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ABSTRACT

Marine heatwaves are becoming more frequent during summer and pose a significant
threat to coral reef ecosystems. Restoration efforts have the potential to support
native coral populations and guard them against some degree of environmental
change, while global action against climate change takes place. Interspecific
hybridization is one approach through which resilient coral stock could be generated
for restoration. Here we compared the performance of Acropora kenti and A. loripes
hybrid and purebred coral recruits under a simulated thermal stress event. A. kenti
eggs were successfully fertilized by A. loripes sperm to produce ‘KL’ hybrids, but no
‘LK’ hybrids could be produced from A. loripes eggs and A. kenti sperm. Despite
corals in the elevated treatment accruing thermal stress (>12 degree heating weeks
over 2 months) known to result in mass bleaching, both purebred and hybrid recruits
showed no signs of stress under the simulated temperature regime, based on the
performance indicators survivorship, size, color (a proxy of bleaching), and
photochemical efficiency of photosystem II. Comparisons between the hybrids and
purebreds studied here must be interpreted with caution because hybrid sample sizes
were small. The hybrids did not outperform both of their purebred counterparts for
any metrics studied here, demonstrating that there are limitations to the extent to
which interspecific hybridization may boost the performance of coral stock. In
general, the purebred A. loripes recruits performed best under both ambient and
elevated conditions. The performance of the KL hybrid corals was similar to the
maternal parental species, A. kenti, or not significantly different to either parental
purebred species. The Symbiodiniaceae communities of the KL hybrids were
characteristic of their maternal counterparts and may have underpinned the
performance differences between the A. kenti/KL hybrid and A. loripes recruits.

Subjects Conservation Biology, Marine Biology, Climate Change Biology
Keywords Coral, Reef, Hybrid, Climate change, Resilience, Juvenile

INTRODUCTION

Extreme marine heatwaves are becoming more frequent and ocean surface temperatures
are rising globally at unprecedented rates (Oliver et al., 2019; IPCC, 2022). Temperature-
induced stress can cause the breakdown of the mutualistic relationship between corals and
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their photosynthetic endosymbionts in the family Symbiodiniaceae—a process termed
coral bleaching that often results in the starvation and death of the coral host (Hoegh-
Guldberg, 1999). Heatwaves have caused mass bleaching and loss of coral cover across
many reef regions globally over recent decades (Heron et al., 2016; Great Barrier Reef
Marine Park Authority, 2017; Hughes et al., 2017; Le Nohaic et al., 2017). The drastic and
rapid decline of coral reefs indicates that the natural tolerance and rate of adaptation of
coral may be insufficient to ensure their persistence in a future where summer heatwaves
are expected to become the norm (Pandolfi et al., 2003; van Hooidonk et al., 2016).

Active restoration programs may be required to maintain or replenish the diversity and
abundance of corals on some reefs. This can be done using native, purebred coral stock;
however, such material contributes little new diversity to populations and can be
maladapted to rapidly-changing environmental conditions (Broadhurst et al., 2008; Sgro,
Lowe & Hoffmann, 2011). Instead, the use of coral stock with enhanced resilience may
increase the success of restoration (van Oppen et al., 2015, 2017). Resilient corals would
ideally survive, grow, and reproduce despite marine heatwaves and rising sea surface
temperatures and so would effectively replenish reefs and guard them against climate
chance.

Resilient stock may be produced through interspecific hybridization (Chan, Hoffmann
¢ van Oppen, 2019). Hybrids contain the gene variants (alleles) of two different species
and harbor novel genetic combinations (Kitchen et al., 2019). The novel genetic
combinations harbored by hybrids can manifest as adaptive traits such as enhanced
resilience (Chan, Hoffmann ¢ van Oppen, 2019). There is evidence that interspecific
hybridization naturally occurs on some reefs and has been evolutionarily significant
among certain coral lineages (van Oppen et al., 2001; Fogarty, 2012; Kitchen et al., 2020).
Furthermore, a long-term experiment comparing the performance of hybrid and purebred
corals under ambient and predicted future climate conditions has demonstrated that,
under prolonged elevated temperature and CO, conditions, hybrids generally grow and
survive equally or better than their purebred parental species (Chan et al., 2018). Hybrid
stocks must also be tested under extreme heatwaves, or simulations of extreme heatwaves,
so that the value of interspecific hybridization as an intervention tool can be
comprehensively assessed.

Here we assessed the performance of hybrid and purebred coral recruits under a
simulated extreme heatwave. We compare the performance of the hybrid and purebred
corals under ambient and heatwave conditions by analyzing their survivorship, size,
bleaching resistance, and/or photochemical efficiency using a nested design. We
hypothesized that the hybrid corals would demonstrate improved performance relative to
the purebred corals (hybrid vigor) under heatwave conditions (Shull, 1908).

