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ABSTRACT

The chlorophyll content (CC) directly affects photosynthesis, growth, and yield.
However, the genetic basis of CC is still unclear in maize (Zea mays L.). Here, we
conducted a genome-wide association study using mixed linear model for CC of the
fifth leaves at seedling stage (CCFSS) and the ear leaves at filling stage (CCEFS) for
334 maize inbred lines. The heritability estimates for CCFSS and CCEFS, obtained
via variance components analysis using the Ime4 package in R, were 70.84% and
78.99%, respectively, indicating that the CC of leaves is primarily controlled by
genetic factors. A total of 15 CC-related SNPs and 177 candidate genes were
identified with a p-value < 4.49 x 10>, which explained 4.98-7.59% of the phenotypic
variation. Lines with more favorable gene variants showed higher CC. Meanwhile,
Gene Ontology (GO) analysis implied that these candidate genes were probably
related to chlorophyll biosynthesis. In addition, gene-based association analyses
revealed that six variants in GRMZM2G037152, GRMZM5G816561,
GRMZM2G324462, and GRMZM2G064657 genes were significantly (p-value < 0.01)
correlated with CC, of which GRMZM2G064657 (encodes a phosphate transporter
protein) and GRMZM5G816561 (encodes a cytochrome P450 protein) were
specifically highly expressed in leaves tissues. Interestingly, these candidate genes
were previously reported to involve in the regulation of the contents of chlorophyll in
plants or Chlamydomonas. These results may contribute to the understanding of
genetic basis and molecular mechanisms of maize CC and the selection of maize
varieties with improved CC.

Subjects Agricultural Science, Bioinformatics, Genetics, Plant Science
Keywords Maize, GWAS, Chlorophyll content, Genetic basis, Candidate gene

INTRODUCTION

Chlorophyll, being the primary photosynthetic pigment, plays a crucial role in capturing
energy, mainly in the blue and red wavelengths, and facilitating electron transport within
the chloroplasts of higher plants. An increase in chlorophyll content significantly boosts
the plant’s ability to absorb light, thereby enhancing the efficiency of photosynthesis
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(Li et al., 2023). In the case of Chinese cabbage, a stably inherited etiolated mutation
resulted in a notable decrease in chlorophyll content, which led to a reduction in
photosynthetic capacity and retarded chloroplast development, as compared to the wild
type (Li et al., 2019). This underscores the intimate relationship between plant chlorophyll
content and both leaf photosynthetic efficiency and crop yield. Similar observations have
been presented across different crop species. For instance, in wheat, a strong correlation
(R? = 0.8) has been established between chlorophyll potential and grain yield (Sid’ko et al.,
2017). In maize, Yan et al. (2021) conducted a field experiment demonstrating that
high-yield maize cultivars were depended on several key factors, including elevated
photosynthetic capacity, extended photosynthetic duration, an optimal leaf area index
(LAI), and a higher chlorophyll content coupled with a lower chlorophyll a/b ratio.
Furthermore, as an indicator of plant chlorophyll content, the mean Soil Plant Analysis
Development (SPAD) value is significantly correlated with multiple yield-determinative
traits such as number of kernels per row, number of kernel rows per ear, ear weight, grain
yield, and etc., (Ghimire, Timsina ¢ Nepal, 2015). These findings highlight the importance
of optimizing chlorophyll content in crops to enhance their photosynthetic performance
and ultimately improve yields.

Chlorophyll is located within the thylakoid membrane of the chloroplast, consisting of
chlorophyll a and chlorophyll b. The chlorophyll biosynthesis pathway in higher plants is
complex, consisting of at least 15 steps, from L-glutamyl-tRNA to chlorophyllide b (Beale,
2005). So far, more than 17 enzymes were identified involving the chlorophyll biosynthesis
in plants, such as L-Glutamyl-tRNA (GIuTR), magnesium chelatase I subunit (MgCh),
Chlorophyll synthase (CHLG), aminolaevulinic dehydratase (ALAD), Chlorophyllide a
oxygenase (CAO), Coproporphyrinogen oxidase (CPO), uroporphyrinogen III
decarboxylase (UROD), and numerous others (Tripathy ¢ Pattanayak, 2012; Zhao et al.,
2020). Furthermore, Zhang et al. (2021) reported that the GUN4:bilin adducts likely
regulate chlorophyll biosynthesis by delivering protoporphyrin to CHLH subunit of Mg
chelatase. Geng et al. (2023) reported that the knockdown of a chloroplast-localized gene
PCD8 would lead to chloroplast damage and caused a necrotic phenotype in Arabidopsis.
Maize (Zea mays L.), as a globally cultivated crop that serves as a staple food, animal feed,
and industrial raw material. Understanding the genetic basis of chlorophyll content will be
helpful to improve maize photosynthetic efficiency and yield. By combining bulked
segregant analysis and complementation allelic test, researchers identified the key gene,
ZmCRD1, encoding magnesium-protoporphyrin IX monomethyl ester cyclase (MgPEC),
which affects chlorophyll content in a chlorophyll-deficient maize mutant and its
wild-type (Xue et al., 2022). By combining a semidominant mutant allele of oyl and a
cis-regulatory modifier named very oil yellow1 (veyl), the chlorophyll content was changed
between different maize inbred lines (Khangura, Johal ¢ Dilkes, 2020). Despite these
advancements, the comprehensive molecular mechanisms underlying chlorophyll
synthesis and metabolism in maize, as well as the candidate genes related to these
processes, remain elusive, which needs further research to fully unravel their intricacies.
Hence, conducting an in-depth analysis of the genetic basis of maize leaf CC is imperative
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for cultivating novel maize varieties that exhibit enhanced photosynthetic efficiency,
thereby boosting overall maize productivity.

Owing to the comprehensive scanning of the genome and exploiting of numerous
ancient recombination events and linkage disequilibrium (LD), genome-wide association
study (GWAS) has become a powerful tool to elucidate the genetic basis of complex
quantitative traits in plants (Wang et al., 2023; Susmitha et al., 2023). Recent advances in
next-generation sequencing for GWAS have enabled high-resolution single nucleotide
polymorphism (SNP) discovery, revolutionizing genetic dissection of complex crop traits
and accelerating research progress in crop improvement. So far, numerous candidate genes
and quantitative trait nucleotides (QTNs) associated with chlorophyll contents (CC) in
crops have been identified by GWAS. For instance, Wang et al. (2015) performed a GWAS
using 529 rice (Oryza sativa L.) accessions and identified 46 significant CC-related loci.
Around these loci, they identified a major causal gene grain number, plant height, and
heading date7 (GHD?), which decreased chlorophyll content by downregulating the
expression of genes involved in the biosynthesis of chlorophyll and chloroplast
development. Dhanapal et al. (2016) conducted a GWAS in soybean, identifying 52 unique
SNPs and 155 genes that were related to chlorophyll content. In maize, based on an
association panel consisting of 290 maize inbred lines, 10 co-located QTNs and 69
candidate genes were detected to be associated with CC (Xiong et al., 2023). Jin et al. (2023)
conducted a GWAS of maize chlorophyll traits based on 378 maize inbred lines with
extensive natural variation and found 19 SNPs containing 76 candidate genes related to
leaf senescence, photosynthesis, and plant developmental processes. Nevertheless, the
highest phenotypic variance explained (PVE) by these CC-related genetic loci is less than
10%, indicating that numerous genetic factors remain to be discovered and understood.

In this study, we measured the chlorophyll content in maize and performed a GWAS to
identify the variants and candidate genes influencing chlorophyll content. Subsequently,
we analyzed the genetic structure of chlorophyll, aiming to provide a theoretical basis for
breeding optimal-photosynthetic efficiency of maize lines.

