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ABSTRACT

Background. Understanding the processes that influence distribution of organisms is a
major goal in evolutionary biology. Speciation in freshwater fishes is mainly associated
with the “island-like” model of evolution, in which the formation of land barriers
between different hydrographic basins interrupts gene flow and promotes isolation.
Freshwater fish therefore provide an excellent model system for macro- and micro-
evolutionary studies. The Mesa Silverside, Chirostoma jordani, is one of the most
widespread freshwater fish species in the Mexican Plateau, a geologically complex phys-
iographic region with a long history of genesis, destruction and compartmentalization
of hydrographic basins that has promoted the dispersal and isolation of freshwater
fishes.

Methods. We used mitochondrial (Cytb and D-loop) and nuclear (first intron of the
ribosomal protein S7) data and used phylogeographic and coalescent based methods
to elucidate the evolutionary history of C. jordani throughout its distributional range
on the Mexican Plateau.

Results. The results obtained in the present study revealed that C. jordani consists of
two main genetic groups with geographical correspondence. Clade I occur exclusively
in north-western basin and shows population structure. Clade II is widely distributed
across the west, central and eastern basins without population structure. The split
between these two main clades was estimated at 1.4 Mya. This cladogenetic event
may be associated with the allopatric process promoted by the fragmentation and
compartmentalization of hydrographic basins induced by the geological and climatic
history of the Mexican Plateau.
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INTRODUCTION

Understanding the processes and patterns of biodiversity distribution is a major goal in
evolutionary biology (Mouquet et al., 2012; Carroll et al., 2014). High speciation rates in
freshwater fishes are mainly associated with an “island-like” model of evolution, where
the formation of land barriers between isolated aquatic basins interrupts gene flow, which
promotes the accumulation of unique adaptations, and eventually the cladogenesis of
isolated populations (Bloom et al., 2013; Campanella et al., 2015; Betancourt-Resendes,
Pérez-Rodriguez & Dominguez-Dominguez, 2018). Under this scenario, freshwater fishes
are regarded as a good model system in which to integrate macro- and micro-evolutionary
studies, especially in areas with unstable geological or climatic histories (Seehausen &
Wagner, 2014).

The Mexican Plateau has been characterized by high tectonic and volcanic activity since
the Miocene and is still active at present. This activity is considered the main cause of the
dynamic genesis, compartmentalization and destruction of hydrographic basins (Ferrari et
al., 2012; Gémez-tuena, Orozco-esquivel & Ferrari, 2005). These geological processes are also
the main mechanism that limits or enhances gene flow between populations and drives
speciation in freshwater fishes. (Beltrdn-Lépez et al., 2018; Betancourt-Resendes, Pérez-
Rodriguez & Dominguez-Dominguez, 2018; Betancourt-Resendes et al., 2019; Dominguez-
Dominguez et al., 2008a; Dominguez-Dominguez et al., 2010; Pérez-Rodriguez et al., 2015;
Pérez-Rodriguez et al., 2016; Piller et al., 2015).

One of the most widespread species of freshwater fishes of the Mexican Plateau is
the Mesa Silverside, Chirostoma jordani Woolman, 1894 (Atherinopsidae) (Barbour,
1973a; Miller, Minckley ¢ Norris, 2005). It is distributed in the upper parts of the Panuco,
Cazones and Tecolutla basins and in Totolcingo Lake to the east, the Lerma and Santiago
Rivers, Cuitzeo, Valley of Mexico, and Chapala basins in the central region, the upper
Ameca River, Magdalena and Atotonilco-San Marcos endorheic basins to the west and
the Mezquital River to the north (Barbour, 1973a; Miller, Minckley ¢ Norris, 2005). The
Mesa Silverside is one of the smallest silverside species, occurring in both lentic and lotic
ecosystems. Its ecological versatility is thought to be a key factor contributing to its broad
distribution. (Barbour, 1973a). The species shows low genetic differentiation between some
geographically isolated populations (Bloom et al., 2009), but high phenotypic plasticity
between lentic and lotic ecosystems, suggesting that specific environmental forces drive
body shape differentiation between habitats, mainly in body shape and mouth position
(Foster, Bower ¢ Piller, 2015). Despite the morphological differences among populations
of C. jordani, the taxonomy of the species has remained relatively stable, with three
synonymies: Atherinichthys brevis Steindachner (1894), described from Cuitzeo Lake,
Chirostoma mezquital (Meek, 1904), described from Mezquital River in Durango, and
Poblana hidalgoi Alvarez del Villar, 1953, described from a dam near Tula, in Hidalgo
(Barbour, 1973b; Miller ¢ Smith, 1986). The validity of C. mezquital is the only remaining
controversy (Miller, Minckley & Norris, 2005).