METHODS

Coral stock generation and settlement

Sections with approximate diameters of 30 cm of gravid Acropora kenti (N = 14; previously
referred to as A. tenuis; Bridge et al., 2023) and A. loripes (N = 13) colonies were collected in
November 2019 from Davies Reef in the central Great Barrier Reef (-18.82, 147.64; Great
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Barrier Reef Marine Park Authority Permit G12-35236.1) which experienced extreme
temperatures that resulted in mass bleaching in 2017 and 2020 (post broodstock
collection). The colonies were collected prior to summer when the temperature at Davies
Reef was recorded at four meters depth as 27.8 °C. The colonies were held in flow-through
systems in the National Sea Simulator at the Australian Institute of Marine Science (AIMS)
at 27.8 °C. These species were selected because they can be successfully cross-fertilized
using in vitro fertilization to produce viable hybrids for which there is an existing
knowledge base (Chan et al., 2018, 2019; Chan, Peplow ¢ van Oppen, 2019). Acropora kenti
and A. loripes typically spawn approximately 2 h apart and so it is expected that natural
interspecific hybridization is limited between them in the wild (Baird et al., 2021).

The colonies were watched from sunset until approximately 23:00 for the 10 days
following the full moon (12 of November) and their spawning activity was recorded.
Colonies showing signs of ‘setting’, indicating imminent spawning (Babcock et al., 1986),
were isolated and once gametes were released, their egg-sperm bundles were collected and
separated into eggs and sperm using a 100 pm mesh filter. The density of the sperm
collected from each colony was calculated using four replicate counts on a hemocytometer
and adjusted to 1 x 107 sperm per mL. The sperm of all colonies from the same species
were then combined in equal parts creating a mixed sperm solution for both A. kenti and
A. loripes. Crosses were then conducted to produce two purebred and two hybrid offspring
groups: A. kenti purebreds, A. loripes purebreds, hybrids resulting from fertilization of the
eggs of A. kenti by the sperm of A. loripes (KL hybrids), and hybrids resulting from
fertilization of the eggs of A. loripes by the sperm of A. kenti (hereafter referred to as LK
hybrids). The mixed sperm solution was added to the eggs of each conspecific colony at a
density of 1 x 10° sperm per mL to optimize fertilization rates (Willis et al., 1997) and
generate the purebreds, and to the eggs of each colony of the other species to generate the
hybrids. The eggs of each colony were fertilized in a separate reaction (rather than all eggs
being combined in the same reaction) to minimize the risk of cross-contamination of the
hybrid crosses by conspecific fertilization of the eggs of one colony by residual sperm on
the eggs of a second colony. Post-fertilization, the embryos from successful crosses were
combined according to offspring group.

The coral larvae were maintained in ~85 L larval rearing tanks with air and water flow
for approximately one week until they were competent to settle. Once competent, planula
larvae were introduced into 50 L acrylic tanks containing 15-20 biologically conditioned
100 x 100 mm terracotta tiles at an approximate density of 200 larvae per tile. Larvae from
the different offspring groups were settled separately so that each tile contained corals of
just one offspring group. The tiles had been biologically conditioned in coral rearing tanks
for 6 weeks prior to use. Upon settlement, the larvae were exposed to Symbiodiniaceae that
had been isolated from tissue fragments from adult A. kenti colonies (with uncharacterized
Symbiodiniaceae communities) from the reefs fringing Yunbenun (Magnetic Island;
—19.14, 146.82) following Chan et al. (2018). It was planned that the recruits would be
deployed at Yunbenun as a component of a field-based experiment, but COVID pandemic
restrictions prevented this from happening. The recruits were inoculated with
Symbiodiniaceae from the intended recipient environment and not Davies Reef (parental
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reef) to eliminate any risks posed to the recipient site by translocating Symbiodiniaceae.
Instead, post-settlement, the coral recruits were reared in 500 L tanks in outdoor systems at
AIMS under natural light at 27.8 °C for 5 months. Sediment and algal biomass were

cleaned from the holding systems at least once a week, and more regularly when required.

