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ABSTRACT

Rivers in karst areas face increased risks from persistent growth in human activity
that leads to changes in water chemistry and threatens the water environment. In this
study, principal component analysis (PCA), ion ratio measurements, and other
methods were used to study the water chemistry of the Qingshuijiang River Basin
over the past 10 years. The results showed that the main ions in the river were Ca**
and HCO;, with a cation order of Ca** (mean: 0.93 mmol/L) > Mg>* (mean: 0.51
mmol/L) > Na™ (mean: 0.30 mmol/L) > K" (mean: 0.06 mmol/L) and HCO3 (mean:
2.00 mmol/L) > SO%~ (mean: 0.49 mmol/L) > CI” (mean: 0.15 mmol/L) > NO; (mean:
0.096 mmol/L) > F~ (mean : 0.012 mmol/L). In the past 10 years, the concentration of
major ions in the river water in the basin has increased significantly. The weathering
input of rock (mainly upstream carbonate) was the main source of Mg**, Ca**, and
HCOj3, though sulfuric acid was also involved in this process. While K* and Na" were
affected by the combination of human activity and the weathering input of silicate
rock in the middle and lower reaches of the river, human activity was the main source
of SO;7, NOj3, and F ions. Irrigation water quality and health risks were evaluated by
calculating the sodium adsorption ratio (SAR), soluble sodium percentage (Na%),
residual sodium carbonate (RSC), and hazard quotient (HQ). The findings indicated
that the river water was generally safe for irrigation and drinking, and the health risks
were gradually reduced over time. However, long-term monitoring of the river basin
is still essential, especially for the risk of excessive F~ in a few tributaries in the basin.

Subjects Coupled Natural and Human Systems, Environmental Contamination and Remediation,
Environmental Impacts
Keywords Karst river, Main ions, Water chemistry, Sources, Health risks

INTRODUCTION

Rivers are vital sources of water for agriculture, industry, and human consumption
(Hayward et al., 2022). Rapid urbanization and increased population density have led to
the discharge of human activities (urban sewage, industrial wastewater, and agricultural
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wastewater) into rivers (Hua et al., 2020; Li et al., 2019). This process has changed the
chemical evolution of river water, resulting in water shortages and water quality
deterioration, endangering human health (Han & Xu, 2022; Yao et al., 2015). In general,
the substances in rivers are derived from both natural processes (such as atmospheric
rainfall and rock weathering) and human activity (Qin et al., 2018; Zheng et al., 2022).
However, human activity has gradually become the main factor affecting the chemical
composition of the river water environment. In particular, the direct input of F~, Cl', SO%,
NOj and other elements from agricultural and urban areas significantly changes the
hydrochemical characteristics of rivers (Jehan et al., 2019; Sheng et al., 2023; Zheng et al.,
2022). Due to differences in climate, lithology, and human activity, river water chemistry
and their control mechanisms differ by geography (Hua et al., 2020; Wang et al., 2022a; Yu
et al., 2021). Long-term and seasonal research on river water chemistry can intuitively
reflect the evolution and effects of multiple factors on water chemistry (Feng ¢» Yang,
2022).

The main ions in river water (Na*, K*, Mg**, Ca**, F, CI', NO;3, SO2", and HCO;3) are
important components of the river dissolution load, and their geochemical behavior can
further determine the main contribution source and migration process of river pollutants
(Li et al., 2022). Recent studies have indicated that ion ratio, principal component analysis
(PCA), and correlation analysis (CA) are the most common methods for analyzing the
main ion sources in river water (Han et al., 2022; Long ¢ Luo, 2020; Mingyue et al., 2024;
Zhang et al., 2022). Statistical methods such as PCA and CA can be used to explore the
common source of river solutes, and the ion ratio can help prevent the potential dilution
effect and reflect the mixing process of the source (Gaillardet et al., 1999; Szynkiewicz et al.,
2011). Therefore, a multivariate statistical analysis of rivers can more accurately identify
the contribution sources of each ion. Increased human activity leads to an increase in ion
concentrations in the water environment, leading to serious health and environmental
risks (Wu et al., 2017). Water pollutants mainly enter the human body through drinking
water and skin contact, endangering human health (Liu ef al., 2021a, 2021b). Rivers are
important water sources for agricultural irrigation, and the water quality of the river
directly affects the growth of crops around the basin (Asare-Donkor, Ofosu ¢ Adimado,
2018). Therefore, the health risk assessment (HRA) and irrigation water quality
measurements of rivers are of great significance to the health of the local population.
Recent studies focus on the risk assessment method calculated by hazard quotient (HQ) to
assess the risk of direct exposure to residents, and the HQ index is also widely used to
evaluate the impact of water pollution on human health (Gao et al., 2021b; Wang et al.,
2022b). The evaluation of irrigation water quality using the sodium adsorption ratio (SAR)
and soluble sodium percentage (Na%) reflects the degree of alkali (sodium) damage in the
irrigation water (Han ¢ Xu, 2022).

Southwest China is a typical karst area (Jiang, Lian ¢» Qin, 2014). Due to unique
geological conditions and strong karstification, karst ecosystems, especially river systems,
are extremely sensitive and fragile (Gutiérrez et al., 2014). This study assessed seasonal
changes and time differences in the river hydrochemistry of karst areas to better explore
the effects of human activity on river hydrochemical characteristics, the weathering
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process, and the health risks of rivers in karst areas. The river ions in the Qingshuijiang
River Basin were systematically studied during the wet and dry seasons of 2013/2014 and
2023, aiming to (1) analyze the spatial and temporal variation of the main ions in the
Qingshuijiang River Basin, (2) explore the sources and changes of the main ions in the
basin, and (3) assess the water quality changes and potential health risks in the basin.

MATERIALS AND METHODS
Study area

The Qingshuijiang River Basin is located in the eastern and central part of Guizhou
Province (southwestern karst area; Fig. 1A), between 105°15'-109°50" east longitude and
26°10"-27°15’ north latitude. It is one of the important tributaries of the Dongting River
System in the upper reaches of the Yuanjiang River Basin in the Yangtze River Basin. In the
upper portions of the basin, Duyun, Fuquan, and Kaili have experienced rapid industrial
development. The enterprises producing phosphorus and fluoride in the basin are mainly
concentrated upstream in Fuquan City, which has built a large-scale phosphate rock and
phosphorus chemical base. The soil in the Qingshuijiang River Basin mainly includes
yellow soil, red soil, yellow-red soil, and red paddy soil. The forest resources in the area are
abundant, and the forest coverage rate of the basin is about 50%. The rock distribution in
the upper reaches of the basin is mainly dolomite, limestone, sand shale, clastic rock, and
marl. The middle and lower reaches consist of mainly siliceous rock, slate, metamorphic
sandstone, metamorphic tuff, and sedimentary tuff. There is abundant rainfall in the basin,
averaging 1,050—1,500 mm annually, and the average annual temperature is 14-18 °C.

Sampling and measurements

Based on the rock distribution characteristics and urban land distribution in the basin,
surface water samples from the whole basin were collected in August 2013 (wet season),
January 2014 (dry season), February 2023 (dry season) and September 2023 (wet season).
A total of 164 samples, including 68 mainstream samples (G1-G17) and 96 tributary
samples (Z1-Z24), were collected at a water depth of about 15 cm using clean,
high-density polyethylene bottles (Fig. 1B). The water samples were immediately filtered
through a 0.45 um Millipore filter membrane in the field after collection. The water
samples used for the cation analysis (Na*, K", Ca’*, and Mg2+) and for the anion analysis
(F~, CI', NO;3, and SOﬁ‘) were sealed and stored away from light. The pH, conductivity
(EC), water temperature (T), and dissolved oxygen (DO) of the water body were
measured on site using a WTW portable multi-parameter tester. HCO; was titrated by
0.025 mol-L ™! HCI on site, and each water sample was titrated three times to ensure that
the volume error of HCI used each time was within 0.1 ml. Na*, K*, Ca®*, Mg**, CI", NO;3,
F~, and SO~ were determined by ion chromatography (DIONEX, ICS-1100, IonPac AG-
19 anion column, IonPac CS-12A cation column). The test accuracy of parallel samples is
better than +5%.
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Figure 1 Location of the Qingshuijiang River Basin in Guizhou, Southwest China (A); sampling lithology maps of the mainstream and
tributaries of the Qingshuijiang River Basin (B). Data source: Geocloud (https://geocloud.cgs.gov.cn).

