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ABSTRACT
Background: Understanding the dynamics of the gut microbiota in sea urchins is
crucial for comprehending the ecological balance in marine ecosystems. The gut
microbiota plays a vital role in nutrient metabolism, immune system modulation,
and pathogen protection. The microbial composition and dynamics of naturally
occurring sea urchin Tripneustes ventricosus have yet to be thoroughly investigated.
We hypothesized the gut microbiota of T. ventricosus in the Caribbean, varies across
life stages and seasons.
Methods: Thirty-six naturally occurring large individuals and six small individuals
(42 animals) were collected from shallow waters on the northeastern coast of Puerto
Rico in February and August of 2019. The fecal pellet’s microbiota was characterized
by sequencing V4 region of the 16S rRNA gene.
Results: We found significant differences in the composition of fecal pellet
microbiota between seasons and life stages. Phylum Bacteroidota had greater relative
abundance in August, while Firmicutes was more dominant in February.
Propionigenium and Roseimarinus had greater relative abundance in August, while
Candidatus Hepatoplasma, and Kistimonas had greater relative abundance in
February. Differences in the gut digest microbiota were not found between small and
large urchins, but small urchins displayed a slightly higher diversity and dominance
of Bacteroidota and Proteobacteria, while large urchins exhibited a greater relative
abundance of Fusobacteria and Desulfobacterota. However, the genera Ferrominas
and Propionigenium counts were significantly lower in small individuals.
Discussion: This is the first report for this species in the Caribbean region and adds
to our comprehension of the microbiota of the white sea urchin across collection
periods and size classes, highlighting the dynamic nature of the gut microbiota.

Subjects Biodiversity, Ecosystem Science, Marine Biology, Biosphere Interactions
Keywords Microbiota, Sea urchin, Tripneustes ventricosus, 16S rRNA gene, Puerto Rico

INTRODUCTION
Only approximately 1% of the global prokaryotic biodiversity has been successfully
cultured in laboratory conditions using conventional methods (Schleifer, 2004; López-
García & Moreira, 2008). The challenge of understanding the culturability of many
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bacterial taxa has been addressed by employing alternative technological approaches. The
advancement of molecular techniques has significantly enhanced our comprehension of
the prokaryotic biodiversity (Vartoukian, Palmer & Wade, 2010). Currently, one of the
most widely used methods for characterizing prokaryotic communities in marine
invertebrates like echinoderms, involves culture-independent identification through 16S
ribosomal RNA gene sequencing (Hakim et al., 2015; Pagán-Jiménez et al., 2019;
Hastuti, Fatma & Tridesianti, 2023). The number of studies on naturally occurring wild
sea urchins has also increased in the last decades (Hakim et al., 2019; Faddetta et al.,
2020; Ketchum et al., 2021; Rodríguez-Barreras, Tosado-Rodríguez & Godoy-Vitorino,
2021).

Over the last decade, sequencing the 16S rRNA gene through amplicon sequencing has
emerged as a quick and affordable method for analyzing microbiota composition and
diversity including the host gut microbiota associated with the digestive system, across
animal phyla ranging from invertebrates to vertebrates (Lee & Hase, 2014; Grinevich et al.,
2024). Recently, there has been a significant increase in knowledge about how
environmental elements can impact the makeup and behavior of prokaryotic communities
(Ward et al., 2017; Fontaine, Novarro & Kohl, 2018; Sepulveda & Moeller, 2020; Traving
et al., 2021).

Sea urchins have been widely used in host-microbiota studies among marine
invertebrates (Hakim et al., 2019; Schwob et al., 2020; Miller et al., 2021). The biological
fitness of echinoderms, including sea urchins, heavily depends on the symbiotic
relationship with their microbiota, which performs essential functions to the organism’s
resilience (Ho et al., 2016; Carrier & Reitzel, 2018; Schuh et al., 2020). Echinoderms rely on
diverse microorganisms within their bodies to carry out vital processes such as nutrient
metabolism, immune system modulation, and protection against pathogens (Schuh et al.,
2020). The intricate interdependence between echinoderms and their microbiota
underscores the critical role of symbiotic interactions in their host survival and
performance (Carrier & Reitzel, 2019, 2020; Carrier et al., 2021). For example, a recent
study stated that symbiosis in the sea urchin Brisaster townsendi plays different roles in the
host nutrition (Ziegler et al., 2020), while another study found the occurrence and
importance of a photosynthetic bacteria as a nutrition supporter in the seastar Mithrodia
clavigera (Galac, Bosch & Janies, 2016).