Due to the morphological plasticity of this species, DNA sequence data has been
a powerful tool for testing phylogenetic, biogeographic, phylogeographic and species
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boundary hypotheses within the silversides (Betarncourt-Resendes, Pérez-Rodriguez &
Dominguez-Dominguez, 2018; Betancourt-Resendes et al., 2019; Pifieros et al., 2022; Bloom et
al., 2009; Campanella et al., 2015; Barriga-Sosa et al., 2005; Fluker, Pezold & Minton, 2011;
Unmack, Allen & Johnson, 2013). Previous genetic studies of widespread freshwater fishes
throughout the Mexican plateau have found geographic congruence in terms of genetic
structure, which has frequently been associated with the historical configuration of the
river drainages, e.g., in the Chirostoma humboldtianum species group (Betancourt-Resendes
et al., 2019; Pifieros et al., 2022), Poeciliopsis infans (Beltrdn-Lopez et al., 2018), Goodea
atripinnis (Beltrdn-Lopez et al., 2021) and Moxostoma austrinum (Pérez-Rodriguez et al.,
2016). Some of the populations that were identified as genetically differentiated, were later
split into independent taxonomic entities, e.g., Zoogoneticus quitzeoensis —Z. purhepechus
(Dominguez-Dominguez et al., 2008a; Dominguez-Dominguez et al., 2008b), Xenotoca eiseni
—X. doadrioi —X. lyonsi (Piller et al., 2015; Dominguez-Dominguez, Bernal-Zuiiiga ¢ Piller,
2016), Yuriria alta =Y. amatlana (Dominguez-Dominguez, Pompa-Dominguez ¢ Doadrio,
2007a; Dominguez-Dominguez, Pompa-Dominguez ¢ Doadrio, 2007b), Notropis calientis
—N. grandis —N. marhabatiensis (Dominguez-Dominguez et al., 2009) and Algansea tincella
—A. amecae (Pérez-Rodriguez et al., 2009a; Pérez-Rodriguez et al., 2009b).

Therefore, we hypothesized that geographically isolated populations of the Mesa
Silverside will follow the same pattern of population and phylogenetic structure as
other freshwater fishes of the Mexican Plateau (Beltrdn-Lopez et al., 2018; Dominguez-
Dominguez et al., 2008a; Dominguez-Dominguez et al., 2008b; Pérez-Rodriguez et al., 2016).
We conducted a phylogeographic study of C. jordani throughout its distribution range
(Barbour, 1973a; Miller, Minckley ¢~ Norris, 2005) using a multi-locus approach, employing
both mitochondrial and nuclear data sets to: (1) elucidate the evolutionary history of the
group and its relationship to geological activity over time, (2) test the genetic structure of
the currently isolated populations, and (3) determine the taxonomic inaccuracies within a
molecular framework.

MATERIALS & METHODS

Sample collection and molecular data

We obtained 170 specimens of C. jordani from 33 localities across the species’ distributional
range (Table 1, Fig. 1), including the only two known northern populations: one from
the Bolanos River and the other from the upper Mezquital. We captured fishes with
the permission of local authorities, using electrofishing and seine netting methods, and
euthanized them with tricaine-mesylate (MS-222). In addition, some specimens were
obtained by local fishermen. The care and use of the animals complied with animal
welfare laws, guidelines and policies, as approved by SEMARNAT-SGA/DGVS/2009/19,
SEMACCDET-0S-0084/2019 and PPE/DGOPA-014/20. We preserved fin clips tissue taken
from each specimen in 96% ethanol. The whole fish were fixed in 5% formalin, preserved
in 70% ethanol, and identified following Barbour (1973b) and Miller, Minckley ¢» Norris
(2005). Tissue samples and specimens were deposited in the Ichthyological Collection of
the Universidad Michoacana de San Nicolas de Hidalgo (CPUM).
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Table 1 Samples localities, biogeographic regions, sequence information, and population assignment.

