A total of 2,600 genes were dysregulated in LUAD samples relative to normal samples,
including 1,593 significantly down-regulated genes and 1,007 significantly up-regulated
genes (Figs. S2A, S2B). These two classes of DEGs that showed opposite expression
patterns in LUAD were also involved in different functional regulation, and the
up-regulated genes were significantly annotated to numerous pathways regulating the cell
cycle, such as chromosome segregation, DNA conformation change, and DNA replication,
etc. (Fig. S2C). The genes with downregulated expression were significantly annotated in
kidney development, regulation of angiogenesis, tissue migration, regulation of epithelial
cell proliferation and migration (Fig. S2D). GSEA analysis of LUAD expression profile also
revealed significant activation of DNA repair and G2M checkpoint pathway, which are
involved in cell cycle regulation in LUAD (Fig. S3). Therefore, based on these results, we
suggest that hyperactivity of the cell cycle may be a major feature of LUAD.

Screening, validation and accuracy assessment of diagnostic markers
We found that 192 more of the 214 key genes identified in WGCNA-based were
upregulated in LUAD patients (Fig. 2A). To further explore the impact of these key genes
in LUAD, we first identified 18 characterized genes using the SVM-RFE algorithm

(Fig. 2B). Subsequently, we identified six genes based on the RF algorithm (Fig. 2C) as well
as screened 11 genes using the LASSO logistic regression method (Fig. 2D). We utilized a
Wayne diagram in order to take the intersection of the genes screened by the three
machine algorithms and ended up with four key genes, UBE2T, TEDC2, RCC1, and
FAM136A for subsequent in-depth studies (Fig. 3A). As shown in Fig. 3D, we found that
all four genes were significantly overexpressed in tumor samples compared to normal
samples in the TCGA training cohort. The ROC curves of UBE2T, TEDC2, RCC1 and
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Figure 1 Identification and functional characterization of LUAD-related gene modules. (A) The
heatmap depicts the correlation between modules and LUAD. Each cell contains the corresponding
correlation coefficient and p-value after correction for multiple testing. (B) Correlation between gene
significance (GS) and module membership (MM). (C) Significantly annotated KEGG pathways for 214
genes in the blue module. (D-F) GO biological processes (BP), cellular components (CCs), molecular
functions (MFs) that significantly annotated by 214 genes in the blue module.
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to select feature genes.
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FAM136A showed their probability of being valuable biomarkers with the area under the
ROC curves (AUC) value of 0.989, 0. 989, 989 and 0.987, respectively, which suggests that
these four biomarkers have high predictive value (Fig. 3B). Finally, we combined these four
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biomarkers and found the AUC value of up to 0.963 based on a logit regression model,

which again showed high diagnostic accuracy (Fig. 3C).

Subsequently, we further validated the screened diagnostic genes using the GSE30219
and GSE31210 datasets as validation. The AUC value of UBE2T, TEDC2, RCC1 and

FAM136A as diagnostic markers in the GSE30219 cohort were 0.96, 0.95, 0.89 and 0.94,
respectively (Fig. 4A). In GSE31210 cohort, the AUC value of UBE2T, TEDC2, RCC1 and
FAM136A for the diagnosis of LUAD were 0.96, 0.94, 0.94 and 0.93, respectively (Fig. 4C).
Additionally, all four diagnostic markers showed significantly higher expression in LUAD

tumor samples than in normal samples in both cohorts (Figs. 4B, 4D). Therefore, the

accuracy of the four genes as diagnostic markers in the GSE30219 and GSE31210 cohorts

Wi

as also ideal.
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Association of diagnostic markers with LUAD prognosis and TME
In addition to showing good performance for the diagnosis of LUAD, we also explored the
relationship between these four genes and patient prognosis. Using univariate Cox
regression analysis, we found that UBE2T, TEDC2, RCC1 and FAM136A were
significantly associated with patients’ overall survival (Fig. S4A), whereas only UBE2T was
significantly associated with patients’ progression free interval (PFI) (Fig. S4C).
Additionally, multivariate Cox regression analysis showed that these four diagnostic genes
were not independent factors for predicting the prognosis of LUAD (Figs. S4B, S4D).
Next, we further explored the relationship between these four key genes and tumor
microenvironment (TME). Notably, we found that UBE2T, TEDC2, RCC1 and FAM136A
were all significantly and positively associated with M1 Macrophages, activated memory
CD4 T cells, and follicular helper T cells, whereas they were significantly and positively
associated with M2 macrophage and resting memory CD4 T cells (Figs. 5A-5D). In
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addition, we found that each diagnostic gene was also negatively correlated with stromal,
immune and ESTIMATE scores (Figs. 5E-5G). These results indicate that the four
biomarkers we screened may act by inhibiting stromal and immune cells, which in turn
promotes the malignant behavior of tumors.