Experimental conditions

The terracotta tiles with live 5-month-old coral recruits were distributed randomly among
eight 200 L tanks with one face up; the corals that settled on this face of the tiles became the
experimental subjects. The flow in the systems was such that the seawater volume was
replaced every 2 hours. The tanks were illuminated using Aqualllumination Sol LED lights
with a 12-h light/dark cycle, a 1 h ramp up and ramp down period on either end of the day,
and approximately 100 PAR of light reached the surface of the tiles. The corals were fed
0.5 nauplii/mL of artemia and 2,000 cells/mL of a mixed-species microalgae solution daily
(Conlan et al., 2019). The tanks were cleaned at least twice a week, and more regularly if
required. The corals were held in their respective tanks for a two-week period allowing for
acclimation of the corals to the rearing conditions at 27.8 °C. The average daily
temperature of the four ambient tanks was maintained at 27.8 °C, the long-term average
water temperature at Davies Reef from November to March, as recorded by the Davies
Reef Weather Station (DRWS) operated and maintained by AIMS, for the duration of the
experiment (Fig. 1). After the acclimation period, the temperature in four of the tanks was
increased by 0.1 °C per day for 9 days until it equaled the average daily temperature just
prior to the 2020 summer heatwave recorded at the DRWS that resulted in mass bleaching
on the Great Barrier Reef (GBR) (Fig. 1). The temperature in the elevated temperature
treatment tanks aligned with the 2020 summer heatwave from days 9-31 of the experiment
until the peak of the heatwave had been reached (Fig. 1). The elevated tanks were then held
at an elevated temperature for 5 weeks after the peak was reached (Fig. 1). This equated to
the corals in the elevated treatment being exposed to a total of 12.6 cumulative degree
heating weeks (DHWs), as calculated based on the long term Davies Reef average water
temperatures and using the NOAA Coral Reef Watch Bleaching Alert System values
(Fig. 1; National Oceanic and Atmospheric Administration Coral Reef Watch, 2021). The
average daily water temperatures of the elevated treatment tanks ranged from

27.9-30.6 °C. Oscillating fluctuations of 0.3 °C on either side of the daily peak were
maintained in both the ambient and elevated treatments to mimic daily cycling of
temperatures.

Photo analyses

All tiles were imaged using a high-resolution camera (Nikon D810) with a scale bar and the
D-side of the Coral Watch Coral Health Chart (Siebeck, Logan ¢» Marshall, 2008) for
survivorship, size, and color measurements (details below) at:

1) T2: after 2-3 days of temperature ramping in the elevated treatment.

2) T30: after 30-31 days of temperature ramping when the maximum temperature had
been reached in the elevated treatment.
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Figure 1 Schematic of the experimental temperature profiles. Temperature profiles of the elevated
(dash-dot black and continuous blue line) and ambient (dotted black line) experimental treatments. The
temperature in the elevated treatment tanks was ramped between days 0-9 of the experiment and
simulated the temperatures recorded at Davies Reef during the 2020 mass bleaching event between days
9-31 (continuous blue) of the experiment. The cumulative degree heating weeks (DHWs) experienced by
the corals in the elevated temperature treatment over the course of the experiment are also shown
(dashed red). After 31 days, the elevated treatment tanks were held at the peak of the heat wave until the
Full-size k&l DOT: 10.7717/peerj.18273/fig-1

corals had experienced >12 degree heating weeks (DHWs ).

3) T65: after 65-66 days of the temperature treatment when the corals in the elevated
treatment had experienced a total of 12.6 DHWs .

The images were analyzed using Image] software (Schneider, Rasband ¢ Eliceiri, 2012).

Recruits that settled in clusters or that grew into one another over the course of the
experiment were excluded from further analyses since they could not be considered

independent replicates. Corals that grew from the face and onto edges of the tiles were also

excluded. Recruits were scored as alive or dead from the images. The images were scaled

using the scale bar that was included in the imaging stage to ensure accurate size

measurements. Recruits were circled using the freehand selection tool in ImageJ and the

. 2 .
total recruit area (mm®) was measured. For color measurements, the images were

converted to 8-bit and calibrated using a linear function estimated from the D-side of the
Coral Watch Coral Health Chart (Siebeck, Logan ¢» Marshall, 2008). From the calibrated 8-
bit images, the mean color score over the total area of each recruit was measured. Color

score is used here as a proxy for the density of algal symbionts in the coral tissue where a

lower number/lighter color indicates a lower algal symbiont density that is indicative of

coral bleaching (Siebeck, Logan ¢ Marshall, 2008).

Photochemical efficiency measurements

Dark-adapted maximum photosystem II quantum yield, F,/F,, (photochemical
efficiency), was measured after the acclimation period and every 2 weeks thereafter
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until day 56 of the experiment. The F,/F,, is indicative of the maximum efficiency of PSII
and was used to track photosystem health throughout the course of the experiment. The
tiles were dark-adapted for 15 minutes prior to the photochemical efficiency of the
recruits being measured using an Imaging Pulse Amplitude Modulation (iPAM; Walz)
fluorometer with the software ImagingWin (v2.40 b), a Measuring Intensity of three, and
Gain of one. The photochemical efficiency of each recruit on the same tile was measured
simultaneously.

