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ABSTRACT

Nonpoint source (NPS) pollution has emerged as the predominant water environment
issue confronting plateau lakes in central Yunnan. Quantitative analysis of the impact of
NPS pollution on water quality constitutes the key to preventing and controlling water
pollution. However, currently, there is a dearth of research on identifying NPS pollution
risks and exploring their relationship with water quality based on the Minimum
Cumulative Resistance (MCR) model in the plateau lake basins of central Yunnan.
Particularly, studies on the spatial heterogeneity of the impact of NPS pollution on
water quality from a multi-scale perspective are scarce. Therefore, this study focuses on
three typical lake basins in the Central Yunnan Plateau—Fuxian Lake, Xingyun Lake,
and Qilu Lake (the Three Lakes). Utilizing the MCR model to identify NPS pollution
risks, the study analyzes seven different scales, including sub-basins, riparian buffer
zones (100 m, 300 m, 500 m, 700 m, and 1,000 m) and lakeshore zones, to reveal the
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precise control of NPS pollution risks in the Central Yunnan Plateau lake basins and
offers a new research perspective for exploring multi-scale effects of NPS pollution on
water quality.

Subjects Ecology, Ecosystem Science, Environmental Contamination and Remediation, Spatial
and Geographic Information Science

Keywords Nonpoint source (NPS) pollution, Minimal Cumulative Resistance (MCR) model,
Plateau lakes basin, Water quality, Scale effect

INTRODUCTION

Plateau lakes are vital resources for social and economic development, essential for human
survival, and key factors affecting regional ecological environments (Zhang et al., 2019).
As socioeconomic conditions improve, intensified urban expansion and the interim
exploitation of surface resources have compromised the water quality and ecological
equilibrium of plateau lakes, resulting in significant degradation (Van Vliet, Floerke ¢
Wada, 2017). In the current water pollution control and environmental protection work,
the impact of point source pollution on water quality has been effectively controlled (Yang
et al., 2019b; Zhao et al., 2024). However, nonpoint source (NPS) pollution often occurs in
many situations such as fertilizer use in agricultural production, urban rainwater runoff,
and animal husbandry. Due to the dispersion and uncertainty of its emissions, it is difficult
to achieve effective centralized control, which is one of the main causes of water quality
deterioration (Chen et al., 2018; Longyang, 2019; Pan et al., 2023; Qian et al., 20205 Zhao
et al., 2023). 1dentifying NPS pollution risk areas and exploring their multi-scale impacts
on water quality are of great significance for water environment governance, ecological
environmental protection, and ecological security construction in plateau lake basins.

NPS pollution seriously affects agricultural production (Cristan et al., 2016; Wang et al.,
2019a), water resources, and aquatic habitats due to its randomness, universality, hysteresis,
fuzziness, and latency (Kumwimba et al., 2018; Wang et al., 2016a). Effective identification
of NPS pollution risk zones is vital for plateau lake water quality management (Edwards ¢
Withers, 2008; Longyang, 2019). Identification methods mainly include field investigation
method and model identification method (Guo, Wang & Zhu, 2004; Jiang et al., 2014).
While field surveys have high accuracy, they are resource-intensive and less universal (Lu
et al., 2011; Zhu, Schmidt ¢ Bryant, 2012; Zhu et al., 2011). Model identification methods
are more accessible and simulate ecological processes involved in NPS pollution (Giri,
Nejadhashemi & Woznicki, 2012; Jiang et al., 2014; Liu et al., 2016).

The model method is simple, efficient, and can accurately identify the risk status
of nitrogen and phosphorus pollution in the study area. Models for NPS pollution
risk identification include the Soil Water and Assessment Tool (SWAT) (Krysanova ¢
Srinivasan, 2015), nitrogen (NI) phosphorus (PI) index (Bechmann et al., 2009), and
minimum cumulative resistance (MCR) model (Wang et al., 2016b). The SWAT model
accurately identifies NPS pollution risk zones (Abbaspour et al., 2007; Gassman et al., 2007,
Krysanova ¢ Srinivasan, 2015) and has been widely used (Bechmann et al., 2009; Ding et

Fu et al. (2024), PeerJ, DOI 10.7717/peerj.18247 2/26


https://peerj.com
http://dx.doi.org/10.7717/peerj.18247

Peer

al., 2020; Giri, Nejadhashemi & Woznicki, 2012; Liu et al., 2016; Liu et al., 2013; Meng ¢
Wang, 2017; Ouyang et al., 2016; Panagopoulos, Makropoulos & Mimikou, 2011; Singh et
al., 2012; Wang et al., 2016a; Xu et al., 2016). The NI-PI index model identifies nitrogen
and phosphorus pollution risk zones (Birr ¢ Mulla, 2001; Hughes, Magette ¢ Kurz, 2005;
Shen et al., 2011) and has been applied by scholars (Ping et al., 2011; Zhou ¢ Gao, 2008;
Zhou & Gao, 2011).

