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TFEB, a promising therapeutic target in cardiovascular disease
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Abstract

Cardiovascular disease (CVD) remains the major cause of morbidity and
mortality around the world. Transcription factor EB (TFEB) is a master regulator
of lysosome biogenesis and autophagy. Emerging studies revealed that TFEB also
mediates cellular adaptation responses to various stimuli, such as mitochondrial
dysfunction, pathogen infection and metabolic toxin. Based on its significant
capability to modulate the autophagy-lysosome process (ALP), TFEB plays a
critical role in the development of CVD. In this review, we briefly summarize the
current understanding of TFEB’s involvement in CVD and the underlying
molecular mechanisms.
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Introduction

Cardiovascular diseases (CVDs) are a range of disorders that affect both the
blood vessels and heart. They are a major global threat and one of the leading
causes of mortality and morbidity worldwide, placing a heavy burden on patients
and their families. Common CVDs include acute myocardial infarction (AMI),
heart failure, atrial fibrillation (AF), and atherosclerosis (AS).

Transcription factor EB (TFEB) is a member of the MIT/TFE bHLH-LZ
subfamily. [1] It is considered a major transcriptional regulator of autophagy and
lysosomal biogenesis. [2] Recent studies have shown that TFEB binds directly to
CLEAR elements on lysosomal genes, promoting the expression of the entire
network of genes in their promoters that contain CLEAR-regulated motifs (the
CLEAR network). [3, 4] In resting cells under nutrient-rich conditions, TFEB is
primarily located in the cytoplasm and is inactive. [4, 5] However, under
conditions of starvation, bacterial infection, lysosomal dysfunction, or other
stress processes, TFEB quickly translocates to the nucleus and activates the
transcription of its target genes, promoting organismal homeostasis. [6] TFEB is
increasingly believed to regulate homeostasis in the cardiovascular system and
has a protective effect against CVD, such as AMI, AS, and cardiotoxicity. [7-9]

This article reviews the research progress of TFEB in CVD and discusses the
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related molecular mechanisms.

Survey Methodology

To identify the pertinent literature, we conducted a PubMed search using the
following keywords: (Transcription factor EB) and (Cardiovascular
disease)/(Transcription factor EB) and (Angiocardiopathy). We then proceeded to
a title and abstract screening and elimination process, which excluded articles not
related to CVD, in order to ensure the comprehensiveness and accuracy of this

review.

TFEB and atherosclerosis

AS is a progressive and inflammatory vascular disease caused by lipid
dysregulation. It is characterized by the abnormal accumulation of lipids and
immune cells within the vessel wall. [10, 11] This accumulation ultimately leads
to severe clinical complications of arterial disease, such as AMI and stroke. [12,
13] AS is a complex pathophysiological process that involves multiple cell types,
including macrophages, [14] endothelial cells, [15] and vascular smooth muscle
cells.

Numerous studies have confirmed the involvement of TFEB in the
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development of CVD. Lu et al. demonstrated that laminar shear stress, one of the
crucial processes in the atherosclerotic process, can prevent AS by increasing the
abundance of TFEB in endothelial cells. [16] In vitro experiments have
demonstrated that the overexpression of TFEB in endothelial cells effectively
inhibits the inflammatory response, while the down-regulation of TFEB
exacerbates it. This effect may be attributed, in part, to the reduction of oxidative
stress by TFEB [16]. TFEB increases the abundance of antioxidant genes, such as
heme oxygenase 1 (HO1) and superoxide dismutase 2 (SOD2), which reduces
intracellular reactive oxygen species (ROS) (Figure 1A)[16].

Under in vivo inflammatory conditions, transgenic mice with endothelial
cell-specific expression of TFEB exhibited reduced endothelial cell-leukocyte
adhesion (Figure 1B), and AS development was reduced [16]. In addition, EC-
TFEB/ApoE-/- mice exhibited a reduction in atherosclerotic lesion formation
compared to their littermate ApoE-deficient (ApoE-/-) mice. This suggests that
TFEB activation has a protective effect against atherosclerosis in vivo. Chen et
al. conducted a study demonstrating how bromelain stimulates antioxidant
production through the activation of TFEB, thereby slowing the progression of
atherosclerosis [17]. These findings highlight the benefits of TFEB in vascular

diseases.
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Additionally, numerous studies have confirmed that TFEB acts as a master
regulator, promoting the expression of autophagic and lysosomal genes [14],
primarily by targeting intracellular cholesteryl ester-rich lipid droplets (LDs) for
degradation to free cholesterol, orchestrating autophagic lysosomes, and
promoting lipid degradation. Therefore, TFEB may act as an antioxidant activator

and promote autophagy to delay the progression of AS.