Changes in microbial communities are often associated with changes in environmental
conditions (Dang et al., 2023; Zeng et al., 2023). Temperature has emerged in the literature
as a prominent abiotic factor and a reliable predictor, driving significant shifts in
prokaryotic taxa within thermally variable habitats (Ketchum et al., 2021). The gut
microbiota plays a critical role in host phenotypic plasticity (Kolodny & Schulenburg, 2020)
in many ways through morphological changes, physiological adaptations, behavioral
responses, and life history strategies (Gotthard & Nylin, 1995). Modifications in
environmental temperature can result in significant changes to the gut microbiota diversity
in echinoderms (Gao et al., 2014; Brothers et al., 2018). Conversely, the microbiota,
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through their metabolites, can serve as a feedback mechanism, enhancing host plasticity in
thermoregulatory mechanisms (Khakisahneh et al., 2020).

Another driving factor explored is the relationship between aging and host microbiota
(Kawamoto & Hara, 2024). Traditionally, studies have primarily focused on understanding
the consequences of changes in microbiota on nutrition and immune-related processes in
both invertebrates and vertebrates (Clark & Walker, 2018; Maynard & Weinkove, 2018;
Derrien, Alvarez & de Vos, 2019; Miró et al., 2020). However, understanding how
prokaryotic taxonomic composition changes with age in marine invertebrates, particularly
echinoderms, remains limited. In addition, the dynamic nature of the gut microbiota in
response to seasonal changes underscores the adaptability of marine invertebrates to
diverse environmental conditions. The dynamic nature of the gut microbiota in response
to seasonal changes underscores the adaptability of marine invertebrates to diverse
environmental conditions seasonal dynamics of the gut microbiota in marine invertebrates
have important implications for marine ecosystems’ overall health and resilience (Ketchum
et al., 2021). Seasonal shifts in microbial communities can influence nutrient cycling,
disease resistance, and the overall fitness of the host organisms (Lee, Wong & Qian, 2009).

Sea urchins are considered suitable models for microbiota studies due to their
anatomical simplicity, ecological importance, ease of collection and maintenance. The
White Sea urchin, Tripneustes ventricosus (Lamark, 1816), plays a pivotal role in shaping
coastal ecosystems, influencing benthic communities through algae grazing, and
contributing to nutrient cycling (Lawrence & Agatsuma, 2007). The species is considered
one of the largest regular echinoids in the western Atlantic and the Caribbean (Hendler
et al., 1995; Rodríguez-Barreras, Sabat & Calzada-Marrero, 2013). T. ventricosus is
characterized by a rapid growth, sexual maturity, and short longevity (McPherson, 1965). It
usually inhabits back-reef areas dominated by marine flowering plants like Thalassia
testudinum and Syringodium filiforme (Tertschnig, 1989; Hendler et al., 1995). This sea
urchin T. ventricosus is primarily herbivorous and plays an important role in the dynamic
of seagrass meadows. A dietary characterization of the sea urchin, using gut content
analysis by stable isotopes and DNA-metabarcoding, revealed the eukaryotic composition
of the ingested material (Maciá & Robinson, 2008; Rodríguez-Barreras et al., 2016, 2020).

While the gut and epibiotic microbiota in large urchins have been studied (Rodríguez-
Barreras, Tosado-Rodríguez & Godoy-Vitorino, 2021; Rodríguez-Barreras et al., 2023),
there is still a gap in our understanding about the dynamic of the gut prokaryotic
community between size classes. Additionally, considering the rise of ocean temperatures
across different seasons (Williams, Williams & Logan, 2023), it becomes critical to
understand how the host microbiota responds to seasonal changes in temperature.
Therefore, the objectives of this study were (1) comparisons of the gut microbiota in T.
ventricosus during February (low temperature) and August (high temperature), and (2)
comparing the gut microbiota between small and large size classes. Our hypothesis states
that the gut microbiota will likely change between the two collection periods and between
individual size class.
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MATERIALS AND METHODS
Study site and sample collection
This study was conducted at three shallow-water seagrass meadows of Puerto Rico’s
northeastern coast. Sites from East to West were Cerro Gordo in Vega Baja (CGD-18�29′
06.0″N; 66�20′20.1″W), Isla de Cabra in Toa Baja (ICB-18�28′26.6″N; 66�08′18.5″W), and
Punta Bandera in Luquillo (PTB-18�23′16.0″N; 65�43′05.2″W). The Department of
Natural and Environmental Resources of Puerto Rico approved a collection permit for this
study (permit number: DRNA-2019-IC-003). Limitation in the number of collected
individuals is due to the permit limitation. All sites have a well-developed seagrass meadow
dominated mostly by the flowering plants Thalassia testudinum and Syringodium filiforme,
with an average between 0.5 and 1.5 m depth. Additional site description and map are
available in Rodríguez-Barreras, Tosado-Rodríguez & Godoy-Vitorino (2021). The abiotic
parameters (salinity, water temperature, and pH) were measured using a Pro-2030 quality
meter (Xylem Inc., Washington, DC) during February and August of 2019. Each abiotic
parameter was calculated based on the average of five repetitive measures. Abiotic factors
varied between February and August of 2019 (Table S1). A Kruskal-Wallis rank sum tests
were conducted to assess potential differences in temperature, salinity, and pH between
February and August. Normality and homogeneity of variance were previously tested
using the ‘car’ package (Harrell, 2021). A non-parametric Mann-Whitney test was run to
compare differences in horizontal test diameter between small and large size classes. All
tests were run in R version 4.3.2 with a significance level (p-value) of 0.05.