However, the SWAT model is complex, data-intensive, and has low calculation efficiency,
while the NI-PI index model is subjective and does not fully explain actual pollution loads.
In contrast, the MCR model, based on the “source—sink” theory, calculates the resistance
encountered by NPS pollutants moving from the “source” to any point in space (Dong et al.,
20225 Li et al., 2015; Wang et al., 2023; Wang et al., 2016b; Xue et al., 2022). The advantages
of the model are as follows: Firstly, it features convenient data processing, a simple analysis
method, and provides intuitive results. Additionally, it takes into account the influence
of distance and resistance between units, as well as quantitatively reflects the accessibility
of NPS pollutants to water bodies (Dai, Liu ¢ Luo, 2021; Jin et al., 2020; Kong et al., 2018;
Wang et al., 2016b; Wei et al., 2022; Xu et al., 2021). Secondly, based on the characteristics
of the study area, the model selects corresponding impact factors to assess the risk of
NPS pollution according to local conditions, yielding results that closely align with actual
pollution in the area (Fu, Zhang ¢ Wang, 2024). Thirdly, considering spatial heterogeneity,
the model can identify and analyze NPS pollution at different spatial scales (W1, 2004;
Wi, 2007). It simplifies basin complexity into multi-scale analysis units which helps reveal
differences in impact across multiple scales. The simulation results are more consistent
with real geographical phenomena. The model has been applied in large-scale opencast
coal mine areas, Three Gorges reservoir area of Yangtze River and Haihe River Basin for
identifying NPS pollution risks with research outcomes aligning with actual situations
(Kong et al., 2018; Wang et al., 2016b; Xu et al., 2021).

NPS pollution poses a significant challenge in high-altitude lake basins. Current research
on NPS pollution identification using the MCR model and its relationship with water quality
has limitations: (1) focus on the sub-basin scale (Kong et al., 2018), neglecting the scale
effect of NPS pollution on water quality; (2) emphasis on plain and hilly zones (Kong
et al., 2018; Wang et al., 2016b), with less attention to the unique plateau lake basins in
central Yunnan. Fuxian Lake, Xingyun Lake, and Qilu Lake are important freshwater lakes
in the central Yunnan Plateau, characterized by low latitude and high-altitude features.
They are crucial for studying biodiversity formation mechanisms and are sensitive to
global change, affected by the East Asian and Southwest Monsoons. These lakes attract
international research (Apudo et al., 2016; Chen et al., 2019; Du et al., 2019; Wu et al.,
2016a) and support the development of the Central Yunnan Economic Zone and Yuxi city
(Yang et al., 2019a). However, rapid economic growth and population expansion seriously
threaten water quality due to NPS pollution (Gao et al., 2015), necessitating restoration
and protection of the basins’ water ecological security.

This study takes the typical plateau lake basins in Yunnan Province (Fuxian Lake,
Xingyun Lake, and Qilu Lake) as research cases. Based on the MCR model, the multi-scale
response relationship between water quality and NPS pollution risk is discussed under the
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Figure 1 Overview of the study area. (A) The location of the study area. (B) The remote sensing image of
the study area. Marks @ to ® indicate Fuxian Lake, Xingyun Lake, Qilu Lake, respectively.
Full-size Gal DOI: 10.7717/peerj.18247/fig-1

multi-scale conditions of sub-basins, riparian buffer zones (100 m, 300 m, 500 m, 700 m,
1,000 m), and lakeshore zones.The objectives of this article are as follows: (1) Compare
the effect of NPS pollution on water quality at multiple scales; (2) Reveal the spatial scale
effects and differences of the impact of NPS pollution on the water quality of rivers entering
the lakes; (3) Provide decision-making basis for scientific prevention and control of NPS
pollution in the lake basin of the central Yunnan Plateau.

MATERIALS AND METHODS

Study area

Fuxian Lake, Xingyun Lake, and Qilu Lake (the Three Lakes) are important plateau lakes
in central Yunnan, belonging to the Nanpan River system in the Pearl River Basin. The
Three Lakes Basin, located on the western margin of the Yunnan-Guizhou Plateau, with a
terrain of north, middle and low (Fig. 1). Fuxian Lake Basin (675.32 km?) is a deep-water,
nutrient-poor lake with excellent water quality, despite some inflow rivers being Class
V or inferior due to human activities. Xingyun Lake Basin (406.815 km?) is seriously
affected by NPS pollution from the phosphorus industry, with water quality generally
classified as Class V and inferior Class V from 2003 to 2016 (Luo et al., 2022). Qilu Lake
Basin (354.99 km?) has inflow rivers remaining at levels V and inferior V, indicating
serious deterioration (Klamt et al., 2021). In general, the Three Lakes Basin are affected by
urbanization, farmland activities, industrial and agricultural production, domestic sewage
and other factors, and NPS pollution is becoming increasingly prominent, and the water
quality of the basins is seriously damaged.