TFEB and myocardial ischemia/reperfusion injury

Although there have been significant advances in understanding ischaemic
heart disease, the underlying mechanisms remain incompletely elucidated [18].
Studies have indicated that autophagy has emerged as a key factor in the
maintenance of cardiac homeostasis and function, as it contributes to the
reduction of cardiac damage by facilitating cellular adaptation to misfolded
protein accumulation, mitochondrial dysfunction and oxidative stress [19]. As
previously mentioned, TFEB is a master regulator of autophagy genesis.
Therefore, it plays a crucial role in maintaining cardiac homeostasis by mediating
autophagy. Studies have reported that in myocardial ischemia/reperfusion injury
(IRI), both cytoplasmic AMPKal and nuclear a2 subunits are inhibited. This leads

to impaired autophagic flux by suppressing TFEB through the AMPKal-mTOR
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and AMPKa2-Skp2-CARML1 signaling pathways, respectively [20]. Similarly,
post-ischemic reperfusion increased the levels of myocardial BECLIN-1 protein,
which inhibits the activation of TFEB [21], resulting in impaired autophagic flux
[22]. Autophagy is not an independent process; it is closely linked to
mitochondrial and lysosomal functions. BNIP3, a protein interacting with BCL-2
and adenovirus E1B 19kDa, has been reported to play a role in IRI [23]. Its up-
regulation leads to lysosomal depletion and promotes autophagosome
accumulation, impairing mitochondrial autophagy and leading to cardiomyocyte
death. On the other hand, TFEB expression stimulates lysosomal biogenesis,
restores autophagosome processing and attenuates mitochondrial damage (Figure
1C) [24]. In addition, Javaheri et al. discovered that macrophage-specific over-
expression of the transcription factor EB (M¢-TFEB) enhances ventricular
function following IR injury. Additionally, they found that TFEB in macrophages
contributes to ventricular remodeling after MI by mediating inflammatory
responses. Therefore, it is clear that TFEB may have an impact on IRI through
modulation of various biological functions [25]. Several studies have confirmed
ways to improve the prognosis of myocardial infarction. For example, Sciarretta
et al. [26] demonstrated that alginate, a naturally occurring non-reducing

disaccharide, improves myocardial remodeling after myocardial infarction (Ml).
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This improvement relies on TFEB-mediated activation of autophagy. Liu et al.
[27] reported that upregulation of TFEB induced by donor mesenchymal stem cell
(MSC) apoptotic vesicle release promotes autophagy and angiogenesis, thereby
improving post-MI cardiac dysfunction. In summary, TFEB plays a pivotal role
in the protection against cardiovascular diseases and more in-depth studies are

needed to explore its underlying mechanisms.

TFEB and chemotherapy-related cardiac toxicity

Chemotherapeutic agents are essential in the treatment of tumours, but their
clinical use is severely hampered by their unexpected cardiotoxicity. Clinicians
and scientists have long been aware of doxorubicin (DOX)-induced cardiotoxicity
(DIC), and its molecular mechanisms are still being discovered. The known
mechanisms involved in DIC include oxidative stress, Ca?" overload, DNA
damage, mitochondrial dysfunction, and autophagic flux impairment [28]. One
study found that human cardiac tissues from doxorubicin-induced heart failure
exhibited an increase in nuclear TFEB protein [29], suggesting that there may be
some association between TFEB and DIC, and in vitro experiments,
cardiomyocyte-specific TFEB over-expression induced cardiac remodeling,

whereas TFEB knockdown attenuated DIC. Bartlett et al. [29] have reported that
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DOX inhibited TFEB expression in a time- and dose-dependent manner, leading
to disruption of autophagic flux and deterioration of cardiac function. However,
TFEB activation prevented DIC by ameliorating lysosomal dysfunction and
autophagy inhibition, reducing ROS overload and increasing cell viability [29,
30]. A significant decrease in TFEB mRNA levels was observed in DOX-treated
H9C2 cardiac fibroblasts, but not in DOX-treated Sprague-Dawley rat hearts. This
suggests that the effect of DOX on TFEB transcriptional repression is cell-type
and/or tissue-specific [29]. Recently, it has been demonstrated that TFEB plays
important and multiple roles. The study discovered that doxorubicin treatment
reduced TFEB expression in the nucleus and increased IKKa/f and NF-«xB
phosphorylation [31]. This suggests a possible connection between TFEB
activation and NF-xB, a well-known inflammation-associated factor (Figure 1D).
Therefore, DIC may be achieved by inhibiting the anti-inflammatory activity of

TFEB through the activation of the NF-xB signaling pathway.

TFEB and metabolism-related cardiotoxicity
Both hyperglycaemia and fatty acid overload contribute to a condition known
as 'glycolipotoxicity', which leads to the accumulation of toxic metabolites in the

cardiovascular system and is increasingly recognized as a major driver of cardiac
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pathology and a contributor to the progression of end-stage heart failure [32-34].
Numerous studies have demonstrated that glycolipotoxic effects on
cardiomyocytes primarily originate or terminate in the mitochondria and
endoplasmic reticulum (ER) [35-39]. Transcriptomic data from ventricular tissue
of constitutive cardiomyocyte-specific TFEB-/- mice suggest that TFEB regulates
a network of genes involved in lipid and carbohydrate metabolism. Modulation of
cardiomyocyte lipid metabolism by TFEB is achieved through modulation of
prominent lipid targets such as peroxisome proliferator-activated receptor alpha
(PPARa) [40]. In the liver, TFEB acts in an autophagy-dependent manner to
reduce lipid accumulation [41]. Lack of TFEB action resulted in significant LD
accumulation, whereas over-expression of TFEB reduced LD size and
accumulation. This demonstrates an unusual function of TFEB in regulating
substrate metabolic pathways in cardiomyocytes, rather than its usual role in
regulating lysosomal signaling and function. In endothelial cells, TFEB up-
regulates Insulin Receptor Substrate (IRS1) 1 and 2 through different mechanisms
to activate Akt signaling and increase glucose uptake (Figure 1E) [15]. On the
other hand, mtorc2 - Akt-mediated inactivation of GSK3pB under glucose
deprivation conditions leads to nuclear retention of TFEB in the human colorectal

adenocarcinoma cell line HT2951 [42]. Thus, there may be an interaction between
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Conclusion

In this review, the role of TFEB in CVD is discussed (Figure 2). It is found
that stimulation of TFEB is an effective strategy to ameliorate cardiac
dysfunction, mainly associated with improved lysosomal and mitochondrial
dysfunction and reduced inflammation. Increased TFEB helps clear damaged
mitochondria and inflammatory factors, thus improving oxidative stress in the
heart. Additionally, TFEB has non-classical roles in metabolic pathways, besides
regulating lysosomal biogenesis and autophagy. However, the mechanisms
underlying TFEB's role in CVD have not been fully elucidated. Understanding
TFEB's role in CVD and its associated molecular mechanisms is important.

Manipulating TFEB activity may provide a promising target for treating CVD.

12
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Figure 1 Role and Mechanism of TFEB in CVD.

A. In endothelial cells, TFEB has an antioxidant effect by activating SOD2 and
HO-1 and inhibiting the production of ROS, thereby reducing the inflammatory
response. Red: activating effect. Green: inhibitory effect. B. Mice that over-
express TFEB exhibit reduced leukocyte adhesion, which attenuates plaque
formation and slows down the progression of AS. C. After myocardial ischemia-
reperfusion, the expression of AMPKal and AMPKa2 was reduced. This
inhibition of TFEB occurred through the AMPKal-mTOR and AMPKa2-skp2-
CARM1 pathways, respectively. As a result, lysosomal genesis was reduced,
leading to impaired autophagic copper beam and ultimately impaired
mitochondrial function. D. Doxorubicin, a chemotherapeutic drug, inhibits
TFEB expression, leading to IKK-p and NFkB activation and subsequent
inflammatory response. E. In endothelial cells, TFEB upregulates IRS1 and
IRS2 expression, which activate the Akt signalling pathway, phosphorylate Akt,
and facilitate glucose transport into the cytosol. TFEB: transcription factor EB,
CVD: Cardiovascular Disease, HO1: oxygenase 1, SOD2: superoxide dismutase
2, ROS: reactive oxygen species, AS: atherosclerosis, IRS: insulin receptor

substrate.
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Figure 2 TFEB is involved in heart damage caused by various diseases.

A. Hypertension, myocardial infarction, and coronary atherosclerosis can
overload the heart and eventually lead to heart failure. B. