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ABSTRACT

Thailand is currently grappling with a severe problem of air pollution, especially from
small particulate matter (PM), which poses considerable threats to public health. The
speed of the wind is pivotal in spreading these harmful particles across the
atmosphere. Given the inherently unpredictable wind speed behavior, our focus lies
in establishing the confidence interval (CI) for the variance of wind speed data. To
achieve this, we will employ the delta-Birnbaum-Saunders (delta-BirSau)
distribution. This statistical model allows for analyzing wind speed data and offers
valuable insights into its variability and potential implications for air quality. The
intervals are derived from ten different methods: generalized confidence interval
(GCI), bootstrap confidence interval (BCI), generalized fiducial confidence interval
(GECI), and normal approximation (NA). Specifically, we apply GCI, BCI, and GFCI
while considering the estimation of the proportion of zeros using the variance
stabilized transformation (VST), Wilson, and Hannig methods. To evaluate the
performance of these methods, we conduct a simulation study using Monte Carlo
simulations in the R statistical software. The study assesses the coverage probabilities
and average widths of the proposed confidence intervals. The simulation results
reveal that GFCI based on the Wilson method is optimal for small sample sizes, GFCI
based on the Hannig method excels for medium sample sizes, and GFCI based on the
VST method stands out for large sample sizes. To further validate the practical
application of these methods, we employ daily wind speed data from an industrial
area in Prachin Buri and Rayong provinces, Thailand.

Subjects Statistics, Computational Science, Natural Resource Management, Environmental
Contamination and Remediation, Environmental Impacts

Keywords Particulate matter, Confidence interval, Generalized confidence interval, Bootstrap
confidence interval, Generalized fiducial confidence interval, Normal approximation, Simulation

INTRODUCTION

Every year from November to April, Thailand experiences elevated particulate matter with
a diameter of fewer than 2.5 microns (PM2.5) levels due to fluctuating weather conditions,
particularly during the dry to winter season (Amnuaylojaroen et al., 2020; Fold et al., 2020).
During this period, PM2.5 concentrations consistently exceed the standards set by the

World Health Organization (WHO). This period is characterized by high air pressure, a
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cloudless sky, and calm weather, which lead to the accumulation of pollutants and,
subsequently, elevated pollution levels. Additionally, combustion from engines,
agricultural activities, and industrial pollution exacerbate the problem, resulting in higher-
than-normal pollution levels during these months. PM2.5 poses a significant health risk,
especially for vulnerable populations (Suebyart ¢ Imdee, 2023) such as children, pregnant
women, allergy sufferers, and the elderly. These tiny particles, smaller than 2.5 microns,
easily bypass the nasal hair filtration system, travel through the respiratory tract, and
penetrate the capillaries, ultimately entering the bloodstream. This process can lead to
various respiratory diseases, underscoring the importance of addressing and mitigating
PM2.5 pollution. Paneangtong, MaleeHuan ¢ Chamchoa (2012) state that individuals
residing in industrial areas often experience more health problems from PM2.5 pollution
than those living outside these areas. In 2023, Prachin Buri and Rayong provinces, located
in an industrial area, recorded their highest level at 81 micrograms per cubic meter,
resulting in an air quality index (AQI) of 207, categorized as very unhealthy (Pollution
Control Department, http://airdthai.pcd.go.th/webV3/#/History). This severe
classification highlights the significant impact on public health in such regions.
Amnuaylojaroen, Kaewkanchanawong ¢ Panpeng (2023) found an inverse relationship
between wind speed and PM2.5, suggesting that increasing wind speed can help reduce
PM2.5 levels. Additionally, Mohammadi, Alavi & McGowan (2017) explored the use of the
two-parameter Birnbaum-Saunders (BirSau) distribution to analyze wind speed and wind
power density across ten stations in Canada. Their findings demonstrate that the BirSau
distribution performed exceptionally well across all selected stations. Therefore, estimating
wind speed using the BirSau distribution is of interest. However, the BirSau distribution is
suitable for data with values greater than zero. When considering wind speed, we find that
it fluctuates daily due to natural variations, which may result in values being either zero
and greater than zero. Hence, it is recommended to use the zero-inflated Birnbaum-
Saunders distribution instead.

The zero-inflated Birnbaum-Saunders distribution, also known as the delta-Birnbaum-
Saunders distribution (delta-BirSau), is a distribution that has yet to be explored in
previous research. The delta-BirSau distribution is designed for non-negative data that
includes zero values with a probability (0 < ¢ < 1). It integrates BirSau distributions with
shape parameter (o) and scale parameter (f5), encompassing positive values with the
remaining probability (1 — d), and zero observations following a binomial distribution
with a binomial proportion (6), based on the concept introduced by Aitchison (1955). This
concept has been extensively applied in various other distributions, including the
delta-lognormal (Wu & Hsieh, 2014; Fletcher, 2008) and delta-gamma (Muralidharan ¢
Kale, 2002; Kaewprasert, Nitwitpong ¢ Nitwitpong, 2022) distributions. So, we conceived
the idea of integrating this concept with the BirSau distribution. For the BirSau
distribution, initially proposed by Birnbaum ¢» Saunders (1969a), the BirSau distribution
was introduced as a model for the time until failure. It is designed to characterize the
overall duration until a component fails due to the development and expansion of a
primary crack, ultimately reaching a specified damage threshold. The BirSau distribution
has applications in various fields, including finance, engineering, and the environment.
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However, it may need to be better suited for handling data equal to zero. Addressing this
limitation, the delta-Birsau distribution serves as a solution, allowing for the utilization of
the distribution with both positive data and data equal to zero.

Many researchers are interested in estimating the parameters of a BirSau distribution.
First, the maximum likelihood estimators (MLEs) of the parameters o and f§ were derived
by Birnbaum & Saunders (1969b). According to Balakrishnan et al. (2009), moment
estimators may only sometimes exist in all of these cases, and explicit expressions for these
estimators are impossible to find, necessitating numerical approaches. For this reason, to
estimate the parameters « and f, Ng, Kundu ¢ Balakrishnan (2003) introduced modified
moment estimators (MMEs) and then applied a bias-reduction technique to mitigate bias
in their MLEs and MMEs. Lemonte, Cribari-Neto ¢ Vasconcellos (2007) also developed
MME:s for the parameters o and . Sun (2009) introduced the generalized confidence
interval specifically for the parameter . Xu ¢» Tang (2011) introduced a Bayesian analysis
of BirSau distribution with partial information. Subsequently, Wang (2012) extended this
methodology by proposing the generalized confidence interval for the parameter o. Li ¢
Xu (2016) introduced a method of fiducial inference designed explicitly for estimating the
parameters of the BirSau distribution. Furthermore, Lemonte, Simas e~ Neto (2008)
presented several strategies for correcting bias in the MLEs of parameters « and they were
using the bootstrap method. Their investigation revealed that employing the concept of
constant-bias-correcting (CBC) estimates, as proposed by Mackinnon & Smith (1998),
proved to be the most effective method for reducing bias. Next, Vilca, Zeller ¢
Balakrishnan (2023) proposed a multivariate generalization of BirSau distribution based
on the multivariate skew-normal distribution, presenting distributional properties and an
EM algorithm for parameter estimation. Lastly, Xu et al. (2024) studied the Bayesian
method to analyze degradation data with small sample sizes. Many researchers have
developed various methods to estimate the parameter ¢ with a binomial distribution. For
example, for creating intervals of 6, Wu ¢ Hsieh (2014) employed the generalized pivotal
quantity (GPQ) based on the variance stabilized transformation (VST). Wilson (1927)
suggested using the Wilson interval for ¢ in an interval approach. Hannig, Iyer ¢ Patterson
(2006) presented the idea for the generalized fiducial quantity (GFQ) by combining two
beta distributions to estimate the parameter 9.

The variance is a measure of interest in statistical inference that describes the deviation
from the average (mean). The variance is defined as the second central moment, and the
standard deviation is the positive square root of the variance (Casella ¢ Berger, 2002).
Furthermore, Casella ¢ Berger (2002) argue that confidence intervals are more effective in
capturing the parameter of interest when compared to point estimates. Confidence
intervals have been utilized to estimate the variability, specifically the variance, of several
distributions. For example, Krishnamoorthy, Mathew & Ramachandran (2006) applied the
idea of GCI to construct the confidence intervals for the variance of lognormal
distribution. Cojbasic ¢ Tomovic (2007) introduced confidence intervals for both the
variance and the difference in variances of an exponential distribution. These intervals are
derived using ordinary t-statistics in conjunction with the bootstrap method.
Panichkitkosolkul (2013) conducted a study on a double bootstrap-t one-sided confidence
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interval for the population variance of skewed distributions. Paksaranuwat & Niwitpong
(2015) compare confidence intervals for the variance and the ratio of two variances in cases
where the population distributions are non-normal, and item nonresponse is present. This
comparison involves utilizing classical and adaptive confidence intervals based on the
Bonett method. Thangjai, Niwitpong ¢» Niwitpong (2018) introduced confidence intervals
for the single variance and the difference between two exponential population variances.
This was accomplished using a generalized confidence interval, a large sample confidence
interval, and an exact confidence interval. Maneerat, Niwitpong ¢» Niwitpong (2021)
suggest a variational approximation using an interval estimator derived from a Bayesian
methodology for the variance of the delta-lognormal distribution. This method
incorporates the highest posterior density interval based on a vague prior (HPD-V), and
the variance estimates recovery method (MOVER). Araveeporn (2022) compared the
estimation of confidence intervals for the variance of a normal distribution using
maximum likelihood, the Chi-squared distribution, and the Bayesian credible interval.
Puggard, Niwitpong & Niwitpong (2022a) presented confidence intervals for the variance
and the difference of variances of BirSau distributions. They found that the bootstrap
confidence interval (BCI) outperformed the other confidence intervals in terms of average
length, and the generalized confidence interval (GCI) had coverage probability (CP)
greater than or close to the nominal confidence level. In later studies, Puggard, Niwitpong
¢ Niwitpong (2022b) examined the estimation of the confidence interval for the variance
ratio of the BirSau distribution and found that the generalized fiducial confidence interval
(GFCI) had CP greater than or close to the nominal confidence level. Therefore, we are
interested in using these methods to construct confidence intervals for the parameters o
and f. Specifically, methods like GCI, BCI, and GFCI are designed to estimate wind speed
data, as they are well-suited for fitting the BirSau distribution, which is suitable for
modeling wind speed. Hence, GCI, BCI, and GFCI methods are appropriate for estimating
wind speed data. Maneerat, Nakjai ¢ Niwitpong (2022) investigated the estimation of the
confidence interval for the ratio of medians using the wind speed data and found that the
normal approximation (NA) method has CP values greater than or close to the nominal
confidence level. Therefore, there is also an interest in using the NA method for estimation.
Hence, we are interested in using the GCI, BCI, GFCI, and NA methods to estimate the
parameters of the delta-BirSau distribution.

Nevertheless, the construction of the confidence interval for the variance of the
delta-BirSau distribution has yet to be studied. Therefore, the objective of this study is to
propose ten methods for constructing intervals for the variance of the delta-BirSau
distribution. These methods are based on the GCI, BCI, GFCI, and NA. Specifically, GCI,
BCI, and GFCI are employed, considering the estimation of 6 using the VST, Wilson, and
Hannig methods. The effectiveness of the proposed confidence intervals was evaluated
through Monte Carlo simulations to assess their CPs and averaged widths (AWs). We also
demonstrated their practical utility by applying them to estimate daily wind speed data
from an industrial area in Prachin Buri and Rayong provinces, Thailand, from October to
December 2023.
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METHODS

Let X = (X;,X;, ..., X,,) be a random sample from the delta-BirSau distribution, denoted
as A(a, f8,9). The distribution function of X is introduced by Aitchison (1955), and
Birnbaum & Saunders (1969a) is defined as

J; x=0

G(x;a’ﬁ’a)_{6+(1—5)F(x;oc,[3); x>0’ (1)
where 6 = P(x = 0) follow the binomial distribution and n(g) ~ bi(n, §) and F(X; o, p) is
denoted as BirSau distribution. The density of the BirSau distribution is skewed to the
right. The shape parameter (o) affects the slope of the function, with the asymmetry
decreasing as o increases. The scale parameter (/) determines the spread of the
distribution while J indicates the proportion of zero values. If the J increases, it increases
zero values. The BirSau density for some values o with § = 1, and 2 is shown in Fig. 1.