Locality Biogeographic region/Coordinates Cytb dloop S7 Population

(UTM)/altitude(msnm) sequences sequences sequences assigment

1 La Vega Ameca/ 4 5 A2 111
619800.499-2287120.82 N — W /1258

2 El Tesorero Bolafos-Santiago/709002.563 —2526197.09 N — W /2121 2 3 N4 I

3 Tejocotal Cazones/589749.097 —2226765.78 N — W /2127 5 9 6 1I

4 Cajititlan Santiago/ 3 5 A10 I
674261.47-2258395.41 N — W /1554

5 Petatan Chapala/ 7 7 7 I
722833.606-2230914.75 N — W /1523

6 Los Negritos Chapala/ 13 5 0 I
750047.08-2220053.79 N — W /1520

7 San Juanico Cotija/ 6 5 A10 I
741703.912-2196193.06 N — W /1839

8 Andocutiin Cuitzeo/ 6 5 A10 1
1305189.933-2206884.41 N — W /1835

9 Balneario Huingo Cuitzeo/ 2 5 3 I
308083.243-2202811.12 N — W /1842

10 Sengio Cuitzeo/347332.761 —2186273.65 N — W /2383 5 4 1 I

11 Orandino Lower Lerma/ 6 10 7 1I
779796.889-2208878.84 N — W /1570

12 Presa de Garabato Santiago/ 2 2 0 I
739804.272-2282737.64 N — W /1714

13 Magdalena Magdalena/ 4 7 N8 I
705892.034-2312789.4 N — W /1364

14 Guadalupe Aguilera Mezquital /528970.567 — 2704378.12 N — W /1996 5 8 A0 VI

15 Presa Angamacutiro Middle Lerma/ 6 4 0 I
215027.129-2228144.01 N — W /1702

16 Arroyo Neutla Middle Lerma/ 1 1 A2 I
306311.287-2289428.77 N — W /1885

17 Presa Echevereste Middle Lerma/ 10 10 6 1I
224023.558-2344597.77 N — W /1897

18 Taretan Middle Lerma/ 1 2 2 I
257244.148-2298541.97 N — W /1746

19 San Francisco del Rincon Middle Lerma/ 0 1 0 1
204225.233-2331772.92 N — W /1781

20 Yuriria Middle Lerma/ 4 7 2 I
280552.445-2240911.7 N — W /1739

21 Presa de Guapango Panuco/ 4 4 4 1
425748.229-2208809.93 N — W /2621

22 Tepeji del Rio Panuco/ 3 4 N4 I
467199.404-2207128.25 ”N-W/2119

23 Belem del Refugio Verde-Santiago/ 1 1 A2 I

765619.211-2383092.54 N — W /1720

(continued on next page)
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Table 1 (continued)

Locality Biogeographic region/Coordinates Cytb dloop S7 Population

(UTM)/altitude(msnm) sequences sequences sequences assigment

24 Lagos de Moreno Verde-Santiago/ 6 6 7 v
191450.178-2363469.41 N — W /1854

25 Nochistlan Verde-Santiago/ 6 6 N6 111
734535.703-2369224.73 N — W /1904

26 La Paz Dam Verde-Santiago/ 2 2 0 1I
230865.787-2418623.33 N-W/

27 Chichimeco Dam Verde-Santiago/ 5 8 5 I
771310.885-2436011.25 N — W /1953

28 Ojuelos Verde-Santiago/ 6 6 3 I
206880.187-2409825.03 N — W /2077

29 Rio Chilerillo Verde-Santiago/ 5 9 9 I
7637116.407-2400295.99 N — W /1766

30 Rio Verde-Balneario Las flores Verde-Santiago/ 5 9 A10 v
726741.722-2324472.96 N — W /1504

31 Rio Verde-Sn Nicolas de las Flores Verde-Santiago/ 4 6 N6 1
754349.293-2357029.14 N — W /1668

32 San Isidro Verde-Santiago/794547.619 —2323207.65 N — W /2091 0 2 0 I

33 Cuemanco Mexico Valley/ 7 2 0 I

490185.98-2134495.23 ”N-W/2238

Total 145 170 146

Notes.
"“samples included both alleles from sequences of the first inron of the ribosomal protein S7.
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Figure 1 Geographic locations of Chirostoma jordani throughout the Mexican Plateau. Circles

are colored according to biogeographic regions proposed by Dominguez-Dominguez, Doadrio ¢ Perez-

Ponce de Leon (2006). The numbers in the legends correspond to localities as described in Table 1.
Full-size G DOI: 10.7717/peer;j.18256/fig-1
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We isolated genomic DNA using the conventional proteinase K/phenol/chloroform
protocol (Hillis, Moritz & Mable, 1996). Polymerase chain reaction (PCR) was used to
amplify the mitochondrial Cytochrome b locus (Cytb: 1,140 bp) using the primers Glud-G
(Palumbi, 1996) and H16460 (Perdices et al., 2002). A fragment of the hypervariable control
region (D-loop: 350 bp) also was amplified using the primers RCA and RCE (Anderson et
al., 1981; Kim et al., 1999) and, a fragment of the first intron of the ribosomal protein S7
(S7: 629 bp) also was amplified using the primers S7RPEX1F and S7RPEXIR (Chow ¢*
Hazama, 1998). The PCR cycling conditions and primers sequences are described in Table
S1. The PCR products were visualized on a 1.5% agarose gel and amplicons were submitted
to MACROGEN Korea for sequencing.

The chromatograms of the recovered sequences were manually examined to eliminate
potential sequencing errors. We performed the alignments manually using the software
Geneious v.4.8.5. We translated the Cytb alignments to amino acids to verify the absence
of stop codons along the sequence. We resolved the heterozygous sites for the S7
sequences using the algorithm provided by PHASE 2.0 (Stephens, Smith ¢ Donnelly,
2001), as implemented in DnaSP v. 5.10 (Librado ¢ Rozas, 2009), employing the default
parameters. The non-recombination test of S7 was conducted using the software DnaSP
v. 5.10 (Librado ¢ Rozas, 2009). Additionally, we also gathered sequences data from
several related species including Chirostoma estor, Chirostoma humboldtianum, Chirostoma
chapalae, Chirostoma sphyraena, and Chirostoma attenuatum. These species were used as
outgroups in the gene tree analyses. The DNA sequences were deposited in NCBI databases
(https:/www.ncbi.nlm.nih.gov/), accession numbers are included in Table S2. For the
phylogenetic analyses, the best-fit model for each marker was obtained in PartitionFinder
v.1.1.0 (Lanfear et al., 2012) using the Akaike Information Criterion (AIC).