Statistical analyses

Statistical analyses and graphics were conducted and produced using RStudio (RStudio
Team, 2016) with R 4.0.5 (R Core Team, 2021). Statistical models were built to test the
effects of the fixed variables — temperature treatment (elevated or ambient), offspring
group (A. kenti purebred, A. loripes purebred, and KL hybrid), and time point - on the
performance metrics measured over time: survivorship, size, color, and F,/F,,.
Survivorship was compared among offspring groups using generalized linear mixed effects
models (GLMM) built using the Ime4 package (Bates et al., 2014). The color and
photochemical efficiency of the offspring groups were compared using linear mixed effects
models (LMM) built using the Ime function in the Ime4 package and the maximum
likelihood method (Bates et al., 2014). Because some recruits grew and others did not grow
during the experiment, variance in recruit area increased throughout the experiment. The
variance around recruit area was also heteroscedastic among offspring groups. The nlme
function from the nlme package (Pinheiro et al., 2021) was used to construct LMMs which
allowed variance to differ amongst time points and offspring groups and were used to
compare the size of the offspring groups. For each performance metric, five models were
built that treated tile nested within tank as a random effect:

1) Model one included interaction terms amongst the three fixed variables.

2) Model two included no interaction terms amongst any of the fixed variables.
3) Model three included an interaction between offspring group and treatment.
4) Model four included an interaction between offspring group and time point.

5) Model five included an interaction between treatment and time point.

The performance of the models pertaining to a metric was then compared using
likelihood ratio tests. The most complex model with interactions between each of the fixed
variables (1 above) was compared to each of the less complex models (2-5 above). Each of
the models with one interaction term between a pair of the fixed variables (3-5 above) was
also compared to the simplest model which included only the main effects and no
interaction terms (2 above). The simplest model (fewest interaction terms) that no other
model outperformed (as determined through likelihood ratios) was considered the best fit
for the data, reported, and interpreted. Post-hoc Tukey’s tests were conducted on the
best-performing models to compare the performance of the three offspring groups based
on each metric.
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Symbiodiniaceae symbiont communities

After 66 days of the heatwave treatment, at the completion of the experiment, tissue was
sampled from the remaining corals into ethanol so that the Symbiodiniaceae communities
of the corals could be characterized. DNA was extracted from the samples following
Damjanovic et al. (2019) and the ITS2 region was amplified from the extracted DNA using
the SYM_VAR_5.852/SYM_VAR_REV primers (Hume et al., 2013, 2015) and protocol
outlined in Hume et al. (2018). Triplicate PCR reactions were conducted and then pooled
for each sample. Library preparation was conducted on the PCR products following Maire,
Blackall & van Oppen (2021). The amplified ITS2 products were sequenced using a
paired-end (2 x 250 bp) approach at the Walter and Eliza Hall Institute of Medical
Research (Melbourne, Australia) and one MiSeq V3 system (Illumina, San Diego, CA,
USA). The SymPortal analytical framework was used to analyze the sequences (Hume

et al., 2019). SymPortal characterizes ITS2 profiles of within-sample ITS2 defining
intragenomic variants (DIVs) that are putatively representative of Symbiodiniaceae taxa.
The SymPortal framework was used to conduct standard quality control and analyses of
the raw sequencing data (Hume et al., 2019). R was subsequently used to analyze the
SymPortal quality controlled ITS2 sequences and ITS2 profile abundance data. Samples
with less than 1,000 reads were removed from the dataset. The relative abundance of the
ITS2 profiles and sequences present in each retained sample were plotted. A pairwise
similarity matrix was calculated amongst the sequences using a kmer-based approach and
a k size of seven (Fujise et al., 2021) in the kmer package (Wilkinson, 2018). A hierarchical
clustering approach was then used to construct a dendrogram from the similarity matrix
using the upgma function from the phangorn package (Schliep, 2011). The presence,
abundance, and relatedness of the ITS2 sequences present in each sample and the
dendrogram were then used to calculate weighted unique fraction metric (UniFrac)
distances amongst the samples (Lozupone ¢ Knight, 2005). Hierarchical clustering of the
samples was conducted using these distances and visualized by building a tree using the
ggtree package (Yu et al., 2017), in which samples were colored by offspring group. Two
permutational multivariate analysis of variance (PERMANOV A) models were constructed
to test for the effect of offspring group and treatment on UniFrac distance, whilst
accounting for the nesting within tanks using the package Vegan (Oksanen et al., 2020).

RESULTS

Spawning activity and gamete compatibility

The gamete crosses were conducted over two nights. The A. kenti colonies began spawning
from 19:20 to 19:30 and the A. loripes colonies began spawning from 21:30 to 21:35. On the
18™ of November, six A. kenti and two A. loripes colonies spawned and were crossed. On
the 19™ of November, seven A. kenti and four A. loripes colonies spawned and were
crossed. Some colonies spawned and were crossed on both nights, such that the gametes of
a total of nine A. kenti and five A. loripes colonies were used in this experiment. All
purebred crosses were successful. None of the hybrid crosses where the eggs of A. loripes
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Figure 2 Juvenile survivorship. Boxplots depicting the distributions of proportions of surviving recruits
per tile for each of the offspring groups (A. loripes purebred-orange, KL hybrid-green, and A. kenti
purebred-blue), in each of the treatments (ambient and elevated), and at timepoints T30 and T65 of the
experiment. The horizontal lines of the boxes represent the lower quartile, median, and upper quartile
values, the “whiskers” represent the extreme values and dots represent single outlier datapoints. Sample
sizes (number of tiles) are shown. There was no significant effect of temperature treatment on survi-
vorship based on generalized linear mixed effects modelling.