The maximum likelihood estimator of & is 6 = n(o)/n; where n(;y and n(g) are the
number of positive observed values and the number of zero, respectively, and
n = n() + n1). The population mean and variance of X are respectively given by

B0 - -0 (1+5). @

2152 51122 (3)
CS R

In this study, our interest was in estimating the confidence interval of the variance,

Var(X) = (1 - 9)(p*)

which is defined as 7, as shown below:

7= (1-0)(p) [a2<1+2a2> +5<1+%o¢2>2]. (4)

The following subsection provides a detailed explanation of the approaches utilized for
constructing the confidence intervals.

Generalized confidence interval: GCI
Weerahandi (1993) originated the idea of the GPQ for deriving confidence intervals. The
GPQ comprises two key concepts. Firstly, the GPQ has a distribution free of unknown
parameters of interest. Secondly, the observed value of the GPQ does not depend on
nuisance parameters.

Let X = X1, Xz, ..., X, be a random sample size n(;) from BirSau(o, ) distribution.
First, let o be the parameter of interest, and f§ be a nuisance parameter. The GPQs of f§ were
proposed by Sun (2009) and are defined as follows:

max(:gl.ﬁZ)v K S 0;
min(ﬁl"ﬁz), K > 0.

The GPQs of o introduced by Wang (2012) is obtained as

06C1 = 0% (x; 1) = { (5)
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(A) Scale parameter equal 1 (B=1)

(B) Scale parameter equal 2 (B =2)

=025

=05
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Figure 1 Comparison of the BirSau for some values. (A) Scale parameter equal to 1 and (B) scale parameter equal to 2.

Full-size K&l DOT: 10.7717/peerj.18272/fig-1

2 1/2
$2 (Oga> — Zn(l)Oga + 51
GCI .__ AGCI _
O, := 0" (x,v,Kx) = Ogaco ,

(6)

where x = (x1, X2, ..., Xy, ) are the observed values of X, x has a t-distribution with
n() — 1 degrees of freedom (i ~ t(ny) — 1)), s = M Xy sy = 32" 1/X; and @ has a
chi-squared distribution with n(,) degrees of freedom (co ~ in(l)).

From Eq. (6), #, and f3, are the two solutions of the following equation:

(no) —1)Q* — L s - 2[(n) — 1)PQ — (1 — PQ)K*|B + (nny — 1)P* — L R — o)

n) n)

where P = n7l S /X, Q = md S0 1/v/%, R= 31 (VX — P)’, and
S=Y0 (1/VE - Q)P

The generalized confidence interval based on the VST method (GCI-1)
Dasgupta (2008) introduced the VST method, under normal approximation. Wu ¢ Hsieh
(2014) derived the VST for a binomial distribution, approximating it with the arcsine
square-root transformation. Consequently, the GPQ for 6, as proposed by Wu ¢» Hsieh
(2014), is expressed as follows

2 T
OVST — in? ; 5 8
s sin”  arcsin i)’ (8)
where T = 2y/n(arcsin V6 — arcsin V/6) ~ N(0,1); n — oo. Hence, through the use of

three pivots of Oga , OSCI ,and OXST denoted as Egs. (5), (6), and (8), respectively, the GPQ
for 1 is defined as

Ratasukharom et al. (2024), PeerdJ, DOI 10.7717/peerj.18272 6/33


http://dx.doi.org/10.7717/peerj.18272/fig-1
http://dx.doi.org/10.7717/peerj.18272
https://peerj.com/

Peer/

Algorithm 1 GCI

1. Define the parameters o, f3, and 6.

2. Define n, n(), and n(y), where n(g is determined as a realization from n g ~ bi(n,d), and n)

is calculated as n(;) = n — n).

3. Simulate the datasets using the delta-BirSau distribution with parameters o, f§, and 6, where
X ~ delta — BirSau(o, f3, 9).

4. Consider datasets containing values greater than zero.

5. Calculate P, Q, R, S, s; and s,, respectively.

6. During the i iteration:
(a) Generate Kk ~ t(n(l) — 1) to calculate the generalized confidence interval of o denote as

0S°! > 0 by using Eq. (5).

(b) Generate @ ~ 2, 0 then calculate the generalized confidence interval of f# denote as

Oga by using Eq. (6).

Perform step 6 interactively for a total of I replications.

0 — 1 oo (05 (145 (02 + 0 (1S 0) ). 0

Therefore, the 100(1 — 7)% confidence interval for 7 using the VST method for GCI is

CISCIVST — [QGCLVST (5 /2), OGCIVST (1 _ 3 /2)], (10)

where O%CIVST(/2) and OSCLYST(1 — 9/2) are the 100(7/2)™ and 100(1 — 7/2)"
percentiles of the distribution of O%“I"V$T, respectively.

The generalized confidence interval based on the Wilson score method
(GCI-2)

Using the score interval defined by Wilson (1927), Li, Zhou ¢ Tian (2013) established the
GPQ for 6 for a binomial distribution as follows

noy +234/2  Z 72,"?
of Mol B o (1-"2) + 2] “”
n+Zy n—Zy n 4

where Zyy has a standard normal distribution. Therefore, the GPQ of 7 is defined by the
three pivots of OECI, Oga, and O(W, in Egs. (5), (6), and (11) as

OGCIW (1-0! )(OGCI) ((Ofa)2<1 +Z(O§;c1)2> +Ogv< %(OGCI) >2> (12)

Therefore, the 100(1 — )% confidence interval for t using the Wilson method for
GCl is

CIGCI w _ [OGCI W('))/z) OGCI W( _ ,))/2)]’ (13)
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where OSIY (7/2) and OSIW (1 — 7/2) are the 100(y/2)" and 100(1 — y/2)"

percentiles of the distribution of OS“I'W, respectively.

The generalized confidence interval based on the Hannig method (GCI-3)
Hannig (2009) introduced the GFQ of . According to a previous study, the optimal GFQ
for 0 is the product of two beta distributions, each weighted by 0.5. Subsequently, the
investigation by Li, Zhou ¢ Tian (2013) also utilized the previously reported GFQ.
Furthermore, it aligns with the GPQ concept. As a consequence, this study employs the
GPQ for 6, which is

O? ~ O.Sbeta(n(o), nay + 1) + O.Sbeta(n(o) +1, n(l)). (14)

From Oga , Ogcz , and Of;[ in Egs. (5), (6), and (14), the approximate GPQ of T was

2
0%t — (1 — Of)(05°!)? ((oga)z <1 +Z(O§CI)2> + 0% <1 + % (OfCI)2> ) (15)

Therefore, the 100(1 — )% confidence interval for 7 using Hannig method for GCI is
CIOH = (0591 (3/2), 061 (1 — /2], (16)

where O%“I (7 /2) and OS“TH(1 — 7 /2) are the 100(7/2)™ and 100(1 — y/2)™ percentiles
of the distribution of OTGCI'H , respectively.

Bootstrap confidence interval: BCI

Bootstrap methods were developed by Efron ¢ Tibishirani (1993) using resampling
techniques. Bootstrap estimators for « and f in BirSau distributions are calculated using
the methods proposed by Lemonte, Simas ¢ Neto (2008) to reduce bias in the MLE. The
method is outlined as follows:

Let x = (x1, X2, cees Xy, )T be a random sample of size n(,), from the random variable X

with the distribution function F,(x) and Fg(x) and 4, f3 be an estimator of o, f§ base on x.

*2

The B bootstrap sample (x*!,x*2,... x*B) are generated from the original sample x. The

respective bootstrap replications for « and f are denoted as (&*!,a*, ..., a*8) and

(B, 572, ..., BB), where &t = s(x*t), ¥ = s(x**) and b = 1,2, ..., B. The approximated
bootstrap of o and f are calculated by &) = (37p_, &%)/B and p) = >, ﬁ*h)/B.
Therefore, the bootstrap bias is estimated based on B replications of the & and f§ are
B, (6,2) = a*1) — & and Bpﬁ (ﬁ, p) = f*) — B. Then, the CBC method, invented by
Mackinnon & Smith (1998), is applied to reduce the bias value of the estimator.
Subsequently, the estimate with reduced bias value is obtained as follows:

0P = 4 — By, (8,0) = 28 — &), (17)
and
Of" = p— Br, (B, B) = 2B — B (18)
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Algorithm 2 BCI
1. Define the parameters o, f3, and 6.
2. Define n, n(), and n(y), where n(g is determined as a realization from n g ~ bi(n,d), and n)
is calculated as n(;) = n — n).
3. Simulate the datasets using the delta-BirSau distribution with parameters o, f§, and 6, where
X ~ delta — BirSau(o, f3, 9).
4. Consider datasets containing values greater than zero.
5. At B step:
(a) Generate x* = (x*! x*?,...,x*F) with replacement from x=(x, X, ..., X, )"
(b) Compute the bias of the estimator of & and f3, which are B, (&, a) = &*0) — & and
Bp/;(/?, p) = ﬁ*(') — ﬁ, respectively.
(c) Compute the correct estimator of & and ﬁ are OSCI and Oﬁa using Egs. (17) and (18),
respectively.

Repeat step 5, total of B times.

The bootstrap confidence interval based on the VST method (BCI-1)
By utilizing OgST in Eq. (8) and the bootstrap estimators of O and OECI in Egs. (17) and
(18), the bootstrap estimator of 7 based on the VST method can be written as:

2
o = (1= 0o (0 (145 08 0 (1 02) ). 9

2
Therefore, the 100(1 — 7)% confidence interval for 7 using the VST method for BCI is
CIfCI.VST — [OECI'VST(V/Z), OECI.VST(I _ V/Z)L (20)

where OBCIV8T (7 /2) and OBC!-VST(1 — y/2) are the 100(y/2)™ and 100(1 — y/2)"™

BCI.VST
Or

percentiles of the distribution of , respectively.

The bootstrap confidence interval based on the Wilson score method (BCI-2)
By utilizing Eq. (11) with O}, along with the bootstrap estimator of O and OgCI
presented in Eqs. (17) and (18), the bootstrap estimator based on the Wilson score method
can be expressed as:

5 1 2
ot — (1 oo (02 (145 (027 w0t (145 08 ) ). e
Therefore, the 100(1 — )% confidence interval for 7 using the Wilson score method for
BCI is

CIfCI.W _ [OITBCI.W(V/Z)’ OfCI‘W(l —v/2)], (22)

where OPI"W(y/2) and OB W (1 — 7 /2) are the 100(7/2)™ and 100(1 — 7/2)™ percentiles
of the distribution of OfCI W, respectively.
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The bootstrap confidence interval based on the Hannig method (BCI-3)

By incorporating Of in Eq. (14), along with the bootstrap estimator of O5“/ and OECI in
Egs. (17) and (18), the bootstrap estimator based on the Hannig method can be formulated
as follows:

2
OPFCIH — (1 — O?)(O?CI)Z <(05C1)2 <1 +Z(o§a)2> + Of (1 —I—% (Ofa)2> ) (23)

Therefore, the 100(1 — )% confidence interval for t using the Hannig method for
BCI is

CIPCHH — [OBCLH (5 /2), OBCH(1 — /2)], (24)

where OB¢I'H (y/2) and OFTH(1 — 7 /2) are the 100(7/2)™ and 100(1 — y/2)™ percentiles
of the distribution of OFI'H, respectively.

Generalized fiducial confidence interval: GFCI
Generalized fiducial inference allows for converting the original data into known
alternative distributions. Subsequently, based on the outcomes derived from these
distributions, the transformed data are manipulated, and the results are then reverted to
the original form through an inverse transformation (Hannig, 2009).