We randomly selected six large of the sea urchin Tripneustes ventricosus during
February and August by site. We also collected six small individuals only in Isla de Cabra
for a total of 42 echinoids. We classified a large urchin any individual with a horizontal test
diameter greater than 70.1 mm. This threshold was based on the average size of both
groups (Table S2), not in physiological maturity (McPherson, 1965). Measures were taken
with a caliper (error ± 0.05 mm). T. ventricosus gut microbiota data for February of 2019
was taken from Rodríguez-Barreras, Tosado-Rodríguez & Godoy-Vitorino (2021) and those
of August 2019 (small and large individuals) are being reported here. Site collections were
conducted on various days within the same month for each site to prevent the potential
mixing of individuals from different sites. Collected specimens were temporarily placed in
a foam cooler filled with seawater, equipped with an air battery-supplied pump, for
transportation to the laboratory facility.

Sample processing
A chemical method was used for induced euthanasia as described in the approved IACUC
protocol [A-5301118]. Once in the laboratory, each individual was placed inside a 100 mL
glass beaker with seawater for at least 10 min until it was attached to the surface, and then
sedated by adding 25 mL of a 20 mMMagnesium Chloride (MgCl2) hexahydrate solution.
This chemical procedure is commonly used in marine invertebrates (Arafa, Sadok & Abed,
2007; Doerr & Stoskopf, 2019; Wahltinez et al., 2021). Sea urchins were completely
detached from the wall of the beaker after the anesthesia effect. After that, individuals were
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relocated into a metal tray and exposed to ultra-low temperature of −80 �C for 10 min
before dissecting. Lifeless individuals were placed in a metal tray and carefully opened with
an equatorial cut around the oral membrane using a flame-sterilized scissor, avoiding
damage to the digestive tract (Whalen, 2008). The gut was cut, opened, and fecal pellets
transferred with sterilized tweezers to a Petri dish. Next, fecal pellets were put to 2 mL
microtubes and placed in a freezer at −80 �C before DNA extraction. This procedure
focuses on the isolation of the bacterial community associated with gut digesta, specifically
excluding tissue-associated. These procedures were approved by the University of Puerto
Rico Medical Sciences IACUC protocol (A-5301118).

DNA extraction, amplification, and sequencing
To isolate genomic DNA from gut fecal pellets, we employed the QIAGEN PowerSoilTM
kit (QIAGEN LLC, Germantown Road, Maryland, USA) with some modifications to the
manufacturer’s instructions. Gut fecal pellets were homogenized using a PowerLyzer
homogenizer for 2 min at room temperature, running at 3,000 r.p.m. The elution step
included incubating the eluent in 100 µl of sterile PCR water, pre-heated to 65 �C for
5 min, followed by a final centrifugation step. The concentration of the purified DNA
extracts was determined using the Qubit� dsDNA HS Assay Kit with the Qubit�
Fluorometer at room temperature, ranging from 5–100 ng/µl (Waltham, Massachusetts,
U.S.).

During the 16S library preparation, the DNA extracted from gut fecal pellets was
standardized to 4nM. To amplify the V4 hypervariable region of the 16S ribosomal RNA
marker gene, we utilized universal bacterial primers: 515F (5′GTGCCAGCMGCCGC
GGTAA3′) and 806R (5′GGACTACHVGGGTWTCTAAT3′). The amplification was
conducted following the protocols provided by the Earth Microbiome Project (http://www.
earthmicrobiome.org/emp-standard-protocols/16s/) (Caporaso et al., 2012), using
previously established conditions (Abarca et al., 2018). The 16S rRNA amplicons were
sequenced using Illumina MiSeq Reagent kit with a 2 × 250 bp setup (V4 region). The
resulting 16S-rRNA sequences were submitted to QIITA (Gonzalez et al., 2018) under the
Bioproject ID 12668; the raw sequences are publicly accessible in the European Nucleotide
Archive under ENA Projects PRJEB40117 and ERP123720.