Data
The data types of this study mainly include: (1) Digital Elevation Model (DEM), we also
use DEM data to extract the boundaries, slope, and surface roughness information of
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Table 1 Remote sensing image data descriptions.

Sensor Date GTM Scene ID Spatial
resolution
(m)

OLI 2018-03-01 03:34:41 LC81290432018060LGN00 30

Table 2 Three Lakes Basin Data.

Data type Year Spatial Data source
resolution
Terrain https:/glovis.usgs.gov/
Land use type 2018 30 m http:/;www.resdc.cn
Vegetation coverage http:/fwww.dsac.cn/
Water quality — Yuxi Environmental Protection Bureau

the Three Lakes basin; (2) Land use data of the Three Lakes basin in 2018; (3) Landsat-8
OLI remote sensing image data in 2018, we use this data to extract the basin vegetation
coverage data (Table 1); (4) Water quality data of rivers entering the lake. Since some rivers
were interrupted in flow in 2018. This article calculated the monthly mean water quality
sampling point data of each river entering the lake in 12 months of 2018, and selected
the main water quality indexes NH3-N, TP, TN, CODy,, BODs, COD¢; and fluoride for
analysis. The sources of the above data and their resolution information are detailed in
Tables 2 and 3.

Methods
Minimal cumulative resistance model

The Minimum Cumulative Resistance (MCR) model is utilized for assessing the resistance
encountered by species diffusion or ecological flow in space in ecological processes (F,
Zhang & Wang, 2024; He et al., 2024). MCR was first proposed by Knaapen, Scheffer ¢
Harms (1992), and it reflects the MCR value calculated by overcoming resistance in the
process of starting from the “source” and passing through different resistance landscape
units and generates the MCR surface to characterize the risk of nonpoint source pollution
in the study area. The model considers three factors: source, space distance, and resistance
base surface. The expression is as follows:
i=m
MCR=fyin Y _(DjjgRi) (1)
j=n
where MCR is the minimum cumulative resistance value; f is an unknown monotone
increasing function; Dj; is the spatial distance from nonpoint source pollution source j to
landscape unit i; and R; is the resistance coefficient of landscape unit i to the movement
process.
The MCR model can directly reflect the resistance to pollutant migration in different
areas of the landscape. In this article, the MCR model is used to quantify the resistance
value of each unit, so as to identify the high risk areas of NPS pollution (Teng ¢» Zhou,
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Table 3 Monthly mean value of water quality indexes monitoring data of main inflow rivers in the
Three Lakes Basin (mg/L).

Water quality NH;-N TP TN CODyn BOD; CODc, Fluoride
index/River

Daicun River 0.13 0.15 4.58 2.85 1.50 11.00 0.75
Dongda River 0.33 0.16 4.47 3.46 2.61 13.05 0.39
Fucheng River 1.74 0.40 4.33 4.55 4.58 14.82 0.50
Ge River 0.15 0.04 0.68 2.20 2.83 12.01 0.28
Jianshan River 0.11 0.07 0.76 2.73 2.18 8.73 0.36
Liangwang River 0.13 0.09 3.57 2.18 2.25 11.03 0.20
Lujv River 1.02 0.24 9.55 4.97 5.00 17.43 0.34
Niumo River 0.78 0.09 6.99 4.40 2.75 16.05 0.45
Shanchong River 0.23 0.13 2.32 3.25 3.10 13.10 0.47
Dajie River 4.89 1.44 8.28 8.98 15.49 47.50 0.56
Dalongtan River 0.67 0.13 2.41 3.45 3.43 15.92 0.18
Dazhuang River 3.64 0.48 7.71 4.78 8.37 28.58 0.39
Dongxida River 2.27 0.61 10.01 4.23 5.77 21.75 0.36
Luosipu River 1.67 0.55 13.13 3.26 4.23 19.42 0.65
Xue River 1.03 0.24 3.58 2.71 3.51 15.17 0.24
Yucun River 2.25 0.29 4.42 8.24 7.17 38.73 0.50
Zhoudeying River 0.59 0.23 1.36 2.51 3.23 14.75 0.25
Honggqi River 0.98 1.01 9.69 8.94 8.25 42.00 0.93
Zhong River 3.59 0.80 10.52 9.84 12.67 43.25 0.75

2023; Wu, Pan & Zhu, 2024). Compared with other methods, it shows unique advantages
in dealing with landscape resistance, predicting pollutant paths, and identifying risk areas
(Yeet al., 2015).