Full-size K&l DOT: 10.7717/peerj.18284/fig-1

Assessment method
Irrigation water quality assessment
Irrigation water quality was evaluated by calculating the sodium adsorption ratio (SAR),

soluble sodium percentage (Na%), and residual sodium carbonate (RSC). Higher SAR

values indicate stronger adsorption of sodium ions by the soil in the basin, making it more
difficult for the vegetation roots to absorb water (Wang et al., 2022b). The higher the Na%
value, the worse the permeability of the soil, affecting the growth of vegetation. Different
irrigation water salinity and alkalinity levels also affect soil quality attributes, thereby
changing farmland yield. Therefore, SAR, Na%, and RSC were calculated using the
concentration (meq/L) of ions (Na*, K*, Mg>*, Ca**, HCO;3, and CO?") in river water to
comprehensively evaluate the saline-alkali hazard of irrigation water (Asare-Donkor, Ofosu

e Adimado, 2018). The main calculation formulas are as follows:
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SAR =V2xNa* /(Ca** + Mg?*)"/? (1)
Na% = Na't /(Ca®* + Mg*" 4+ Na™ +K") x 100% (2)
RSC = (HCO; ™ — CO%") — (Ca*" + Mg*") (3)

Health risk assessment

Water pollutants in river water enter the human body mainly through both drinking water
and skin contact, and unsafe drinking water intake has been shown to be the main way to
threaten human health (Adimalla ¢ Li, 2019; Adimalla, Qian ¢» Nandan, 2020). Long-
term exposure to high concentrations of nitrate and fluoride may increase the risk of
disease and other negative health effects (Xia et al., 2021b). Recent research has shown that
NO; and F, as non-carcinogenic pollutants, are often used to assess the non-carcinogenic
health risks of river water to the population (Han ¢ Xu, 2022; Wang et al., 2017; Zeng,
Han & Yang, 2020), though the hazard quotient (HQ) is the most commonly used
metric for evaluating non-carcinogenic health risks. Its calculation method follows in
Egs. (4) and (5):

ADDjpgestion = C x IR x EF x ED/(BW x AT) (4)

where the ADDjpgestion is the ingestion intake of daily doses, C is the concentrations of ions
(mg/L), IR is the rate of daily ingestion (0.6 L/day for children, 1 L/day for adults), EF is the
exposure frequency (365 days/year for both adults and children), ED is the exposure
duration (25 years for adults and 12 for children), BW is the body weight (16 kg for
children and 56 kg for adults), and AT is the average time (4,380 days for children and
10,950 days for adults; (Qasemi et al., 2019; Wu & Sun, 2016)).

HQ = ADDingestion/ Rf Dingestion (5)

where DfRjpgestion i8 the reference dose of different ions (0.04 and 1.60 ppm/day for F~ and
NO;, respectively; (Li et al., 2016)). When HQ < 1, the human health risk caused by
pollutants is permissible; when HQ > 1, non-carcinogenic effects should be considered.

Data analysis

In this study, ion ratio, principal component analysis, correlation analysis, and piper
three-line diagram were used to analyze the compositions, source, and changes of the main
ions in the Qingshuijiang River Basin. Statistics software package SPSS 25.0 and Origin
2022 were used for data analysis and visual representation of the data.

RESULTS

Water quality parameters of the Qingshuijiang River

The minimum, maximum, mean, and standard deviation of water quality parameters and
main ion concentrations in the Qingshuijiang River Basin in 2013/2014 and 2023 are
summarized in Table 1. The water temperature of the Qingshuijiang River Basin ranged
from 7.90 °C to 30.60 °C (average: 18.58 °C), and the pH value ranged from 7.07 to 9.90
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Table 1 Values of major ions and some hydrogeochemical parameters in the Qingshuijiang River Basin.

Sampling time T EC pH DO Na' K' Mg2 * Ca¥ F CI” NO; SO02- HCO; TDS SAR Na% RSC
°C  pS/cm mg/L mmol/L mg/L
2013/8* Min 2170 — 7.19 330 0.04 0.02 0.04 0.09 0.002 0.03 0.001 0.04 0.37 33.82 0.05 228 0.24
Max 30.60 — 9.90 12.30 035 0.09 1.12 1.62 0.083 0.18 0.122 1.05 4.61 500.64 0.60 50.00 2.50
Mean 2598 — 8.05 7.05 0.18 0.04 044 0.76 0.014 0.10 0.022 0.35 1.91 201.51 0.29 18.08 0.71
SD 206 — 0.64 193 0.07 0.02 038 046 0.018 0.04 0.027 029 1.17 13259 0.15 11.88 0.44
2014/1* Min 8.00 37.7 7.07 5.62 0.04 0.01 0.03 0.07 0.001 0.02 0.002 0.05 0.18 2146 0.04 197 -0.34
Max 16.00 1,186 9.07 12.84 1.08 0.08 1.32 1.75 0.174 0.22 2229 243 4.09 761.70 0.87 54.17 1.62
Mean 11.33 3023 7.86 947 024 0.04 050 088 0.017 0.10 0.178 0.44 1.62 210.10 0.32 18.11 0.25
SD 2.65 211.0 041 1.72 0.18 0.01 038 0.51 0.028 0.04 0.377 0.43 1.00 16190 0.17 11.83 0.33
2023/2 Min 7.90 58.6 7.86 6.33 0.06 0.01 0.04 0.09 0.004 0.03 0.013 0.06 0.26 29.74 0.05 221 -2.55
Max 14.60 1,317 8.55 1250 2.51 039 138 475 0.072 1.01 0.493 4.88 5.01 1,137.74 1.81 5182 2.56
Mean 11.13  395.7 8.26 10.36 046 0.08 0.62 1.13 0.010 0.24 0.115 0.69 2.36 299.68 0.48 2123 0.62
SD 152 276.7 0.17 1.07 0.52 0.08 042 096 0.012 021 0.098 1.04 1.19 250.29 0.32 10.58 0.84
2023/9 Min 21.80 23.1 7.65 243 0.07 0.01 0.04 0.09 0.005 0.02 0.002 0.04 0.34 3194 007 289 -1.23
Max 29.70 1,001  9.65 17.86 1.38 0.39 126 3.60 0.030 0.40 0.381 3.19 4.76 856.68 1.05 5090 2.40
Mean 25.86 305.7 8.47 8.01 031 0.07 048 097 0.007 0.15 0.069 049 2.11 24598 0.39 20.10 0.66
SD 1.87 1985 0.44 255 025 0.06 032 0.68 0.005 0.08 0.064 0.60 1.08 173.02 0.18 10.27 0.55
Four periods Min 1858 3346 8.16 8.72 030 0.06 051 094 0.012 0.15 0.096 0.49 2.02 240.71 0.04 197 -2.55
Max 30.60 1,317 9.90 17.86 2.51 039 138 475 0.174 1.01 2.229 4.88 5.01 1,137.74 1.81 54.17 2.56
Mean 18.58 334.6 8.16 8.72 030 0.06 051 094 0.012 0.15 0.096 0.49 2.00 239.32 0.37 1938 0.56
SD 2.03  228.7 042 1.82 0.26 0.04 038 0.65 0.016 0.09 0.142 0.59 1.14 166.03 0.22 11.14 0.60
Chinese guideline” — — 6.5-85 — - - = — 0.050 7.05 1.430 260 — — - = —
WHO guidelineb — — 6.5-85 — - - - — 0.080 7.05 3.570 2.60 — — — — —

Notes:

* The concentrations in the Qingshuijiang River Basin in August 2013 and January 2014 were derived from Lii et al. (2018).
" The unit of related values in Chinese guideline and WHO guideline are converted to mmol/L.