The dataset, publicly deposited in 2021, includes sequence data from various species and
approaches related to different projects. We used the published February data of large
Tripneustes ventricosus from Rodríguez-Barreras, Tosado-Rodríguez & Godoy-Vitorino
(2021) to compare with our new unreported data for small and large individuals of the
same species collected in August of 2019 (reported here).

QC processing
The initial 16S rRNA raw FASTQ sequence files and their associated metadata information
were deposited in QIITA, as described in Gonzalez et al. (2018). The demultiplexed files
were raw read pre-processing using split libraries FASTQ with default parameters and a
Phred offset of 33, as implemented in QIIMEq2 1.9.1 (Bolyen et al., 2019). The sequences
were initially trimmed to a length of 250 bp, and then the deblurring workflow (deblur

Rodríguez-Barreras et al. (2024), PeerJ, DOI 10.7717/peerj.18298 5/23

http://www.earthmicrobiome.org/emp-standard-protocols/16s/
http://www.earthmicrobiome.org/emp-standard-protocols/16s/
https://www.ebi.ac.uk/ena/browser/view/PRJEB40117
http://dx.doi.org/10.7717/peerj.18298
https://peerj.com/


1.1.0) was applied (Gonzalez et al., 2018; Bolyen et al., 2019). The resulting species table was
downloaded for further analyses using a locally run version of QIIME2 (Bolyen et al.,
2019). To assign taxonomy, we used the Silva 138 reference database, specifically targeting
the 515F/806R region of the sequences, with a minimum similarity threshold set at 99%
(Quast et al., 2012). The Naive Bayes trained classifier for this database was obtained from
https://docs.qiime2.org/2023.2/data-resources/ and employed for taxonomy classification
using the sklearn tool in QIIME2 (Bokulich et al., 2018). Amplicon sequence variants
(ASVs) with fewer than five reads and sequences, those matching chloroplasts,
mitochondria, and taxonomically unassigned sequences, were excluded from subsequent
analyses. For the comparison between seasons, we performed rarefaction at a level of
17,000 reads per sample, while for the comparison between ages, all samples were rarefied
to 4,500 reads per sample. The sample distribution across sites and seasons consisted of 11
samples from ICB, 12 samples from CGD, and another 12 samples from PTB, resulting in a
total of 35 samples of large urchins; small urchins were not included in these analyses
(Table S2). This analysis was adjusted for the sample site to mitigate bias introduced by co-
variables.

Analyses of microbial communities and statistical testing
The reads were used for an alignment using MAFFT, in which phylogenetically
uninformative or ambiguously aligned columns will be removed (masked). The resulting
masked alignment will infer a phylogenetic tree with “qiime phylogeny align-to-tree-
mafft-fasttree” in QIIME2. This step is important to calculate alpha diversity index
“faith_pd” (Faith, 1992) with “qiime diversity alpha-phylogenetic” plotted as rarefaction
curves. Additionally, we calculated observed features as well as the Shannon index
(Shannon & Weaver, 1949). Statistical analyses for alpha diversity were done using “qiime
diversity alpha-group-significance” script in QIIME2, which uses a non-parametric t-test
with Monte Carlo permutations (Bolyen et al., 2019). Taxonomic bar plots for phylum and
genus were also generated using Microbiome Analyst 2.0 (Lu et al., 2023).

Beta diversity within our categories was calculated using DEICODE plugin in QIIME2
(Martino et al., 2019). DEICODE allows us to identify significant inter-community niche
features and visualize them in compositional biplots (Martino et al., 2019). The resulting
ordination file was modeled using the “qiime emperor biplot” script in QIIME2 (Bolyen
et al., 2019). Robust Aitchison principal component analysis (PCA biplots) serve as
visualizations, illustrating arrows that correspond to the specific feature (taxonomically
characterized) and responsible for group clustering (Martino et al., 2019). Arrows respond
to Euclidian distance from the origin, and their size indicates the strength of the
relationship of that ASV to the community composition and grouping. The QIIME2
Emperor biplot script selects the top feature arrows based on the magnitude of all the
dimensions, while the largest value in each matrix does the scaling of the arrows.