Let W be a vector randomly distributed, with its index determined by the parameter
¢ € E. It is important to note that the procedure for generating the data for U can be
described as follows:

U=V, W), (25)

where V is a jointly measurable function and W is a random variable or random vector
with a completely known distribution and independent of any parameter. The inverse will
be written as Q(U, W), we can calculate & from u = Q(&, w). Since the distribution of W is
completely known, a random sample w;, w2, . . ., Wy, can be generated from it by using the
inverse, the random sample of W can be transformed into a random sample of ¢ via the
inverse &) = Q(u,wy), ..., glm) — Q(u,w,,). However, in most cases, the inverse does
not exist; therefore, Hannig (2009, 2013) provided the following solutions.

The structural equation, represented as V = (V1, V2, ..., V), so that U; = V;(&, W)
Fori=1,2,...,n). Let W = (Wy,..., W, ) are i.id. samples from a Uniform (0, 1)
distribution, assumes that the parameter ¢ € = C R’ is p-dimensional. Hannig (2009)
showed that the generalized fiducial distribution was continuous with density.

T L9
[ .8 L )

n(&) (26)

where L(u, £) represents the likelihood of the data, and the function J(u, &) is defined as
follows:

Jwé)= >

i:(ihuwip)
1§i1<-~<i1,§n(1)

) (27)
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where the sum covers all p-tuples of indexes i = (1 < ij<---<i, <nyy) C{l,...,n4)}
and dV~"(u, £)d¢ is the ny) x p and dV~'(u, &) /du is n(y) x n) Jacobian matrices. For
any n(;y X p matrix Y, submatrix (Y;) isa p X p matrix containing the rows iy, ..., 1, of Y.

Hannig (2009) demonstrated that if the sample u was independently and identically
distributed (i.i.d.) from a distribution with a continuous cumulative distribution function
(CDF) denoted as F:(u), then V=' = (Fe(u1), ..., Fe ().

In the case of the BirSau distribution, it involves two parameters, denoted as « and f.
Therefore, the generalized fiducial distribution of « and f is as follows:

q(e, flx) o< Lix|a, B)] (%, (, B)); (28)
where L(x|x, f§) represents the joint likelihood of the observed data x, defined as follows:

1) ﬁ 1/2 ,B 3/2 1 n) X; ﬁ
1 [<;l> + <;,> exp —T‘CZZI:(E'f—;i—Z) s (29)

B 4|xi — xj‘
e, (o ) = 1<i<;n(1> o1+ B/x:)(1+ B/x;)

n

()
L(x|a, B) = (2 ml_ﬁ) )

and

(30)

In fact, J(x, («, B)) plays a role similar to that of the prior distribution in the Bayesian
framework, resembling a data-dependent prior. Equation (30) indicates that o and f are
independent of one another, Li ¢» Xu (2016) showed that the prior of o and f§ can be
expressed as follows:

1
(o) o o -
. i — ] o1
e 1<i<zj<:n(1) (14 B/x) (1 + B/x;)

Note that the symbol o means “is proportional to.”
Thus, f(a, f|x) is appropriate for the specific case of a prior with partial information
given by the parameters o and f. The generalized fiducial samples of « and f3, denoted as

OOC;'FCI and OgFCI

, can be obtained from the generalized fiducial distribution like the
Bayesian posterior. Gilks ¢» Wild (1992) introduced the adaptive rejection Metropolis
sampling (ARMS), originating from adaptive rejection sampling (ARS), to generate the
fiducial samples O%F“! and O[CjF “I'from the generalized fiducial distribution Eq. (28). ARS,
developed by Gilks &> Wild (1992), utilizes log-concave target densities. To address the
limitations of ARS, Gilks, Best ¢» Tan (1995) expanded the algorithm to handle multivariate
distributions and non-log-concave distributions by allowing the proposal distribution to
remain below the target in specific regions and incorporating a Metropolis-Hastings step
to ensure proper distribution of the accepted samples.

The “arms” function in the R software is the “dlm” package, which can be used to run the
provided algorithm, which is known as ARMS easily. Be aware that the variables OS*“! and
OgF I"are considered as random. Thus, o and f are changed to OSF CI and OgF I

respectively.
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The generalized fiducial confidence interval based on the VST method
(GFCI-1)

By incorporating O*” in Eq. (8), along with the generalized fiducial estimators OS*“' and
ng “I, the generalized fiducial estimator of t based on the VST method, it can be
expressed as:

4

5 1 2
OTGFCI.VST _ (1 _ OXST)(O/?FCI)2 ((OgFCI)Z (1 +2 (Och1)2> + O(\S/ST (1 + E (OgFCI)Z) ) (32)

Therefore, the 100(1 — 7)% confidence interval for 7 using the VST method for GFCI is

CIGFCLVST — [QGFCLVST (5 13y QGFCLVST(1 3 /Y] (33)

where OGFCIVST (1) /2) and OSFCIVST (1 — y/2) are the 100(y/2)™ and 100(1 — y/2)™
percentiles of the distribution of O%F¢!-V5T | respectively.

The generalized fiducial confidence interval based on the Wilson score
method (GFCI-2)

By employing Eq. (11) along with O}, as well as the generalized fiducial estimators
and OgF < the generalized fiducial estimator of 7 based on the Wilson score method can be

GFCI
Ooc

formulated as follows:

2 5 2 1 2\’
OTGFCI.W — (1 _ Og\l)(OgFCI)Z ((OgFCI) <1 +Z (OgFCI) ) 4 Og\/(l +5 (OSFCI) > > (34)

Therefore, the 100(1 — )% confidence interval for 7 using the Wilson score method for
GFCI is

CIGFCLW — [QGFCLW (319} QGFCIW (1 /2)], (35)

where OYFI'W(y/2) and O%FI-W(1 — y/2) are the 100(y/2)™ and 100(1 — y/2)"
percentiles of the distribution of O%F!"W, respectively.

The generalized fiducial confidence interval based on the Hannig method
(GFCI-3)

By integrating O into Eq. (14), alongside the generalized fiducial estimators OS'“! and
OgF “I, the generalized fiducial estimator of 7 utilizing the Hannig method can be expressed

as follows:

2
OFFCHH — (1 — Off) (0! ((ongCf)2 (1 + (OSFCI)Z) +0ff <1 + (OﬁFCIY) ) . (36)

Therefore, the 100(1 — y)% confidence interval for t using the Hannig method for
GFCI is

CIGFCIH — [QGFCLH /2y OGFCLH (1 _ 3 /2], (37)

where OFCIH (7 /2) and OCFCIH (1 — y/2) are the 100(3}/2)”’ and 100(1 — 7/2)™
percentiles of the distribution of OSFI'H, respectively.
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Algorithm 3 GFCI

1. Define the parameters o, f3, and 6.
2. Define n, n(), and n(y), where n(g is determined as a realization from n g ~ bi(n,d), and n)
is calculated as n() = n — n().
3. Simulate the datasets using the delta-BirSau distribution with parameters o, f§, and 6, where
X ~ delta — BirSau(o, f3, 9).
. Consider datasets containing values greater than zero.
. Generating samples of o and f by using the arms function in the dim package.

. Burn-in T samples, keeping the remaining K — T samples.

NN U

. Thin the samples by applying sampling lag L>1 and the final number of iterations kept is
K' =(K-T)/L.

8. Since the generated sample is not independent, tinning the sample will help to lower the

autocorrelation.

9. Calculate the fiducial estimates of o and f denote as OS*“! and O§“’.

Normal approximation: NA

In the normal approximation method, we utilize the Delta method to achieve a normal
distribution as the limiting distribution of an estimator 7. This method, which is widely
recognized, can be briefly described as follows:

Let g(uy, u, us) represent a differentiable scalar function of three parameters. We have
an estimator, G = g(Uj, U,, Us), which depends on three parameters: Uy, U, and Us.
Utilizing the Delta method, we can determine the asymptotic distribution of G, which
involves providing a stochastic representation of G. We apply the Delta method to
establish the asymptotic normality of G as the sample sizes approach infinity and to
compute the asymptotic mean and variance of 7. In the Delta method, the function g is
used to expand into the Taylor series at the point 0y, 0,, 05 of Uy, U,, Us as follows

ag(ela 027 03)
81/{1

(U3 — 93)

88 0 ,62763

g([y7l]2’1))%g(9’9’0) %
3 1 2, Y3 Uy

6 6,6,63

M

8u3

(U —6,) + (U, — 6,)

(38)

The basic statistic was assumed here as U; = &, U, = B, and U; = 5 where a, ﬁ are the
MME:s of «, and f, respectively and 5 is the MLEs of d. Then, 7 = g(a, B, 5), where the
function g(a, §,8) = (1 — 8)(f*)[03(1 + 1.250%) + (1 4 0.502)*]. The partial derivatives
are as follows

L("gf’é) — B — 1)(2&(%“24-1) +%.C3+2a5<%2+1>>.

2 2 2
M:—zﬁ[oﬂ(SiJrl) +5<%+1>

5 ; (6 -1).
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L(‘géﬁ’é) = 2 [a2<<%“2+1> +5(°§+1>2>] —ﬁ2<%2+1)2(5— 1).

Therefore

Azg(c(,ﬂﬁ)-f-ww_“)*‘ 0‘/35 (ﬁ ﬁ>+agaﬁ5 (5 5)

= g(2.$.9) + (1= 9)(F) (2o<+5a +2°<5+°<35)> 4 )
" (2ﬁ(1—5)(a2(1+1.250<2)+5 +0.502) ))(ﬁ ﬂ)
— (ﬁ2<a2(1 +1.250%) — (1 +0.5¢ )? +26(1 + 0.50) ))(5—5)-

Taking the expectation and variance in Eq. (39), the approximate mean and variance for

(39)

the 7 is given by

E(t) ~ 1, (40)

Var(?) ~ Varlg(a, B,8) + ((1 — 8)(B*) (20 + 50 + 205 + 078) ) (& — 21)
+ (2800 = 0) (2 (1 4+ 1.252) + (1 +0.52)°) ) (B - B)

(1= 8) () (200 + 562 + 206 + &26) ) (0.5 /() (41)

(
(

+ <2ﬁ(1 —9) (a2(1 +1.250%) +6(1 + 0_5az)z))2 ((ocﬂ)z(l + 0.75a2)>
(

I’l(l) (1 + 0.5&2)2

(209

n

Therefore, as n; — oo, 7 is approximately normal N(E(7), Var(t)). Obviously, value
o, B, and 0 are unknown when we estimate the parameter function t have only samples in
our hands. Then, we use the plug-in estimators of E(7) and Var(%) as follows

E(®) = (1-9) (Bz) (&2 (1 + i&2> + 5(1 +;&2>2>, (42)

A~

Var(?) = ((1 - 5) (BZ) (2& +56° + 246 + &35>>2(0.5&2/0.5&2n(1))
&ﬁ)z(l +0.754)
ny(140.56%)°

+(2B(1-6) (#(1+ 1.2582) +5(1 +0.5&2)2))2 (

(43)

* (ﬁz (&2(1 +1.256°) - (1 +0.5022)2 +2(§(1 +0_5&2)2>>2 <M)

n
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Algorithm 4 NA

1. Define the parameters o, f3, and 6.

2. Define n, n(), and n(), where n(g is determined as a realization from n g ~ bi(n, ), and n)
is calculated as n() = n — n().

3. Simulate the datasets using the delta-BirSau distribution with parameters o, f§, and 6, where
X ~ delta — BirSau(o, f3, 9).

4. Calculate the method of MME for the parameters o and f3, which are denoted as & and [3’,
respectively. Then, compute the MLE for the parameter J, denoted as 5.

5. Then, use 4, ﬁ, and 4 to compute 7 and obtain 7.

6. Compute the 95% NA confidence interval for 7 by using Eq. (45).

The asymptotically standard normal distribution is
Z=——1 ~N(0,1). (44)
Var(7)

Therefore, the 100(1 — 7)% confidence interval for t using normal approximation is

CI.{T\TA =14 Zlf‘//Z \/ Var(f), (45)

where Z;_,; is the (1 —y/ 2)™ percentile of the standard normal distribution.