Gene trees, genetic distance and haplotype networks

We inferred gene trees of haplotype data files of both mtDNA (Cytb and D-loop) and nDNA
(S7) using both, maximum likelihood (ML) and Bayesian Inference (BI) approaches. The
ML was run in RAXML (Stamatakis, Hoover ¢ Rougemont, 2008; Silvestro ¢ Michalak,
2012; Stamatakis, 2014) with the AICc-select model with three gene partitions. Bayesian
analyses were run in MrBayes 3.2.2 (Ronquist et al., 2012). Two independent runs were
implemented with four MCMCs and 10,000,000 generations, sampling every 100 trees.
Chain convergence was verified by a suitable effective sample size (ESSs >200) for all
parameters in Tracer package v. 1.7, discarding 10% of generations as burn-in (Rambaut
et al., 2018; Sahlin, 2011). Additionally, we estimated the uncorrelated p genetic distance
based on both mtDNA and nDNA using “APE” v.5.8 (Paradis, Claude ¢ Strimmer, 2004)
package implemented in R.

To examine the geographic distribution of haplotypes, we constructed a haplotype
network for each independent locus in HaploView v. 4.2 (Barrett et al., 2005), based on an
unrooted ML tree obtained in RAXML, through the CIPRES Science Gateway v.3.3 (Miller
etal., 2015).
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Genetic structure
To determine the amount of genetic variation partitioned within and among populations,
an analysis of molecular variance (AMOVA) was performed in ARLEQUIN (Excoffier,
Smouse & Quattro, 1992; Excoffier ¢ Lischer, 2010) for the three separate loci. This analysis
was run with significance levels set at oo = 0.05 and 10,000 random permutations.

We used Hierarchical Bayesian Analysis of Populations Structure (hBAPS) (Cheng
et al., 2013), to examine the genetic population structure, using the Single Nucleotide
Polymorphism (SNPs) matrix from the mtDNA and nDNA sequences. The analysis was
carried out in the RhierBAPS (rBAPS) package implemented in R language (Cheng et al.,
2013; Hill et al., 2019). The initial number of clusters assigned was equal to the number
of populations with a length of run = 1,000,000. To plot the groups obtained, we used
a guide tree result estimated using a pml: Likelihood in package “phangorn” (Schliep,
2011) implemented in R. The bar-plot graphics of probability assignment of rBAPS results
were generated in R package. Additionally, we calculated the ®ct, ®st and Psc values
in ARLEQUIN (Excoffier, Smouse ¢ Quattro, 1992; Excoffier ¢ Lischer, 2010) for the main
clusters recovered in hBASP to mtDNA and nDNA.

Time calibration

To estimate the divergence time within C. jordani we concatenated mtDNA and nDNA
haplotypes into a single data set. The time calibration analysis was performed using
BEAST 2 package (Bouckaert et al., 2014), using a coalescent prior (Bayesian skyline
plot). We included samples of related species as described in the gene tree analysis. We
used an uncorrelated lognormal clock. Due to a limited fossil record for the group, the
molecular clock was calibrated with Cytb rate of 0.005 substitutions/site/Mya estimated
for Atheriniformes fishes (Campanella et al., 2015; Unmack, Allen ¢ Johnson, 2013). We
estimated the mutation rate of D-loop and S7 relative to Cytb, using a normal prior
(0.005 £ 0.001). The best-fit models of nucleotide evolution were used as estimated in
PartitionFinder. The assays were performed in BEAST 2 implemented on the web server
CIPRES Science Gateway v. 3.3 (Miller et al., 2015). The analysis was run for 100,000,000
generations sampling each 1,000 generations. Ten percent of the runs were discarded
as burn-in. Two independent runs were performed and both files were combined using
LogCombiner v.2 (Bouckaert et al., 2014). Posterior probability density of the combined
tree file was summarized with TreeAnnotator v. 2 (Helfrich et al., 2018).

RESULTS

Molecular data

One hundred seventy specimens were collected from 33 localities from 14 biogeographic
regions (sensu Dominguez-Dominguez et al., 2010) in the Mexican Plateau (Fig. 1; Table
1). One hundred forty-five sequences were obtained for the mitochondrial Cytb locus of
1,000 bp of length. One hundred seventy sequences were obtained for the mitochondrial
D-loop locus with 333 bp. For the S7 nuclear locus, 99 sequences were obtained with 629
bp, and all heterozygous sites found in the S7 sequences were successfully resolved for SNP
variation (phase threshold value >85%), producing 146 genotypes (Table 1). The best-fit
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models of nucleotide evolution were as follows, for Cytb was TrN + G, GTR +1 +G for
D-loop and GTR+G for the §7.