To compare the ranked beta diversity distances across the different variables, we used a
Bray-Curtis dissimilarity table. We conducted PERMANOVA analyses using the adonis
function with stratification from the vegan package in R to compare seasonal variations
within the same site (Oksanen et al., 2014). These tests were conducted using the “qiime
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diversity beta-group-significance” script in QIIME2, with 999 permutations (Bolyen et al.,
2019; Martino et al., 2019).

Using a linear model, we applied MaAsLin2 in Microbiome Analyst 2.0 to conduct a
multivariable association analysis between taxa and features of interest (season and size
classification) (Lu et al., 2023; Mallick et al., 2021). To minimize statistical bias, this
analysis was corrected for sample sites. The key metadata variables considered in the study
were 1- Size-class (small and large), 2- water temperature (February and August), and 3-
sample site (CGD, ICB, and PTB). We exported the Maaslin2 results to create a volcano
plot using the VolcaNoseR tool (Goedhart & Luijsterburg, 2020). In the plot, significant
bacterial taxa were highlighted based on a threshold of p < 0.05 (1.3 on -log10 scale) and a
minimum fold change of 1.5, as per Goedhart & Luijsterburg recommendations. For
enhanced clarity in the plot, we transformed the p to a -log10 scale to directly correlate the
scale with increasing significance. We used linear discriminant analysis (LDA) with LefSe,
an algorithm for biomarker discovery that identifies taxa characterizing the differences
between the metadata classes (Segata et al., 2011).

RESULTS
Quality assessment and spatial changes in the gut microbiota among
large sea urchins
Abiotic factors exhibited no spatial differences across seasons and collection sites, except
water temperature, which changed between seasons (p = 2.563e−06) (Table S2). In terms of
the gut microbiota, after quality control, a total of 2,642,046 high-quality sequence reads
remained; 2,316,458 were used in the analyses of all large urchins, while 325,588
corresponded to the six small sea urchins (Table 1, Table S2). The relative abundance at the
genus level varied slightly within each site with Propionigenium having more relative
abundance in PTB (Fig. S1A). The adult gut microbiota remained relatively similar in adult
individuals with no significant differences in alpha diversity across sites (non-parametric t-
test with Monte Carlo permutations; p = 0.696) (Fig. S1B). Alpha diversity was also similar
among sites (p = 0.221), although ICB and CGD showed slightly higher Shannon index
than PTB (Fig. S1C).

Temperature changes in the gut microbiota among large animals are
more significant than among collection sites
Most differences at the phylum level include a higher relative abundance of Bacteroidota in
August (average 39.8% in August vs. 28.8% in February), while Firmicutes were higher in
February (31.9% vs. 6% in August (Fig. 1A, Table S3). At the genus level, a higher relative
abundance of Desulfatolea (~7.4%), Propionigenium (23.7%) and Roseimarinus (15.9%) e
in high-temperature period samples, while Candidatus Hepatoplasma (~16.5%),
Fusibacter (11.9%), and Roseimarinus (15.9%) had greater relative abundance in February
(Fig. 1B, Table S3). Across seasons, a permutational statistical test based in ASVs
confirmed significant dissimilarities in bacterial community composition between seasons
(Permanova, p = 0.001) (Table S4). Inter-community features were highlighted using
DEICODE compositional biplots. The analysis revealed that the genera Fusibacter were
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dominant in February samples; while in August, in addition to Propionigenium, the order
Bacteroidales, and the genera Roseimarinus, Fusibacter, Desulfotalea, and Photobacterium
also dominated. Propionigenium were dominant in the two time periods (Fig. 2A).
Additionally, alpha diversity analyses revealed significant differences between seasons.
There was an increase Shannon diversity in February (p = 0.0022) (Fig. 2B), and in
observed features (p = 0.0022), while faith_pd remained similar between seasons
(p = 0.390) (Fig. 2D). The seasonal dynamics of the gut microbiota, analyzed using
MaAsLin2, identified a total discriminating 176 ASVs at the genus level (Fig. 3), out of
which only 12 showed significant differentiation (FC = 1.5; FDR p = 0.05). Specifically,
seven taxa exhibited a significant decrease of at least 1.5-fold in February compared to
August, including Desulfotalea, Sediminispirochaeta, SCGC_AAA286_E23,
Marinimicrobia SAR406 clade, SG8_4, Ferrimonas, and Woesearchaeales. On the other
hand, five other taxa displayed a significant increase in relative abundances of at least 1.5-

Table 1 Average spatial and seasonal number of reads and OTUs for the 41 samples considered in
the analyses of the white sea urchin Tripneustes ventricosus.