RESULTS

The study utilized the R statistical software to conduct a simulation, explicitly employing a
Monte Carlo simulation to evaluate the performance of confidence intervals for the
variance of the delta-BirSau distribution. The investigation compared the effectiveness of
ten methods (GCI-1,2,3, BCI-1,2,3, GFCI-1,2,3, and NA) by examining their CPs and
AWs. First, the evaluation focused on the confidence intervals based on their CPs. With a
nominal confidence level of 0.95, the selection criteria were set to include intervals that
provided CPs close to or greater than the nominal confidence level of 0.95. Following this,
the AWs of these chosen confidence intervals were considered to identify the interval with
the shortest width as the optimal confidence interval. This comprehensive approach
ensures a thorough assessment of the performance of the different methods under
consideration. The data were generated for X ~ delta — BirSau(a, 5, 0) with sample sizes
n = 15,20, 30, 50,70, or 100 and probabilities of zeros 6 = 0.1, 0.3, or 0.5 (except in the
case of n = 15, only 0 values of 0.1 and 0.3 will be considered), where we set

o = 0.25,0.50,0.75, or 1. Additionally, we set § = 1 or 2 for all cases. In this study, we set
various parameters because different values of o results in different slopes of the function,
and various values of f§ affect the spread of the distribution, as shown in Fig. 1. For the
parameter o, it defines the shape of the data distribution. Specifically, if « is low, the data
distribution will be symmetric or close to a normal distribution. As o increases, the
distribution becomes more right-skewed. The parameter f determines the scale or spread
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of the data distribution. A higher f value indicates a wider data distribution, resulting in a
broader range of data. The parameter ¢ indicates the proportion of zero values. If ¢ is high,
it means that there are many zero values in the data. The number of generated random
samples was fixed at 2,000 replications with I = 5,000 pivotal quantities for the GCI,

B = 500 for the BCI, and K = 3,000, T = 1,000 with a thinning sample (L) set to 2 for
the GFCL

We present the CPs and AWs of nominal 95% two-sided confidence intervals for the
variance of the delta-BirSau distribution in Table 1. The summary of CPs and AWs is
further depicted in Fig. 2. The simulation results in Table 1 indicate that the CPs of the
GCI-1,2,3, and GFCI-1,2,3 confidence intervals were consistently greater than or close to
the nominal confidence level of 0.95 in all situations studied, except in the case of small
sample sizes n = 15,20, and 30, where the CPs of GCI-1,3 were lower than the nominal
confidence level. As the sample sizes increased, the CPs of the GCI-1 and 3 performed
better. For the NA method, it was observed that for medium (n = 50, 70) and large
(n = 100) sample sizes with & = 0.25, 0.5, the NA method yielded a CP value greater than
the nominal confidence level of 0.95. Next, we examine the values of AWs. It is observed
that BCI-1,2,3 yields the shortest AW values, while the NA method produces the longest
AW values. However, since both methods result in CP values below the nominal
confidence level of 0.95, we choose not to consider them. Hence, we exclusively considered
methods with CP values exceeding the nominal confidence level of 0.95 for our AW
comparison. In the context of small sample sizes (n = 15, 20, 30), the GFCI-2 method
consistently yielded the shortest AW values, except in instances where o = 0.25, where the
GCI-1 method outperformed. Transitioning to medium-sized samples (n = 50, 70), the
GFCI-3 method showcased the shortest AW values. Meanwhile, in larger sample sizes
(n = 100), the GFCI-1 method exhibited the shortest AW values. Upon comprehensive
analysis, it becomes apparent that the GCI-1,2,3 and GFCI-1,2,3 methods show similar
AW values with minimal differences.

However, it was observed that as sample sizes increased, the widths of all confidence
intervals decreased, and the CP of the NA method increased. Conversely, an increase in the
shape parameter, scale parameter, and probabilities of zeros widened the widths for all
confidence intervals. In summary, the simulation study showed that GFCI-2 performed the
best for small sample sizes (n = 15, 20, 30), GFCI-3 performed the best for medium sample
sizes (n = 50, 70), and GFCI-1 stood out for large sample sizes (n = 100). These methods
met both CP and AW criteria.

An empirical application

Every year, Thailand faces challenges with PM2.5 due to fluctuating weather conditions
exacerbated by combustion and industrial activities. PM2.5 poses significant health risks,
especially in industrial areas such as Prachin Buri and Rayong provinces, located in the
eastern part of Thailand. These provinces recorded the highest levels in 2023, with an AQI
of 207 (Thai Pollution Control Department, http://air4thai.pcd.go.th/webV3/#/History).
Amnuaylojaroen, Kaewkanchanawong ¢ Panpeng (2023) indicate an inverse relationship
between wind speed and PM2.5, emphasizing the importance of wind speed in reducing
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Table 1 The coverage probabilities and (average widths) of nominal 95% two-sided confidence interval for variance of delta-BirSau
distribution.

n d B a Coverage probability (Average width)

GCI-1 GCI-2 GCI-3 GFCI-1 GFCI-2 GFCI-3 BCI-1 BCI-2 BCI-3 NA

15 0.1 1 025 0.9425 0.6305 0.6640 0.9345 0.9725 0.9080 0.8915 0.9705 0.8865 0.8395
(0.2131) (0.2150) (0.2168) (0.1829) (0.2731) (0.2411) (0.1333)  (0.2368)  (0.1985)  (0.3364)

0.5 0.9525 0.9335 0.9395 0.9450 0.9480 0.9400 0.8990 0.9070 0.8995 0.8745
(1.5890)  (1.5590)  (1.5610)  (1.2970)  (1.2930)  (1.2920)  (0.8210) (0.8382)  (0.8299)  (0.8562)

0.75 0.9460 0.9445 0.9460 0.9395 0.9395 0.9390 0.8885 0.8865 0.8875 0.8125
(7.6860) (7.3980) (7.4200) (5.7990) (5.6670) (5.6690) (3.1770)  (3.1350)  (3.1300)  (2.6630)

1 0.9465 0.9455 0.9460 0.9320 0.9315 0.9315 0.8735 0.8740 0.8745 0.7695
(26.8200)  (25.9600)  (25.8100)  (19.4300)  (18.9700)  (18.9700)  (8.9470)  (8.8220)  (8.7880)  (6.9200)

2 025 0.9495 0.6255 0.6600 0.9325 0.9630 0.9315 0.8835 0.9595 0.8865 0.8460
(0.8396) (0.8491) (0.8551) (0.7185) (1.0834) (0.9555) (0.5242)  (0.9422)  (0.7885)  (1.3450)

0.5 0.9520 0.9390 0.9445 0.9430 0.9505 0.9445 0.9015 0.9140 0.9070 0.8715
(62750)  (6.1460)  (6.1630)  (5.0930)  (5.1160)  (5.0960)  (3.2640)  (3.3320)  (3.2980)  (3.4080)

0.75 0.9480 0.9495 0.9475 0.9430 0.9440 0.9445 0.8930 0.8925 0.8920 0.8145
(29.1200)  (28.1800) (28.2600)  (22.4100)  (21.9500)  (21.9500)  (12.2500) (12.1100) (12.0900) (10.3700)

1 0.9560 0.9545 0.9560 0.9410 0.9455 0.9415 0.8935 0.8930 0.8955 0.7940
(108.3000) (103.9000) (103.8000) (77.9700)  (75.9300)  (75.8900)  (36.0500) (35.5000) (35.3600) (27.8100)

03 1 0.25 0.9445 0.8735 0.8750 0.9335 0.9480 0.9215 0.8815 0.9160 0.8825 0.9815
(0.3373) (0.3188) (0.3207) (0.2758) (0.3128) (0.2971) (0.1876)  (0.2357)  (0.2169)  (0.5416)

0.5 0.9485 0.9450 0.9465 0.9310 0.9310 0.9280 0.8810 0.8720 0.8730 0.9210
(25580)  (2.3610)  (2.3310)  (1.8060)  (1.7060)  (1.7090)  (0.9276)  (0.9113)  (0.9065)  (1.0970)

0.75 0.9535 0.9530 0.9510 0.9420 0.9375 0.9370 0.8780 0.8695 0.8685 0.8200
(17.7700)  (13.1400)  (142300) (21.3700)  (16.1700)  (15.1300)  (3.4000)  (3.2400)  (3.2250)  (2.8430)

1 0.9475 0.9445 0.9450 0.9310 0.9452 0.9285 0.8575 0.8520 0.8535 0.767
(55.5100)  (48.8700)  (49.8800)  (32.5300)  (29.5700)  (29.7000)  (9.2450)  (9.0170)  (8.9650)  (7.0050)

2 025 0.9535 0.8720 0.8865 0.9395 0.9500 0.9335 0.8975 0.9150 0.8820 0.9780
(1.3340)  (1.2520)  (1.2720)  (1.0930)  (1.2380)  (1.1750)  (0.7471)  (0.9368)  (0.8620)  (2.1350)

0.5 0.9430 0.9400 0.9420 0.9285 0.9300 0.9310 0.8685 0.8495 0.8525 0.9035
(9.7930) (8.9720) (9.0170) (6.9350) (6.5560) (6.5650) (3.6270) (3.5750) (3.5560) (4.2970)

0.75 0.9405 0.9445 0.9445 0.9320 0.9355 0.9360 0.8745 0.8740 0.8740 0.8200
(62.6000)  (54.2200)  (52.4500)  (38.6500)  (34.9000)  (34.1100)  (13.5900) (13.2400) (13.2000) (11.6000)

1 0.9440 0.9390 0.9430 0.9435 0.9405 0.9415 0.8710 0.8665 0.8675 0.7840
(245.4000) (213.3000) (218.7000) (128.5000) (118.7000) (119.5000) (38.4000) (37.7500) (37.5700) (28.9200)

20 01 1 025 0.9475 0.6185 0.6455 0.9395 0.9590 0.9000 0.9055 0.9600 0.8820 0.8910
(0.1630)  (0.1653)  (0.1660)  (0.1464)  (0.2311)  (0.1996)  (0.1150)  (0.2094)  (0.1732)  (0.2953)

0.5 0.9510 0.9360 0.9400 0.9450 0.9500 0.9420 0.9050 0.9195 0.9105 0.8990
(1.0753)  (1.0634)  (1.0653)  (0.9362)  (0.9493)  (0.9443)  (0.6748) (0.6941)  (0.6862)  (0.7377)

0.75 0.9535 0.9545 0.9570 0.9430 0.9455 0.9455 0.9175 0.9195 0.9200 0.8515
(47134)  (4.6285)  (4.6285)  (4.0137)  (3.9616)  (3.9629)  (2.5903) (2.5718)  (2.5720)  (2.2680)

1 0.9520 0.9525 0.9510 0.9410 0.9410 0.9415 0.9115 0.9110 0.9125 0.8175
(Continued)
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Table 1 (continued)

n d B a Coverage probability (Average width)
GCI-1 GCI-2 GCI-3 GFCI-1 GFCI-2 GFCI-3 BCI-1 BCI-2 BCI-3 NA

(15.1140)  (14.7576)  (14.7986)  (12.2197)  (12.0233)  (12.0221)  (7.1196)  (7.0550)  (7.0442)  (5.8910)

2 025 0.9530 0.6190 0.6500 0.9435 0.9640 0.8900 0.9060 0.9620 0.8765 0.8785
(0.6468)  (0.6546)  (0.6579)  (0.5816)  (0.9216)  (0.7931)  (0.4560)  (0.8347)  (0.6888)  (1.1920)

0.5 0.9555 0.9360 0.9385 0.9435 0.9530 0.9515 0.8955 0.9130 0.9075 0.9065
(43649)  (43130)  (43219)  (3.7909)  (3.8436)  (3.8228)  (2.7325) (2.8070)  (2.7780)  (2.9910)

0.75 0.9580 0.9590 0.9585 0.9570 0.9575 0.9575 0.9225 0.9230 0.9240 0.8435
(18.3736)  (17.9767)  (18.0348)  (15.5455)  (15.3393)  (15.3412)  (10.0565) (9.9822)  (9.9770)  (9.0900)