Full-size K&l DOT: 10.7717/peerj.18273/fig-2

were mixed with the sperm of A. kenti were successful. The eggs of seven of the nine A.
kenti colonies were successfully fertilized by A. loripes sperm.

Survivorship

Survivorship of the corals declined between T30 and T65 (Z = -9.76, P < 0.001; Fig. 2).
Temperature treatment had no effect on survivorship (Z = 0.42, P = 0.678). A. kenti
purebred recruits had lower survivorship than the A. loripes purebred recruits (Z = —5.25,
P < 0.001; Fig. 2). No significant difference in survivorship was detected between the KL
hybrids and the A. kenti (Z = 0.84, P = 0.668) or A. loripes (Z = —1.96, P = 0.114) purebred
offspring groups (Fig. 2), and the survivorship of the hybrids therefore appeared
intermediate compared to the purebreds. None of the GLMMs including interaction terms
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Figure 3 Juvenile size. Recruit surface area (i.e., size) over time shown for each of the offspring groups
(A. loripes purebred-orange, KL hybrid-green, and A. kenti purebred-blue) in each of the treatments
(ambient and elevated temperature). The data points represent the mean area (mm?), and the upper and
lower limits of each ribbon represent the standard error around the mean. Sample sizes (number of
recruits) are included next to the data points. There was no significant effect of temperature treatment on
size based on linear mixed effects modelling. Full-size &) DOI: 10.7717/peerj.18273/fig-3

amongst offspring group, temperature treatment, or time point were a significantly better
fit for the survivorship data than the simplest GLMM that did not include any interactions
between these fixed effects (Table S2). The results of the simplest model have therefore
been presented.

Size

The recruits grew throughout the experiment (T = 9.35, P < 0.001; Fig. 3) and their growth
was not affected by the temperature treatment (T = 0.30, P = 0.776). The A. loripes
purebred corals showed a greater increase in area compared to the KL hybrid corals (2.86-
fold difference between A. loripes purebreds and KL hybrids in change in mean area from
T30 to T65; T = 4.34, P = 0.001) and the A. kenti purebred corals (5.06-fold difference
between A. loripes purebreds and A. kenti purebreds in change in mean area from T30 to
T65; T =5.93, P <0.001) over time (Fig. 3). There was no significant difference in area over
time between the A. kenti purebred and KL hybrid corals (T = 0.48, P = 0.883; Fig. 3). The
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Figure 4 Juvenile color. Color score over time shown for each of the offspring groups (A. loripes
purebred-orange, KL hybrid-green, and A. kenti purebred-blue) in each of the treatments (ambient and
elevated temperature). The data points represent the mean color score and the upper and lower limits of
each ribbon represent the standard error around the mean. Sample sizes (number of recruits) are
included next to the data points. Color score is used here as a proxy for the density of algal symbionts in
the coral tissue where a lower number/lighter color indicates a lower algal symbiont density that is
indicative of coral bleaching. There was no significant effect of temperature treatment on recruit color
based on linear mixed effects modelling. Full-size Kl DOTI: 10.7717/peerj.18273/fig-4

standard error around the mean area of the KL hybrids, particularly for the ambient
treatment, was large due to low sample sizes (Fig. 3). The LMM that included the
interaction term between time point and offspring group best fit the size data and the
results of this model have been presented (Table S2).

Color

No difference in color score was detected between temperature treatments at any time
point (T values —0.58 to 1.12, P values > 0.859; Fig. 4). There was no difference in color
score between any of the offspring groups (T values 0.50-0.93, P values > 0.354; Fig. 4). The
recruits became darker between T2 and T30 (T values = —21.74 to —20.06, P values < 0.001)
and lighter between T30 and T65 (T-values = 4.47-6.06, P values < 0.001; Fig. 4). The
LMM that included an interaction term between temperature treatment and time point
best fit the color data and the results of this model have been presented (Table 52).
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Figure 5 Juvenile photochemical efficiency. The change in maximum quantum yield (F,/F,,) over time
(days) for each treatment (ambient and elevated temperature) and offspring group: A. loripes purebreds
(orange), KL hybrids (green), and A. kenti purebreds (blue). The data points represent the mean F,/F,,,
and the upper and lower limits of each ribbon represent the standard error around the mean. Sample sizes
(number of recruits) are shown next to each data point. There was no significant effect of temperature

treatment on F,/F,, based on linear mixed effects modelling.
Full-size K&] DOT: 10.7717/peer;j.18273/fig-5