Pearson correlation coefficient

Pearson correlation coefficient is a statistical analysis method widely used in various
disciplinary fields, which is used to measure the strength and direction of the linear
relationship between two continuous variables. Pearson correlation coefficient is calculated
as follows:

nY XY - Y XYY
\/(nZXZ —(£X)°) (nx Y= (X))

X and Y are two variable observations; n is the number of samples; > XY is the sum of the
product of all X and Y values; Y "X and > Y are the sum of the X and Y values, respectively;
Y X% and )" Y? are the sum of squares of the X and Y values, respectively. The Pearson

r =

correlation coefficient ranges from —1 to +1. r = +1 means completely positive linear
correlation; r = —1 means completely negative linear correlation; r = 0 means there is no
linear correlation (Das, Sarkar ¢ Kanungo, 20225 Liu et al., 2022; Schober, Boer ¢ Schwarte,
2018).

In this article, the Pearson correlation coefficient is utilized to analyze the correlation
between the mean resistance of NPS pollution and the monthly mean value of water quality
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indexes at different scales. The purpose is to explore at which scale NPS pollution has the
most substantial impact on water quality and which water quality indicator causes the
most severe pollution to water quality. This is helpful for determining the scale at which
NPS pollution has the most significant influence on water quality, thereby facilitating the
formulation and implementation of more effective pollution control measures.

Determination of “source” landscape type

Landscape types have different ecological functions, with “source” landscapes promoting
NPS pollution and having high pollution risk, while “sink’ landscapes slow NPS pollution
and have low pollution risk. The risk of NPS pollution depends on the intensity of the
“source—sink” landscape effect, with a strong source effect leading to high risk and a strong
sink effect leading to low risk. Cultivated land and construction land produce much surface
runoff and soil erosion, playing a positive role in NPS pollution and showing a strong
source effect (Wang et al., 2017; Zhou et al., 2022). Agricultural land is the primary NPS
source (Shen et al., 2014; Zou et al., 2020). Considering the landscape type distribution and
local economy in the Three Lakes Basin, which is dominated by rice planting and industries
such as chemicals, building materials, food processing, and aquatic products, paddy fields
and construction land landscape patches were determined as the source landscape type of
the central Yunnan Plateau lake basin.

Identification of the “source-sink” risk pattern of NPS pollution based
on the MCR model

The identification of NPS pollution risk involves three parts: constructing an NPS pollution
resistance base surface evaluation index system, building an NPS pollution resistance base
surface, and classifying NPS pollution source—sink risk patterns.

Firstly, NPS pollution is a continuous dynamic process involving rainfall-runoff, soil
erosion, sediment transport, and pollutant migration and transformation (Ouyang et
al., 2018). These processes in the central Yunnan Plateau lake basin are controlled by
“source—sink” landscape external natural environment factors, including topography,
geomorphology, land use types, and vegetation. Five indexes were selected as key factors of
landscape NPS pollution of paddy fields and construction land: relative elevation, relative
slope, surface roughness, vegetation coverage, and land use type. The discrete grid values
of these factors were linearly normalized and classified into grades 1-5, assigned from low
to high as 1, 3, 5, 7, and 9, respectively. The expert scoring method was used to assign
weights to each factor, and spatial superposition was performed to obtain the resistance
base surface affecting the basin’s NPS pollution process (Table 4).

Secondly, the NPS pollution resistance base surface was constructed using the MCR
model, superimposing landscape elements and external factors affecting NPS pollution to
form the vertical resistance base surface (R) of NPS pollution diffusion. The spatial distance
factor (D) was integrated into the MCR model to obtain the accumulated resistance value
of the NPS pollution process. The smaller the MCR value, the greater the risk of NPS
pollution, and vice versa. The cost-distance module in ArcGIS10.5 was used to generate the
NPS pollution process resistance surface and construct the NPS pollution risk resistance
pattern of the lake basin in the middle Yunnan Plateau.
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Table 4 Evaluation index of surface resistance.

Evaluation index of surface resistance Index significace

Relative elevation (0.20) The index indicates that each landscape unit is away from
the relative elevation of the plateau lake, reflecting the
gravity distribution of the NPS pollution process from
the source landscape to the plateau lake. The greater
the relative elevation is, the greater the gravity effect is,
which accelerates the transmission and migration of NPS
pollution, and the risk of NPS pollution may be higher.

Relative slope (0.17) The index represents the relative slope of each landscape
unit distance to the plateau lake, and represents the
acceleration factor of surface erosion runoff dynamics.
The greater the slope, the greater the risk of NPS pollution.
Slope data were extracted from DEM data of plateau lake
basins using ArcGIS 10.5.

Surface roughness (0.13) Using DEM data of plateau lake basin, the surface
roughness was calculated by ArcGIS software. Formula:
M =1/cos(d x 7 /180), where M is the surface roughness
and 3 is the slope (°). The rougher the surface, the greater
the resistance value, the smaller the risk of NPS pollution.

Vegetation coverage (0.24) Vegetation coverage reflects the underlying surface
condition that hinders NPS pollution. The better the
vegetation coverage is, the greater the blocking absorption
ratio of NPS pollutants passing through, so the regional
resistance value of high vegetation coverage is larger.