Huang et al. (2024), PeerdJ, DOI 10.7717/peerj.18310

12/23


http://dx.doi.org/10.7717/peerj.18310/fig-5
http://dx.doi.org/10.7717/peerj.18310
https://peerj.com/

Peer/

Construction and discriminant ability evaluation of radiomics model
Since we did not identify features associated with the expression levels of UBE2T, RCC1
and FAM136A. Therefore, we only analyzed the mechanism of action of TEDC2 in a
follow-up study. As shown in Figs. 6A, 6B, we selected the seven optimal features
associated with TEDC2 expression, including “original shape Elongation”, “original

» o« » o«

firstorder Median”, “original firstorder Total Energy”, “original glrlm Run Length
NonUniformity”, “original glszm Large Area Emphasis”, “original glszm Small Area
Emphasis”, and “original glszm Small Area Low Gray Level Emphasis”, from 105
radiomics features by the LASSO algorithm. Therefore, the resulting radiomics model was:
Rad score= —0.5888599-0.6561874* original shape Elongation + 2.6456259* original
firstorder Median—1.1273691* original irstorder Total Energy + 0.9690754* original
glrlm Run Length NonUniformity—1.4601943* original glszm Large Area Emphasis
—1.4749247* original glszm Small Area Emphasis—0.9582481* original glszm Small Area
Low Gray Level Emphasis.

To demonstrate the practicability of radiomics model in the diagnosis of LUAD, the
sensitivity (SEN), accuracy (ACC), specificity (SPE), Positive Predictive Value (PPV) and
Negative Predictive Value (NPV) scores of radiomics model were calculated by using 60%
of the samples in TCGA as the training set and 40% as the verification set, which were 0.85,
0.9, 0.8, 0.8889 and 0.8182 respectively, and ROC-AUC was 0.96 (Fig. 6C). In the
validation cohort, SEN, PPV, ACC, SPE, and NPV of the radiomics model were 0.8889,
1.0, 0.75, 1 and 0.8333, respectively. The ROC-AUC reached 0.9, and the Precision Recall
(PR)-AUC reached 0.96 (Fig. 6D). The calibration curve and decision curve analysis
(DCA) also showed that the radiomics model had an ideal discrimination power for LUAD
(Figs. 6E, 6F).

Evaluation of prognostic ability of radiomics model

The prognosis of LUAD samples in TCGA was also evaluated according to the radiomics
model, generating Kaplan-Meier curves and ROC curves. Radiomics model could
significantly distinguish the prognosis of different LUAD patients, and had the best
prediction effect on 5-year overall survival, with ROC-AUC of 0.88 (Figs. 7A, 7B). The rad
scores of samples exhibiting high TEDC2 expression were significantly higher than those
of samples exhibiting low TEDC2 expression (Figs. 7C, 7D) in both the training and
validation sets.

Diagnostic markers were overexpressed in LUAD cells and promoted
metastasis

We examined the expression of UBE2T, TEDC2, RCC1 and FAM136A in BEAS-2B and
A549 cell lines, and found that they were all significantly overexpressed in A549 cells
compared with BEAS-2B cells (Figs. 8A-8D). CCK-8 assays indicated that the proliferative
capacity of A549 cells was significantly reduced after silencing TEDC2 expression (Fig. 8E).
Compared with A549 cells without TEDC2 knockdown, the density of migrating and
invading cells in either field was significantly loosed in A549 cells with TEDC2
knockdown, indicating that TEDC2 promotes the metastasis of LUAD cells (Figs. 8F, 8G).
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DISCUSSION