Photochemical efficiency

There was no significant difference in F,/F,, between the corals in the ambient and elevated
treatments (T = —0.25, P = 0.815; Fig. 5), indicating that the photosystem health of the algal
symbionts was not compromised by the elevated treatment. The recruits demonstrated an
initial decrease in F,/F, (Fig. 5), but F,/F,, recovered for all offspring groups and in both
temperature treatments throughout the remaining course of the experiment (Fig. 5).
Acropora kenti purebred recruits had lower F,/F,, than A. loripes purebred recruits

(Z = -3.40, P = 0.002; Fig. 5). No significant difference in F,/F,, was detected between the
KL hybrids and the A. kenti (Z = —1.46, P = 0.309) or A. loripes (Z = —1.40, P = 0.339)
purebred offspring groups (Fig. 5), and the photochemical efficiency of the hybrids
therefore appeared intermediate compared to the purebreds. The range of F,/F,, values
recorded under ambient and elevated conditions here were similar to those observed in A.
kenti and Symbiodiniaceae from Yunbenun under control conditions in previous
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Offspring group
® A. loripes

® A. kenti

® KL hybrid

T%Mﬁ’f

M p_C1-C1b-C1c-C42.2-C1bh-C1br-C1cb-C72k
Profile Ml p_D1-D1u-D2-D4-D2.2
I non-profile sequences

Figure 6 Juvenile Symbiodiniaceae communities. Symbiodiniaceae community information where
each aligned row/tree branch represents data from one sample and the columns show the following: (A
left) relative abundance of Symbiodiniaceae profiles that are putatively characteristic of unique taxa,
where each color represents a profile, (A right) relative abundance of within-sample ITS2 sequences,
where each color represents one unique sequence, and, (B) a tree that visualizes the hierarchical clustering
of samples according to their unifrac distances, where the tips (representing samples) are colored by
offspring group (A. loripes purebred—orange, A. kenti purebred-blue, and KL hybrid-green).

Full-size K&l DOT: 10.7717/peerj.18273/fig-6

experiments (Howells et al., 2012; Humanes et al., 2016). The LMM that included an
interaction term between offspring group and time point best fit the photochemical
efficiency data and the results of this model have been presented (Table S2).

Symbiodiniaceae symbiont communities

The samples had read depths between 1,327-38,448. A total of 1,071,510 reads were
obtained for the 49 samples analyzed for their Symbiodiniaceae communities, averaging
29,008, 16,359 and 9,628 reads per sample from the A. loripes, A. kenti, and KL hybrid
offspring groups, respectively. At the completion of the experiment, the surviving A. loripes
corals had ITS2 profiles that were characteristic of the Symbiodiniaceae genera
Cladocopium and Durusdinium (Fig. 6). In contrast, the surviving A. kenti and KL hybrid
corals had ITS2 profiles that were characteristic of Cladocopium only (Fig. 6). One
Cladocopium profile was detected amongst the samples that was characterized by the C1
majority ITS2 sequence (Fig. 6). One Durusdinium profile was detected in the A. loripes
samples that was characterized by the D1 majority ITS2 sequence (Fig. 6). There was
significant clustering of the offspring groups by Symbiodiniaceae community (R* = 0.689;
P =0.001; Fig. 6). There was no significant clustering amongst treatments by
Symbiodiniaceae community (R* = 0.002; P = 1.000).
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DISCUSSION