(average: 8.16), which is neutral to weak alkaline. Generally, the EC and total dissolved

solids (TDS) of a body of water can be used to reflect its ionic strength (Zhou et al., 2016).
The EC of the Qingshuijiang River Basin ranged from 23.1 to 1,317 pS/cm (average: 334.6
pS/cm), and the TDS ranged from 24.35 to 1,031.87 mg/L (average: 239.32 mg/L). The

total cationic charges (TZ" = Na* + K* + 2Mg** + 2Ca**) averaged 3.24 meq/L, and the
anionic charges (TZ™ = F + ClI” + NO; + 250%™ + HCO;3) also averaged 3.24 meq/L. The
normalized inorganic charge balance (NICB, [TZ-TZ"]/TZ") of the samples was within

+15% except for the sampling point Z3 (heavily polluted tributaries) in the dry season of
2014, and 80% of the samples were within +10%.

Compared with the dry season of 2014, the EC and TDS of the dry season of 2023 were
significantly higher, indicating that the ion content in the river water has increased over the

past decade. Moreover, the TDS in the dry season of 2023 was significantly higher than the
TDS in the wet season of 2023. Over the past decade, Na*, K*, Cl", and SO3™ in the
Qingshuijiang River Basin have increased by 83.33%, 87.50%, 95.00%, and 49.37%,
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respectively. In addition, Ca>* and Mg’ in the river water have increased slightly, while F~
and NOj have decreased, especially F~, which has decreased by 46.16%.

Hydrochemical characteristics of the Qingshuijiang River

The results showed that the main ions in the Qingshuijiang River were Ca®* and HCO3,
with a cation order of Ca** (0.93 mmol/L) > Mg** (0.51 mmol/L) > Na* (0.30 mmol/L) >
K* (0.06 mmol/L) and HCO3 (2.00 mmol/L) > SO?%™ (0.49 mmol/L) > CI” (0.15 mmol/L) >
NO;3 (0.096 mmol/L) > F~ (0.012 mmol/L). The results also showed that the main anions
of Qingshuijiang River were HCO; and SO?", and the main cations were Ca>* and Mg*",
which is consistent with the composition characteristics of the main ions in karst rivers
(Chishui River and Nanming River) in Guizhou (Ge et al., 2021; Han ¢» Xu, 2022). A Piper
diagram was then used to better understand the hydrochemical characteristics of the
Qingshuijiang River Basin (Xia ef al., 2021a). As shown in Fig. 2, the main cations, Ca**
and Mg2+, accounted for 50.88% and 26.19% of the total cations, respectively. The main
anion, HCO3, accounted for 77.47% of the total anions, followed by SOﬁ‘, which
accounted for 16.31% of the total anions. Ca**-HCO; type water was the main

hydrochemical water type of the Qingshuijiang River. In the upstream tributary area,
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which has abundant human activity, the hydrochemical water type changed from Ca®
*-HCO; type water to Ca®*-SO%" type water. The middle and lower reaches of the
tributary area are weathered by silicate rocks, and the hydrochemical water type changed
from Ca®*-HCOj water type to Na*-K*-HCOj water type (Fantong et al., 2020; Mufur
et al., 2021).

DISCUSSION

PCA and CA analysis of solute sources

To further analyze the source of the main ions in the Qingshuijiang River, a principal
component analysis (PCA) was used to divide the main ions in the river water into several
different components, and a correlation analysis (CA) was used to further explore the
relationship between ions in the same component and identify whether there was a
common source (Gao et al., 2021a; Zhou et al., 2023; Yan et al., 2023). The Kaiser-Meyer-
Olkin (KMO) test result was 0.776, which was used for factor analysis, and the principal
components (PCs) were divided into three parts: PC1: 64.41% variance, PC2: 15.45%
variance, and PC3: 13.25% variance (Table 2). Additionally, all the eigenvalues were
greater than 1, and the cumulative contribution rate of the three PCs reached 93.11%. PC1
exhibited high positive loadings (>0.50) of Cl~, SO2-, Na*, K, and Ca**; PC2 exhibited
high positive loadings (>0.50) of Mg**, Ca®*, and HCOj; and PC3 exhibited high positive
loadings (>0.50) of F~ and NO;.

The upstream Qingshuijiang River Basin is a karst carbonate geological area, and the
downstream Qingshuijiang River Basin is a silicate geological area. PC1 represented a
variety of sources of ions. The weathering of silicate rocks in the middle and lower reaches
of the basin was the main source of Na* and K" in the river water (Anshumali, Yadav ¢
Kumar, 2014). There was a high correlation between Na*, K, and Cl™ in PC1 (Fig. 3). The
Na" and K" in the river water were mainly derived from atmospheric precipitation,
evaporite and rock weathering, and human activity, while CI” was mainly derived from
human activity and atmospheric precipitation (Qin et al., 2018; Yan et al., 2022). After
removing Na®*, K*, and Cl” from atmospheric precipitation sources of silicate rock
weathering rivers, the remaining Na*, K* and Cl” were from anthropogenic sources (Lii
et al., 2018; Qin et al., 2018). It is noteworthy that PC1 also showed a significantly positive
loading of Ca®* and SO?", indicating H,SO,~involved carbonate weathering processes in
the upstream region (Barnes ¢ Raymond, 2009; Huang et al., 2019; Ma et al., 2023),
whereas Ca*", Mg2+, and HCOj3, represented by PC2, were all derived from the weathering
of carbonate rocks in the upper reaches of the Qingshuijiang River Basin (Wu et al., 2023).
F~ and NOj were highly correlated in PC3 and were derived from anthropogenic sources.

lon ratio method—reveals the source of the main ions

Anthropogenic inputs

When analyzing sources of major ions in water chemistry, high CI” concentration in river
water can generally be used as an important indicator of human input of domestic sewage
(mainly concentrated in urban areas; (Tang, Jin ¢ Liang, 2021)). Recent studies have
shown that river nitrates from agricultural synthetic fertilizers have higher NO;
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Table 2 Factor load of main ions in the Qingshuijiang River Basin.

Variable PC1 PC2 PC3 Communalities
F 0.16 0.21 0.90 0.88
NO; 0.21 0.12 0.90 0.87
ClI™ 0.92 0.26 0.08 0.91
Ners 0.86 0.30 0.35 0.95
Na* 0.91 0.09 0.31 0.92
K* 0.95 0.20 0.07 0.94
Ca™ 0.74 0.60 0.22 0.95
Mg 0.28 0.89 0.29 0.96
HCO;3 0.22 0.96 0.10 0.96
Eigenvalues 5.80 1.40 1.19 —
Variance (%) 64.41 15.45 13.25 —
Cumulative (%) 64.41 79.86 93.11 —
Note:

Extraction method—principal component analysis; rotation method—Caesar’s Normalized Maximum Variance.
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Figure 3 Pearson correlation matrix of the major ion geochemistry of the Qingshuijiang River. *
Strong positive correlation coefficients at the 0.001 level (two-tailed).
Full-size k&l DOI: 10.7717/peerj.18284/fig-3

concentrations and higher NO;/CI™ ratios, while domestic sewage has lower NO3/Cl™

ratios and higher CI™ concentrations due to higher organic matter content (Ge et al., 2021;
Liu et al., 2021c; Yue et al., 2020). To better explore the changes in the main ion sources in
the Qingshuijiang River Basin in the past decade, the main ions were analyzed in the four
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sample periods to identify the sources of the ions. As shown in Fig. 4A, the CI™
concentration in all water samples was between 0.02-1.00 mmol/L, the NO3/CI™ ratio was
between 0.01-10.13, and the coefficient of variation was 86.24% and 160.39%, respectively.
This showed that some areas in the basin were affected by urban activities and agricultural
activities, with large regional differences in the scope of the effects. Smaller flows were
much more vulnerable to pollution than larger flows (Im et al., 2020). The comparison of
data over the past decade showed that the average content of CI™ in the Qingshuijiang
River Basin doubled from 0.10 to 0.20 mol/L, while the average ratio of NO3/Cl™ decreased
from 0.74 to 0.49. These results indicate that with the increases seen in population,
urbanization, and construction in the Qingshuijiang River Basin, the main source of ions
in river water shifted from agricultural input (fertilizer) to municipal wastewater input
(Zheng et al., 2022). For both urban wastewater and agricultural fertilizer inputs, the
impact was greater during the dry season than during the wet season.