Sites Time Number of samples Average of reads ± SD Average of ASVs ± SD

Cerro Gordo February 6 large 12,119 ± 7,859 823.33 ± 482.53

August 6 large 71,743 ± 22,410 574.50 ± 234.36

Isla de Cabra February 6 large 58,475 ± 31,904 1,295.33 ± 621.09

August 6 small 55,127 ± 19,150 652.33 ± 249.51

August 5 large 191,757 ± 203,450 1,150.60 ± 736.01

Punta Bandera February 6 large 23,550 ± 15,313 637.00 ± 212.12

August 6 large 76,465 ± 35,969 557.50 ± 364.09

Note:
Reads and ASVs expressed as the average ± standard deviation (SD) after quality control analysis.
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Figure 1 Temporal bacterial taxonomic distribution in the sea urchin Tripneustes ventricosus (February n = 18; August n = 17). Taxonomic
plots show the average relative abundance at Phyla (A) and genus (B) levels, depicting relative abundances.

Full-size DOI: 10.7717/peerj.18298/fig-1
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fold in February compared to August, namely MSBL3, Haloferula, Cutibacterium, RF39,
and Candidatus Hepatoplasma (Fig. 3).

Changes in gut microbiota linked with size class
The sample size distribution consisted of six small individuals from ICB and 17 large
individuals from ICB, CGD, and PBD, collected exclusively during August. Size classes
were significantly different in horizontal test diameter (p = 0.004) (Table S2). Statistical
tests (PERMANOVA strata) confirmed that the bacterial composition did not differ based
on size in T. ventricosus even when correcting for sample collection site (p = 0.789)
(Table S3). Small urchin samples displayed a lower relative abundance of Fusobacteria and
higher relative abundance of Bacteroidota and Proteobacteria than large individuals at
phylum level (Fig. 4A). At the genus level, Propionigenium had greater relative abundance
in large urchins, while Photobacterium and Roseimarinus had greater relative abundance in
small urchins (Fig. 4B).
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The LEfSe analysis were visualized using box plots, showing that Ferrimonas (p-
value = 5.15E−05) (Fig. 5A) and Propionigenium (p = 4.85E−05) (Fig. 5B) were more
dominant in the large sea urchins. A DEICODE resulting biplot revealed that the genera
Persicobacter and Spirochaetota (g__V2072-189E03) had greater relative abundance in
small urchins. In contrast, Roseimarinus, Photobacterium, Desulfotea, and Propionigenium
had greater relative abundance in large urchins (Fig. 6A). The alpha diversity did not reach
statistical significance, but small urchins exhibited apparently more diversity than large
urchins (p = 0.141) (Fig. 6B). Additionally, the observed features (p = 0.52861), and
faith_pd (p = 0.44121) remained similar between size classes (Figs. 6C and 6D).

DISCUSSION
This is the first study characterizing the gut microbiota of T. ventricosus, exploring the
effect of water temperature and size class. This approach offers an in-depth understanding
of the species’ gut microbiota dynamics. The novelty of this manuscript lies in
understanding how the fecal microbiota of the white sea urchin changes between size
classes and in response to temperature changes in the sea urchin Tripneustes ventricosus.
An initial characterization of the fecal pellet microbiota conducted during February, when
water temperature is usually lower, was publicly available (Rodríguez-Barreras, Tosado-
Rodríguez & Godoy-Vitorino, 2021); however, the fecal microbiota during August, when
water temperature is higher, remained unknown. Therefore, we characterized for the first
time the gut digesta microbiota for August and compared it with the February samples.
Additionally, the fecal pellet microbiota of small individuals was characterized for the first
time and compared with that of large sea urchins during the same time period, allowing us
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to analyze how it changes between small and large sea urchins. The gut microbiota
displayed changes in response to environmental fluctuation of abiotic parameters, like
temperature more than by spatial variations, however, we consider this a big limitation in
our study, as temperature and size evaluations are restricted to one sampling site and there
are no variations in the animal sizes. Future studies should include a broader
characterization of size classes and seasons to support any correlations. The composition
and relative abundance of the gut microbiota in T. ventricosus during August and February
were likely linked to annual changes in water temperature rather than pH or salinity.
Water temperature changes were significant between February and August, while the other
two measured abiotic parameters remained similar between both periods. The slight
increase in alpha diversity found in this study during February could be related to bacteria
genera being more evenly distributed in February than August. Nonetheless, we assume
this is an important limitation of the study as other abiotic parameters such as pollutants
(heavy metals, plastics, or chemicals that induce stress to the gut microbiota), water flow
and currents (removing specific communities), differences in oxygen levels, or nutrient
variations due to changes in diet (availability of macroalgae) (Masasa et al., 2021), which
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may all account for changes in the gut microbiota of these invertebrates, and these factors
remain to be evaluated.