MATERIALS AND METHODS

Plant materials

The association panel utilized in this study included 334 maize lines provided by the Maize
Institute of Sichuan Agricultural University. These lines were collected from the breeding
program of Southwest China and consist of tropical, non-stiff stalk (NSS), stiff stalk (SS),
and other unique germplasms (Zhang et al., 2016; Table S1). The majority of these
accessions belong to the mid to late maturity group, with maturity periods ranging from
100 to 125 days. The panel was rigorously evaluated across three distinct environments
with significant differences in climatic conditions, namely Chongzhou (CZ, Sichuan
Province; 30.30° N, 103.07° E) and Ya’an (YA, Sichuan Province; 29.59° N, 102.57° E) in
2021, as well as Xishuangbanna (XSBN, Yunnan Province; 22.0° N, 100.79° E) in 2022. The
evaluation employed a completely randomized design with three replicates for consistency
and reliability. Each line was grown in a single row with row length of 3 m and row

Liu et al. (2024), Peerd, DOI 10.7717/peerj.18278 3/23


http://dx.doi.org/10.7717/peerj.18278/supp-1
http://dx.doi.org/10.7717/peerj.18278
https://peerj.com/

Peer/

distance of 0.7 m. A standard corn management practices were applied during the
cultivation.

Phenotypic data collection and analysis

The SPAD values were collected from five plants with consistent growth condition of each
line to symbolize the chlorophyll contents using SPAD 502 Plus Chlorophyll Meter (a
handheld SPAD instrument). At the seedling stage (30 days after sowing) and the grain
filling stage (5 days after pollination), the CC was measured at the middle parts of the fifth
leaf and the ear leaf, respectively. Each plant was measured three times, after which the
mean value was recorded as the leaf CC. The descriptive statistics of CCFSS and CCEFS in
each environment, including mean, maximum (Max), minimum (Min), standard
deviation (SD), coefficient of variation (CV), skewness, and kurtosis of CC were analyzed
using the psych package (Revelle, 2024) in R 4.4.2 (R Core Team, 2024). To evaluate
multi-environment experimental data, the BLUP values were computed using a liner
mixed model for the estimation of random effects with Ime4 R package. The ANOVA
analysis was performed to calculate the variance components of each trait, including
genotypes (G), environments (E), and interactions between genotype and environment (G
x E). The broad-sense heritability (H”) was estimated using the following formula (Knapp,
1986):

2
g
2 _ g
H* = O'ze -
aﬁ,—i——g—i-—e
e er

Here, O'z,, Gg, and aze represent genetic variance, residual error variance, and the variance
of genetic x environmental interaction, respectively. The letters “e” and “r” denote the

number of environments and the number of independent replicates, respectively.

GWAS

The genotype of the association panel was genotyped using the Maize SNP50 BeadChip,
which consisted of 56,110 SNPs (Zhang et al., 2016). Those SNPs with minor allele
frequency (MAF) < 0.05, missing rate > 20%, or heterozygosity > 20% were considered as
low-quality variations, which had been filtered out. Then, a total of 43,728 high-quality
SNPs were used for GWAS based on MLM model in the GEMMA package. Meanwhile,
population structure (Q = 6) reported in the previous study was used as a covariate in the
GWAS model (Zhang et al., 2016). The SNPs were considered as trait-associated QTNs
with the p-value less than 1/N = 4.49 x 10~ (N = 22,277). The N denotes the effective
marker number of independent tests, which was calculated using simpleM function in R
4.4.2 package. The quantile-quantile (Q-Q) and Manhattan plots for GWAS were
generated by using the CMplot function in R 4.4.2 package (https://github.com/YinLiLin/
CMplot). The PVE of each significant associated SNP was calculated according to the
formula as follows (Liu et al., 2024):
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~2
2" MAF(1 — MAF)
PVE =

28° MAF(1 — MAF) + (se(ﬁ))zzN + MAF(1 — MAF)

where f is the effect estimate of genetic variants, MAF is the minor allele frequency of
genetic variants, N is the sample size, and se (ﬁ) is the standard error of the effect. The raw
phenotype and genotype data for maize lines are available in the figshare database with the
accession link of https://doi.org/10.6084/m9.figshare.26355523.v1.

Analysis of candidate genes

According to the LD decay of this panel, gene models located within the 220 kb flanking
regions of all trait-associated QTNs were identified as potential trait-related candidate
genes. The function descriptions, gene ontology (GO) terms, and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways of these genes were annotated based on the
Annotation database of maize B73 RefGen v2 in MaizeGDB (https://www.maizegdb.org/,
accessed 25 May 2024). Enrichment analysis of GO and KEGG were performed using an
online tool OmicShare (https://www.omicshare.com/).

Gene-based association analysis

The variations within the gene bodies and 2,000 bp upstream regions of candidate genes
were obtained by DNA re-sequencing from 77 maize lines (Liu et al., 2024). The MLM
model was tested to detect key variations associated with CC of maize at the p-value of
0.05. The LD decay between pairwise SNPs was calculated using LDBlockShow software
(version 1.4) (Dong et al., 2021).

Gene expression patterns

The expression levels of candidate genes of distinct tissues at different development stages
in maize were obtained from a previous study (Stelpflug et al., 2016). The heatmap was
drawn using the pheatmap function in R 4.4.2 package (Kolde, 2019; R Core Team, 2024).

Statistical analysis

The two-sided t-test of the CC-related traits between two types of haplotypes was
performed in Excel 2021. Box plots were created using the R ggplot2 package (https://
ggplot2.tidyverse.org/).

RESULTS

Phenotypic variation

Phenotypic data of 334 maize inbred lines were collected across three experiment
environments (Chongzhou, CZ; Xishuangbanna, XSBN; and Ya’an, YA;). The values of
mean, Max, Min, SD, CV, skewness, and kurtosis of CC showed significant variability
(Table 1 and Fig. 1). The SPAD values of CCFSS varied between 29.78-58.54, 28.89-53.56,
and 31.53-55.15 across CZ, XSBN, and YA environments, respectively, with the CVs of
10.10%, 10.25%, and 11.62%. While, the range SPAD values of CCEFS in CZ, XSBN, and
YA were 42.70-66.09, 34.67-68.40, and 38.55-64.84 respectively, with the CVs of 7.72%,
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Table 1 Phenotypic variations of two traits in 334 maize inbred lines.

Trait Environment Mean SD Min Max Cv Skew Kurtosis H

CCFSS CzZ 43.98 4.44 29.78 58.54 10.10 0.07 0.17 70.84%
XSBN 38.55 3.95 28.89 53.56 10.25 0.52 0.48
YA 42.14 4.90 31.53 55.15 11.62 0.02 —-0.40
BLUP 41.54 2.55 34.93 50.39 6.14 0.32 0.23

CCEFS Ccz 54.34 4.20 42.70 66.09 7.72 -0.18 -0.06 78.99%
XSBN 53.18 3.96 34.67 68.40 7.45 -0.42 1.76
YA 53.63 4.17 38.55 64.84 7.78 -0.39 0.31
BLUP 53.69 2.83 45.58 62.13 5.28 -0.25 0.08

Note:

CCEFSS, chlorophyll contents of fifth leaves in seedling stage; CCEFS, chlorophyll contents of ear leaves in filling stage; SD,
standard deviation for the population; Min, minimum value; Max, maximum value; CV, coefficient of variation; H?,
broad-sense heritability.

7.45%, and 7.78%. In addition, the BLUP values of CCFSS and CCEES were calculated to
eliminate the environmental deviation, with an average of 41.54 (ranging from 34.93 to
50.39) and 53.69 (ranging from 45.58 to 62.13), separately. Moreover, the absolute values
of skewness and kurtosis for CCFSS and CCEEFS across all environments and BLUP were
less than 1.0 except for kurtosis of CCEFS in XSBN, indicating that CC followed normal
distributions, and was controlled by numerous genes. Besides, the SPAD values shown
significant positive correlations between any two environments or BLUP, indicating that
there is a certain connection between the chlorophyll content of different development
stages (Fig. S1). The values of broad-sense heritability (H?) for CCFSS and CCEFS were
70.84% and 78.99%, respectively, which confirmed that the CC of leaves were mainly
controlled by genetic factors (Table 1).