1 0.9455 0.9435 0.9455 0.9355 0.9350 0.9350 0.9045 0.9020 0.9030 0.8190
(61.7004)  (60.2375)  (60.2959)  (50.6327)  (50.6233)  (49.8119)  (29.1641) (28.8883) (28.8554) (23.9800)

03 1 025 09445 0.8635 0.8770 0.9385 0.9545 0.9305 0.9015 0.9285 0.8980 0.9875
(0.2419) (0.2318) (0.2345) (0.2139) (0.2514) (0.2357) (0.1607)  (0.2047)  (0.1872)  (0.4694)

0.5 0.9545 0.9545 0.9550 0.9470 0.9480 0.9475 0.8920 0.8885 0.8870 0.9385
(1.4508)  (1.3783)  (1.3869)  (1.1948)  (1.1589)  (1.1588)  (0.7505)  (0.7430)  (0.7399)  (0.9446)

0.75 0.9520 0.9535 0.9500 0.9455 0.9465 0.9460 0.9000 0.8945 0.8945 0.8435
(6.4893) (6.1149) (6.1939) (4.9919) (4.7801) (4.7911) (2.6496)  (2.6114) (2.6031)  (2.4770)

1 0.9485 0.9500 0.9515 0.9415 0.9380 0.9375 0.8935 0.8890 0.8875 0.8105
(232626)  (21.5508)  (21.8330) (17.4127) (16.5339) (16.5161)  (7.6380)  (7.5258)  (7.4775)  (6.3200)

2 025 0.9480 0.8495 0.8720 0.9400 0.9535 0.9310 0.8915 0.9240 0.8920 0.9855
(0.9659) (0.9248) (0.9346) (0.8512) (1.0032) (0.9395) (0.6407)  (0.8202)  (0.7488)  (1.8690)

0.5 0.9425 0.9420 0.9420 0.9295 0.9315 0.9285 0.8730 0.8610 0.8650 0.9335
(55713)  (5.3281)  (5.3754)  (4.6136)  (4.5016)  (45047)  (2.9109) (2.9036) (2.8912)  (3.7450)

0.75 0.9585 0.9605 0.9595 0.9470 0.9485 0.9480 0.8930 0.8835 0.8865 0.8445
(25.4888)  (24.1294)  (24.0169)  (19.8831)  (19.1142)  (19.1330)  (10.6235) (10.4913) (10.4599) (9.7660)

1 0.9535 0.9495 0.9470 0.9400 0.9445 0.9425 0.8960 0.8955 0.8970 0.8230
(93.0116)  (87.9056)  (88.4969)  (65.3842)  (62.9130)  (63.1393)  (29.6448) (29.4250) (29.2789) (25.5800)

20 05 1 025 0.9505 0.9215 0.9370 0.9315 0.9350 0.9330 0.8860 0.8745 0.8650 0.9960
0.4109)  (0.3324)  (0.3379)  (0.2875)  (0.2893)  (0.2792)  (0.1935)  (0.2106)  (0.1989)  (0.5204)

0.5 0.9460 0.9440 0.9460 0.9360 0.9395 0.9330 0.8675 0.8615 0.8600 0.9230
(2.6429)  (22317)  (2.2363)  (1.6585)  (1.5446)  (1.5424)  (0.8065)  (0.8022)  (0.7912)  (0.9943)

0.75 0.9445 0.9365 0.9400 0.9275 0.9320 0.9285 0.8615 0.8645 0.8645 0.8285
(39.4495)  (20.9059)  (25.0844)  (8.8225)  (7.6001)  (7.5236)  (2.7939)  (2.7492)  (2.7176)  (2.4840)

1 0.9420 0.9475 0.9455 0.9315 0.9360 0.9370 0.8570 0.8545 0.8550 0.7800
(148.9182) (76.8764)  (72.3319) (31.6468)  (26.0205)  (25.9969)  (7.3252)  (7.1907)  (7.1117)  (5.8910)

2 025 0.9465 0.9240 0.9320 0.9340 0.9400 0.9330 0.8835 0.8730 0.8650 0.9960
(1.4022) (1.2657) (1.2867) (1.1223) (1.1455) (1.1060) (0.7694)  (0.8387)  (0.7925)  (2.0860)

0.5 0.9505 0.9425 0.9485 0.9365 0.9400 0.9370 0.8680 0.8580 0.8565 0.9165
(10.4660)  (9.0494)  (8.8563)  (6.5251)  (6.0567)  (6.0608)  (3.1751) (3.1601)  (3.1161)  (4.0190)

0.75 0.9455 0.9425 0.9370 0.9300 0.9300 0.9285 0.8720 0.8685 0.8655 0.8300
(325.1737)  (120.8820) (163.2695) (37.1266) (31.3527)  (31.3854)  (11.6006) (11.4101) (11.2944) (10.1700)

1 0.9410 0.9380 0.9365 0.9245 0.9205 0.9190 0.8590 0.8560 0.8535 0.7920
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Table 1 (continued)

n d B a Coverage probability (Average width)

GCI-1 GCI-2 GCI-3 GFCI-1 GFCI-2 GEFCI-3 BCI-1 BCI-2 BCI-3 NA

(663.3882) (463.2263) (436.7391) (263.2367) (181.2472) (174.9051) (33.4599) (31.9553) (31.5560) (23.4500)

30 0.1 1 025 0.9475 0.5735 0.6250 0.9445 0.9580 0.8760 0.9040 0.9555 0.8645 0.9335
(0.1171)  (0.1187)  (0.1190)  (0.1095)  (0.1869)  (0.1566)  (0.0919)  (0.1758)  (0.1427)  (0.2493)

0.5 0.9395 0.9315 0.9355 0.9345 0.9435 0.9375 0.9055 0.9230 0.9170 0.9140
(0.7302)  (0.7260)  (0.7273)  (0.6733)  (0.6882)  (0.6821)  (0.5366)  (0.5549)  (0.5477)  (0.6113)

0.75 0.9490 0.9495 0.9485 0.9455 0.9460 0.9445 0.9215 0.9240 0.9235 0.8705
(2.8413) (2.8086) (2.8133) (2.5716) (2.5556) (2.5569) (1.9412)  (1.9384) (1.9364)  (1.8350)

1 0.9470 0.9445 0.9450 0.9370 0.9390 0.9380 0.9100 0.9100 0.9095 0.8545
(8.7465)  (8.6015)  (8.6243)  (7.7365)  (7.6617)  (7.6639)  (5.4421) (5.4127) (5.4105)  (4.9850)

2 025 5.4105 0.5960 0.6360 0.9390 0.9525 0.8885 0.9110 0.9475 0.8750 0.9340
(0.4712) (0.4775) (0.4802) (0.4410) (0.7500) (0.6299) (0.3708) (0.7050) (0.5738) (1.0000)

0.5 0.9475 0.9360 0.9350 0.9425 0.9460 0.9410 0.9220 0.9290 0.9220 0.9130
(29348)  (2.9164)  (2.9198)  (2.7036)  (0.9290)  (2.7380)  (2.1537)  (2.2236)  (2.1944)  (2.4440)

0.75 0.9475 0.9485 0.9500 0.9410 0.9430 0.9415 0.9145 0.9155 0.9165 0.8655
(11.2267) (11.1140) (11.1343) (10.1616) (10.1062) (10.1106) (7.6582) (7.6546) (7.6546) (7.3050)

1 0.9500 0.9525 0.9505 0.9475 0.9475 0.9480 0.9125 0.9080 0.9085 0.8465
(34.5694)  (34.0292)  (33.9926)  (30.5594)  (30.2152)  (30.2306) (21.4996) (21.3644) (21.3427) (19.3600)

03 1 025 0.9475 0.8445 0.8560 0.9445 0.9440 0.9260 0.9180 0.9325 0.9015 0.9935
(0.1732) (0.1686) (0.1698) (0.1617) (0.1956) (0.1810) (0.1320)  (0.1697)  (0.1541)  (0.3874)

0.5 0.9495 0.9500 0.9510 0.9395 0.9435 0.9425 0.9055 0.9020 0.8995 0.9505
(0.8944)  (0.8727)  (0.8743)  (0.8040)  (0.7963)  (0.7958)  (0.5877)  (0.5895)  (0.5875)  (0.7825)

0.75 0.9400 0.9425 0.9420 0.9365 0.9390 0.9385 0.8975 0.8955 0.8990 0.8910
(3.4177) (3.3232) (3.3375) (3.0016) (2.9414) (2.9423) (1.9991)  (1.9863) (1.9812)  (0.8910)

1 0.9430 0.9435 0.9440 0.9350 0.9385 0.9390 0.9020 0.8955 0.8965 0.8610
(10.9198)  (10.5253)  (10.5016)  (9.2306)  (8.9835)  (8.9791)  (5.5418) (5.4824)  (5.4608)  (4.9550)

2 025 0.9475 0.8395 0.8690 0.9390 0.9460 0.9305 0.9070 0.9180 0.8915 0.9900
(0.6806)  (0.6608)  (0.6665)  (0.6356)  (0.7755)  (0.7166)  (0.5185)  (0.6741)  (0.6103)  (1.5430)

0.5 0.9500 0.9465 0.9495 0.9430 0.9470 0.9450 0.8995 0.8935 0.8915 0.9555
(3.5835)  (3.4873)  (3.4995)  (3.2101)  (3.1700)  (3.1644)  (2.3438) (2.3436) (2.3337)  (3.1510)

0.75 0.9495 0.9495 0.9505 0.9460 0.9440 0.9440 0.9045 0.9000 0.8995 0.8665
(13.5564)  (13.2198)  (13.2140) (11.7502)  (11.5513) (11.5558)  (7.8625) (7.8352) (7.8118)  (7.9320)

1 0.9475 0.9485 0.9445 0.9405 0.9415 0.9405 0.9105 0.9050 0.9020 0.8440
(43.9448) (42.4819) (42.6108) (36.3296) (35.5742) (35.5211) (22.0256) (21.8775) (21.8207) (20.0600)

05 1 025 0.9480 0.9150 0.9255 0.9355 0.9330 0.9300 0.8935 0.8855 0.8815 0.9975
(0.2260) (0.2132) (0.2156) (0.2039) (0.2108) (0.2036) (0.1592)  (0.1709)  (0.1629)  (0.4310)

0.5 0.9410 0.9375 0.9380 0.9305 0.9380 0.9340 0.8895 0.8850 0.8805 0.9400
(1.1711)  (1.1045)  (1.1167)  (0.9892)  (0.9646)  (0.9605)  (0.6322) (0.6372) (0.6284)  (0.8288)

0.75 0.9465 0.9400 0.9445 0.9395 0.9455 0.9435 0.8830 0.8870 0.8860 0.8610
(52025)  (4.7248)  (4.7697)  (3.9928)  (3.7855)  (3.7703)  (2.1150)  (2.0986)  (2.0744)  (2.0460)

1 0.9545 0.9485 0.9470 0.9430 0.9470 0.9455 0.8825 0.8770 0.8750 0.8195
(Continued)
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Table 1 (continued)

n d B a Coverage probability (Average width)
GCI-1 GCI-2 GCI-3 GFCI-1 GFCI-2 GFCI-3 BCI-1 BCI-2 BCI-3 NA

(16.3088)  (14.9314)  (14.9998) (11.7841)  (11.1819) (11.1794)  (5.3498) (5.3624)  (5.3033)  (4.8820)

2 025 0.9470 0.9155 0.9290 0.9340 0.9340 0.9315 0.8985 0.8905 0.8840 0.9990
(0.8859)  (0.8349)  (0.8453)  (0.7993)  (0.8288)  (0.8014)  (0.6258) (0.6728)  (0.6414)  (1.7280)

0.5 0.9475 0.9385 0.9385 0.9410 0.9390 0.9380 0.8815 0.8745 0.8740 0.9425
(4.4994)  (42041)  (42433)  (3.7421)  (3.6338)  (3.6219)  (2.4120) (2.4183) (2.3876)  (3.3040)