Gene trees, genetic distance and haplotype networks

The mtDNA gene tree using BI recovered two clades (Fig. 2). Clade I (Fig. 1) is not
supported by BI but is supported by ML and includes haplotypes from La Vega (Ameca
basin), Belem del Refugio, Nochistlan, Lagos de Moreno, and Tepatitlan in the Verde River
(Verde-Santiago Basin), as well as the Guadalupe Victoria dam (Mezquital basin). Clade
IT (Fig. 1) is well supported by BI (posterior probabilities (pp) = 1) but not by ML, and
includes haplotypes from Cazones, Chapala, Cotija, Cuitzeo, Bolafios-Santiago, Magdalena,
Lerma, Pénuco, Valle de México, El Chichimeco, La Paz, Ojuelos, Rio el Chilerillo, and San
Nicolas de las Flores (Verde-Santiago basins) (Fig. 2). The ML estimation also recovered
two clades, with the same population distribution as in the BI analysis. Clade I is supported
with a bootstrap of 87, but Clade II is not supported by ML (Fig. 2). The S7 haplotype data
gene tree recovered a basal polytomy among populations without geographical clustering
in both BI and ML approaches (Fig. S1). The uncorrected P-distance between Clade I and
Clade II was estimated at 3% using mtDNA sequences (Fig. 52) and 1% with nDNA (Fig.
S3).

The haplotype network analysis of the mitochondrial locus reveals the presence of two
distinct haplogroups. Within Haplogroup 1, internal differentiation is observed, with four
geographically distinct groups: two distributed in different tributaries of the Verde-Santiago
drainage, separated by four to seven mutation steps from the nearest haplotype; one in
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the Ameca drainage, separated by three to five mutation steps; and one in the Mezquital
drainage, separated by ten to eleven mutation steps (Figs. 1 and 2A-2B). Haplogroup 2
clusters the remaining samples from western, central, and eastern drainages, including the
Verde River (within the Santiago drainage), as well as samples ranging from Magdalena
in the west (number 13 in Fig. 1) to Cazones in the east (number 3 in Fig. 1). The S7
network does not show distinct haplogroup formation, although the Mezquital and Ameca
samples display genetic distinctiveness, with some mixing observed between the Verde and
Mezquital populations. The remaining locations share common haplotypes (Fig. 3C).

Genetic structure

The AMOVA analysis of the mtDNA, without a priori groupings, showed a high and
significative ®st value ($st = 0.51), rejecting the null hypothesis of panmixia. The
majority of the total variation (50.61%) was explained by differences between populations
(dst>dsc). In contrast, for the nDNA sequences, the majority of the variation (67.1%)
was explained within populations, with only 35.52% explained between populations
(Dst<dsc). The Pst value differed significantly from 0 (dst = 0.329), again rejecting the
null hypothesis (Table 2).

The hBAPS analysis for mtDNA partitioned the genetic variation in six clusters. Genetic
cluster (K1) included samples from Cuitzeo, Bolafios, Cotija, Magdalena, Middle Lerma,
Chapala, Santiago, Verde Santiago, Panuco and Valle de México. The second genetic
cluster (K2) grouped samples from Cazones, Lower Lerma, and Verde Santiago. The third
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Table 2 Analysis of molecular variance (AMOVA) without a priori grouping, based on both mtDNA

and nDNA sequences.

Source of variations d.f Sum of Variance Percent of

squares components variation

mtDNA

Among populations 25 408.58 4.30590 Va 50.61
Within populations 48 201.73 4.20278 Vb 49.39
Total 73 610.31 8.51

Fixation Index (dbst) =0.51

ntDNA

Among populations 25 81.27 0.41708 Va 32.9
Within populations 125 106.33 0.85065 Vb 67.1
Total 150 187.6 1.27

Fixation Index (dst) =0.329

genetic cluster (K3) grouped samples from the Ameca and, Verde Santiago. The fourth
(K4) and fifth (K5) genetic clusters grouped samples from Verde Santiago. Finally, the
sixth genetic cluster (K6) grouped samples from Mezquital (Figs. 2 and 4). The F-statistics
for this arrangement were: ®ct = 0.36, ®st = 0.55 and Psc = 0.29 (Pct>Psc). For nDNA,
we recovered three genetic clusters, but with extensive admixture between geographical
locations. The first cluster (K1) grouped samples from Chapala, Cuitzeo, Middle and Low
Lerma, Magdalena and Verde Santiago Basin. The second genetic cluster (K2) grouped
samples from Ameca, Bolanos-Santiago, Cazones, Chapala, Cuitzeo, Cotija, Lower Lerma,
Magdalena, Middle Lerma, Verde Santiago and Panuco basin, and the third genetic cluster
(K3) grouped samples of Mezquital and Verde Santiago (Nochistlan) basin (Fig. 5). The
F-statistics for this arrangement were: dct = 0.17, ®st = 0.38 and dsc = 0.25.

Time calibration analysis
The divergence time analysis showed the split between clade I and clade II dated in the
Pleistocene ca. 1.4 Mya (95% HDP 0.87—2.1 Mya) (Fig. 6).