QTNs associated with CC by GWAS

We used a MLM method with a threshold p-value of 4.49 x 107 to identify CC-related
genetic loci. In total, 15 CC-related SNPs were detected. Among them, 11 SNPs were
associated with CCFSS, and four were associated with CCEFS (Figs. 2, 3 and Table S2). The
PVE values for these SNPs were 4.98-7.59%, indicating that chlorophyll content in maize
was controlled by multiple mini-effect genetic loci. Notably, four SNPs were identified as
co-located loci, which were detected in at least two different environments (including
BLUP). These common loci indicate that they have more stable genetic effects, which
should be attentioned in further studies. Three of the co-located SNPs (PZE-101214133,
PZE-106069023, and PZsE-108003930) linked to CCFSS were suited in chromosomes 1, 6,
and 8, respectively. One SNP (SYN23593), associated with CCEFS, was located in
chromosome 7. For PZE-101214133, PZE-106069023, and PZE-108003930, the mean
value of CC of all germplasms with the minor allele was significantly (p-value < 0.01)
higher than that of germplasms with the major allele across the population (Table 2).
However, the opposite performance was observed in SYN23593, where the average CC
value of germplasms with the major allele was significantly higher than that of germplasms
with the minor allele. (Table 2). Specifically, for CCFSS, the most significantly associated
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Figure 1 Phenotypic variations of CCFSS and CCEFS in different environments. CZ, YA, XSBN, and BLUP represent Chongzhou, Ya’an,
Xishuangbanna, and the best linear unbiased prediction, respectively. The X-axis and Y-axis represent different traits and the chlorophyll contents
(SPAD), respectively. CCFSS and CCEFS represent chlorophyll contents of fifth leaves at seedling stage and ear leaves at filling stage, respectively.

Full-size K& DOL: 10.7717/peer;.18278/fig-1

marker was PZE-101222689 (p-value = 4.68 x 1077), located on chromosome 1 and
explaining 7.37% of the phenotypic variation (Table S2). This SNP was located in the first
intron of the gene GRMZM2G416388, which encodes a cystathionine beta-synthase (CBS)
family protein. CBS proteins were known as energy sensors that regulate protein activities
via their adenosyl ligand binding capacity. Specifically, in Arabidopsis, CBSX2 has been
shown to inhibit the activities of m-type thioredoxins (TRXs) toward two chloroplast
TRX-related targets, thus regulating plant growth (Baudry et al., 2022). For CCEES, the
most significantly associated marker was SYN23593 (p-value = 2.95 x 10”7), with a PVE of
7.59 (Table S2). This marker was located in the 3’-UTR of the gene GRMZM2G057296,
which encodes a pectin lyase-like superfamily protein (PEL). In rice, the PEL gene takes
part in the regulation of plant growth and leaf senescence (Leng et al., 2017).

We then analyzed the superior allele ratios in 30 maize lines widely utilized in the
Southwest of China to evaluate the superior allele application of the 15 significant SNPs
during maize breeding. Since higher CC is important for crop production, we considered
the allele with the positive effect as the superior allele. Conversely, the alleles associated
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with lower SPAD values were designated as the inferior alleles. The superior allele
percentage of all CC-related SNPs ranged from 0% (PZE-102047226, PZE-103162301, and
PZE-104118967) to 70% (PZE-101222689) (Fig. 4). Notably, only three SNPs (PZE-
101222689, PZE-106067897, and PUT-163a-149111517-965) had a superior allele ratio
greater than 50%. However, eight SNPs (PZE-101068676, PZE-101214118, PZE-
101214133, PZE-102047226, PZE-103162301, PZE-104118967, PZE-107016552, and PZE-
108003930) possessed superior allele ratios of <10%, implying that these eight SNPs should
be given priority consideration in molecular marker-assisted breeding to modify the CC of
maize. Especially, two of the four co-located SNPs (PZE-101214133 and PZE-108003930)
respectively existed in three and two maize lines, which should be paid more attentions.
Among the 30 elite inbred lines, the maize line Mian723 owned the greatest number of
superior alleles, possessing higher CCFSS and CCEEFS of 47.79 and 62.13 in BLUP,
respectively. The line FO6 had only one superior allele, with the lower CCFSS and CCEFS
of 38.03 and 49.98, respectively. Therefore, Mian723 and F06 had great utility values to
display higher CC by providing or integrating more superior alleles.

Analysis of candidate genes

To further select the potential CC-related candidate genes, we searched the genes within
220-kb flanking regions of the 15 significant genetic loci identified by GWAS. In total, 177
candidate genes were detected, of which 131 genes had functional annotations (Table S3).
Among these genes, 16 common genes were situated in the LD regions of SNPs PZE-
101214118 and PZE-101214133, which were close to each other (<2,000 bp). Similarly, two
genes simultaneously located in the LD region of PUT-163a-149111517-965 and PZE-
106069023. According to the annotations, GRMZM5G820904 encodes a translocon at the
outer envelope membrane of chloroplasts 75-1II protein (TOC 75-1II). As previously
reported, TOC gene initiated the import process of thousands of nuclear precursor
proteins, which are crucial for chloroplast formation, plant growth and development
(Richardson et al., 2014). Another gene GRMZM2G164084 encodes an RNA polymerase
sigma factor, which is essential to life and controls the process of transcription (Borukhov
¢ Nudler, 2008). While the RNA polymerase sigma factor controls all transcription
initiation steps and the stimulation of the primary steps in RNA synthesis (Vishwakarma
¢ Brodolin, 2020). In Arabidopsis, gene SIG2 takes part in the transcription of several
chloroplast tRNA genes possibly couples translation and pigment synthesis in chloroplasts
(Kanamaru & Tanaka, 2004). The E1-E2 ATPase encoded by GRMZM2G324462 is also
known as P-type ATPase. In Arabidopsis, a P-type ATPase involved in regulating the
expression of a downstream gene ALA10, impacts the fatty acyl composition of chloroplast
phosphatidylcholine, changing chlorophyll contents (Botella et al., 2016).
GRMZM5G883222 encodes a phosphatidylinositol-4-phosphate 5-kinase family protein,
which is involved in the initiation of chloroplast division by fusing a part of sequence of the
prokaryotic FtsZ (a prokaryotic homolog of tubulin) (Shimada et al., 2004). In addition,
the four co-located SNPs, PZE-101214133, PZE-106069023, PZE-108003930, and
SYN23593 harbored 16, 9, 11, and 6 genes, respectively. Notably, the phosphate
transporter encoded by GRMZM2G064657 (PZE-106069023), which was confirmed to
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Figure 2 Manhattan and Q-Q plots of a genome-wide association analysis of CCFSS in different
environments. Manhattan and Q-Q plots for BLUP (A and B), YA (Ya’an, Sichuan) (C and D), CZ
(Chongzhou, Sichuan) (E and F), and XSBN (Xishuangbanna, Yunnan) (G and H), respectively. X-axis
represents chromosomal positions. Y-axis represents -log;, (p-values) of each marker. The dotted lines

indicate the genome-wide significance threshold (p-value = 4.49 x 107°).
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Table 2 T-test of two alleles of each co-located CC-related SNPs in different environments.