High concentrations of SO?™ in river water are generally derived from the input of
mining and industrial production (Liu ¢» Han, 2020a), while Ca** ions are usually derived
from rock weathering and are not affected by human factors. Therefore, NO;
(representing agricultural and domestic input) and SO~ (representing industrial and
mining input) were compared with Ca** to determine the main anthropogenic contributor
to solute in the Qingshuijiang River. As shown in Fig. 4, in addition to agricultural
activities and urban sewage discharge, industrial activities and mining also impact the
solute in the Qingshuijiang River. In the upstream area (Chonganjiang River Basin), which
is affected by acid mine drainage, the sulfate in the river water (range 0.50-4.87 mmol/L,
average: 1.57 mmol/L) was more than three times the average value (0.49 mmol/L) of the
basin (Li et al., 2024). The average ratios of SO3~/Ca®" and NO3;/Ca®" in the basin were
also calculated for the study years. The ratio of SO2~/Ca”" increased slightly over the
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10-year period, while the ratio of NO3/ Ca®* decreased slightly, indicating that some areas
in the basin are affected by industrial activities.

Rock weathering input
Rock weathering includes both carbonate rock weathering and silicate rock weathering,
which are the main sources of Ca®*, Mg**, Na*, K*, and HCO; in river water (Herath et al.,
2022; Tsering et al., 2019). Ca**/Na* and HCO;/Na+ ratios are effective indices for tracing
the source of ion weathering (Liu ¢ Han, 2020b; Zheng et al., 2023). The ratios of
Ca**/Na*, Mg®'/Na', and HCO;/Na" in the Qingshuijiang River Basin were dispersed
between silicate and carbonate end members (Figs. 5A and 5B), indicating that both
carbonate and silicate rock weathering were involved. This reflects the fact that the
upstream area is a carbonate rock area and the downstream area is a silicate rock area.
In general, the Ca®* + Mg**/(Na" + K*) equivalent ratio can be used as an index to
distinguish the relative intensity of different types of rock weathering (Gupta, Nayek ¢
Chakraborty, 2016; Setia et al., 2021). The Ca** + Mng'/(NaJr + K) ratio in the
Qingshuijiang River Basin ranged from 0.71 to 35.29, with an average of 5.51, which was
higher than the world average (2.2) and the Indian average (2.5); (Setia et al., 2021),
indicating that the chemical composition of the river was more controlled by the lithology
of the carbonate rocks in the basin than by the lithology of the silicate rocks. Therefore, a
further analysis of the weathering process of carbonate rocks was carried out (Figs.
6A-6C). Most of samples from the Qingshuijiang River Basin were distributed in the
2(Ca*t + Mg2+)/HCOg concentration ratio (Fig. 6A), indicating that in the process of
carbonate rock weathering, Ca** and Mg”* ions in the river water were more abundant
than HCO3, and there were other exogenous acids (sulfuric acid or nitric acid) to balance
the river water ions (Gong et al., 2024; Li et al., 2023). Compared with 2013/2014, more
exogenous acids were needed in 2023.
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In order to further explore the effect of sulfuric acid or nitric acid on weathering, 2(Ca**
+ Mg*") and (HCO; + 28027) and 2(Ca®* + Mg*") and (HCO; + 2802~ + NOj3) were
analyzed. As shown in Figs. 6B and 6C, most of the sampling points in the Qingshuijiang
River were distributed on the 1:1 contour line on the relationship diagram of 2(Ca** +
Mg*") and (HCOj; + 2S02"), while on the relationship diagram of 2(Ca** + Mg*") and
(HCO; + 250%™ + NOj3), some sampling points in the Qingshuijiang River fell farther
away from the 1:1 contour line, indicating that sulfuric acid was involved in ion balance in
the river rather than nitric acid. This result indicates that sulfuric acid might be involved in
the weathering of carbonate rocks in the basin (Li ef al., 2008; Ma et al., 2023; Tang ¢ Han,
2021). The results of the PCA and CA analyses showed that Ca®* and SO2~ were in the
same component, and the correlation between them was high, which also provides
evidence that sulfuric acid is involved in carbonate weathering. The 2SO~ content
involved in the ionic equilibrium of the river water increased from 0.39 to 0.58 mol/L over
the 10-year period, suggesting that sulfuric acid played a more significant role in
weathering in the clearwater river basin in 2023 than it did a decade prior.
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Irrigation and guideline-based water quality

The Qingshuijiang River Basin is the main water source for agriculture, industry, and local
residents in the Qiandongnan and Qiannan Prefectures of Guizhou Province. The quality
of the water in the river basin is closely related to the health of these residents. As
summarized in Table 1, the pH values of 82.93% of the sampling points in the
Qingshuijiang River Basin were in line with both Chinese and WHO drinking water
quality guidelines (6.5-8.5), though the pH values of some sampling points affected by
carbonate weathering exceeded 8.5 (Ge et al., 2021). Most of the F~, Cl", NOj3, and SO~
levels in the river water samples were lower than the recommended limits, but F~, NO;3,
and SO?~ levels at a few of the sampling points exceeded the recommended values. The
percentage of sampling points exceeding the recommended values of F~, NO3, and SO3~
were 4.27%, 0.61%, and 2.44%, respectively. These excessive amounts might be related to
the phosphorus and fluoride chemical enterprises and coal mining enterprises in the basin
(Tang et al., 2022; Van Stempvoort et al., 2023).

Common indicators for evaluating river irrigation water quality include Na%, SAR, and
RSC. Na% and SAR indicators can reflect the Na hazard of soil aggregates affected by
irrigation on agricultural land (Li, Wu & Qian, 2015). A United States Salinity Laboratory
(USSL) diagram and Wilcox diagram were drawn using the EC, SAR, and Na% values of
the river water (Figs. 7A and 7B; (Bishwakarma et al., 2022)). Most of the Qingshuijiang
River water samples were scattered in the C1S1 and C2S1 regions of the USSL map and in
the ‘excellent’” region of the Wilcox map. Only a few sampling points in the tributaries of
the Qingshuijiang River were scattered in the C3S1 region of the USSL plot and in the
‘good’ region of the Wilcox plot. For residual sodium carbonate (RSC), the RSC value of
water samples in the basin ranged from —2.55 to 2.56, with an average of 0.56. Overall, the

Lv et al. (2024), PeerdJ, DOI 10.7717/peerj.18284 13/21


http://dx.doi.org/10.7717/peerj.18284/fig-7
http://dx.doi.org/10.7717/peerj.18284
https://peerj.com/

Peer/

10 10
(a) —=— Children (2023/2)  —e— Children (2014/1)
—o— Adult (2023/2) —eo— Adult (2014/1)
—A— Children (2023/9) ~ —»— Children (2013/8)
’ —v— Adult (2023/9) —<— Adult (2013/8) 1

0.01 0.01

0'001 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.001 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
YOS PEE R EO NN N D SN M AY AP A 4249 40 AP 4D A A AV A AN AD AS NN 1B D) AD AN AV 5 A
T ETINITNTFNENS 1 S L e P A L R R R P D DR N PR D R W WA

Main stream Tributaries
10 10
© (d
1
1
Z0.1

z

St =4

= =

0.01
0.01
0.001
O S G o o & P OSSP T ST S e e
QR OQEOEOE AN QR AN ) HSLAK N D NG DA DAL REL B A S R R %

Main stream Tributaries

Figure 8 HQ values of fluoride (HQg) and nitrate (HQy) for children and adults in the mainstream (A and C) and (B and D) tributaries of the
Qingshuijiang Basin in different sample periods. Full-size K4l DOT: 10.7717/peerj.18284/fig-8

results show that the Qingshuijiang River water is not a hazard to the soil when used for
agricultural irrigation. However, it is worth noting that the sampling points have slightly
shifted toward the direction of poor water quality over the past 10 years, which may be
related to the increase in human activity seen in the basin in the past decade. Therefore, the
continuous long-term monitoring of the basin is still important.