Prezygotic barriers limit interspecific hybridization

Mechanisms of reproductive isolation that prevent hybridization prior to or during
fertilization (prezygotic barriers) were observed between A. kenti and A. loripes. Such
barriers have been demonstrated amongst other coral species pairs (Willis et al., 1997;
Chan, Peplow & van Oppen, 2019) and limit the versatility of interspecific hybridization as
a restoration tool. The non-overlapping spawning times of A. kenti (early spawner) and A.
loripes (late spawner) forms a prezygotic barrier that, on the reef, would restrict
interbreeding of the two species. Using the approach implemented in this study, this
isolation was overcome, and the results indicate that the prezygotic barrier remains semi-
permeable. This is demonstrated by the unidirectional fertilization that was observed
between the gametes of A. kenti and A. loripes: the eggs of A. kenti were successfully
fertilized by the sperm of A. loripes while the eggs of A. loripes were not fertilized by the
sperm of A. kenti. Furthermore, two of the nine A. kenti colonies produced eggs that could
not be fertilized by the A. loripes sperm tested here. A. loripes and A. kenti have been
previously crossed with different outcomes. Chan et al. (2018) successfully crossed A. kenti
and A. loripes in both directions while Chan, Peplow ¢» van Oppen (2019), as per this study,
were only successful in achieving fertilization in one direction; the fertilization rates
between A. kenti eggs and A. loripes sperm also differed between Chan et al. (2018) and
Chan, Peplow ¢ van Oppen (2019). Reproductive compatibility has been shown to be
highly variable amongst pairs of colonies in the case of other interspecific crosses (Willis
et al., 1997; van Oppen et al., 2002). Differing outcomes amongst crosses of the same
species pair represent an issue for streamlining interspecific hybrid stock production. The
development of genomic and/or proteomic markers of compatibility has the potential to
overcome this issue. Currently, the mechanisms that determine the prezygotic
compatibility between different coral species and colonies of the same species are largely
unknown. Corals may have proteins on their gamete surfaces that function in a lock-and-
key manner like those seen in other broadcast spawning organisms (Vacquier ¢ Moy,
1977; Ulrich et al., 1998). Coral eggs have further been demonstrated to produce
immobilization factors that initiate conspecific sperm motility (Coll et al., 1994; Morita
et al., 2006). Observations of intra-specific and inter-specific variation in prezygotic
compatibility may also be due to the existence of cryptic species (Richards, Miller ¢
Wallace, 2013). Relatively few of the species boundaries of GBR corals have been verified
using molecular techniques (Cooke et al., 2020; Fuller et al., 2020; Meziere et al., 2024) and
as such, multiple lineages may unknowingly have been included in the crosses conducted
here and elsewhere. Gamete incompatibilities may pose an issue for managed breeding of
corals for restoration more broadly than just in relation to interspecific hybridization
(Miller et al., 2018). Future work that improves the accuracy of species identification and
allows prediction of breeding compatibility would help in addressing this issue.
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Hybrid coral performance was not indicative of hybrid vigor

Whilst the small sample sizes of KL hybrids limit the reliability of the results obtained here,
the trends observed are largely in keeping with those seen previously for these hybrids and
this adds credence to the inferences that have been drawn. Throughout this experiment,
the performance of the KL recruits was intermediate (survivorship), similar to their
maternal counterparts (size, F,/F,), or no different (color) compared to the A. kenti and A.
loripes purebreds. Similarly, the F1 hybrid recruits of the species Acropora florida and
Acropora sarmentosa did not under- or over perform relative to purebred recruits of both
species in an inshore reef environment (Lamb et al., 2024). Chan et al. (2018) also
compared A. kenti and A. loripes hybrid and purebred recruit performance for 1-year post-
settlement; the corals were held under ambient (27 °C, 415 ppm) or elevated (28 °C, 685
ppm) temperature and pCO, conditions for 28 weeks post-settlement and then at ambient
conditions between 28-weeks and 1-year post-settlement. The survivorship of the KL
hybrids in Chan et al. (2018) over the first 28 weeks of the experiment was intermediate
compared to their parental purebred species under elevated conditions; this is in keeping
with the patterns of KL survivorship seen here under ambient and elevated conditions,
noting that the temperature in the ambient treatment (27.8 °C) tanks of this experiment
was closer to that in the elevated (28 °C) than the ambient (27 °C) temperature tanks in
Chan et al. (2018).In Chan et al. (2018), the survivorship of the KL hybrids was equal to the
maternal parent species, A. kenti, and less than the paternal parent species, A. loripes,
under ambient conditions; after 1 year, there were no surviving A. kenti purebreds and
fewer KL hybrids than A. loripes purebreds. Field deployments of coral recruits have
observed hybrids to have intermediate survivorship relative to, or survivorship that is no
different from their purebred counterparts (Fogarty, 2012; Lamb et al., 2024). In Chan et al.
(2018), the F,/F,, of the hybrid and purebreds did not differ, whilst in this study, the F,/F,,
of the hybrids appeared intermediate compared to the better performing A. loripes and
worse performing A. kenti recruits. The size patterns observed in this study were in
keeping with those in Chan et al. (2018), where the size of the KL hybrids was similar to the
maternal species and was less than the paternal species over the first 28 weeks post-
settlement. After 1 year post-settlement in Chan et al. (2018), the KL hybrids were smaller
than the A. loripes purebreds. The KL hybrid recruits did not display outbreeding
depression/underdominance or overdominance/hybrid vigor compared to both of their
purebred counterparts throughout this experiment or in Chan et al. (2018). The relative
performance of the hybrids compared to the purebreds under temperature stress could not
be assessed in this experiment since the recruits from all offspring groups did not show any
obvious signs of stress in the elevated conditions. The lack of hybrid vigor observed here
indicates that the potential for hybrids to boost the resilience of reefs has limits, at least for
the species pair A. kenti and A. loripes. However, the relative performance of A. kenti and
A. loripes hybrids and purebreds may be different to what has been observed under tested
conditions in juveniles of these offspring groups under other, ecologically relevant
conditions and when they are adults. Furthermore, hybrids have performed better than
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one or both of their purebred parental species based on their size and survivorship under
ambient conditions, and size under elevated conditions in the laboratory (Chan et al.,
2018), survivorship and growth on some reef zones (Fogarty, 2012), growth in coral
nurseries (VanWynen et al., 2021), and resistance to disease, predation, and parasitism
(Fogarty, 2012). Interspecific hybridization as a tool for reef restoration therefore retains

merit.