Trait Loci Chrom Position Env Allele No. Phenotype P-value
CCFSS  PZE-101214133 1 264522231 CZ A 74 45425 2.96E-04
G 233 43345
BN A 65 39.716 2.44E-03
G 188  38.038
YA A 66  43.706 3.97E-03
G 217 41.749
BLUP A 75 42.462 1.13E-04
G 235  41.189
PZE-106069023 6 122398586 CZ C 126 45.152 1.10E-04
A 199 4321
BN C 106  40.056 2.33E-07
A 162 37.563
YA C 116  43.399 5.98E-04
A 183  41.424
BLUP C 127 42.429 3.19E-07
A 202 40.98
PZE-108003930 8 3922598 CZ A 53 45.678 1.34E-03
G 252 43516
BN A 42 39975 6.95E-03
G 211 38172
YA A 48  43.251 8.75E-02
G 233 41927
BLUP A 53 42.469 2.21E-03
G 256 41.292
CCEFS  SYN23593 7 24409023 CZ G 159  53.562 1.14E-03
A 164  55.076
BN G 132 5223 1.99E-04
A 153 53.972
YA G 149  52.809 8.85E-04
A 153 54.401
BLUP G 162 53.03 3.71E-05
A 169  54.304
Note:

Chr, chromosome; Env, environments; No., number of lines.

affect the chlorophyll contents by regulating the phosphate acquisition in Cucumber
(Naureen et al., 2018). The pentatricopeptide repeat (PPR) superfamily protein encoded by
GRMZM2G071162 (PZE-106069023) is involved in the post-transcriptional regulation of
chloroplast genes, and effects on the biogenesis and functioning of chloroplasts (Wang
et al., 2021). These results further demonstrate that the candidate genes were potentially
associated with CC.
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Figure 4 Heatmap of the distribution of superior alleles in 30 elite maize lines. Red and white colors
represent superior and inferior alleles, respectively. Full-size K&l DOT: 10.7717/peerj.18278/fig-4

To further reveal the function of these genes, we performed Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. As
results, GO terms of “peroxidase activity”, “oxidoreductase activity”, and “inositol
phosphate biosynthetic process” and pathways of “phenylpropanoid biosynthesis”,
“MAPK signaling pathway”, and “inositol phosphate metabolism” were significantly
enriched (p-value < 0.05), indicating that these genes hold significant potential for further
research and exploration (Fig. 5, Tables S4, S5). Specially, there are 19 and 22 genes
enriched in top 20 GO terms and KEGG pathways respectively, including eight genes that
are previously identified as common located genes.

Gene-based association analysis revealed loci affecting maize CC

To further reveal the key variation loci affecting CC in maize, we conducted gene-based
association analyses for the eight hub candidate genes using 77 randomly selected lines
from the maize association panel. A total of 678 high-quality variations (542 SNPs, 69
insertions, and 67 deletions) located in the gene regions and their 2,000 bp upstream were
obtained by DNA re-sequence (Table S6; Liu et al., 2024). Using the MLM model, a total of
six variations (four SNPs, one insertion, and one deletion) from four genes
(GRMZM2G037152, GRMZM5G816561, GRMZM2G324462, and GRMZM2G064657)
were significantly (p-value < 0.01) associated with maize CC (Table S7). Among them,
SNP-1-269340061 was situated in the first exon of gene GRMZM2G037152 and annotated
as a missense variant, which probably alter the corresponding protein sequence. SNP-2-
16709401 was annotated as a splice region variant, and located in the first intron on the
gene GRMZM5G816561. SNP-6-126152668, DEL-6-126298795, SNP-6-126298598, and
INS-6-126298833 were all located in the upstream region of the genes GRMZM2G324462
and GRMZM2G064657. GRMZM2G037152 encodes a GNS1/SUR4 membrane family
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protein, which was found to be associated with photosynthetic metabolism and biological

processes of photomorphogenesis (Ma, Ding ¢ Li, 2017). Cytochrome P450 encoded by

GRMZM5G816561 is one of the most prominent families of oxidoreductases class

enzymes. It catalyzes NADPH- and/or O2-mediated hydroxylation reactions in primary

and secondary metabolism in various species (Xu, Wang ¢» Guo, 2015; Chakraborty et al,
2023). GRMZM2G324462 and GRMZM2G064657 encodes an ATPase E1-E2 type family
protein and a phosphate transporter protein, respectively. As mentioned above, the E1-E2
ATPases also known as P-type ATPases, which is related to the regulation of the contents
of chlorophyll in Arabidopsis (Botella et al., 2016). The phosphate transporter could

regulate phosphate homeostasis and photosynthesis in chlamydomonas (76th et al., 2024)
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and share similar features with chloroplast transit peptides in Arabidopsis (Versaw &
Harrison, 2002). In particular, the expression level of this gene shown a significant
difference between a yellow-green leaf mutant of maize and its wild type (Li et al., 2021).
Together, these results further demonstrate that the candidate genes were potentially
causal genes affecting maize CC.

According to these significant variants, we constructed haplotypes of each gene. For
GRMZM2G037152, the corresponding SNP (SNP-1-269340061) with allele of A/C divided
77 maize lines into two groups. The mean values of both CCFSS and CCEEFS traits in
A-type lines were higher than those in C-type maize lines in all environments, except for
CCEFS in YA and BLUP. Likewise, two alleles (A/C) of SNP-2-16709401 for
GRMZM5G816561 and two alleles (A/C) of SNP-6-126152668 for GRMZM2G324462 both
divided the 77 lines into two groups. The lines with Hapl (A) for GRMZM5G816561
shown higher chlorophyl contents than that with Hap2 (C) in all environments. In
contrast, lines with Hapl (A) for GRMZM2G324462 shown lower chlorophyl contents
than that with Hap2 (C) in all environments. In addition, based on three significant
CC-associated variations (DEL-6-126298795, SNP-6-126298598, and INS-6-126298833)
from GRMZM2G064657, two predominant haplotypes were classified (Hapl: AA-, Hap2:
G-G). A t-test analysis revealed that the average CCFSS and CCEFS of Hapl (AA-) lines
were significantly (p-value < 0.05) higher than those of Hap2 (G-G) lines in all
environments, except for CCFSS in YA (Fig. 6). Thus, the Hapl (AA-) was regarded as a
superior haplotype for improving chlorophyll contents in maize.

Expression patterns of the candidate genes

Based on a public reported gene atlas of maize tissues at different development stages
(Stelpflug et al., 2016), we examined the expression profiles of all 177 candidate genes and
constructed a heatmap (Fig. S2). The expression levels of these candidate genes were varied
significantly in different tissues. Furthermore, we focused on eight hub CC-related genes,
and found that GRMZM5G816561 showed a lower expression level in all tissues of
different development stages except for some leaf-related tissues. Similarly,
GRMZM2G064657 showed higher expression levels in leaves relative to other tissues.
Universally, GRMZM5G810275, GRMZM2G467059, GRMZM2G073668,
GRMZM2G002499, and GRMZM2G324462 had a relatively higher level of expression in
whole development stages in all tissues (Fig. 7 and Table S8). Gene GRMZM2G037152
displays a relatively higher expression level in leaf-related and internode-related tissues.
These results provide more information for revealing the mechanism of chlorophyll
synthesis in further studies.

DISCUSSION

Chlorophyll is the main pigment which was used to absorb and transform sunlight in
plants, and its content directly determines the efficiency of photosynthesis and plant
growth. Usually, chlorophyll content of specific plant tissues shows great variation at
different developmental stages. For instance, chlorophyll content in wheat flag and second
top leaves reached the peak during early grain filling and changed widely among varieties
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and growth stages. Similarly, cigar leaf chlorophyll content also varied greatly during field
growth (Ou et al., 2017; Lei et al., 2022). In maize, the CC of the fifth leaf acts as an accurate
predictor to confirm the response of side-dress N fertilizer (Piekkielek ¢ Fox, 1992).
However, the genetic dissection of chlorophyll content in maize leaves has primarily
concentrated on the ear leaves, and there has been a notable lack of research, particularly of
the seedling leaf. In this study, we investigated the CC of fifth leaf at seedling stage and ear
leaf at filling stage, and revealed that the CC varied extensively in different lines. The
heritability estimates of CCFSS and CCEFS were 70.48% and 78.99%, respectively, which
was close to that in previous study (Jin et al., 2023; Xiong et al., 2023), indicating that
chlorophyll content is mainly controlled by genotype. Meanwhile, the PVEs of CC-related
significant SNPs in this study were mostly less than 10%, which also shows that chlorophyll
content is mainly controlled by small-effect polygenes, which further illustrates the
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complexity of the regulation of plant chlorophyll content. Remarkably, this study
represents the first comprehensive investigation of the genetic foundations of chlorophyll
content at both the seedling and mature stages in maize, offering novel insights into the
intricate genetic regulation of this essential trait.