Health risk assessment

The Qingshuiiang River Basin is an important source of drinking water for residents near
both the Qiandongnan Prefecture and the Qiannan Prefecture. The ingestion of excessive
F~ and NO; can cause typical non-carcinogenic hazards, while SO~ does not cause health
problems (Liu ¢ Han, 2020a). Therefore, in this study, NO; and F~ were included in the
health risk assessment, and the HQ values of nitrate (HQy) and fluoride (HQp) of each
sampling point were calculated according to the corresponding concentrations in the river
water, and the potential risks to human health were evaluated. As shown in Fig. 8, the HQ
values for children in the whole Qingshuijiang River Basin were HQg (average: 0.22) >
HQy (average: 0.14), and those for adults were HQg (average: 0.09) > HQy (average: 0.06).
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These results indicated that the overall health risk of water quality in the mainstream was
low, and the health risk of children was higher than that of adults. These results also
showed that the potential effect of F~ on health was greater than that of NO3. However, the
difference between the mainstream and the tributaries was large, and the difference
between different tributaries was also large. In some upstream tributaries, the HQ value of
some sampling points (23, Z5, Z6, and Z8 in Chonganjiang River) exceeded 1, indicating a
large health risk. These high values may be related to the large-scale phosphorus chemical
base in Fuquan City (Tang et al., 2022). The HQr and HQy values for children in the whole
Qingshuijiang River Basin were higher in the dry season (average: 0.24 and 0.21,
respectively) than in the wet season (average: 0.19 and 0.06, respectively). In addition, the
HQg and HQy values for children were higher in 2013/2014 (average: 0.27 and 0.14,
respectively) than in 2023 (average: 0.15 and 0.13, respectively), indicating that the health
risks to children of fluoride and nitrogen in the Qingshuijiang River Basin have declined in
the past decade, which may be related to the management of the basin, especially the
treatment of key pollution sources. However, it is worth noting that in some areas (Z6)
during the dry season, the health risks increased, emphasizing the need for continued
environmental management.

CONCLUSIONS

In this study, the hydrochemistry of surface water in the Qingshuijiang River was
investigated during both the wet and dry seasons, 10 years apart. The main sources and 10-
year evolution of the main ions in the mainstream and tributaries of the Qingshuijiang
River were determined using various statistical methods, including principal component
analysis and chemometrics. Rock weathering input (mainly upstream carbonate) was the
main source of Mg**, Ca®*, and HCO3, while K* and Na* were affected by a combination
of human activity and silicate rock weathering in the middle and lower reaches. Human
input was the main source of SO, NO;3, and F ions. In the past 10 years, due to increases
in industrialization and population growth in the basin, the concentration of the main ions
in the river water has increased significantly, with sulfuric acid now being more involved in
the process of rock weathering. Both the water quality assessment and hazard quotient
assessment produced good results, indicating that the river water is generally safe for
irrigation and drinking, and the health risks are low. However, continuous monitoring of
safety is important, especially the risk of excessive F~ in a few tributaries in the basin. This
work will help to clarify the hydrochemical characteristics of the Qingshuijiang River Basin
under human activities and provide a reference for the sustainable management of the
southwest karst river basin.

ACKNOWLEDGEMENTS
The authors would like to thank Jie Ding, Dong Cai, and Tingting Zhu for their help with
sample collection.

Lv et al. (2024), PeerdJ, DOI 10.7717/peerj.18284 15/21


http://dx.doi.org/10.7717/peerj.18284
https://peerj.com/

Peer/

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was funded by the High-Level Talent Introduction Program for the Guizhou
Institute of Technology (No. 2023GCC083), and the Young Scientific Technical Talents
Development Fund of Guizhou Province (No. QJJ[2024]169). The funders had no role in
study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:

High-Level Talent Introduction Program for the Guizhou Institute of Technology:
2023GCC083.

Young Scientific Technical Talents Development: QJJ[2024]169.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

* Jiemei Lv conceived and designed the experiments, performed the experiments, analyzed
the data, prepared figures and/or tables, authored or reviewed drafts of the article, and
approved the final draft.

« Tianhao Yang conceived and designed the experiments, performed the experiments,
prepared figures and/or tables, authored or reviewed drafts of the article, and approved
the final draft.

* Yanling An conceived and designed the experiments, analyzed the data, prepared figures
and/or tables, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:
The raw measurements are available in the Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.18284#supplemental-information.

REFERENCES

Adimalla N, Li P. 2019. Occurrence, health risks, and geochemical mechanisms of fluoride and
nitrate in groundwater of the rock-dominant semi-arid region, Telangana State, India. Human
and Ecological Risk Assessment: An International Journal 25(1-2):81-103
DOI 10.1080/10807039.2018.1480353.

Adimalla N, Qian H, Nandan MJ. 2020. Groundwater chemistry integrating the pollution index of
groundwater and evaluation of potential human health risk: a case study from hard rock terrain
of south India. Ecotoxicology and Environmental Safety 206(1-2):111217
DOI 10.1016/j.ecoenv.2020.111217.

Lv et al. (2024), PeerdJ, DOI 10.7717/peerj.18284 16/21


http://dx.doi.org/10.7717/peerj.18284#supplemental-information
http://dx.doi.org/10.7717/peerj.18284#supplemental-information
http://dx.doi.org/10.7717/peerj.18284#supplemental-information
http://dx.doi.org/10.1080/10807039.2018.1480353
http://dx.doi.org/10.1016/j.ecoenv.2020.111217
http://dx.doi.org/10.7717/peerj.18284
https://peerj.com/

Peer/

Anshumali RM, Yadav SK, Kumar A. 2014. Geochemical alterations in surface waters of Govind
Ballabh Pant Sagar, Northern Coalfield, India. Environmental Earth Sciences 71(7):3181-3193
DOI 10.1007/s12665-013-2706-3.

Asare-Donkor NK, Ofosu JO, Adimado AA. 2018. Hydrochemical characteristics of surface water
and ecological risk assessment of sediments from settlements within the Birim River basin in
Ghana. Environmental Systems Research 7:9 DOI 10.1186/s40068-018-0113-1.

Barnes RT, Raymond PA. 2009. The contribution of agricultural and urban activities to inorganic
carbon fluxes within temperate watersheds. Chemical Geology 266(3-4):318-327
DOI 10.1016/j.chemgeo.2009.06.018.

Bishwakarma K, Wang GX, Zhang F, Adhikari S, Karki K, Ghimire A. 2022. Hydrochemical
characterization and irrigation suitability of the Ganges Brahmaputra River System: review and
assessment. Journal of Mountain Science 19(2):388-402 DOI 10.1007/s11629-021-6834-z.

Fantong WY, Jokam Nenkam TLL, Nbendah P, Kimbi SB, Fru EC, Kamtchueng BT,
Takoundjou AF, Tejiobou AR, Ngueutchoua G, Kringel R. 2020. Compositions and mobility
of major, 8D, §'°0, trace, and REEs patterns in water sources at Benue River Basin—Cameroon:
implications for recharge mechanisms, geo-environmental controls, and public health.
Environmental Geochemistry and Health 42(9):2975-3013 DOI 10.1007/s10653-020-00539-w.

Feng X, Yang Y. 2022. Hydrochemical and stable isotopic spatiotemporal variation characteristics
and their environmental significance in the Kashi River Mountain Area of Ili, Xinjiang, China.
Environmental Geochemistry and Health 44(3):799-816 DOI 10.1007/s10653-021-00959-2.