Land use (0.26) Land use types can distinguish the types and sources of NPS
pollution. Construction land, paddy field and dry land are
conducive to pollutant output, and woodland and grassland
play an effective role in intercepting NPS pollution sources.

Thirdly, NPS pollution source—sink risk patterns were classified using the surface value
of NPS pollution resistance of the paddy field source landscape (PFSL) and construction
land source landscape (CLSL) in the lake basin as an index to reflect the risk of source—sink.
This index reflects the accessibility of NPS pollutants from the source landscape to the final
collection. According to the final resistance surface value grid layer, the natural breakpoint
method was used to divide the source—sink risk level of the NPS pollution process affecting
the PFSL and CLSL in the basin into five levels: extremely high risk, high risk, medium
risk, low risk, and extremely low risk areas. The higher the level, the greater the risk of NPS
pollution.

Multi-scale division of watersheds

In this study, the spatial scales included the sub-basin, riparian buffer, and lakeshore
buffer scales. For the sub-basin division, combined with the terrain characteristics of the
basin, based on the DEM data of 30m grid spacing and the main rivers into the lake in
the study zone, the ArcSWAT tool was used to divide the sub-basin. Finally, the Fuxian
Lake Basin was divided into nine sub-basins of different sizes, namely, the Daicun River,
Dongda River, Gehe River, Jianshan River, Liangwang River, Luju River, Fucheng River,
Niumo River, and Shanchong River Basins. The Xingyun Lake Basin was divided into eight
sub-basins of different sizes, namely, the Dajie River, Dalongtan River, Dazhuang River,

Fu et al. (2024), PeerJ, DOI 10.7717/peerj.18247 8/26


https://peerj.com
http://dx.doi.org/10.7717/peerj.18247

Peer

N

102°58'30"E

A

102°58'0"E 102°56'40"E

102°48'S0"E Z 102°50'0"E 102°54'0"E 102°54'20"E
G, = >

24°39'20"N  24°43'20"N

=)
o
el
o
°

<
a
Z
=)
N
o
ISl
o

<
a

24°40'0"N  24°46'0"N

Zz
°
<
5

<
a
Zz
°
%
Il
1y

<
a

LWR LIR

FCR
z "
s 102°45'0"E
o
BN
<
(o]
z Z
£ @
'y o
=~ o
& &
< (]
(o]
DIR u DLTR DZR
o Sub-basin
050'0" 048170" "
L 10|2 5|00 E _ 102 420 E 0510 20km .102°0'E
P4

102°46'0"E

24°16'0"N
24°8'30"N

oy

DXDR LSPR

24°20'0"N

HQR ZR

Figure 2 Overview of sub basins of Fuxian Lake, Xingyun Lake, and Qilu Lake. Marks @ to @ indicate
Fuxian Lake, Xingyun Lake, Qilu Lake,respectively. The location of nine major sub-basins in Fuxian Lake,
including Daicun River (DCR), Dongda River (DDR), Fucheng River (FCR), Ge River (GR), Jianshan
River (JSR), Liangwang River (LWR), Lujv River (LJR), Niumo River (NMR), Shanchong River (SCR);
The location of eight major sub-basins in Xingyun Lake, including Dajie River (DJR), Dalongtan River
(DLTR), Dazhuang River (DZR), Dongxida River (DXDR), Luosipu River (LSPR), Xue River (XR), Yu-
cun River (YCR), Zhoudeying River (ZDYR); the location of two major sub-basins in Qilu Lake, including
Honggqi River (HQR), Zhong River (ZR).

Full-size Gl DOI: 10.7717/peer;j.18247/fig-2

Donggxi River, Luosipu River, Xue River, Yucun River, and Zhoudeying River. The Qilu
Lake Basin was divided into two sub-basins of different sizes, namely, the Hongqi River
and Zhonghe River (Fig. 2). The scale of the riparian and lakeshore buffer zone was the
buffer zone generated based on the main rivers flowing into the lake and the lake shoreline.
According to previous research findings and the current state of the basin (Li et al., 2019;
Peng & Li, 2021), riparian buffer zones of 100 m, 300 m, 500 m, 700 m, and 1,000 m and
lakeshore buffer zones of 110 m were used.

RESULTS

Distribution characteristics of source landscape patches and NPS
pollution risk resistance in the Three Lakes Basin

The patches of PFSL in the Three Lakes Basin were mainly distributed in flat areas, clustered
around the main rivers entering the lake, especially along the Shanchong, Liangwang,
Fuorange, East, Niumo, Xuehe, Zhoudeying, Dalongtan, Yuecun, Dajie, Dazhuang, and
the middle and lower reaches of the Hongqi River. The patches of CLSL were primarily
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Table 5 Area proportion and area of PFSL and CLSL patches in the Three Lakes Basin.