Symbiodiniaceae communities correlate with host performance

The Symbiodiniaceae communities of A. loripes corals differed from the A. kenti and KL
hybrid corals in that A. loripes harbored Durusdinium and Cladocopium while the other
groups harbored Cladocopium only. Chan et al. (2019) studied the Symbiodiniaceae
communities in the same hybrid and purebred groups and, although they found no
significant difference in communities amongst the groups, also observed A. loripes corals
to harbor Durusdinium while the A. kenti and KL hybrid corals largely did not (although
Durusdinium were detected in very low abundance in A. kenti growing under elevated
conditions). The relative affinity of A. kenti to Durusdinium and Cladocopium of the C1
lineage has been shown to differ amongst life stages and environments (Little, van Oppen
& Willis, 2004; Abrego, van Oppen & Willis, 2009; Abrego, Willis & van Oppen, 2012).
Different Symbiodiniaceae communities have further been demonstrated to confer
differences in coral holobiont performance, although symbionts from the same lineage can
affect host performance differently depending on the environment and host species
(Rowan, 2004; Berkelmans & van Oppen, 2006; Abrego et al., 2008; Jones et al., 2008,
Cunning et al., 2015). It is thus possible that the performance differences between the
offspring groups were driven by the differences in their Symbiodiniaceae communities.

Purebred and hybrid corals demonstrated thermal resilience

The results of this study indicate that coral recruits can be resilient to the temperature
stress that caused mass bleaching in adult corals (Great Barrier Reef Marine Park
Authority, 2020; Fig. S1). A review of coral temperature experiments found that only 1% of
the studies conducted have been done on recruits, signifying a critical lack of knowledge of
the performance of early coral life history stages under heat stress (McLachlan et al., 2020).
The recruits in the elevated treatment were exposed to greater than 12 DHWs relative to
their parental colonies’ reef of origin. Field observations have indicated that after eight
DHWs, severe coral bleaching (of adult colonies) is likely and significant mortality can be
expected (National Oceanic and Atmospheric Administration Coral Reef Watch, 2021).
Significant bleaching was observed at Davies Reef during the February 2020 heatwave after
approximately four DHWs (Fig. S1). Furthermore, Hoogenboom et al. (2017) observed
significant stress in adult colonies from the genus Acropora, including those from the
species A. loripes and A. kenti, after they had accumulated less thermal stress (~10 DHWSs)
on the reef than the recruits in this study experienced. These results are in keeping with a
meta-analysis of studies investigating the response of coral calcification rates to
temperature and acidification stress, which found that coral recruits are less sensitive to
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elevated temperatures than adults (Kornder, Riegl & Figueiredo, 2018). Given the
increasing frequency of ocean heatwaves, these results are promising both in the context of
natural recruitment and out-planting of recruits in restoration efforts. However, another
study which tested coral recruit performance under a more extended (70 day) 31 °C
elevated treatment found survivorship to be reduced in the elevated treatment (Quigley
et al., 2020). Coral recruits have also been demonstrated to show signs of stress under more
extreme temperatures (at 32 °C; Abrego et al., 2008; Yorifuji et al., 2017). It should be noted
that the results obtained here and elsewhere are specific to the experimental conditions the
recruits were exposed to (e.g., feeding regime and light). Field-testing the performance of
recruits during bleaching events on reefs is therefore essential to estimating the breadth
and degree of their resilience.

CONCLUSIONS

Hybrid vigor was not observed in the KL hybrids relative to their purebred counterparts
and this is indicative that hybrids will not always constitute coral stock with increased
resilience. However, coral recruits in this study showed no obvious signs of stress under a
simulation of the 2020 bleaching heatwave that occurred in the Central GBR. In reef
environments where extreme temperature events are occurring more frequently than
previously recorded, this is a positive sign that demonstrates a level of resilience in these
Acropora coral recruits. However, temperature stress and bleaching has further been
shown to reduce fecundity, spawning capacity, fertilization rates, larval survival,
settlement, and recruit symbiont uptake, and thereby could significantly reduce natural
recruitment prior to the early life stage tested here (Negri, Marshall ¢ Heyward, 2007,
Abrego, Willis & van Oppen, 2012; Levitan et al., 2014; Humanes et al., 2016).
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