Gaillardet J, Dupré B, Louvat P, Allégre CJ. 1999. Global silicate weathering and
CO,consumption rates deduced from the chemistry of large rivers. Chemical Geology
159(1-4):3-30 DOI 10.1016/S0009-2541(99)00031-5.

Gao Z, Han C, Xu Y, Zhao Z, Luo Z, Liu J. 2021b. Assessment of the water quality of groundwater
in Bohai Rim and the controlling factors—a case study of northern Shandong Peninsula, north
China. Environmental Pollution 285(4):117482 DOI 10.1016/j.envpol.2021.117482.

Gao S, Wang Z, Wu Q, Wang W, Peng C, Zeng J, Wang Y. 2021a. Urban geochemistry and
human-impacted imprint of dissolved trace and rare earth elements in a high-tech industrial
city, Suzhou. Elementa: Science of the Anthropocene 9(1):00151
DOI 10.1525/elementa.2020.00151.

Ge X, Wu Q, Wang Z, Gao S, Wang T. 2021. Sulfur isotope and stoichiometry-based source
identification of major ions and risk assessment in Chishui River Basin, Southwest China. Water
39:1231 DOI 10.3390/w13091231.

Gong X, Zhou Z, Su D, Dong H, Yan L, Ding S, Wang X, Zhang Y. 2024. Sulfur-oxygen isotope
analysis of SO~ sources in cave dripwater and their influence on the karst carbon cycle.
Environmental Research 240(11):117508 DOI 10.1016/j.envres.2023.117508.

Gupta S, Nayek S, Chakraborty D. 2016. Hydrochemical evaluation of Rangit river, Sikkim, India:
using Water Quality Index and multivariate statistics. Environmental Earth Sciences 75(7):567
DOI 10.1007/s12665-015-5223-8.

Gutiérrez F, Parise M, De Waele J, Jourde H. 2014. A review on natural and human-induced
geohazards and impacts in karst. Earth-Science Reviews 138(3):61-88
DOI 10.1016/j.earscirev.2014.08.002.

Han X, Pan B, Liu Z, Hou B, Li D, Li M. 2022. Relationship among water quality and
hydrochemical indices reveals nutrient dynamics and sources in the most sediment-laden river

across the continent. Journal of Environmental Chemical Engineering 10:107110
DOI 10.1016/j.jece.2021.107110.

Lv et al. (2024), PeerdJ, DOI 10.7717/peerj.18284 17/21


http://dx.doi.org/10.1007/s12665-013-2706-3
http://dx.doi.org/10.1186/s40068-018-0113-1
http://dx.doi.org/10.1016/j.chemgeo.2009.06.018
http://dx.doi.org/10.1007/s11629-021-6834-z
http://dx.doi.org/10.1007/s10653-020-00539-w
http://dx.doi.org/10.1007/s10653-021-00959-2
http://dx.doi.org/10.1016/S0009-2541(99)00031-5
http://dx.doi.org/10.1016/j.envpol.2021.117482
http://dx.doi.org/10.1525/elementa.2020.00151
http://dx.doi.org/10.3390/w13091231
http://dx.doi.org/10.1016/j.envres.2023.117508
http://dx.doi.org/10.1007/s12665-015-5223-8
http://dx.doi.org/10.1016/j.earscirev.2014.08.002
http://dx.doi.org/10.1016/j.jece.2021.107110
http://dx.doi.org/10.7717/peerj.18284
https://peerj.com/

Peer/

Han R, Xu Z. 2022. Riverine hydrochemical characteristics of a typical Karst urban watershed:
major ion compositions, sources, assessment, and historical evolution. ACS Earth and Space
Chemistry 6(6):1495-1505 DOI 10.1021/acsearthspacechem.2c00002.

Hayward EE, Gillis PL, Bennett CJ, Prosser RS, Salerno J, Liang T, Robertson S, Metcalfe CD.
2022. Freshwater mussels in an impacted watershed: influences of pollution from point and
non-point sources. Chemosphere 307(8):135966 DOI 10.1016/j.chemosphere.2022.135966.

Herath IK, Wu S, Ma M, Ping H. 2022. Reservoir NOj pollution and chemical weathering: by dual
isotopes of §'°N-NO3, §'*0-NOj and geochemical constraints. Environmental Geochemistry
and Health 44(12):4381-4402 DOI 10.1007/s10653-021-01195-4.

Hua K, Xiao J, Li S, Li Z. 2020. Analysis of hydrochemical characteristics and their controlling
factors in the Fen River of China. Sustainable Cities and Society 52:101827
DOI 10.1016/j.5¢5.2019.101827.

Huang T, Fan Y, Long Y, Pang Z. 2019. Quantitative calculation for the contribution of acid rain
to carbonate weathering. Journal of Hydrology 568:360-371 DOI 10.1016/j.jhydrol.2018.11.003.
Im JK, Hwang MY, Lee EH, Noh HR, Yu SJ. 2020. Pharmaceutical compounds in tributaries of
the Han River watershed, South Korea. Environmental Research 188:109758
DOI 10.1016/j.envres.2020.109758.

Jehan S, Khan S, Khattak SA, Muhammad S, Rashid A, Muhammad N. 2019. Hydrochemical
properties of drinking water and their sources apportionment of pollution in Bajaur agency,
Pakistan. Measurement 139:249-257 DOI 10.1016/j.measurement.2019.02.090.

Jiang Z, Lian Y, Qin X. 2014. Rocky desertification in Southwest China: impacts, causes, and
restoration. Earth-Science Reviews 132(4):1-12 DOI 10.1016/j.earscirev.2014.01.005.

Li S-L, Calmels D, Han G, Gaillardet J, Liu C-Q. 2008. Sulfuric acid as an agent of carbonate
weathering constrained by §'>CDIC: examples from Southwest China. Earth and Planetary
Science Letters 270(3-4):189-199 DOI 10.1016/j.epsl.2008.02.039.

Li X, Han G, Liu M, Liu J, Zhang Q, Qu R. 2022. Potassium and its isotope behaviour during
chemical weathering in a tropical catchment affected by evaporite dissolution. Geochimica et
Cosmochimica Acta 316:105-121 DOI 10.1016/j.gca.2021.10.009.

Li P, Li X, Meng X, Li M, Zhang Y. 2016. Appraising groundwater quality and health risks from
contamination in a semiarid region of Northwest China. Exposure and Health 8(3):361-379
DOI 10.1007/s12403-016-0205-y.

Li C, Smith P, Bai X, Tan Q, Luo G, Li Q, Wang J, Wu L, Chen F, Deng Y, Hu Z, Yang Y, Tian S,
Lu Q, Xi H, Ran C, Zhang S. 2023. Effects of carbonate minerals and exogenous acids on
carbon flux from the chemical weathering of granite and basalt. Global and Planetary Change
221(3):104053 DOI 10.1016/j.gloplacha.2023.104053.

LiY, Wang Q, Jiang C, Li C, Hu M, Xia X. 2024. Spatial characteristics and controlling indicators
of major hydrochemical ions in rivers within coal-grain composite areas via multivariate
statistical and isotope analysis methods. Ecological Indicators 158(7):111352
DOI 10.1016/j.ecolind.2023.111352.

Li P, Wu J, Qian H. 2015. Hydrochemical appraisal of groundwater quality for drinking and
irrigation purposes and the major influencing factors: a case study in and around Hua County,
China. Arabian Journal of Geosciences 9:15 DOI 10.1007/s12517-015-2059-1.

Li Z, Xiao J, Evaristo J, Li Z. 2019. Spatiotemporal variations in the hydrochemical characteristics
and controlling factors of streamflow and groundwater in the Wei River of China.
Environmental Pollution 254:113006 DOI 10.1016/j.envpol.2019.113006.