0.75 0.9505 0.9440 0.9435 0.9440 0.9435 0.9395 0.8910 0.8910 0.8900 0.8590
(20.0482)  (18.2364)  (18.4496)  (15.3255)  (14.6024)  (14.5534) (8.1464) (8.1313)  (8.0384)  (8.0500)

1 0.9405 0.9340 0.9360 0.9285 0.9335 0.9325 0.8910 0.8860 0.8830 0.8220
(70.7625)  (63.9349)  (63.9721)  (50.3924)  (47.2016)  (47.1224)  (22.4075) (22.1787) (21.9509) (19.2900)

50 0.1 1 025 0.9470 0.5545 0.6225 0.9440 0.9475 0.8815 0.9205 0.9465 0.8710 0.9510
(0.0832) (0.0841) (0.0841) (0.0799) (0.1454) (0.1190) (0.0707)  (0.1401)  (0.1121)  (0.1967)

0.5 0.9495 0.9275 0.9305 0.9440 0.9450 0.9425 0.9100 0.9260 0.9180 0.9280
(04867)  (0.4852)  (0.4858)  (0.4640)  (0.4781)  (0.4723)  (0.3998)  (0.4162)  (0.4093)  (0.4759)

0.75 0.9420 0.9430 0.9435 0.9365 0.9370 0.9380 0.9115 0.9090 0.9095 0.8995
(1.7662) (1.7559) (1.7557) (1.6697) (1.6654) (1.6658) (1.4010)  (1.4050)  (1.4045)  (1.4040)

1 0.9410 0.9390 0.9415 0.9410 0.9425 0.9425 0.9240 0.9240 0.9235 0.8805
(5.1493)  (5.1123)  (5.1115)  (4.8077)  (4.7908)  (4.7900)  (3.8953) (3.8987) (3.8970)  (3.7480)

2 025 0.9545 0.5900 0.6290 0.9490 0.9560 0.8995 0.9305 0.9565 0.8930 0.9420
(0.3349) (0.3370) (0.3385) (0.3219) (0.5821) (0.4775) (0.2846)  (0.5607)  (0.4497)  (0.7775)

0.5 0.9540 0.9415 0.9495 0.9525 0.9585 0.9530 0.9260 0.9365 0.9280 0.9380
(1.9413)  (1.9350)  (1.9377)  (1.8490)  (1.9059)  (1.8818)  (1.5932) (1.6593)  (1.6323)  (1.9100)

0.75 0.9545 0.9540 0.9555 0.9520 0.9535 0.9535 0.9225 0.9250 0.9265 0.9025
(6.9250) (6.8875) (6.8851) (6.5361) (6.5245) (6.5215) (5.4790)  (5.4940) (5.4916) (5.6770)

1 0.9500 0.9485 0.9500 0.9440 0.9440 0.9435 0.9255 0.9255 0.9240 0.8980
(204533)  (20.3047)  (20.2981)  (19.0203)  (18.9490)  (18.9428)  (15.3698) (15.3797) (15.3735) (14.8200)

03 1 025 0.9515 0.8330 0.8525 0.9480 0.9535 0.9290 0.9100 0.9425 0.9090 0.9970
(0.1208)  (0.1189)  (0.1193)  (0.1163)  (0.1458)  (0.1329)  (0.1006)  (0.1324)  (0.1190)  (0.3026)

0.5 0.9455 0.9420 0.9475 0.9420 0.9465 0.9425 0.9090 0.9105 0.9100 0.9625
(0.5785)  (0.5698)  (0.5718)  (0.5462)  (0.5445)  (0.5436)  (0.4390)  (0.4415)  (0.4402)  (0.6126)

0.75 0.9550 0.9545 0.9565 0.9470 0.9485 0.9485 0.9200 0.9180 0.9170 0.9170
(20053)  (1.9717)  (1.9776)  (1.8702)  (1.8528)  (1.8519)  (1.4359) (1.4343)  (1.4309)  (1.5650)

1 0.9350 0.9350 0.9375 0.9290 0.9295 0.9290 0.9075 0.9075 0.9060 0.8695
(5.6849)  (55999)  (5.5954)  (5.1798)  (5.1501)  (5.1384)  (3.8338) (3.8485)  (3.8340)  (3.8130)

2 025 0.9455 0.8215 0.8490 0.9405 0.9465 0.9190 0.9110 0.9245 0.8915 0.9980
(0.4813) (0.4737) (0.4762) (0.4630) (0.5804) (0.5296) (0.4006)  (0.5277)  (0.4746)  (1.2140)

0.5 0.9520 0.9485 0.9520 0.9485 0.9510 0.9490 0.9120 0.9150 09115 0.9565
(23071)  (22695)  (2.2775)  (2.1806)  (2.1713)  (2.1678)  (1.7556) (1.7618)  (1.7559)  (2.3770)

0.75 0.9565 0.9515 0.9530 0.9490 0.9485 0.9480 0.9100 0.9100 0.9105 0.9115
(7.8518)  (7.7266)  (7.7310)  (7.2992)  (7.2340)  (7.2328)  (5.6277) (5.6248) (5.6123)  (6.3210)

1 0.9540 0.9525 0.9515 0.9520 0.9520 0.9510 0.9185 0.9180 0.9170 0.8700
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Table 1 (continued)

n d B a Coverage probability (Average width)
GCI-1 GCI-2 GCI-3 GFCI-1 GFCI-2 GFCI-3 BCI-1 BCI-2 BCI-3 NA
(22.3089)  (22.0112)  (22.0740)  (20.3208)  (20.2386)  (20.2162)  (14.9722) (15.0632) (15.0148) (15.0800)
05 1 025 0.9520 0.9210 0.9385 0.9460 0.9355 0.9360 0.9140 0.9035 0.9010 1.0000
(0.1518) (0.1467) (0.1476) (0.1442) (0.1495) (0.1452) (0.1226)  (0.1295)  (0.1249)  (0.3354)
0.5 0.9545 0.9435 0.9470 0.9485 0.9480 0.9465 0.8995 0.8985 0.8965 0.9525
(0.6539)  (0.6384)  (0.6396)  (0.6022)  (0.6029)  (0.5986)  (0.4533)  (0.4619)  (0.4562)  (0.6404)
0.75 0.9420 0.9390 0.9370 0.9400 0.9430 0.9415 0.9090 0.9080 0.9015 0.9040
(2.3325) (2.2605) (2.2604) (2.0837) (2.0668) (2.0585) (1.4355)  (1.4547)  (1.4383)  (1.5730)
1 0.9570 0.9465 0.9455 0.9500 0.9480 0.9460 0.9075 0.9085 0.9075 0.8695
(6.5910)  (6.4267)  (6.4708)  (5.7676)  (5.7452)  (5.7192)  (3.7059)  (3.7752)  (3.7346)  (3.6600)
50 05 2 025 0.9510 0.9355 0.9450 0.9460 0.9510 0.9460 0.9215 0.9150 09115 0.9990
(0.6006) (0.5828) (0.5863) (0.5714) (0.5932) (0.5763) (0.4869)  (0.5150)  (0.4971)  (1.3400)
0.5 0.9475 0.9400 0.9455 0.9450 0.9460 0.9435 0.8995 0.8955 0.8945 0.9595
(2.6358)  (2.5585)  (2.5736)  (2.4226)  (2.4189)  (23996)  (1.8206)  (1.8495)  (1.8268)  (2.6040)
0.75 0.9565 0.9495 0.9530 0.9450 0.9475 0.9475 0.9065 0.9070 0.9065 0.9070
(9.0899) (8.7917) (8.8439) (8.1954) (8.1086) (8.0593) (5.6316)  (5.7024)  (5.6376)  (6.1990)
1 0.9585 0.9510 0.9535 0.9485 0.9485 0.9480 0.9080 0.9065 0.9065 0.8715
(27.5466)  (26.4178)  (26.5151)  (24.0987)  (23.5513)  (23.4742)  (15.2586) (15.3109) (15.1464) (14.7300)
70 01 1 025 0.9505 0.5685 0.6120 0.9490 0.9545 0.8865 0.9260 0.9505 0.8780 0.9700
(0.0679) (0.0685) (0.0686) (0.0661) (0.1238) (0.1005) (0.0594)  (0.1201)  (0.0957)  (0.1681)
0.5 0.9430 0.9355 0.9320 0.9420 0.9425 0.9370 0.9170 0.9260 0.9215 0.9465
(0.3807)  (0.3801)  (0.3803)  (0.3683)  (0.3813)  (0.3754)  (0.3271)  (0.3414)  (0.3358)  (0.4044)
0.75 0.9455 0.9475 0.9455 0.9435 0.9450 0.9435 0.9285 0.9285 0.9295 0.9125
(1.3891) (1.3833) (1.3846) (1.3331) (1.3332) (1.3323) (1.1665)  (1.1716)  (1.1711)  (1.1920)
1 0.9530 0.9535 0.9550 0.9505 0.9515 0.9515 0.9345 0.9340 0.9335 0.8970
(3.8672)  (3.8486)  (3.8496)  (3.6632)  (3.6580)  (3.6579)  (3.1336) (3.1417) (3.1423)  (3.1000)
2 025 0.9420 0.5545 0.5975 0.9380 0.9575 0.8835 0.9170 0.9540 0.8740 0.9620
(02703)  (0.2731)  (0.2723)  (0.2629)  (0.4936)  (0.3994)  (0.2363)  (0.4793)  (0.3810)  (0.6732)
0.5 0.9525 0.9280 0.9370 0.9505 0.9510 0.9440 0.9315 0.9350 0.9265 0.9580
(1.5570)  (1.5541)  (1.5559)  (1.5047)  (1.5549)  (1.5334)  (1.3350) (1.3915) (1.3695) (1.6110)
0.75 0.9430 0.9430 0.9435 0.9425 0.9435 0.9415 0.9205 0.9210 0.9210 0.9205
(55039)  (5.4856)  (5.4879)  (52796)  (5.2789)  (52777)  (4.6180)  (4.6410)  (4.6389)  (4.8500)
1 0.9425 0.9400 0.9405 0.9345 0.9350 0.9355 0.9170 0.9175 0.9185 0.8955
(15.7916)  (15.7195)  (15.7238)  (15.0153)  (15.0011)  (15.0027)  (12.8193) (12.8654) (12.8640) (12.6000)
03 1 025 0.9510 0.8035 0.8290 0.9450 0.9385 0.9075 0.9130 0.9245 0.8855 0.9980
(0.0990) (0.0978) (0.0982) (0.0963) (0.1217) (0.1105) (0.0852)  (0.1126)  (0.1008)  (0.2575)
0.5 0.9500 0.9480 0.9500 0.9480 0.9475 0.9465 0.9175 0.9170 0.9195 0.9675
(0.4462)  (0.4417)  (0.4424)  (0.4286)  (0.4291)  (0.4279)  (0.3582) (0.3612)  (0.3600)  (0.5105)
0.75 0.9550 0.9515 0.9520 0.9450 0.9480 0.9465 0.9235 0.9195 0.9210 0.9235
(1.5133)  (1.4925)  (1.4954)  (1.4375)  (1.4279)  (1.4273)  (1.1694) (1.1701)  (1.1680)  (1.3100)
1 0.9515 0.9515 0.9475 0.9395 0.9420 0.9405 0.9120 0.9190 0.9175 0.8950
(Continued)
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Table 1 (continued)