Basin PFSL CLSL
Area/km? Area Area/km? Area
ratio/% ratio/%
Fuxian Lake 66.9978 14.62% 19.2573 4.20%
Xingyun Lake 70.9839 22.73% 23.6214 7.57%
Qilu Lake 98.4564 24.24% 32.9472 8.11%

scattered in the flat terrain around the lake. The area of PFSL patches was larger than that
of CLSL patches, with both showing increasing trends from Fuxian Lake and Xingyun Lake
to the Qilu Lake watershed, which had the largest area of PFSL and CLSL patches (Table 5).
The wide distribution of PFSL patches indicated that paddy fields were crucial for the local
agricultural economy.

The risk distribution of NPS pollution resistance surfaces in the Three Lakes Basin,
based on the MCR model, is shown in Fig. 3, where “value” represents the MCR value.
The distribution characteristics of the NPS pollution risk resistance of the PFSL and CLSL
in the Three Lakes Basin revealed that the closer the distance to the main river trunk road
entering the lake, the smaller the MCR value, and the more likely the NPS pollutants are
to migrate to the adjacent river and cause water pollution. Conversely, at larger distances
from the main river, the greater the resistance face value, the lower the accessibility of NPS
pollution to the river, and the smaller the risk of water being polluted by NPS pollution. The
change trend of the MCR value showed a decreasing trend from the steep mountainous
area to the lake shoreline, with the minimum resistance value near the lake shoreline,
indicating that the risk of NPS pollution in mountain areas was less than that in flat terrain
areas, and the river water quality near lake shores was most affected by NPS pollution. The
distribution area of low resistance values of PFSL was larger than that of CLSL, and the
spatial distribution range of paddy fields was wider than that of construction land (Table 5).
According to the MCR model theory, the closer other landscape patches are to the source
landscape, the smaller their resistance value, the stronger the role of NPS pollution sources,
and the more likely the pollutants are to migrate into the river and cause pollution.

Distribution characteristics of “source—sink” risk levels of NPS
pollution in the Three Lakes Basin

The risk zones of NPS pollution “sources—sinks” of the PFSL and CLSL patches in the
Three Lakes Basin were divided into five levels using the natural breakpoint method:
extremely high risk, high risk, medium risk, low risk, and extremely low risk zones. The
higher the risk level, the greater the risk of NPS pollution. The NPS pollution in the Three
Lakes Basin under the influence of the PFSL and CLSL was in high risk zones, with the
paddy field “source” effect being stronger than that of the construction land source. The
distribution ranges of the extremely high and high risk levels were larger for PFSL than for
CLSL (Fig. 4). In the Three Lakes Basin, the proportion of extremely high risk and high
risk zones was greater than 60% for both PFSL and CLSL (Fig. 5). The extremely high risk
zones were continuously concentrated along the lake shoreline and the main rivers flowing
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Figure 3 Resistance values of PFSL and CLSL in three lake basins. (A1) Paddy field and (A2) construc-
tion land in Fuxian Lake Basin. (B1) paddy field and (B2) construction land in Xingyun Lake Basin. (C1)
paddy field and (C2) construction land in Qilu Lake Basin.

Full-size Gl DOI: 10.7717/peer;j.18247/fig-3

into the lake. The mountainous terrain undulation zone was a low risk zone with high
resistance values due to the steep terrain aiding in the rapid diffusion and migration of
pollutants, but the high vegetation coverage intercepting the migration and transmission
of pollutants. In the plain zone near the lakeshore, towns are clustered, and PFSL is densely
distributed, resulting in a high risk of NPS pollution due to the increased likelihood of
pollutants entering water bodies through rainfall and surface runoff.

Multi-scale correlation analysis between NPS pollution risk resistance
and water quality in the Three Lakes Basin

The mean value of the NPS pollution risk resistance surface of the PFSL and CLSL at
different scales was negatively correlated with the monthly mean value of water quality
indexes of inflow rivers (Figs. 6A, 6B). Except for the lakeshore scale, the mean resistance
surface of sub-basins and riparian buffer zones (100 m, 300 m, 500 m, 700 m, and 1,000
m) was significantly correlated with the monthly mean values of NH3-N, TP, and COD¢,
for PFSL, and NH3-N, TP, TN, BODs, and COD¢; for CLSL. The 1,000 m riparian buffer
scale had the strongest correlation with most water quality indexes, especially NH3-N. The
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Figure 4 Distribution of risk levels for NPS pollution. (A) PFSL, (B) CLSL.
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correlation between the mean resistance of the CLSL and the monthly mean water quality
indexes was significantly higher than that of the PFSL, showing a significant negative
correlation. NH3-N was an important water quality indicator affecting river water quality,
particularly at the 1,000 m riparian buffer scale.