DISCUSSION

The active geological and climatic history of the Mexican Plateau has influenced the
dynamism of genesis, destruction, and compartmentalization of hydrographic systems,
and is the main factor that promotes both, the cladogenesis and extension of the
distributional ranges of freshwater fishes in this region (Betancourt-Resendes, Pérez-
Rodriguez & Dominguez-Dominguez, 2018; Betancourt-Resendes et al., 2019; Doadrio

& Dominguez, 2004; Dominguez-Dominguez, Doadprio & Perez-Ponce de Leon, 2006;
Dominguez-Dominguez et al., 2008a; Pérez-Rodriguez et al., 2009a; Pérez-Rodriguez et al.,
2009b; Piller et al., 2015; Beltrdn-Lopez et al., 2018; Beltrdn-Lépez et al., 2021). Previous
studies of species Chirostoma, with narrower distributional ranges, have identified allopatry
as the main force shaping the evolution of this group (Betancourt-Resendes, Pérez-Rodriguez
& Dominguez-Dominguez, 2018; Betancourt-Resendes et al., 2019; Pifieros et al., 2022).
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Split of the two main clades

Our results support the existence of two main clades within C. jordani (Fig. 2). The split
was dated ca 1.4 Mya (Fig. 6). Clade I is confined to western (Ameca, Verde-Santiago) and
northern basins (Mezquital), while clade II is widely distributed in western, central, and
eastern basins on the Mexican Plateau (Figs. | and 2), showing mixtures of haplotypes
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between regions, except for the Valle de Mexico, Panuco and Cazones samples for D-loop
(Fig. 3A). The biogeographic scenario that explains the cladogenetic events in C. jordani is
complex, mainly because the mixture of populations belonging to the two haplogroups in
the Verde River. This area has been geologically active in the last 3 Mya. We hypothesize
that the isolation between Clade I and Clade II and the mixture of populations belonging
to different haplogroups, has been promoted by the high tectonic and volcanic activity
in the “triple junction area” between 3 and 1 Mya, which allowed for the isolation
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and reconnection of the upper Ameca, Verde, Lerma Rivers and Chapala Lake regions
(Rosas-Elguera ¢ Urrutia-Fucugauchi, 1998; Nieto-Samaniego et al., 1999). The influence
of the geological activity of the “triple junction” in the evolution patterns of the Mexican
ichthyofauna has been extensively discussed by other authors (Barbour, 1973b; Smith,
Cavender & Miller, 1975; Miller, Minckley & Norris, 2005; Dominguez-Dominguez et al.,
2010; Pérez-Rodriguez et al., 2016; Beltrdn-Lopez et al., 2018; Beltrdn-Lépez et al., 2021).
The climatic instability during the early Pleistocene, a period characterized by intercalated
humid and dry periods, has been thought to have had an important influence on the
evolutionary and demographic history of the Mexican ichthyofauna (Barbour, 1973b;
Mateos, Sanjur ¢ Vrijenhoek, 2002; Dominguez-Dominguez et al., 2010; Pérez-Rodriguez

et al., 2009a; Pérez-Rodriguez et al., 2009b; Pérez-Rodriguez et al., 2015; Beltrdn-Lépez et al.,
2018; Betancourt-Resendes, Pérez-Rodriguez ¢ Dominguez-Dominguez, 2018; Betancourt-
Resendes et al., 2019; Garcia-Martinez et al., 2015; Garcia-Martinez et al., 2020). The climatic
scenario may have influenced the interchange of fauna in the tributaries of the Verde and
Lerma Rivers, promoting the connection of headwater tributaries in wet periods, and the
mixture of the Verde population in both haplogroups,
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Phylogeographic patterns of clade |

Our phylogeographic and population genetic results support well-structured genetic
groups with geographic correspondence within Clade I/Haplogroup 1 based on mtDNA
and partially for nDNA (Figs. 2, 3, 4 and 5). The TRMCA was dated ca. 1 Mya (Fig. 6).
Within this clade, one group occurred in the north (Mezquital Basin in Mesa del Norte)
and three in the west (Ameca and Verde-Santiago basins in central Mexico).

The biogeographic relationship between the Mezquital Basin and the central basins
of Mexico has been widely recognized. The genus Characodon (Goodeidae) and the
species Moxostoma milleri (Catostomidae), are distributed in the Mezquital River basin
and have their closest relatives distributed in central Mexico (Doadrio ¢ Dominguez, 2004;
Dominguez-Dominguez et al., 2010; Pérez-Rodriguez et al., 2015). However, the phylogenetic
relationships between these groups show older divergence times than Chirostoma (<1Mya),
being ca. 4.5 Mya for the split of M. milleri, and ca. 15.5 Mya for the split of Characodon.
Although is not clear how the Mezquital River was connected to the central Mexican basins
in recent geological times, according to the peripheral position of the Mezquital samples in
the three haplotype networks, a plausible isolation scenario could be the range extension
of the MRCA from the Verde-Santiago drainage to the Mezquital River, with a posterior
vicariant event that generated the allopatric pattern. The likely connection between the
Mezquital River and central Mexico could be through the Guadiana Valley, a high plain
in the upper Mezquital that border in its southern portion with the rivers that drain to
the Santiago River. The accumulation of Pleistocene alluvial deposits within the Guadiana
Valley, in synergy with the volcanic activity (Albritton, 1958; Aranda-Gémez et al., 2018)
and the climatic changes that occurred during Pleistocene, could have caused the isolation
of the MRCA of C. jordani from Mezquital drainage.