As an effective statistical method, GWAS is extensively employed to elucidate the
genetic basis of complex quantitative traits and to explore variations and candidate genes
related to various agronomic traits (Guo et al., 2020; Yuan et al., 2023; Liang et al., 2023). In
this study, 15 CC-related SNPs and 177 candidate genes were identified using the GWAS
method. Among these candidate genes, a known gene GRMZM2G064657 (encoding a
phosphate transporter protein) was identified and had been reported to regulate the leaf
color (Li et al., 2021). This gene was specific expressed in maize leaf, especially in tip stage 2
leaf v7 (https://www.maizegdb.org/gene_center/gene/ GRMZM2G064657#rnaseq,
accessed 24 Aug 2024). The homologous gene in Arabidopsis, AT1G68740, acts at the root
level to influence Pi transport and homeostasis, thereby affected the synthesis of
chlorophyll and plant growth (Stefanovic et al., 2007). The homologous protein OsPHT4
in rice plays a crucial role in the distribution of phosphate ions between the cytoplasm and
organelles such as the chloroplast or Golgi apparatus, and it is also implicated in stress
responses (Ruili et al., 2020). Consistent functionality has also been reported in
Chlamydomonas (76th et al., 2024) and Soybean (Wei et al., 2023). Furthermore,
GRMZM2G128644 encodes a VQ motif-containing protein, which belongs to a class of
plant specific proteins with a conserved single short FxxhVQxhTG amino acid sequence
motif and plays important roles in regulating various developmental processes, such as
responding to biotic and abiotic stress, seed development, and photomorphogenesis (Jing
¢ Lin, 2015). In a previous study, this gene was identified as a kernel numbers per row
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(KNR)-related gene (Zeng et al., 2022). Additionally, plants often exhibit a decreased
tendency in chlorophyll content under abiotic stresses, which is accompanied by an
increase in oxygen free radicals, hydrogen peroxide, and NADH oxidase content (Chen
et al., 2021). Furthermore, the C2H2 zinc finger protein plays a pivotal role in plant growth
and development, as well as in responses to salt, low-temperature, and drought stress.
Notably, overexpressing the C2H2-type zinc finger protein gene RHL41 significantly
improves resistance to high-light conditions, evidenced by dramatic changes in plant
morphology and increased levels of anthocyanin and chlorophyll (Asako et al., 2000). All
these findings support the credibility of the CC-related genes identified in this study and
significantly augment the existing gene resources pertaining to the synthesis and
metabolism of chlorophyll in maize, providing a deeper understanding of the genetic
mechanisms of CC.

Researches have shown that chlorophyll content in maize leaves is a crucial determinant
of the photosynthesis rate. In this study, 334 maize inbred lines were used to analyze the
chlorophyll content in a natural maize population. The findings revealed a high degree of
polymorphism in chlorophyll content within this population. In addition, the association
panel consisted of six sub population, namely Tropical, PA, PB, Reid, BSSS, and North
(Zhang et al., 2016), including several elite inbred lines B73, Mo17, Qi319, and so on. These
lines were widely used in conventional and molecular breeding programs in southwest of
China.

Molecular breeding offers an excellent opportunity to speed up maize improvement
programs, especially since a large number of phenotype-related markers and genes have
been identified. Currently, marker-assisted selection (MAS) and genome editing (CRISPR-
Cas9) have become routine components of maize breeding programs (Prasanna et al.,
2020; Xu et al., 2020; Hernandes-Lopes et al., 2023). However, gene discovery remains one
of the bottlenecks for the widespread adoption of these technologies in crop breeding
(Scheben & Edwards, 2018; Song et al., 2023). In this study, we identified 15 CC-related
SNPs and 177 CC-related candidate genes that can be used to cultivate new maize varieties
with higher CC at seedling or filling development stages. Given the importance of higher
CC for crop production, we designated the allele with the positive effect as the superior
allele. Among 30 elite maize inbred lines widely used in Southwest China, eight lines
contained more than five superior alleles (Fig. 4). This finding highlights the potential of
these alleles in breeding programs, suggesting that the allelic loci related to high
chlorophyll content are closely linked to agronomic traits of interest to breeders and are
more likely to be retained during artificial selection and breeding. Taken together, these
SNPs and genes can facilitate molecular breeding practice on maize lines with high
chlorophyll content and potentially higher yields.

CONCLUSIONS

In this study, we firstly comprehensively investigated the genetic basis of chlorophyll
content in both seedling and ear leaf stages in maize, offering new insights into the
complex genetic regulation of chlorophyll. We found that chlorophyll content varied
widely among different maize lines, with heritability estimates of 70.84% and 78.99% for
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CCESS and CCEEFS, respectively. Subsequently, we constructed a GWAS for these traits
across different environments and BLUP based on 43,729 high-quality SNPs. This analysis
identified 15 CC-related SNPs and 177 candidate genes. Among these 177 initial candidate
genes, eight were consistently identified in at least two environments and were enriched in
the top 20 GO terms or KEGG pathways. Further, gene-based association analysis revealed
that the upstream region of GRMZM2G064657 harbored two haplotypes, Hap1 (elite
haplotype, AA-) and Hap2 (G-G). Notably, this gene exhibited higher expression levels in
leaves compared to other tissues. Consequently, GRMZM2G064657 was identified as a core
regulator affecting chlorophyll content in maize. These findings enhance our
understanding of the genetic architecture of chlorophyll content in maize and provide
valuable insights for breeding high photosynthetic efficiency varieties.

ACKNOWLEDGEMENTS

We appreciate the students who assisted with the phenotypic survey.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by the State Key Laboratory of Crop Gene Exploration and
Utilization in Southwest China, SAU (SKL-KF202323), the Natural Science Foundation of
Sichuan Province (22NSFSC0148) and the Scientific research initiation project of
Mianyang Teachers’ College (QD2021A03). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:

State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, SAU:
SKL-KF202323.

Natural Science Foundation of Sichuan Province: 22NSFSC0148.

Mianyang Teachers’ College: QD2021A03.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

e Peng Liu performed the experiments, analyzed the data, prepared figures and/or tables,
authored or reviewed drafts of the article, funding acquisition, and approved the final
draft.

 Chenchaoyang Xiang performed the experiments, analyzed the data, prepared figures
and/or tables, and approved the final draft.

e Kai Liu performed the experiments, prepared figures and/or tables, and approved the
final draft.

» Hong Yu performed the experiments, prepared figures and/or tables, and approved the
final draft.

Liu et al. (2024), PeerdJ, DOI 10.7717/peerj.18278 18/23


http://dx.doi.org/10.7717/peerj.18278
https://peerj.com/

Peer/

» Zhenggqiao Liao performed the experiments, prepared figures and/or tables, funding
acquisition, and approved the final draft.

* Yaou Shen conceived and designed the experiments, authored or reviewed drafts of the
article, and approved the final draft.

» Lei Liu conceived and designed the experiments, authored or reviewed drafts of the
article, and approved the final draft.