In the correlation analysis of the PFSL and CLSL, the correlation value of the riparian
buffer scale was higher than that of the sub-basin scale. With the increase in riparian buffer
scale distance from 100 m to 1,000 m, the correlation value increased, except for CODyyy,.
The mean value of the resistance surface at the lakeshore scale had no obvious correlation
with the various water quality indexes, possibly due to the small number of PFSL and CLSL
patches and the limited zone size at the 110 m scale.

Paddy fields and construction land in the Three Lakes Basin were the main sources of
NPS pollution, with water bodies at the seven scales showing different degrees of NPS
pollution risks. The multi-scale analysis revealed that the 1,000 m riparian buffer scale was
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Figure 5 The proportion of NPS pollution risk levels for PFSL and CLSL in Three Lake Basins.
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the most sensitive to the impact of NPS pollution on water quality, as it had the strongest
correlation between NPS pollution risk resistance and water quality indexes.

DISCUSSION

Differences in the risk distribution of NPS pollution in the Three
Lakes Basin

The risk of NPS pollution in the Three Lakes Basin was high, with paddy fields and
construction land being the primary sources. Near the main rivers flowing into the lakes
and in flat terrain zones, the MCR value was small, and the risk of NPS pollution was
high, consistent with previous studies (Kong et al., 2018; Wang et al., 2018). The maximum
resistance surface value of the PFSL in Fuxian Lake and Xingyun Lake was smaller than
that of the CLSL, while in Qilu Lake, it was larger.

The spatial range of the source landscape distribution usually indicates the severity of
NPS pollution, with a larger range corresponding to a smaller resistance value (Ouyang
et al., 2010). Although the paddy field zone in the Qilu Lake Basin was larger than the
construction land zone, the maximum resistance surface value of the PFSL was larger
than that of the CLSL (Fig. 7). This result may be due to the flat terrain along the lake
shoreline and near the main rivers, where the interception effect of source pollution is
weak, and the resistance value is small. Additionally, the close distance and strong landscape
connectivity between construction land patches on the southern edge of the Qilu Lake
Basin may contribute to this result, as better connectivity leads to a smaller resistance value
and greater risk of NPS pollution (Wang ¢ Pan, 2019).

The extremely high and high risk zones in the Three Lakes Basin were significantly
larger than the low and extremely low risk zones, which were mainly distributed in rugged
terrain. The size of the extremely high and high risk zones was mainly affected by the
type of source landscape, distribution space, aggregation, and spatial distance (Wang et
al., 2019b). The PFSL and CLSL in the basin were large, continuous, and located in flat
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zones near the main rivers, with weak pollutant interception ability. The clustered and
distributed landscape patches near the river and lake shoreline were more likely to produce
and transport pollutants to rivers, causing water pollution. Future studies should consider
the effects of various spatial distribution characteristics of source landscape patches on
NPS pollution.

Relationship between NPS pollution risk resistance value and water
quality

The correlation analysis showed that the negative correlation between the mean value of
source pollution resistance and water quality indexes at different scales was relatively high,
indicating that water quality was seriously affected by NPS pollution from PFSL and CLSL.
At the 1,000 m riparian buffer scale, NH3-N had the highest correlation with the mean
value of NPS pollution resistance of the two source landscapes, making it the most sensitive
index of water quality to NPS pollution. These results were related to the source landscape
types, landscape distribution pattern, land use patterns, and topographical conditions of
the study zone (Zhao et al., 2015; Bi et al., 2021).
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Comparing the correlation analysis results of paddy fields and construction land
revealed that NH3-N, TP, and COD (;, were the most sensitive indexes of water pollution
in sub-basins and riparian buffer zones (100 m, 300 m, 500 m, 700 m, and 1,000 m)
for PFSL, while NH3-N, TP, TN, BODs, and CODc, were the most sensitive indexes for
CLSL. The number of sensitive water quality indexes in the CLSL was larger than that
in the PFSL at the sub-basin and riparian buffer scales. This difference can be attributed
to several factors: (1) The impervious surface of urban construction land increases the
concentration of pollutants in surface runoff, indirectly increases runoff, increases the
output of NPS pollution, and promotes an increase in nutrients in water quality (Berland
et al., 2017). Studies have shown that the output of NPS pollution from urban construction
can be even higher than that of cropland (Dunn et al., 2014; Shi et al., 2017). (2) The lack of
centralized treatment for domestic waste and sewage from farmers in the Three Lakes Basin
aggravates the discharge of nutrients into rivers. (3) China’s economic development policy,
which prioritized rapid industrial growth and GDP expansion, led to the introduction of
enterprises that rely on local land resources for operation and production, resulting in the
continuous discharge of deleterious effluents, excessive harmful gases, and floating dust
sources into rivers with rainfall runoff, causing serious NPS pollution.

To control NPS pollution in the future, the scale of construction land should be
reasonably planned, the zone of the impervious layer should be reduced, the vegetation
of the river buffer zone should be protected, and relevant departments should coordinate
basin planning and administrative zone planning.