Liu J, Gao Z, Zhang Y, Sun Z, Sun T, Fan H, Wu B, Li M, Qian L. 2021a. Hydrochemical
evaluation of groundwater quality and human health risk assessment of nitrate in the largest

Lv et al. (2024), PeerdJ, DOI 10.7717/peerj.18284 18/21


http://dx.doi.org/10.1021/acsearthspacechem.2c00002
http://dx.doi.org/10.1016/j.chemosphere.2022.135966
http://dx.doi.org/10.1007/s10653-021-01195-4
http://dx.doi.org/10.1016/j.scs.2019.101827
http://dx.doi.org/10.1016/j.jhydrol.2018.11.003
http://dx.doi.org/10.1016/j.envres.2020.109758
http://dx.doi.org/10.1016/j.measurement.2019.02.090
http://dx.doi.org/10.1016/j.earscirev.2014.01.005
http://dx.doi.org/10.1016/j.epsl.2008.02.039
http://dx.doi.org/10.1016/j.gca.2021.10.009
http://dx.doi.org/10.1007/s12403-016-0205-y
http://dx.doi.org/10.1016/j.gloplacha.2023.104053
http://dx.doi.org/10.1016/j.ecolind.2023.111352
http://dx.doi.org/10.1007/s12517-015-2059-1
http://dx.doi.org/10.1016/j.envpol.2019.113006
http://dx.doi.org/10.7717/peerj.18284
https://peerj.com/

Peer/

peninsula of China based on high-density sampling: a case study of Weifang. Journal of Cleaner
Production 322(6):129164 DOI 10.1016/j.jclepro.2021.129164.

Liu J, Han G. 2020a. Distributions and source identification of the major ions in Zhujiang River,
Southwest China: examining the relationships between human perturbations, chemical
weathering, water quality and health risk. Exposure and Health 12(4):849-862
DOI 10.1007/s12403-020-00343-y.

Liu J, Han G. 2020b. Major ions and §°*SSO, in Jiulongjiang River water: investigating the
relationships between natural chemical weathering and human perturbations. Science of the
Total Environment 724(1):138208 DOI 10.1016/j.scitotenv.2020.138208.

Liu X, Han G, Zeng J, Liu J, Li X, Boeckx P. 2021c. The effects of clean energy production and
urbanization on sources and transformation processes of nitrate in a subtropical river system:
insights from the dual isotopes of nitrate and Bayesian model. Journal of Cleaner Production
325(23):129317 DOI 10.1016/j.jclepro.2021.129317.

Liu J, Peng Y, Li C, Gao Z, Chen S. 2021b. Characterization of the hydrochemistry of water
resources of the Weibei Plain, Northern China, as well as an assessment of the risk of high
groundwater nitrate levels to human health. Environmental Pollution 268(4):115947
DOI 10.1016/j.envpol.2020.115947.

Long J, Luo K. 2020. Elements in surface and well water from the central North China Plain:
enrichment patterns, origins, and health risk assessment. Environmental Pollution
258(4):113725 DOI 10.1016/j.envpol.2019.113725.

Lii J, An Y, Wu Q, Zhou S, Wu Y. 2018. Chemical characteristics and CO, consumption of the
Qingshuijiang River Basin, Guizhou Province, Southwestern China. Geochemical Journal
52(6):441-456 DOI 10.2343/geochemj.2.0532.

MaT, Xu S, Zhong J, Li SL, Chen S, Wang W, Liu CQ. 2023. Sulfuric acid weathering counteracts
CO, drawdown from silicate weathering in mountainous catchments from southwest China.
Journal of Hydrology 618(3):129167 DOI 10.1016/j.jhydrol.2023.129167.

Mingyue L, Xuejun S, Shengnan L, Jie W, Zijian L, Qianggong Z. 2024. Hydrochemistry
dynamics in a glacierized headwater catchment of Lhasa River, Tibetan Plateau. Science of the
Total Environment 919(1-4):170810 DOI 10.1016/j.scitotenv.2024.170810.

Mufur AM, Awah MT, Nono GDK, Tamfuh PA, Wotchoko P, Beyala KKV. 2021. Physico-
chemical and bacteriological characterisation of surface water in Bamenda (North West
Cameroon). Applied Water Science 11(12):185 DOI 10.1007/s13201-021-01512-3.

Qasemi M, Afsharnia M, Zarei A, Farhang M, Allahdadi M. 2019. Non-carcinogenic risk
assessment to human health due to intake of fluoride in the groundwater in rural areas of
Gonabad and Bajestan, Iran: a case study. Human and Ecological Risk Assessment: An
International Journal 25(5):1222-1233 DOI 10.1080/10807039.2018.1461553.

Qin T, Yang P, Groves C, Chen F, Xie G, Zhan Z. 2018. Natural and anthropogenic factors
affecting geochemistry of the Jialing and Yangtze Rivers in urban Chongging, SW China.
Applied Geochemistry 98:448-458 DOI 10.1016/j.apgeochem.2018.10.009.

Setia R, Lamba S, Chander S, Kumar V, Singh R, Litoria PK, Singh RP, Pateriya B. 2021. Spatio-
temporal variations in water quality, hydrochemistry and its controlling factors in a perennial

river in India. Applied Water Science 11(11):169 DOI 10.1007/s13201-021-01504-3.

Sheng D, Meng X, Wen X, Wu J, Yu H, Wu M, Zhou T. 2023. Hydrochemical characteristics,
quality and health risk assessment of nitrate enriched coastal groundwater in northern China.
Journal of Cleaner Production 403(4):136872 DOI 10.1016/j.jclepro.2023.136872.

Lv et al. (2024), PeerdJ, DOI 10.7717/peerj.18284 19/21


http://dx.doi.org/10.1016/j.jclepro.2021.129164
http://dx.doi.org/10.1007/s12403-020-00343-y
http://dx.doi.org/10.1016/j.scitotenv.2020.138208
http://dx.doi.org/10.1016/j.jclepro.2021.129317
http://dx.doi.org/10.1016/j.envpol.2020.115947
http://dx.doi.org/10.1016/j.envpol.2019.113725
http://dx.doi.org/10.2343/geochemj.2.0532
http://dx.doi.org/10.1016/j.jhydrol.2023.129167
http://dx.doi.org/10.1016/j.scitotenv.2024.170810
http://dx.doi.org/10.1007/s13201-021-01512-3
http://dx.doi.org/10.1080/10807039.2018.1461553
http://dx.doi.org/10.1016/j.apgeochem.2018.10.009
http://dx.doi.org/10.1007/s13201-021-01504-3
http://dx.doi.org/10.1016/j.jclepro.2023.136872
http://dx.doi.org/10.7717/peerj.18284
https://peerj.com/

Peer/

Szynkiewicz A, Witcher JC, Modelska M, Borrok DM, Pratt LM. 2011. Anthropogenic sulfate
loads in the Rio Grande, New Mexico (USA). Chemical Geology 283(3-4):194-209
DOI 10.1016/j.chemge0.2011.01.017.

Tang Y, Han R. 2021. Stable carbon and sulfur isotope characteristics of stream water in a typical
karst small catchment, Southwest China. Water 13(4):523 DOI 10.3390/w13040523.

Tang C, Jin H, Liang Y. 2021. Using isotopic and hydrochemical indicators to identify sources of
sulfate in karst groundwater of the Niangziguan Spring Field, China. Water 13:390
DOI 10.3390/w13030390.

Tang J, Zhu Y, Xiang B, Li Y, Tan T, Xu Y, Li M. 2022. Multiple pollutants in groundwater near
an abandoned Chinese fluorine chemical park: concentrations, correlations and health risk
assessments. Scientific Reports 12:3370 DOI 10.1038/s41598-022-07201-8.

Tsering T, Abdel Wahed MSM, Iftekhar S, Sillanpdid M. 2019. Major ion chemistry of the Teesta
River in Sikkim Himalaya, India: chemical weathering and assessment of water quality. Journal
of Hydrology: Regional Studies 24(7):100612 DOI 10.1016/j.ejrh.2019.100612.

Van Stempvoort DR, Spoelstra J, Bickerton G, Koehler G, Mayer B, Nightingale M, Miller J.
2023. Sulfate in streams and groundwater in a cold region (Yukon Territory, Canada): evidence
of weathering processes in a changing climate. Chemical Geology 631:121510
DOI 10.1016/j.chemgeo.2023.121510.