» Langlang Ma conceived and designed the experiments, authored or reviewed drafts of the
article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The data is available at figshare: Liu, Peng (2024). Raw data in study of maize
chlorophyll content. figshare. Dataset. https://doi.org/10.6084/m9.figshare.26355523.v1.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.18278#supplemental-information.

REFERENCES

Asako I, Kazuoka T, Torikai S, Kikuchi H, Oeda K. 2000. A zinc finger protein RHL41 mediates
the light acclimatization response in Arabidopsis. The Plant Journal 24(2):191-203
DOI 10.1046/j.1365-313x.2000.00864 x.

Baudry K, Barbut F, Domenichini S, Guillaumot D, Thy MP, Vanacker H, Majeran W, Krieger-
Liszkay A, Issakidis-Bourguet E, Lurin C. 2022. Adenylates regulate Arabidopsis plastidial
thioredoxin activities through the binding of a CBS domain protein. Plant Physiology
189(4):2298-2314 DOI 10.1093/plphys/kiac199.

Beale SI. 2005. Green genes gleaned. Trends in Plant Science 10(7):309-312
DOI 10.1016/j.tplants.2005.05.005.

Borukhov S, Nudler E. 2008. RNA polymerase: the vehicle of transcription. Trends in Microbiology
16(3):126-134 DOI 10.1016/j.tim.2007.12.006.

Botella C, Sautron E, Boudiere L, Michaud M, Dubots E, Yamaryo-Botté Y, Albrieux C,
Marechal E, Block MA, Jouhet J. 2016. ALA10, a phospholipid flippase, controls FAD2/FAD3
desaturation of phosphatidylcholine in the ER and affects chloroplast lipid composition in
Arabidopsis thaliana. Plant Physiology 170(3):1300-1314 DOI 10.1104/pp.15.01557.

Chakraborty P, Biswas A, Dey S, Bhattacharjee T, Chakrabarty S. 2023. Cytochrome P450 gene
families: role in plant secondary metabolites production and plant defense. Journal of
Xenobiotics 13(3):402-423 DOI 10.3390/jox13030026.

Chen Z-F, Ru J-N, Sun G-Z, Du Y, Chen J, Zhou Y-B, Chen M, Ma Y-Z, Xu Z-S, Zhang X-H.
2021. Genomic-wide analysis of the PLC family and detection of GmPI-PLC7 responses to
drought and salt stresses in soybean. Frontiers in Plant Science 12:1335
DOI 10.3389/1pls.2021.631470.

Dhanapal AP, Ray JD, Singh SK, Hoyos-Villegas V, Smith JR, Purcell LC, Fritschi FB. 2016.
Genome-wide association mapping of soybean chlorophyll traits based on canopy spectral
reflectance and leaf extracts. BMC Plant Biology 16:174 DOI 10.1186/s12870-016-0861-x.

Liu et al. (2024), Peerd, DOI 10.7717/peerj.18278 19/23


https://doi.org/10.6084/m9.figshare.26355523.v1
http://dx.doi.org/10.7717/peerj.18278#supplemental-information
http://dx.doi.org/10.7717/peerj.18278#supplemental-information
http://dx.doi.org/10.1046/j.1365-313x.2000.00864.x
http://dx.doi.org/10.1093/plphys/kiac199
http://dx.doi.org/10.1016/j.tplants.2005.05.005
http://dx.doi.org/10.1016/j.tim.2007.12.006
http://dx.doi.org/10.1104/pp.15.01557
http://dx.doi.org/10.3390/jox13030026
http://dx.doi.org/10.3389/fpls.2021.631470
http://dx.doi.org/10.1186/s12870-016-0861-x
http://dx.doi.org/10.7717/peerj.18278
https://peerj.com/

Peer/

Dong S, He W, Ji ], Zhang C, Guo Y, Yang T. 2021. LDBlockShow: a fast and convenient tool for
visualizing linkage disequilibrium and haplotype blocks based on variant call format files.
Briefings in Bioinformatics 22(4):bbaa227 DOI 10.1093/bib/bbaa227.

Geng R, Pang X, Li X, Shi S, Hedtke B, Grimm B, Bock R, Huang J, Zhou W. 2023.
PROGRAMMED CELL DEATHS interacts with tetrapyrrole biosynthesis enzymes and ClpCl
to maintain homeostasis of tetrapyrrole metabolites in Arabidopsis. New Phytologist
238(6):2545-2560 DOI 10.1111/nph.18906.

Ghimire B, Timsina D, Nepal J. 2015. Analysis of chlorophyll content and its correlation with
yield attributing traits on early varieties of maize (Zea mays L.). Journal of Maize Research and
Development 1(1):134-145 DOI 10.3126/jmrd.v1il.14251.

Guo J, Li C, Zhang X, Li Y, Zhang D, Shi Y, Song Y, Li Y, Yang D, Wang T. 2020. Transcriptome
and GWAS analyses reveal candidate gene for seminal root length of maize seedlings under
drought stress. Plant Science 292:110380 DOI 10.1016/j.plantsci.2019.110380.

Hernandes-Lopes J, de Yassitepe JECT, Koltun A, Pauwels L, da Silva VCH, Dante RA,
Gerhardt IR, Arruda P. 2023. Genome editing in maize: toward improving complex traits in a
global crop. Genetics and Molecular Biology 46:€20220217
DOI 10.1590/1678-4685-GMB-2022-0217.

JinY, Li D, Liu M, Cui Z, Sun D, Li C, Zhang A, Cao H, Ruan Y. 2023. Genome-wide association
study identified novel snps associated with chlorophyll content in maize. Genes 14(5):1010
DOI 10.3390/genes14051010.

Jing Y, Lin R. 2015. The VQ motif-containing protein family of plant-specific transcriptional
regulatorsl. Plant Physiology 169(1):371-378 DOI 10.1104/pp.15.00788.

Kanamaru K, Tanaka K. 2004. Roles of chloroplast rna polymerase sigma factors in chloroplast

development and stress response in higher plants. Bioscience, Biotechnology, and Biochemistry
68(11):2215-2223 DOI 10.1271/bbb.68.2215.

Khangura RS, Johal GS, Dilkes BP. 2020. Variation in maize chlorophyll biosynthesis alters plant
architecture. Plant Physiology 184(1):300-315 DOI 10.1104/pp.20.00306.

Knapp SJ. 1986. Confidence intervals for heritability for two-factor mating design single
environment linear models. Theoretical and Applied Genetics 72(5):587-591
DOI 10.1007/BF00288995.

Kolde R. 2019. pheatmap: pretty heatmaps. Available at https://cran.r-project.org/web/packages/
pheatmap/index.html.

Lei Y, Zhong Q, Wang J, Xiang H, Zou Y, Zhang H, Li C, Wang Y. 2022. The change rule of
chlorophyll content of different cigar varieties during field growth period. Journal of Agriculture
12:35 DOI 10.11923/].issn.2095-4050.cjas2020-0201.

Leng Y, Yang Y, Ren D, Huang L, Dai L, Wang Y, Chen L, Tu Z, Gao Y, Li X, Zhu L, Hu J,
Zhang G, Gao Z, Guo L, Kong Z, Lin Y, Qian Q, Zeng D. 2017. A rice PECTATE LYASE-LIKE
gene is required for plant growth and leaf senescence. Plant Physiology 174(2):1151-1166
DOI 10.1104/pp.16.01625.

Li R, He Y, Chen J, Zheng S, Zhuang C. 2023. Research progress in improving photosynthetic
efficiency. International Journal of Molecular Sciences 24(11):9286 DOI 10.3390/ijms24119286.

Li X, Huang S, Liu Z, Hou L, Feng H. 2019. Mutation in EMB1923 gene promoter is associated
with chlorophyll deficiency in Chinese cabbage (Brassica campestris ssp. pekinensis). Physiologia
Plantarum 166(4):909-920 DOI 10.1111/ppl.12979.