Recent studies have reported differences in microbial communities across seasons,
illustrating the effect of environmental factors (Logue, Findlay & Comte, 2015; Karl et al.,
2018; Ketchum et al., 2021). Microorganisms from the Phyla Proteobacteria, Bacteroidetes,
and Fusobacteria have been found to colonize the gut system in sea urchins (Pagán-
Jiménez et al., 2019; Faddetta et al., 2020; Feng et al., 2021). In this study, we reported a
higher relative abundance of the phyla Bacteroidota and Fusobacteriota and a reduction in
relative abundance of the phylum Firmicutes, probably related to an increase in water
temperature in August. Firmicutes have been previously found in high relative abundance
associated with water algae and gut digest microbiota samples in the temperate sea urchin
Strongilocentrotus purtpuratus at 13.1 �C (Hakim et al., 2019). This temperature is lower
than those experienced by sea urchins in the Caribbean (Table S1), and probably water
temperature could be the fact behind the reduction of Firmicutes reduction during
February and indicates a less tolerance or lower performance of the groups at higher water
temperatures. Indeed, a reduction in the relative abundance of Firmicutes was also
detected with the increase in temperature in the gut microbiota of the bivalve Mytilus
coruscus (Li et al., 2018). Another study reported a significant increase in the relative
abundance of the Phylum Firmicutes from autumn to spring in the sea cucumber Stichopus
japonicus inhabiting temperate waters (Feng et al., 2021). However, the lack of abundant
studies in wild sea urchins makes it difficult to discuss the influence of water temperature.
On the other hand, while the previously mentioned phyla experienced seasonal
fluctuations in relative abundance, the phylum Proteobacteria remained relatively stable
between February and August. However, this behavior was not observed in the intestinal
microbiota of the sea cucumber Holothuria scabra, where Proteobacteria, especially the
genus Vibrio, was found to have a higher relative abundance during the rainy season
(Plotieau et al., 2013).

Seven genera experienced a reduction in relative abundance in samples collected in
February. One of them was Desulfotalea, a sulfate-reducing bacteria known for forming
symbiotic associations with invertebrates in anaerobic or sulfate-rich conditions
(Rabus et al., 2004). They can contribute to the host’s energy needs by metabolizing
chemical compounds such as hydrogen sulfide. This genus is more abundant under lower
water temperature, contrasting with our results (Grim et al., 2023). A potential explanation
could be related with the fact that free-living species of Desulfotalea react in a different way
to host Desulfotalea species, but also free-living species tend to be more affected by
additional environmental factors such as the light incidence (Grim et al., 2023). A second
genus that experienced a remarkable decrease from August to February in relative
abundance was Ferrimonas. This genus is commonly found in aquatic environments and
uses iron as an energy source through dissimilatory iron reduction (Rosselló-Mora et al.,
1995; Fan et al., 2013). Warmer water temperatures led to an increase in the abundance of
Propionigenium. Interestingly, another study found a similar pattern in Tripneustes
gratilla, which was associated with the consumption of Ulva (Masasa et al., 2021).
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On the contrary, at least five taxa increased in relative abundances in February.
Cutibacterium, formerly known as Propionibacterium, is a Gram-positive bacterium
commonly found in sebaceous areas of the skin (Lee, Byun & Kim, 2019). However, its
presence in the samples may be due to human contamination and not because it
constitutes a regular component of the microbiota of T. ventricosus. A second genus,
Haloferula, was recently identified in samples from Sea Cucumber Apostichopus japonicus
and its relative abundance associated with water temperature fluctuations (Kang et al.,
2023). The candidate genus of small, cell wall-less bacteria in the Class Mollicutes,
Candidatus Hepatoplasma, has been found in insects, specifically beetles, in their
hepatopancreatic tissues (Leclercq et al., 2014). Candidatus Hepatoplasma are believed to
be vertically transmitted and potentially mutualistic (Leclercq et al., 2014). While research
has focused on the interactions with insects, a study in sea urchins has already established
the detection of this taxa in sea urchins (Hakim et al., 2016). Limited information is
available for the RF39 and MSBL3 strains. One potential seasonal factor associated with
host microbiota shift could be nutrient availability. For example, a recent study
demonstrated a high dynamisms level of the gut microbiota (Bengtsson et al., 2024), while
other study found the ability of invertebrates to respond under seasonal changes in food
supply spectrum (Kivistik et al., 2023).