The scale effect of NPS pollution on water quality

The impact of NPS pollution on water quality varies at different scales, with studies showing
varying results. Dai et al. (2017) found that the 200 m riverbank buffer zone was key (Dai
et al., 2017), while Peng Shuangyun (Peng ¢» Li, 2021) found the 300 m and 500 m riparian
buffer zones in farmland and villages had the most impact. Li Shihua (Li et al., 2019)
showed that the 100 m riparian buffer zone had a more significant correlation between
land use/land cover (LULC) and water quality. This study revealed that NPS pollution had
the greatest impact at the 1,000 m riparian buffer scale.

Landscape spatial distribution patterns, influenced by topography, soil, vegetation, and
human activities, can aggravate NPS pollution if unreasonable (Sun, Ma ¢ Fang, 2023).
The “source—sink” landscape distribution greatly influences NPS pollution formation, with
cropland and construction land as sources and woodland and grassland as sinks. Table 6
shows that at the sub-basin and riparian buffer scales, patch zones of cropland, forestland,
grassland, and construction land increased with spatial scale, except for cropland at the
sub-basin scale. In the 1,000 m riparian buffer zone, construction land exceeded the “sink”
landscape’s ability to purify and absorb pollutants. The lakeshore scale had no significant
correlation due to lower landscape distribution zones. PFSL and CLSL promoted NPS
pollution but had small distribution zones and generated pollutants. Forestland, grassland,
and soil intercepted and purified NPS pollutants, weakening their spread at the sub-basin
scale.
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Table 6 Landscape patch area at different types of scales (km?).

Area of landscape patche/ Cropland Forestland Grassland Construction
spatial scale land

100 m buffer 0.91 6.37 2.28 16.59

300 m buffer 2.00 18.13 8.70 48.30

500 m buffer 2.72 30.42 16.03 77.11

700 m buffer 3.20 42.47 23.46 105.61

1,000 m buffer 3.60 60.73 35.35 145.13
sub-basin 2.92 152.35 70.10 219.97
lakeside zone 0.06 0.01 0.02 1.71

The 1,000 m riparian buffer zone had the most significant impact on water quality. To
reduce NPS pollution risk in extremely high and high risk zones, the “source” effect of paddy
fields and construction land should be weakened, and the “sink” effect strengthened (Ma et
al., 2021; Wu et al., 2016b). In the Three Lakes Basin, less frequent use of chemical fertilizers
and pesticides, farmland irrigation with sewage, and standardized urban sewage discharge
policies are suggested (Sun et al., 2012). Riparian vegetation buffer zones, multifunctional
ecological fish ponds, and river protection zones can reduce the impact of NPS pollution
on water quality (Mi et al., 2015; Zhang et al., 2013).

Future research should consider time series to understand temporal variations in the
relationship between NPS pollution and water quality, incorporate detailed land use
classifications and characteristics, and integrate factors like climate, soil properties, and
management practices to develop comprehensive strategies for mitigating NPS pollution
and protecting water quality.

CONCLUSION

Compared to point source pollution, nonpoint source (NPS) pollution presents greater
challenges in terms of detection and control due to its widespread occurrence, leading to
the environmental introduction of pollutants through diffusion. Based on the geographical
location and related characteristics of the study area, this study selected PFSL and CLSL
patches, which are relatively dispersed pollution sources and difficult to quantify using
traditional methods. The MCR model is specifically used for assessing the risk of NPS
pollution by incorporating various resistance factors into the analysis to comprehensively
evaluate risk distribution. This article utilizes the MCR model to analyze the impact of
NPS pollution on water quality at different scales, revealing the risk distribution of NPS
pollution in the Three Lakes Basin and its impact on water quality. The results indicate
that PFSL and CLSL are mainly located in the flat areas surrounding lakes, presenting an
overall concentrated distribution. They are the primary reasons for giving rise to the risk
of NPS pollution. This article conducts a comparative analysis of NPS pollution between
PESL and CLSL. The results show that the distribution area of PFSL is larger than that
of CLSL, and the NPS pollution risk of PFSL is greater than that of CLSL. This result
effectively supplements relevant content regarding specific farmland types” impact on
regional ecological environments while providing valuable insights for further exploration
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into PFSL’s impact on nutrient input into surrounding water bodies within the region.
Over 60% of the basin exhibits high or extremely high risk levels, primarily situated in flat
areas around lakes and along main rivers flowing into them. This article employs multiple
scales to analyze the impact of NPS pollution on water quality. The results show that there
are significant scale differences in the impact of NPS pollution on the water quality of
rivers entering the lake. In particular, the impact is greatest at the 1,000 m riparian buffer
scale. These results offer an accurate basis for selecting future research scales while aiding
in formulating targeted measures for effective pollution prevention and control based on
distinct scale correlation characteristics; such as strengthening monitoring efforts within
1,000 m riparian buffer zones.
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