Li T, Yang H, Lu Y, Dong Q, Liu G, Chen F, Zhou Y. 2021. Comparative transcriptome analysis
of differentially expressed genes related to the physiological changes of yellow-green leaf mutant
of maize. Peer] 9(1):e10567 DOI 10.7717/peerj.10567.

Liu et al. (2024), Peerd, DOI 10.7717/peerj.18278 20/23


http://dx.doi.org/10.1093/bib/bbaa227
http://dx.doi.org/10.1111/nph.18906
http://dx.doi.org/10.3126/jmrd.v1i1.14251
http://dx.doi.org/10.1016/j.plantsci.2019.110380
http://dx.doi.org/10.1590/1678-4685-GMB-2022-0217
http://dx.doi.org/10.3390/genes14051010
http://dx.doi.org/10.1104/pp.15.00788
http://dx.doi.org/10.1271/bbb.68.2215
http://dx.doi.org/10.1104/pp.20.00306
http://dx.doi.org/10.1007/BF00288995
https://cran.r-project.org/web/packages/pheatmap/index.html
https://cran.r-project.org/web/packages/pheatmap/index.html
http://dx.doi.org/10.11923/j.issn.2095-4050.cjas2020-0201
http://dx.doi.org/10.1104/pp.16.01625
http://dx.doi.org/10.3390/ijms24119286
http://dx.doi.org/10.1111/ppl.12979
http://dx.doi.org/10.7717/peerj.10567
http://dx.doi.org/10.7717/peerj.18278
https://peerj.com/

Peer/

Liang T, Hu Y, Xi N, Zhang M, Zou C, Ge F, Yuan G, Gao S, Zhang S, Pan G, Ma L,
Liibberstedt T, Shen Y. 2023. GWAS across multiple environments and WGCNA suggest the
involvement of ZmARF23 in embryonic callus induction from immature maize embryos.
Theoretical and Applied Genetics 136(4):93 DOI 10.1007/s00122-023-04341-x.

Liu P, Ma L, Jian S, He Y, Yuan G, Ge F, Chen Z, Zou C, Pan G, Lubberstedt T, Shen Y. 2024.
Population genomic analysis reveals key genetic variations and the driving force for embryonic
callus induction capability in maize. Journal of Integrative Agriculture 23(7):2178-2195
DOI 10.1016/j.jia.2023.06.032.

Ma S, Ding Z, Li P. 2017. Maize network analysis revealed gene modules involved in development,
nutrients utilization, metabolism, and stress response. BMC Plant Biology 17(1):131
DOI 10.1186/s12870-017-1077-4.

Naureen Z, Sham A, Al Ashram H, Gilani SA, Al Gheilani S, Mabood F, Hussain J,

Al Harrasi A, AbuQamar SF. 2018. Effect of phosphate nutrition on growth, physiology and
phosphate transporter expression of cucumber seedlings. Plant Physiology and Biochemistry
127:211-222 DOI 10.1016/j.plaphy.2018.03.028.

Ou J, Wang Z, Tao J, Zhou Q. 2017. Study on the changes of chlorophyll content of leaves in
northwest sichuan winter wheat under low temperature stress. Anhui Agricultural Science
Bulletin 23:11-12,34 DOI 10.3969/j.issn.1007-7731.2017.02.006.

Piekkielek WP, Fox RH. 1992. Use of a chlorophyll meter to predict sidedress nitrogen
requirements for maize. Agronomy Journal 84(1):59-65
DOI 10.2134/agronj1992.00021962008400010013x.

Prasanna BM, Palacios-Rojas N, Hossain F, Muthusamy V, Menkir A, Dhliwayo T, Ndhlela T,
San Vicente F, Nair SK, Vivek BS, Zhang X, Olsen M, Fan X. 2020. Molecular breeding for
nutritionally enriched maize: status and prospects. Frontiers in Genetics 10:1273
DOI 10.3389/fgene.2019.01392.

R Core Team. 2024. R: a language and environment for statistical computing. Version 4.4.2.
Vienna: R Foundation for Statistical Computing. Available at https://www.r-project.org.

Revelle W. 2024. psych: procedures for psychological, psychometric, and personality research.
Available at https://cran.r-project.org/web/packages/psych/index.html.

Richardson LGL, Paila YD, Siman SR, Chen Y, Smith MD, Schnell DJ. 2014. Targeting and
assembly of components of the TOC protein import complex at the chloroplast outer envelope
membrane. Frontiers in Plant Science 5(148):1513 DOI 10.3389/fpls.2014.00269.

Ruili L, Jiaoling W, Lei X, Meihao S, Keke Y, Hongyu Z. 2020. Functional analysis of phosphate
transporter OsPHT4 family members in rice. Rice Science 27(6):493-503
DOI 10.1016/j.rsci.2020.09.006.

Scheben A, Edwards D. 2018. Bottlenecks for genome-edited crops on the road from lab to farm.
Genome Biology 19(1):178 DOI 10.1186/s13059-018-1555-5.

Shimada H, Koizumi M, Kuroki K, Mochizuki M, Fujimoto H, Ohta H, Masuda T, Takamiya K.
2004. ARC3, a chloroplast division factor, is a chimera of prokaryotic ftsz and part of eukaryotic
phosphatidylinositol-4-phosphate 5-kinase. Plant and Cell Physiology 45(8):960-967
DOI 10.1093/pcp/pch130.

Sid’ko AF, Botvich IY, Pisman TI, Shevyrnogov AP. 2017. Estimation of chlorophyll content and
yield of wheat crops from reflectance spectra obtained by ground-based remote measurements.
Field Crops Research 207(1):24-29 DOI 10.1016/j.tcr.2016.10.023.

Song L, Wang R, Yang X, Zhang A, Liu D. 2023. Molecular markers and their applications in
marker-assisted selection (MAS) in bread wheat (Triticum aestivum L.). Agriculture 13(3):642
DOI 10.3390/agriculture13030642.

Liu et al. (2024), Peerd, DOI 10.7717/peerj.18278 21/23


http://dx.doi.org/10.1007/s00122-023-04341-x
http://dx.doi.org/10.1016/j.jia.2023.06.032
http://dx.doi.org/10.1186/s12870-017-1077-4
http://dx.doi.org/10.1016/j.plaphy.2018.03.028
http://dx.doi.org/10.3969/j.issn.1007-7731.2017.02.006
http://dx.doi.org/10.2134/agronj1992.00021962008400010013x
http://dx.doi.org/10.3389/fgene.2019.01392
https://www.r-project.org
https://cran.r-project.org/web/packages/psych/index.html
http://dx.doi.org/10.3389/fpls.2014.00269
http://dx.doi.org/10.1016/j.rsci.2020.09.006
http://dx.doi.org/10.1186/s13059-018-1555-5
http://dx.doi.org/10.1093/pcp/pch130
http://dx.doi.org/10.1016/j.fcr.2016.10.023
http://dx.doi.org/10.3390/agriculture13030642
http://dx.doi.org/10.7717/peerj.18278
https://peerj.com/

Peer/

Stefanovic A, Ribot C, Rouached H, Wang Y, Chong J, Belbahri L, Delessert S, Poirier Y. 2007.
Members of the PHOI gene family show limited functional redundancy in phosphate transfer to
the shoot, and are regulated by phosphate deficiency via distinct pathways. The Plant Journal
50(6):982-994 DOI 10.1111/j.1365-313X.2007.03108.x.

Stelpflug SC, Sekhon RS, Vaillancourt B, Hirsch CN, Buell CR, de Leon N, Kaeppler SM. 2016.
An expanded maize gene expression atlas based on RNA sequencing and its use to explore root
development. The Plant Genome 9(1):1 DOI 10.3835/plantgenome2015.04.0025.