Wang J, Liu G, Liu H, Lam PKS. 2017. Multivariate statistical evaluation of dissolved trace
elements and a water quality assessment in the middle reaches of Huaihe River, Anhui, China.
Science of the Total Environment 583(7):421-431 DOI 10.1016/j.scitotenv.2017.01.088.

Wang M, Yang L, Li J, Liang Q. 2022a. Hydrochemical characteristics and controlling factors of
surface water in Upper Nujiang River, Qinghai-Tibet Plateau. Minerals 12(4):490
DOI 10.3390/min12040490.

Wang X, Zheng W, Tian W, Gao Y, Wang X, Tian Y, Li J, Zhang X. 2022b. Groundwater
hydrogeochemical characterization and quality assessment based on integrated weight
matter-element extension analysis in Ningxia, upper Yellow River, northwest China. Ecological
Indicators 135(10):108525 DOI 10.1016/j.ecolind.2021.108525.

Wu J, Sun Z. 2016. Evaluation of shallow groundwater contamination and associated human
health risk in an alluvial plain impacted by agricultural and industrial activities, Mid-west China.
Exposure and Health 8(3):311-329 DOI 10.1007/s12403-015-0170-x.

Wu J, Wang L, Wang S, Tian R, Xue C, Feng W, Li Y. 2017. Spatiotemporal variation of
groundwater quality in an arid area experiencing long-term paper wastewater irrigation,
northwest China. Environmental Earth Sciences 76(13):460 DOI 10.1007/s12665-017-6787-2.

Wu Y, Wang L, Yang J, Jiang X, Niu Y. 2023. Characteristics of hydrochemical and stable isotopes
in the Upper and Middle Reaches of the Yarlung Tsangpo River. Journal of Environmental
Chemical Engineering 11(5):110716 DOI 10.1016/j.jece.2023.110716.

Xia C, Liu G, Xia H, Jiang F, Meng Y. 2021a. Influence of saline intrusion on the wetland
ecosystem revealed by isotopic and hydrochemical indicators in the Yellow River Delta, China.
Ecological Indicators 133(3):108422 DOI 10.1016/j.ecolind.2021.108422.

Xia F, Niu X, Qu L, Dahlgren RA, Zhang M. 2021b. Integrated source-risk and uncertainty
assessment for metals contamination in sediments of an urban river system in eastern China.
Catena 203:105277 DOI 10.1016/j.catena.2021.105277.

Yan Z, Li Z, Li P, Zhao C, Xu Y, Cui Z, Sun H. 2023. Hydrochemical assessments and driving
forces of water resources in coal mining areas: a case study of the Changhe River Basin, Shanxi.
Environmental Earth Sciences 82(19):447 DOI 10.1007/s12665-023-11146-0.

Lv et al. (2024), PeerdJ, DOI 10.7717/peerj.18284 20/21


http://dx.doi.org/10.1016/j.chemgeo.2011.01.017
http://dx.doi.org/10.3390/w13040523
http://dx.doi.org/10.3390/w13030390
http://dx.doi.org/10.1038/s41598-022-07201-8
http://dx.doi.org/10.1016/j.ejrh.2019.100612
http://dx.doi.org/10.1016/j.chemgeo.2023.121510
http://dx.doi.org/10.1016/j.scitotenv.2017.01.088
http://dx.doi.org/10.3390/min12040490
http://dx.doi.org/10.1016/j.ecolind.2021.108525
http://dx.doi.org/10.1007/s12403-015-0170-x
http://dx.doi.org/10.1007/s12665-017-6787-2
http://dx.doi.org/10.1016/j.jece.2023.110716
http://dx.doi.org/10.1016/j.ecolind.2021.108422
http://dx.doi.org/10.1016/j.catena.2021.105277
http://dx.doi.org/10.1007/s12665-023-11146-0
http://dx.doi.org/10.7717/peerj.18284
https://peerj.com/

Peer/

Yan YN, Zhang JW, Zhang D, Li XD, Wu J, Ding H, Zhao ZQ. 2022. Chemical weathering
characteristics and controls in the Yarlung Tsangpo River Basin: evidence from hydrochemical
composition. Applied Geochemistry 146(2):105479 DOI 10.1016/j.apgeochem.2022.105479.

Yao Z, Wang R, Liu Z, Wu S, Jiang L. 2015. Spatial-temporal patterns of major ion chemistry and
its controlling factors in the Manasarovar Basin, Tibet. Journal of Geographical Sciences
25(6):687-700 DOT 10.1007/s11442-015-1196-5.

Yu Z, Wu G, Li F, Chen M, Vi Tran T, Liu X, Gao S. 2021. Glaciation enhanced chemical
weathering in a cold glacial catchment, western Nyaingéntanglha Mountains, central Tibetan
Plateau. Journal of Hydrology 597(5):126197 DOI 10.1016/j.jhydrol.2021.126197.

Yue FJ, Li SL, Waldron S, Wang ZJ, Oliver DM, Chen X, Liu CQ. 2020. Rainfall and conduit
drainage combine to accelerate nitrate loss from a karst agroecosystem: insights from stable
isotope tracing and high-frequency nitrate sensing. Water Research 186(9):116388
DOI 10.1016/j.watres.2020.116388.

Zeng J, Han G, Yang K. 2020. Assessment and sources of heavy metals in suspended particulate
matter in a tropical catchment, northeast Thailand. Journal of Cleaner Production 265:121898
DOI 10.1016/j.jclepro.2020.121898.

Zhang S, Han G, Zeng J, Malem F. 2022. Source tracing and chemical weathering implications of
strontium in agricultural basin in Thailand during flood season: a combined hydrochemical
approach and strontium isotope. Environmental Research 212:113330
DOI 10.1016/j.envres.2022.113330.

Zheng L, Jiang C, Chen X, Li Y, Li C, Zheng L. 2022. Combining hydrochemistry and hydrogen
and oxygen stable isotopes to reveal the influence of human activities on surface water quality in
Chaohu Lake Basin. Journal of Environmental Management 312(4):114933
DOI 10.1016/j.jenvman.2022.114933.

Zheng X, Nel W, Peng J, Wu W. 2023. Hydrochemistry, chemical weathering and their
significance on carbon cycle in the Heilong (Amur) River Basin, Northeast China. Chemosphere
327(5):138542 DOI 10.1016/j.chemosphere.2023.138542.

Zhou P, Wang Z, Zhang J, Yang Z, Li X. 2016. Study on the hydrochemical characteristics of
groundwater along the Taklimakan Desert Highway. Environmental Earth Sciences 75(20):1378
DOI 10.1007/s12665-016-6204-2.

Zhou J, Wu Q, Gao S, Zhang X, Wang Z, Wu P, Zeng J. 2023. Coupled controls of the infiltration
of rivers, urban activities and carbonate on trace elements in a karst groundwater system from
Guiyang, Southwest China. Ecotoxicology and Environmental Safety 249(1-2):114424
DOI 10.1016/j.ecoenv.2022.114424.

Lv et al. (2024), PeerdJ, DOI 10.7717/peerj.18284 21/21


http://dx.doi.org/10.1016/j.apgeochem.2022.105479
http://dx.doi.org/10.1007/s11442-015-1196-5
http://dx.doi.org/10.1016/j.jhydrol.2021.126197
http://dx.doi.org/10.1016/j.watres.2020.116388
http://dx.doi.org/10.1016/j.jclepro.2020.121898
http://dx.doi.org/10.1016/j.envres.2022.113330
http://dx.doi.org/10.1016/j.jenvman.2022.114933
http://dx.doi.org/10.1016/j.chemosphere.2023.138542
http://dx.doi.org/10.1007/s12665-016-6204-2
http://dx.doi.org/10.1016/j.ecoenv.2022.114424
http://dx.doi.org/10.7717/peerj.18284
https://peerj.com/

	Compositions of the major ions, variations in their sources, and a risk assessment of the Qingshuijiang River Basin in Southwest China: a 10-year comparison of hydrochemical measurements ...
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusions
	flink6
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