Radiomics analysis is a quantitative approach to be applied precise diagnosis and

treatment (Lambin et al., 2017). As radiomics is consolidated in translational cancer
research and applied at the bedside, it is expected that radiomics data will be integrated and
analyzed with genomics, proteomics, and other omics to provide valuable information for
personalized medicine (Limkin et al., 2017). Machine learning is an area of current interest
in medicine, particularly radiology, and may have a role in imaging-based screenings
(Ballard et al., 2021). Li et al. (2024) constructed and validated a new combined radiomics
and genomics model for predicting colorectal cancer metastasis by designing a multicenter,
multiscale cohort. In addition, Ye et al. (2024) developed five radiomics-based machine
learning models based on collecting information and extracting radiomics features from

Huang et al. (2024), PeerdJ, DOI 10.7717/peerj.18310

15/23


http://dx.doi.org/10.7717/peerj.18310/fig-7
http://dx.doi.org/10.7717/peerj.18310
https://peerj.com/

Peer/

Ag * B ¢ Q
® 55 5 90m 2.5+
= 25 S 2.0 " B ok ok
= T o =
Y— 2.0 “C_) “C_) 2.0+ [—
o c 1.5 —
c ke S
ko) @ 2 5
@ 1.5 & g1
g S 1.0 5
& 1.0+ < & 1.0
<C
<C =z >
= X 0.5+ %
& 05+ £ £ 0.5+
o g [O]
2 & 2
T 00- 1 5 0.0- T § 00- T
K BEAS-2B A549 = BEAS-2B A549 x BEAS-2B A549

D E
'_ —
o 25+ 120
o *kkkk =
> X
5 207 — 8 90 *kk
< -
9 = _
2145- % 50~
8 1.0+ ]
g 1.0 g
& = 30-
% 0.5- g
e
B 0.0~ T 0- I
i BEAS.2B A549 si-NC si-TEDC2
F G
Em Migration
1500~ BEa |nvasion
0 * %k %k SN
) — si-NC
$ 1000~ Bkl g
O
w
g
£ 5004
2 | 3 &
si-TEDC2 {248 Sre
0- S :
2

(A O A RSN, &
. § O . ,% O SRV 01 T A |
o ~,/{(,o 2 .,,{(9 Migration Invasion

2 2

Figure 8 Diagnostic markers were overexpressed in LUAD cells and promoted metastasis. Relative
mRNA levels of FAM136A(A), RCC1 (B), TEDC2 (C), UBE2T (D). CC8-K assay to determine the effect
on cell proliferation after silencing TEDC2 expression (E). Transwell assay results of A549 cells with or
without TEDC2 knockdown, (F) represents the number of migrated and invasive cells, (G) represents the
image captured under the microscope. * represents p < 0.05, ** represents p < 0.01, *** represents
p < 0.001, and **** represents p < 0.0001. Full-size Kal DOI: 10.7717/peerj.18310/fig-8

Huang et al. (2024), PeerdJ, DOI 10.7717/peerj.18310 16/23


http://dx.doi.org/10.7717/peerj.18310/fig-8
http://dx.doi.org/10.7717/peerj.18310
https://peerj.com/

Peer/

patients with pancreatic neuroendocrine tumors who underwent abdominal CT scans and
developed five radiomics-based machine learning models. They found that the RF models
based on interpretable radiomics can effectively distinguish between G1 and G2/3 of
tumors, showing good interpretability. Thus, this study analyzed the genomics and
radiomics data of LUAD and used machine learning methods to develop a diagnostic
biomarker-based radiomics signature to provide markers with high specificity and
sensitivity for the diagnosis of LUAD.

In oncology, biomarkers can be classified into several categories in terms of specific
goals from predicting cancer susceptibility to prevention in clinical settings (Bera et al,
2022). Molecular tests relying on complex polygenic signatures are currently widely used in
oncology (Liang et al., 2024). Different patterns based on data and genomic features will
influence radiation oncology in the future (Peeken, Nusslin & Combs, 2017). At present,
scientists investigate imaging biomarkers applicable for diagnosing and forecasting the
pathological stage of non-small cell lung cancer by employing various machine learning
techniques that rely on the analysis of CT image features (Yu et al., 2019). In addition,
Zhang et al. (2024) used a volumetric CT-based radiomic signature to assess the tumor
mutational burden (TMB) profile of preoperative LUAD patients and found that patients
with high TMB all had significantly higher radiomic signatures than patients with low
TMB. They concluded that a volumetric CT-based radiomic signature is beneficial for
triage of LUAD patients for next-generation sequencing testing. In this study, the analysis
to screen molecular markers from genomic data mainly consists of three parts: WGCNA,
differential expression analysis, and three machine learning analyses. After these screening
steps, we identified LUAD diagnostic signatures associated with radiomic features,
including UBE2T, TEDC2, RCC1, and FAMI136A.