Susmitha P, Kumar P, Yadav P, Sahoo S, Kaur G, Pandey MK, Singh V, Tseng TM,
Gangurde SS. 2023. Genome-wide association study as a powerful tool for dissecting
competitive traits in legumes. Frontiers in Plant Science 14:1 DOI 10.3389/fpls.2023.1123631.

Téth D, Kuntam S, Ferenczi A, Vidal-Meireles A, Kovacs L, Wang L, Sarkadi Z, Migh E,
Szentmihalyi K, Tengolics R, Neupert J, Bock R, Jonikas MC, Molnar A, Téth SZ. 2024.
Chloroplast phosphate transporter CrPHT4-7 regulates phosphate homeostasis and
photosynthesis in Chlamydomonas. Plant Physiology 194(3):1646-1661
DOI 10.1093/plphys/kiad607.

Tripathy BC, Pattanayak GK. 2012. Chlorophyll biosynthesis in higher plants. Photosynthesis:
Plastid Biology, Energy Conversion and Carbon Assimilation 34:63-94
DOI 10.1007/978-94-007-1579-0_3.

Versaw WK, Harrison M]J. 2002. A chloroplast phosphate transporter, PHT2;1, influences
allocation of phosphate within the plant and phosphate-starvation responses. The Plant Cell
14(8):1751-1766 DOI 10.1105/tpc.002220.

Vishwakarma RK, Brodolin K. 2020. The o subunit-remodeling factors: an emerging paradigms
of transcription regulation. Frontiers in Microbiology 11:2443 DOI 10.3389/fmicb.2020.01798.

Wang X, An Y, Xu P, Xiao J. 2021. Functioning of PPR proteins in organelle RNA metabolism and
chloroplast biogenesis. Frontiers in Plant Science 12:148 DOI 10.3389/fpls.2021.627501.

Wang W, Guo W, Le L, Yu J, Wu Y, Li D, Wang Y, Wang H, Lu X, Qiao H, Gu X, Tian J,
Zhang C, Pu L. 2023. Integration of high-throughput phenotyping, GWAS, and predictive
models reveals the genetic architecture of plant height in maize. Molecular Plant 16(2):354-373
DOI 10.1016/j.molp.2022.11.016.

Wang Q, Xie W, Xing H, Yan ], Meng X, Li X, Fu X, Xu J, Lian X, Yu S, Xing Y, Wang G. 2015.
Genetic architecture of natural variation in rice chlorophyll content revealed by a genome-wide
association study. Molecular Plant 8(6):946-957 DOI 10.1016/j.molp.2015.02.014.

Wei X, Xu X, Fu Y, Yang X, Wu L, Tian P, Yang M, Wu Z. 2023. Effects of soybean phosphate
transporter gene GmPHT?2 on Pi transport and plant growth under limited Pi supply condition.
International Journal of Molecular Sciences 24(13):11115 DOI 10.3390/ijms241311115.

Xiong X, Li J, Su P, Duan H, Sun L, Xu S, Sun Y, Zhao H, Chen X, Ding D, Zhang X, Tang J.
2023. Genetic dissection of maize (Zea mays L.) chlorophyll content using multi-locus genome-
wide association studies. BMC Genomics 24:384 DOI 10.1186/s12864-023-09504-0.

Xu Z, Hua J, Wang F, Cheng Z, Meng Q, Chen Y, Han X, Tie S, Liu C, Li X, Wang Z, Weng J.
2020. Marker-assisted selection of gMrdd8 to improve maize resistance to rough dwarf disease.
Breeding Science 70(2):183-192 DOI 10.1270/jsbbs.19110.

Xu J, Wang X, Guo W. 2015. The cytochrome P450 superfamily: key players in plant development
and defense. Journal of Integrative Agriculture 14(9):1673-1686
DOI 10.1016/52095-3119(14)60980-1.

Xue Y, Dong H, Huang H, Li S, Shan X, Li H, Liu H, Xia D, Su S, Yuan Y. 2022. Mutation in
Mg-Protoporphyrin IX monomethyl ester (Oxidative) cyclase gene ZmCRDI causes

Liu et al. (2024), Peerd, DOI 10.7717/peerj.18278 22/23


http://dx.doi.org/10.1111/j.1365-313X.2007.03108.x
http://dx.doi.org/10.3835/plantgenome2015.04.0025
http://dx.doi.org/10.3389/fpls.2023.1123631
http://dx.doi.org/10.1093/plphys/kiad607
http://dx.doi.org/10.1007/978-94-007-1579-0_3
http://dx.doi.org/10.1105/tpc.002220
http://dx.doi.org/10.3389/fmicb.2020.01798
http://dx.doi.org/10.3389/fpls.2021.627501
http://dx.doi.org/10.1016/j.molp.2022.11.016
http://dx.doi.org/10.1016/j.molp.2015.02.014
http://dx.doi.org/10.3390/ijms241311115
http://dx.doi.org/10.1186/s12864-023-09504-0
http://dx.doi.org/10.1270/jsbbs.19110
http://dx.doi.org/10.1016/S2095-3119(14)60980-1
http://dx.doi.org/10.7717/peerj.18278
https://peerj.com/

Peer/

chlorophyll-deficiency in maize. Frontiers in Plant Science 13:912215
DOI 10.3389/1pls.2022.912215.

Yan Y, Hou P, Duan F, Niu L, Dai T, Wang K, Zhao M, Li S, Zhou W. 2021. Improving
photosynthesis to increase grain yield potential: an analysis of maize hybrids released in different
years in China. Photosynthesis Research 150(1-3):295-311 DOI 10.1007/s11120-021-00847-x.

Yuan G, He D, ShiJ, Li Y, Yang Y, Du J, Zou C, Ma L, Gao S, Pan G, Shen Y. 2023. Genome-
wide association study discovers novel germplasm resources and genetic loci with resistance to
Gibberella ear rot caused by Fusarium graminearum. Phytopathology® 113(7):1317-1324
DOI 10.1094/PHYTO-09-22-0336-R.

Zeng T, Meng Z, Yue R, Lu S, Li W, Li W, Meng H, Sun Q. 2022. Genome wide association
analysis for yield related traits in maize. BMC Plant Biology 22:449
DOI 10.1186/s12870-022-03812-5.

Zhang W, Willows RD, Deng R, Li Z, Li M, Wang Y, Guo Y, Shi W, Fan Q, Martin SS,
Rockwell NC, Lagarias JC, Duanmu D. 2021. Bilin-dependent regulation of chlorophyll
biosynthesis by GUN4. Proceedings of the National Academy of Sciences of the United States of
America 118(20):€2104443118 DOI 10.1073/pnas.2104443118.

Zhang X, Zhang H, Li L, Lan H, Ren Z, Liu D, Wu L, Liu H, Jaqueth J, Li B, Pan G, Gao S. 2016.
Characterizing the population structure and genetic diversity of maize breeding germplasm in
Southwest China using genome-wide SNP markers. BMC Genomics 17:697
DOI 10.1186/s12864-016-3041-3.

Zhao M-H, Li X, Zhang X-X, Zhang H, Zhao X-Y. 2020. Mutation mechanism of leaf color in
plants: a review. Forests 11(8):851 DOI 10.3390/f11080851.

Liu et al. (2024), Peerd, DOI 10.7717/peerj.18278 23/23


http://dx.doi.org/10.3389/fpls.2022.912215
http://dx.doi.org/10.1007/s11120-021-00847-x
http://dx.doi.org/10.1094/PHYTO-09-22-0336-R
http://dx.doi.org/10.1186/s12870-022-03812-5
http://dx.doi.org/10.1073/pnas.2104443118
http://dx.doi.org/10.1186/s12864-016-3041-3
http://dx.doi.org/10.3390/f11080851
http://dx.doi.org/10.7717/peerj.18278
https://peerj.com/

	Genome-wide association study reveals genetic basis and candidate genes for chlorophyll content of leaves in maize (Zea mays L.) ...
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusions
	flink6
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