n d B a Coverage probability (Average width)
GCI-1 GCI-2 GCI-3 GFCI-1 GFCI-2 GFCI-3 BCI-1 BCI-2 BCI-3 NA
(4.1597)  (4.1128)  (41209)  (3.8964)  (3.8915)  (3.8835)  (3.0928) (3.1118) (3.1027)  (3.1680)
2 025 0.9490 0.8125 0.8565 0.9450 0.9460 0.9205 0.9240 0.9380 0.9005 0.9975
(0.3943)  (0.3899)  (0.3910)  (0.3839)  (0.4871)  (0.4414)  (0.3398)  (0.4510)  (0.4033)  (1.0270)
0.5 0.9480 0.9440 0.9470 0.9470 0.9475 0.9460 0.9245 0.9195 0.9180 0.9680
(1.7944)  (1.7756)  (1.7789)  (1.7210)  (1.7216)  (1.7179)  (1.4438) (1.4543)  (1.4491)  (2.0400)
0.75 0.9465 0.9485 0.9485 0.9445 0.9460 0.9450 0.9185 0.9160 0.9155 0.9245
(6.0531) (6.0050) (6.0125) (5.7373) (5.7260) (5.7200) (4.6957)  (4.7173)  (4.7089)  (5.2490)
1 0.9525 0.9485 0.9535 0.9470 0.9475 0.9460 0.9155 0.9140 0.9125 0.9030
(16.6790)  (16.5342)  (16.5201)  (15.5679)  (15.5612)  (15.5351)  (12.3975) (12.4868) (12.4470) (12.8000)
05 1 025 0.9455 0.9315 0.9375 0.9435 0.9480 0.9445 0.9190 0.9145 0.9130 0.9995
(0.1214) (0.1188) (0.1193) (0.1173) (0.1215) (0.1185) (0.1032)  (0.1083)  (0.1051)  (0.2843)
0.5  0.9555 0.9455 0.9485 0.9535 0.9560 0.9505 0.9110 0.9080 0.9085 0.9665
(0.5014)  (0.4927)  (0.4934)  (0.4754)  (0.4785)  (0.4744)  (0.3787) (0.3864)  (0.3816)  (0.5469)
0.75 0.9470 0.9395 0.9415 0.9405 0.9375 0.9350 0.8995 0.8925 0.8885 0.9220
(1.6158) (1.5864) (1.5898) (1.5125) (1.5163) (1.5076) (1.1367)  (1.1585)  (1.1460)  (1.3220)
1 0.9515 0.9445 0.9485 0.9495 0.9510 0.9480 0.9085 0.9150 0.9130 0.8780
(43643)  (42973)  (43012)  (3.9679)  (3.9781)  (3.9531)  (2.8623) (2.9176) (2.8879)  (3.0120)
2 025 0.9485 0.9260 0.9400 0.9435 0.9510 0.9435 0.9235 0.9260 0.9155 1.0000
(0.4868) (0.4755) (0.4782) (0.4701) (0.4863) (0.4744) (0.4132)  (0.4333)  (0.4205)  (1.1360)
0.5 0.9470 0.9385 0.9440 0.9390 0.9410 0.9390 0.9020 0.9015 0.8970 0.9645
(2.0039)  (1.9570)  (1.9634)  (1.9038)  (1.9085)  (1.8932)  (1.5102) (1.5373) (1.5183) (2.1770)
0.75 0.9510 0.9450 0.9395 0.9470 0.9450 0.9430 0.9015 0.9065 0.9050 0.9295
(6.5959) (6.4775) (6.4983) (6.1463) (6.1703) (6.1311) (4.6165)  (4.7141)  (4.6601)  (5.2630)
1 0.9545 0.9485 0.9500 0.9500 0.9495 0.9470 0.9115 0.9110 0.9040 0.8985
(17.7282)  (17.3594)  (17.3515)  (16.1975)  (16.1722)  (16.0786)  (11.6063) (11.7858) (11.6622) (12.1700)
100 0.1 1 0.25 0.9415 0.5510 0.5930 0.9400 0.9430 0.8660 0.9220 0.9410 0.8545 0.9710
(0.0553)  (0.0556)  (0.0556)  (0.0542)  (0.1037)  (0.0833)  (0.0495)  (0.1012)  (0.0803)  (0.1411)
0.5 0.9510 0.9305 0.9400 0.9490 0.9505 0.9500 0.9330 0.9355 0.9310 0.9535
(0.3078)  (0.3075)  (0.3077)  (0.3004)  (0.3112)  (0.3064)  (0.2728)  (0.2848)  (0.2797)  (0.3375)
0.75 0.9450 0.9445 0.9460 0.9455 0.9460 0.9470 0.9305 0.9340 0.9335 0.9280
(1.0873)  (1.0842)  (1.0845)  (1.0534)  (1.0540)  (1.0538)  (0.9505)  (0.9555)  (0.9553)  (1.0000)
1 0.9560 0.9555 0.9555 0.9515 0.9515 0.9515 0.9385 0.9375 0.9370 0.9215
(2.9835)  (2.9709)  (2.9718)  (2.8675)  (2.8645)  (2.8645)  (2.5570) (2.5654)  (2.5647)  (2.5940)
2 025 09525 0.5505 0.6070 0.9485 0.9525 0.8785 0.9240 0.9500 0.8670 0.9685
(0.2212) (0.2225) (0.2226) (0.2171) (0.4155) (0.3344) (0.1980)  (0.4057)  (0.3213)  (0.5640)
0.5 0.9475 0.9340 0.9325 0.9455 0.9470 0.9415 0.9350 0.9385 0.9350 0.9595
(12256)  (1.2243)  (1.2251)  (1.1962)  (1.2397)  (1.2208)  (1.0857) (1.1348)  (1.1140)  (1.3430)
0.75 0.9520 0.9520 0.9505 0.9465 0.9437 0.9460 0.9295 0.9350 0.9340 0.9250
(43851)  (43720)  (4.3726)  (4.2514)  (42501)  (4.2491)  (3.8274) (3.8439) (3.8427)  (4.0260)
1 0.9475 0.9450 0.9490 0.9430 0.9445 0.9435 0.9290 0.9285 0.9285 0.9210
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Table 1 (continued)

n d B a Coverage probability (Average width)

GCI-1 GCI-2 GCI-3 GFCI-1 GFCI-2 GFCI-3 BCI-1 BCI-2 BCI-3 NA
(11.9827)  (11.9340)  (11.9350)  (11.4984) (11.4810) (11.4772)  (102306) (10.2612) (10.2597) (10.3800)

03 1 025 0.9500 0.8080 0.8345 0.9455 0.9515 0.9175 0.9160 0.9390 0.8965 0.9990
(0.0800)  (0.0792)  (0.0795)  (0.0784)  (0.1005)  (0.0907)  (0.0706)  (0.0942)  (0.0839)  (0.2153)

0.5  0.9465 0.9470 0.9450 0.9455 0.9475 0.9460 0.9250 0.9240 0.9205 0.9745
(0.3607)  (0.3582)  (0.3586)  (0.3501)  (0.3511)  (0.3502)  (0.3015)  (0.3042)  (0.3033)  (0.4278)

0.75  0.9495 0.9475 0.9495 0.9475 0.9490 0.9485 0.9280 0.9255 0.9245 0.9325
(1.1735) (1.1656) (1.1673) (1.1345) (1.1330) (1.1326) (0.9612)  (0.9652)  (0.9639)  (1.1020)

1 0.9530 0.9495 0.9520 0.9470 0.9475 0.9465 0.9200 0.9250 0.9240 0.9325
(3.1462)  (3.1255)  (3.1314)  (2.9870)  (2.9943)  (2.9876)  (2.5045) (2.5262)  (2.5190)  (2.6840)

2 025 0.9465 0.8100 0.8375 0.9465 0.9450 0.9155 0.9240 0.9345 0.8955 0.9985
(0.3192) (0.3167) (0.3174) (0.3127) (0.4020) (0.3623) (0.2825)  (0.3777)  (0.3362)  (0.8609)

0.5 09430 0.9440 0.9415 0.9405 0.9465 0.9445 0.9155 0.9185 0.9165 0.9815
(1.4291)  (1.4164)  (1.4196)  (1.3881)  (1.3909)  (1.3876)  (1.1972)  (1.2068) (1.2032)  (1.7100)

0.75  0.9480 0.9445 0.9435 0.9430 0.9415 0.9420 0.9155 0.9165 0.9170 0.9440
(4.7165) (4.6861) (4.6901) (4.5483) (4.5428) (4.5396) (3.8565)  (3.8734)  (3.8670)  (4.4200)

1 0.9575 0.9555 0.9570 0.9535 0.9550 0.9555 0.9310 0.9345 0.9350 0.9235
(12.5074)  (12.3930)  (12.3895)  (11.9186)  (11.9000) (11.8777)  (9.9598)  (10.0143) (9.9831)  (10.6400)

100 0.5 1 0.25 0.9425 0.9235 0.9305 0.9410 0.9380 0.9375 0.9150 0.9135 0.9095 1.0000
(0.0987) (0.0972) (0.0975) (0.0964) (0.0992) (0.0973) (0.0866)  (0.0901)  (0.0881)  (0.2391)

0.5 0.9460 0.9380 0.9405 0.9460 0.9425 0.9410 0.9145 0.9140 0.9120 0.9730
(03977)  (0.3927)  (0.3943)  (0.3833)  (0.3877)  (0.3845)  (0.3176)  (0.3250)  (0.3214)  (0.4559)

0.75 0.9465 0.9375 0.9425 0.9440 0.9410 0.9405 0.8945 0.8980 0.8970 0.9320
(1.1987) (1.1858) (1.1855) (1.1395) (1.1496) (1.1423) (0.9102)  (0.9316)  (0.9207)  (1.1110)

1 0.9510 0.9465 0.9470 0.9475 0.9480 0.9490 0.9140 0.9160 0.9125 0.8945
(32068)  (3.1582)  (3.1690)  (3.0107)  (3.0277)  (3.0067)  (2.3287) (2.3731)  (2.3499)  (2.5490)

2 025 0.9430 0.9260 0.9355 0.9385 0.9430 0.9370 0.9210 0.9190 0.9160 1.0000
(0.3954)  (0.3893)  (0.3908)  (0.3867)  (0.3974)  (0.3902)  (0.3477)  (0.3610)  (0.3532)  (0.9579)

0.5  0.9465 0.9385 0.9420 0.9440 0.9450 0.9430 0.9105 0.9075 0.9070 0.9775
(15561)  (1.5344)  (1.5369)  (1.4986)  (1.5135)  (1.5001)  (1.2423) (1.2697) (1.2541)  (1.8350)

0.75 0.9545 0.9470 0.9445 0.9545 0.9510 0.9495 0.9170 0.9180 0.9150 0.9275
(4.8595)  (4.8071)  (4.8234)  (4.6301)  (4.6799)  (4.6454)  (3.6927) (3.7840)  (3.7393)  (4.4050)

1 0.9460 0.9395 0.9415 0.9430 0.9490 0.9475 0.9145 0.9160 0.9140 0.9035
(13.0948)  (12.9117)  (12.9682)  (12.2906)  (12.3802)  (12.2868)  (9.5377)  (9.7308)  (9.6352)  (10.1300)

Note:

The coverage probabilities close to or greater than the nominal confidence level of 0.95 are in bold (values of 0.9450 and above will be rounded to 0.95), and the shortest
average widths are in italics.

pollution levels. Based on Mohammadi, Alavi & McGowan (2017), which assessed wind
speed at ten stations in Canada using AIC and BIC, the wind speed data showed a better fit
to the BirSau distribution compared to nine other models (Rayleigh, Inverse Gaussian,

Logistic, Log-Logistic, Normal, Log-Normal, Weibull, Generalized Extreme Value, and

Nakagami). Therefore, BirSau distribution is utilized to estimate wind speed and power
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Figure 2 Comparison of the (A) coverage probabilities and (B) average widths for estimation of the 95% confidence interval for the variance of
delta-BirSau distribution for various sample sizes. (A) Coverage probabilities and (B) average widths.
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distributions. Since previous studies using the BirSau distribution (Puggard, Niwitpong &
Niwitpong, 2022a, 2022b) focused only on wind speeds greater than zero, the delta-BirSau
distribution is more suitable when the wind speed data includes zero values. Therefore, this
study is interested in estimating the confidence interval for the variance of wind speeds
that include zero values using the delta-BirSau distribution. This highlights the importance
of accurately estimating wind speed, particularly in industrial areas. To achieve this, we
analyze daily wind speed data from October to December 2023 in industrial settings.
Specifically, Prachin Buri and Rayong provinces, Thailand (Thai Meteorological
Department Automatic Weather System, https://www.tmd.go.th/service/tmdData),
employing ten distinct methods outlined in Table 2 to establish confidence intervals for the
wind speed data. In our study, the preprocessing of raw data involves the following key
steps, starting with selecting the provinces of interest: First, we collected wind speed data,
including zero values, from the website of the Meteorological Department. The raw

data was then divided into two categories: data where wind speed is greater than zero and
data where wind speed is zero. Next, we performed parameter estimation. For the wind
speed data greater than zero, we estimated the parameters « and f3. For the zero wind speed
data, we estimated the parameter 6. Following this, we used the estimated parameters to
calculate the variance of the wind speed data. Finally, we calculated the confidence
intervals for the variance at a 95% confidence level to assess the reliability of our variance
estimates. For wind speed data, the parameter o indicates the skewness of the distribution,
reflecting the tendency for unusually high wind speeds. The parameter f represents the
scale and spread of wind speeds in the area, capturing the mean and variance. The
parameter 0 shows the proportion of zero values in the dataset, with a higher ¢ value
indicating more zero values. For wind speed data from Prachin Buri province, there were

Ratasukharom et al. (2024), PeerdJ, DOI 10.7717/peerj.18272 24/33


https://www.tmd.go.th/service/tmdData
http://dx.doi.org/10.7717/peerj.18272/fig-2
http://dx.doi.org/10.7717/peerj.18272
https://peerj.com/

Peer/

Table 2 The daily wind speed data from Prachin Buri and Rayong, Thailand.