A number of previous literatures have documented that UBE2T is highly expressed in
lung cancer, which is diverse in molecular mechanism and has a carcinogenic effect in
function, and is a prognostic risk factor for considerable types of malignant tumors such as
lung cancer (Yin et al., 2020; Zhu et al., 2021; Cao et al., 2022). Gao et al. (2021) constructed
a new radiogenomics biomarker based on a subgroup of hypoxia genes. They defined
UBE2T as a hypoxia-associated genomic signature based on the TCGA database for renal
clear cell carcinoma and demonstrated that the radiomic signature can be the best
predictor of this gene in different cohorts (Gao et al., 2021). RCCI functions critically in
the regulation of cell cycle-related activities, and its upregulation is associated with adverse
lung cancer prognosis, and manipulation of its expression in combination with PD-L1
antibody inhibits tumor growth in mice (Zeng et al., 2021). FAM136A activity is
significantly increased in many lung cancer tissues and cells and is immunoreactive in the
cytoplasm of lung cancer cells, where restriction of its expression exerts an inhibitory effect
on essential components of tumorigenesis, including proliferation and metastasis (Zhao
et al., 2020). A pure bioinformatics analysis study showed confirmed high-expressed
TEDC2 as an independent LUAD prognostic factor. A large number of its co-expressed
genes participate in the mitotic cell cycle process, and TEDC2 high expression indicated a
low level of immune cell infiltration, particularly B cells and dendritic cells (Fang et al,
2023). Consistent with the findings of high expression of these genes in different cancer
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types, our study found that TEDC2 and three other diagnostic markers were overexpressed
in LUAD tissues and showed high diagnostic accuracy for LUAD. Notably, the negative
correlations of four key markers, UBE2T, TEDC2, RCC1, and FAM136A, with stromal,
immune, and ESTIMATE scores suggest that the high expression of these genes in LUAD
may contribute to tumor growth and malignant behaviors by inhibiting the role of stromal
and immune cells. These findings not only reveal the potential roles of these genes in
tumor microenvironment regulation, but also are consistent with the existing knowledge of
LUAD biology and provide important clues for further investigation of the functions and
mechanisms of these genes.

However, we also need to recognize that this study has some limitations. First, the data
in this study were mainly obtained from public databases, but due to the single source of
data, they may be biased and cannot fully represent the heterogeneity of all LUAD patients.
Therefore, future studies will introduce more sample data from different databases and
regions to increase the size and diversity of the sample. In addition, although we screened
for diagnostic markers, the specific mechanisms of these genes in the development of
LUAD have not been explored in depth. This includes the use of multiple approaches such
as animal models and gene editing techniques in order to explore their specific
mechanisms in tumorigenesis and development. Finally, although radiomics models show
high accuracy, their feasibility and cost-effectiveness in practical clinical applications have
not been evaluated. We will continue to explore how radiomics modeling can be seamlessly
integrated into existing clinical workflows to improve its practical application.

CONCLUSION

We successfully screened a set of markers with high diagnostic clips for LUAD by
innovatively combining transcriptomic and radiomic data. We also constructed a
non-invasive diagnostic model based on radiomics signatures through the comprehensive
analysis of machine learning algorithms. The expression level of TEDC2 was closely
correlated with radiomic profiles, and a radiomic-based signature was constructed and
validated based on it. In conclusion, this study provides initial insights and methods for the
diagnosis of lung adenocarcinoma, but more in-depth research and validation are still
necessary before applying them to clinical practice.

ABBREVIATIONS
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ScRNA-seq single-cell RNA sequencing

GEO Gene Expression Omnibus
MMP Matrix Metalloprotease
TAM tumor-associated macrophages

PD-L1 programmed death-ligand 1
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CTLA-4  Cytotoxic T lymphocyte antigen 4
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