The taxonomic status of C. jordani from the Mezquital drainage has been highly
discussed. In morphological analyses, the Mezquital samples show extensive morphological
polymorphism when compared with specimens of C. jordani collected from throughout the
entire distribution of the species, and has therefore, largely been considered a synonym of
C. jordani (Barbour, 1973a). Even in the Integrated Taxonomic Information System-ITIS
(Last accessed 10/24/2023, http:/iwww.itis.gov) and FishBase (Last accessed 10/24/2023,
https:/;www.fishbase.sesummary/Chirostoma-jordani.html), it appears as a synonym
of C. jordani. However, Miller, Minckley ¢» Norris (2005) recognized C. mezquital as a
valid species based on characters associated with body height measurements. The results
presented herein support the genetic distinctiveness of the Mezquital samples, forming
an independent group in haplotype network, and hBAPS analyses (Figs. 2—5). However,
other populations, including the Ameca and Verde River populations, also show genetic
differences. According to the results presented in this study, we propose an exhaustive
integrative taxonomic study to elucidate the taxonomic status of C. jordani population
from Mezquital and other genetically differentiated populations.

The samples collected in the Verde River basin show three genetically segregated groups
inhabiting this basin. Two groups were clustered into Clade I and the other group of
samples was clustered in Clade IT (Figs. 2-5). As previous studies mentioned, the existence
of genetically differentiated populations within the Verde River could be the result of the

Betancourt-Resendes et al. (2024), PeerJ, DOI 10.7717/peerj.18256 14/24


https://peerj.com
http://www.itis.gov
https://www.fishbase.se/summary/Chirostoma-jordani.html
http://dx.doi.org/10.7717/peerj.18256

Peer

existence of temporally and spatially independent events of colonization in the Verde River
(Figs. 2-5), as was previously proposed for Poeciliopsis infans, Goodea atripinnis, Algansea
tincella and Notropis calientis (Dominguez-Dominguez et al., 2008a; Dominguez-Dominguez
et al., 2009; Pérez-Rodriguez et al., 2009b; Beltrdn-Lopez et al., 2018; Beltrdn-Lépez et al.,
2021). Hence, we hypothesize that the first colonization event to the Verde River was
through the postulated connection of the Verde Paleoriver and Chapala Paleolake (Smith,
Cavender & Miller, 1975; Barbour, 1973a; Miller & Smith, 1986; Aranda-Gémez, Henry &
Luhr, 2000; Miller, Minckley ¢» Norris, 2005). A second colonization event seems to have
occurred through a river capture event between the Middle Lerma and Verde River. The
location of Lagos de Moreno, Nochistlan and Belen del Refugio is geographically close
to the headwaters of the Turbio River, a tributary of the Lerma River. In this case, the
intermontane plains that separate both river systems could function as corridors during
wet and flood periods. This hypothetical connection has been recognized previously as

a dispersal route for the ancestor of the species complex belonging to the atherinopsid
silversides and other species (Barbour, 1973b; Bloom et al., 2012). A third invasion of the
Verde River seems to be also related to stream captures of the Lerma and Verde Rivers;
these events appear to have been recent enough to prevent haplotype sorting in any of the
three sampled loci (Figs. 2-5).

The isolation and cladogenesis of the samples of Chirostoma from the Ameca basin
are not surprising, since seven endemic freshwater fishes that occurred in this river basin
have their closest relatives in Central Mexico drainages, like the leuciscids Algansea ameca,
Notropis amecae and Yuriria amatlana, the goodeids Zoogoneticus tequila, Allodontichthys
polylepis, Xenotoca doadrioi, Skiffia francesae and Allotoca goslinei, and the catostomid
Moxostoma mascotae (Miller ¢~ Smith, 1986; Lopez-Lopez ¢ Paulo-Maya, 2001; Doadrio
& Dominguez, 2004; Dominguez-Dominguez, Pompa-Dominguez ¢ Doadrio, 2007a;
Dominguez-Dominguez, Pompa-Dominguez & Doadrio, 2007b; Dominguez-Dominguez
et al., 2008a; Dominguez-Dominguez et al., 2009; Dominguez-Dominguez et al., 2010;
Dominguez-Dominguez, Doadrio ¢ Perez-Ponce de Leon, 2006; Piller et al., 2015; Pérez-
Rodriguez et al., 2009a; Pérez-Rodriguez et al., 2009b; Pérez-Rodriguez et al., 2016; Beltrdn-
Lopez et al., 2018). The high endemicity of the Ameca River seems to be related to a long
history of volcanism and tectonism at different geological times, generating the isolation,
connection and compartmentalization of the Ameca River over time, which includes
several surrounding drainages (Rosas-Elguera ¢ Urrutia-Fucugauchi, 1998; Gardufio &
Tibaldi, 1991). Our results support a recent isolation event of the Ameca River, since we
date the cladogenesis of the Ameca group at ca. 0.90 Mya (Fig. 6). Two recent hydrographic
connections and interchange of fauna between Ameca River and the contiguous basins
have been postulated with the first through the Atotonilco, San Marcos and Zacoalco-
Ameca Paleolakes area (Smith, Cavender ¢~ Miller, 1975), with a subsequent isolation
event, occurred less than ca 1 Mya. This isolation seems to be promoted by Pleistocene
volcanism and the intense tectonic activity of the so-called triple junction (Rosas-Elguera
& Urrutia-Fucugauchi, 1998; Gardufio & Tibaldi, 1991), as has also been postulated for
the isolation of P. infans, Ameca splendens, Xenotoca melanosoma and Z. purhepechus
populations in the Ameca River (Dominguez-Dominguez et al., 2008a; Beltrdn-Lépez et al.,
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2018). A second connection event was proposed for P. infans between the Ameca River and
the Verde-Santiago River drainage, suggesting that these basins were connected until very
recent geological time through stream capture of the Ameca and Verde Rivers, which was
facilitated by the volcanism in the Tepic-Zacoalco graben (Mateos, Sanjur ¢ Vrijenhoek,
20025 Beltrdn-Lépez et al., 2018). However, we cannot support either of these two scenarios,
due to the lack of samples of Chirostoma from the Sayula-San Marcos-Atotonilco lakes
area, despite the high sample effort conducted.