Provinces Wind speed (Knots)

Prachin Buri 1.00 0.00 0.63 0.00 0.00 2.00 1.00 1.50 0.88 3.13
0.00 1.13 0.88 1.00 0.50 1.25 2.00 1.50 1.13 4.50
0.00 1.25 0.63 0.75 0.63 3.38 1.38 0.88 0.88 3.38
0.75 0.00 1.38 1.38 0.50 3.38 2.13 1.00 0.50 1.63
1.25 0.00 0.50 1.75 1.00 2.88 2.00 2.25 0.00 2.38
0.00 0.50 1.13 1.50 1.25 1.25 1.00 0.75 1.75 1.38
0.00 1.88 0.63 0.00 1.13 0.63 0.00 0.00 1.63 0.88
1.00 0.88 1.13 0.00 0.88 0.75 1.75 0.50 0.63 1.25
0.75 0.50 1.00 0.88 1.50 0.00 1.25 0.00 1.13 0.63
0.00 0.00

Rayong 1.63 0.00 1.00 1.50 1.25 1.50 2.75 3.13 1.50 2.38
1.13 1.00 1.88 0.50 1.50 2.25 2.50 2.00 1.88 5.25
1.63 0.88 1.50 1.50 0.38 4.38 1.25 1.38 1.88 3.88
0.00 0.63 1.63 1.25 1.00 3.00 3.00 1.38 1.13 5.63
1.63 0.75 1.25 1.88 1.25 2.50 2.13 3.00 1.75 3.50
7.00 1.88 1.38 2.13 0.63 1.88 2.00 1.50 1.75 2.13
4.63 1.50 0.88 1.75 0.25 2.75 1.25 1.88 1.38 2.63
3.13 0.63 1.00 1.13 1.88 2.00 2.25 1.38 2.75 1.13
1.25 1.38 2.13 2.00 2.13 1.88 1.50 1.63 0.88 2.25
1.38 1.75

92 measurements, consisting of 74 positive values and 18 zeroes. Similarly, there were 92
measurements from Rayong Province, with 90 positives and two zeroes. The histogram
and normal Q-Q plot of this data is presented in Figs. 3 and 4. The histogram indicates that
the data follow a right-skewed distribution. At the same time, in the Q-Q plot, it is evident
that the wind speed data from both provinces does not follow a normal distribution, as all
the data points do not lie in a straight line.

As the wind speed data consistently consist of zero and positive values, we tested the
distributions of positive wind speed data to ascertain if they adhere to BirSau distributions.
This assessment used the AIC and BIC. According to Vrieze (2012), when comparing
models with continuous and categorical latent variables, it is preferable to determine fit
based on a likelihood function that considers higher-order moments of the data. AIC and
BIC are helpful because they allow for comparing non-nested models, even when the
likelihood functions differ. Therefore, the BirSau distribution with the smallest AIC and
BIC values emerged as the best fit for the positive wind speed datasets, as reported in
Table 3. Although various distributions, such as the Weibull distribution (Hizoune et al.,
2024; Aljeddani & Mohammed, 2023; Kurniawan, 2023), have been used to analyze wind
speed data, it is noteworthy that the Weibull distribution provides lower AIC and BIC
values for this dataset compared to the BirSau distribution. Therefore, the delta-BirSau
distribution is more suitable for the wind speed data we studied. We estimated the
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Figure 3 The (A) histogram and (B)
Thailand.

normal Q-Q plot of wind speed data from October to December 2023 in Prachin Buri province,
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Figure 4 The (A) histogram and (B) normal Q-Q plot of wind speed data from October to December 2023 in Rayong province, Thailand.

Full-size Kl DOTI: 10.7717/peerj.18272/fig-4

parameters o, 5, and ¢ using the MLE method, with summary statistics derived for the
wind speed dataset originating from Prachin Buri province, including values such as
=92, nyg) = 18, myy) = 74, 01 = 0.1957, 8, = 0.5772, f3; = 1.4072, and £, = 1.1758.
Correspondingly, summary statistics for the dataset from Rayong province are denoted as
ny = 92, ny(g) = 2, ny1) = 90, (52 = 0.0217, &, = 0.6680, ﬁz = 1.2008, and 7, = 1.0267.
The calculated two-sided confidence intervals for T can be found in Tables 4 and 5.
From the wind speed data of Prachin Buri province, when compared with the
parameters specified in the data simulation, it was found that with a sample size of
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Table 3 AIC and BIC values for fitting the positive wind speed data from Prachin Buri and Rayong,

Thailand.

Provinces Models Weibull BirSau

Prachin Buri AIC 155.5196 137.9650
BIC 160.1277 144.8770

Rayong AIC 252.8752 245.8270
BIC 257.8748 253.3264

Table 4 The 95% confidence intervals for the variance of wind speed data for the Prachin Buri

province.
Methods Confidence intervals for 7, Width
Lower Upper
GCI1 0.9952 1.5560 0.5608
GCI2 0.9838 1.5440 0.5602
GCI3 1.0087 1.5670 0.5583
GEFCI1 1.0075 1.5390 0.5315
GFCI2 1.0088 1.5530 0.5442
GEFCI3 1.0068 1.5470 0.5402
BCI1 1.0175 1.4601 0.4426
BCI2 1.0276 1.4549 0.4273
BCI3 1.0188 1.4696 0.4508
NA 0.8797 1.5020 0.6223

Table 5 The 95% confidence intervals for the variance of wind speed data for the Rayong province.

Methods Confidence intervals for 7, Width
Lower Upper
GCI1 0.9134 2.1880 1.2750
GCI2 0.9347 2.2110 1.2770
GCI3 0.9153 2.1910 1.2760
GFCI1 0.9030 2.0460 1.1420
GFCI2 0.9231 2.0670 1.1440
GFCI3 0.9020 2.0440 1.1430
BCI1 0.8823 1.8990 1.0160
BCI2 0.9050 1.9190 1.0140
BCI3 0.8843 1.9000 1.0160
NA 0.7348 1.894 1.1590

n = 100, parameters 6 = 0.1, o = 0.5, and § = 2, and for Rayong province, with n = 100,

parameters 6 = 0.1, « = 0.5, and f# = 1, from Table 1. There are consistent study results:
the GCI-1,2,3, GFCI-1,2,3, and NA methods obtained CPs close to the nominal confidence
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level of 0.95, but the BCI-1,2 and 3 methods are below the nominal confidence level.
Therefore, the BCI-1,2 and 3 are not considered. Notably, GFCI-1, utilizing the shortest
width method, outperformed GCI-1,2,3, GFCI-1,2 and NA. Thus, for constructing the
confidence interval for the variance of wind speed data from October to December 2023 in
Prachin Buri and Rayong provinces, Thailand, the GFCI-1 method is recommended.

The proposed method is the most accurate estimation method for wind speed data
because it uses statistical techniques and is easy to calculate. Additionally, there are
ready-made functions in the R statistics software that make it convenient for users to use
efficiently.

DISCUSSION

Understanding wind speed variability is crucial for assessing how PM2.5 levels disperse.
Research by Amnuaylojaroen, Kaewkanchanawong ¢ Panpeng (2023) revealed that
increased wind speed correlates with decreased PM2.5 concentrations, demonstrating the
impact of wind speed on reducing PM2.5 levels. Therefore, accurately measuring wind
speed fluctuations is vital for effective air quality assessment and PM2.5 management. This
study aims to estimate the confidence intervals for wind speed variance to address these
uncertainties.

The study by Puggard, Niwitpong ¢ Niwitpong (2022a) on confidence intervals for the
variance and difference of variances of the BirSau distribution found that the GCI
produced a CP greater than the nominal confidence level of 0.95. In contrast, the BCI
resulted in a CP less than nominal confidence level of 0.95. These findings are consistent
with the results of this work. However, while the BirSau distribution is suitable for data
with values greater than zero, the delta-BirSau distribution is recommended for data that
includes values of zero.

Thus, the objective of this research was to estimate the confidence interval of the
variance of the delta-BirSau distribution utilizing the GCI-1,2,3, GFCI-1,2,3, BCI-1,2,3,
and NA methods. The simulation results indicate that the CPs of GCI-1,2,3, and GFCI-
1,2,3 were consistently greater than or closed to the nominal confidence level. This is
consistent with previous research from La-Ongkaew, Niwitpong ¢ Niwitpong (2021),
Maneerat, Nakjai & Niwitpong (2022), and Thangjai, Niwitpong ¢ Niwitpong (2024). In
the results of estimating variance confidence intervals using various methods, it was found
that both the NA method and the method based on BCI are less computationally
demanding and provide shorter AW compared to other methods. However, these methods
exhibited a CP less than the nominal confidence level of 0.95. On the other hand, the
method based on GFCI demonstrated better accuracy than the method based on GCI,
although it required more computational time. However, considering AW together, we
find that the GFCI-2 method performs well for small sample groups. For medium-sized
samples, the GFCI-3 method is the most appropriate choice. Finally, for large samples, the
GFCI-1 method yields the best results.

This study estimates the confidence interval for the variance of the delta-BirSau
distribution. Future research could expand this approach to incorporate simultaneous
confidence intervals for all pairwise differences between the variances of multiple

Ratasukharom et al. (2024), PeerdJ, DOI 10.7717/peerj.18272 28/33


http://dx.doi.org/10.7717/peerj.18272
https://peerj.com/

Peer/

delta-BirSau distributions. Moreover, the Bayesian credible interval method could be
examined to evaluate its effectiveness in estimating these confidence intervals.

CONCLUSIONS

We recommend creating a confidence interval to estimate the variance of the delta-BirSau
distribution. This interval is formed through different methods, such as GCI-1,2,3, BCI-
1,2,3, GFCI-1,2,3, and NA. To evaluate how well they work, we conducted a numerical
study using Monte Carlo simulation, analyzing their CPs and AWs. The simulation results
indicate that the CPs of GCI-1,2,3 and GFCI-1,2,3 were greater than or close to the
nominal confidence level. However, for small sample sizes, GCI-1 and 3 were under the
nominal confidence level. Considering the AW value as well, it is found that GFCI-2
performed the best for small sample sizes, GFCI-3 excelled for medium sample sizes, and
GFCI-1 stood out for large sample sizes, making it suitable for constructing the confidence
interval for the variance of the delta-BirSau distribution. In contrast, the CPs of BCI-1,2,3
and NA were under the nominal confidence level, rendering them inappropriate solutions
for this scenario. Furthermore, when applying these methods to analyze wind speed
datasets from Prachin Buri and Rayong provinces in Thailand’s industrial area, the
outcomes align with those obtained from the simulation study. The GFCI-1 method is the
most suitable for estimating wind speed when the data set is large. The GFCI-3 and GFCI-2
methods are most appropriate for medium and small data sets.
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