Studying the gut digesta microbiota dynamic between small and large stages of wild
caught sea urchins and other echinoderms offers valuable insights into the dynamic nature
of these microbial communities during different life stages (Clark & Walker, 2018; Carrier
et al., 2021). Previous studies have demonstrated significant changes in the gut microbiota
during the transition from small to large urchins. However, few studies have been
conducted addressing this issue in invertebrates (Onitsuka et al., 2015; Miró et al., 2020;
Popkes & Valenzano, 2020), with limited research focusing on echinoderms (Zhao et al.,
2019; Carrier et al., 2021;Marangon et al., 2023). Our findings revealed a size-related effect,
providing insights into the progression of microbiota associated with different life
stages. These studies concluded that small sea urchins exhibit higher microbiota diversity
compared to adults, what agrees with our findings that also revealed that small
T. ventricosus exhibited a slightly alpha diversity in their gut digesta microbiota compared
to large urchins. This trend could be also related to significantly lower counts of
Ferrimonas and Propionigenium. This difference in counts could be associated with the
occurrence of more groups in small sea urchins. Particularly, Propionigenium tends to be a
dominant group in adult sea urchins (Yao et al., 2019). Additionally, a higher relative
abundance of Ferrimonas in adults could be related to the aestivation process and the
reproductive cycle (Kang et al., 2023). A higher relative abundance of Ferrimonas has been
found during this complex physiological process, which takes place during the summer
season, coinciding with the period when our samples were taken. While large individuals
invest more in reproduction, small individuals usually have undeveloped or absent gonads
and therefore do not engage in reproductive activities (Hendler et al., 1995). Consequently,
these two genera could serve as biomarkers for adult T. ventricosus.

The changes in the gut microbial community with size could be linked to feeding
preferences. Literature has reported that sea urchins experience a dietary shift when
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transitioning from small to large size classes (Zann et al., 1987; Grosso et al., 2022). Small
T. ventricosus possess smaller mouths in contrast to large individuals, potentially
explaining the differences in microbiota composition due to their ability to ingest different
kind of particles. Furthermore, the aging process may lead to a gradual decline in
biodiversity, favoring genera associated with immune responses and dysbiosis through
evolutionary symbiosis (Carrier et al., 2021). A recent study conducted with the tropical
sea urchin of the genus Echinometra sp., found differences among life stages, where small
urchins exhibited a higher relative abundance of the Class Oxyphotobacteria (within the
Phylum Cyanobacteria) compared to large urchins (Marangon et al., 2023). This finding
agrees with our results, and other studies conducted in marine invertebrates where the
microbial community display important changes across the animal life cycle (Bernasconi
et al., 2019; Quigley et al., 2020). On the other hand, despite of lack of significant
differences in alpha diversity found between small and large urchins, the slightly higher
diversity found in small urchins is a pattern observed in sea urchins, related with natural
transitions that occurs alongside life history (Carrier et al., 2021). Overall, taxa reported
here such as Psychromonas, Fusibacter, Propionigenium or Photobacterium, can be
considered keystones species in sea urchins as they were not only found in our study, but
also in other sea urchin species (Rodríguez-Barreras, Tosado-Rodríguez & Godoy-Vitorino,
2021; Ruiz-Barrionuevo et al., 2024) as well as Tripneustes gratilla (Masasa et al., 2021) or
Lytechinus variegatus (Hakim et al., 2016).

CONCLUSIONS
Our study unravels the gut digest microbiota of T. ventricosus, focusing on the
understudied aspects of seasonal and age-related dynamics, and underscores the
importance of the gut microbiota of wild sea urchins and their potential associations with
environmental variables. Comprehending the factors that influence gut microbial shifts is
of utmost importance due to the significance of the microbiota in the overall function of
the holobiont (Pita et al., 2018), being particularly critical due to rapid climate change
(Konopka, 2009). Understanding the effect of temperature in gut bacteria will lead to
valuable insights into these organisms’ ecological and physiological adaptations to
changing environmental conditions. Our findings suggest the existence of specific
microbial profiles associated with different life stages in T. ventricosus, emphasizing the
importance of life-stage-related factors in shaping the gut digesta microbiota. By
demonstrating slight size-class changes in the gut digesta microbiota between small and
large urchins, we highlight the dynamic nature of the host bacterial community
throughout the animal’s life cycle. By exploring the seasonal dynamics of the sea urchin gut
microbiota influenced by fluctuating ocean conditions, and studying how microbial
communities evolve from small to large urchins, we contribute unique insights guiding
broader strategies for the conservation and sustainable management of coastal
environments. Further studies should include a greater number of samples and collection
sites to strengthen our capacity for drawing conclusions about T. ventricosus and to
generalize to other similar sea urchin species in the Caribbean basin.
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