Phylogeographic patterns of Clade Il

The Clade II, shows a widely distributed group in the central and eastern drainages of
central Mexico (in an area > 130,000 km?), from Bolafios River in the Santiago Drainage
in the Northwest, Ameca and Magdalena in the Southwest, to Cazones to the East, with a
high haplotype mixture (Figs. 3 and 5). The group has been evolving in central Mexico over
the last ~1 Myr. This genetic cohesiveness of widely distributed species in central Mexico
is not common, since most of the co-distributed species already studied are structured in at
least one of the locations where haplotypes of the C. jordani central group are distributed,
as is the case of Zoogoneticus quitzeoensis (Dominguez-Dominguez et al., 2008a), Notropis
calientis (Dominguez-Dominguez et al., 2009), Moxostoma austrinum (Pérez-Rodriguez

et al., 2016), Algansea spp (Pérez-Rodriguez et al., 2009a; Pérez-Rodriguez et al., 2009b), and
Poeciliopsis infans (Mateos, Sanjur & Vrijenhoek, 2002; Beltrdan-Lépez et al., 2018).

The genetic homogeneity could be related to ancient connectivity between the central
basins across several periods during the Pleistocene, that have been widely discussed in
goodeids (Doadrio ¢ Dominguez, 2004; Dominguez-Dominguez et al., 2010; Beltrdn-Lopez
et al., 2021), leuciscids (Schonhuth, 2002; Dominguez-Dominguez, Pompa-Dominguez &
Doadrio, 2007a; Dominguez-Dominguez, Pompa-Dominguez & Doadrio, 2007b; Pérez-
Rodriguez et al., 2009a; Pérez-Rodriguez et al., 2009b; Garcia-Andrade et al., 2021) and
poecilids (Mateos, Sanjur ¢ Vrijenhoek, 2002; Beltrdn-Lépez et al., 2018), as well as to the
dispersal capacity of the species. In fishes, this capacity is highly dependent on body shape
(Sfakiotakis, Lane & Davies, 1999; Triantafyllou, Triantafyllou ¢ Yue, 2000; Langerhans
& Reznick, 2009), whereas the survival rate depends on plasticity and adaptability for
establishment in a new habitat (Seehausen & Wagner, 2014). In particular, C. jordani
exhibits a high degree of morphological variation (Barbour, 1973b), part of which is
associated with divergent habitats, and differential selective pressures (Foster, Bower ¢
Piller, 2015). Moreover, its small size and ecological versatility (Barbour, 1973a) gives C.
jordani the capacity to widely disperse throughout the lakes, rivers, and streams of central
Mexico, and also to survive in newly invaded environments, taking advantage of possible
historical dispersal routes in currently isolated basins (Dominguez-Dominguez et al., 2008a;
Pérez-Rodriguez et al., 2009a; Pérez-Rodriguez et al., 2009b; Beltrdn-Lépez et al., 2018).
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CONCLUSIONS

We observed recent genetic differentiation (<1.4 Mya) within the C. jordani samples
analyzed in this study. The phylogeographic patterns and population genetics results
revealed significant evolutionary insights. We identified a well-differentiated evolutionary
unit in the Ameca and Mezquital Basins, which may represent an evolutionarily
independent lineage. These findings underscore the importance of the Mezquital and
Ameca Rivers basins as crucial regions for the evolution and diversification of aquatic
fauna in the Mexican Plateau and the conservation of endemic and genetically unique
ichthyofauna. The discovery of three genetic clusters within the Verde Drainage, two of
which are genetically distinct from other basin samples, further highlights the complexity
of freshwater fish evolution in the geologically and climatically dynamic Mexican Plateau.

While several studies on widespread freshwater fishes across the Mexican Plateau have
shown that the area’s geological and climatic history promotes species diversification, the
lack of genetic differentiation among different basins for C. jordani, as seen in Haplogroup
I1, seems to be linked to the species morphological and ecological plasticity. This adaptability
has enabled the species to disperse across connected water bodies and thrive in the
environmental conditions of newly colonized areas.
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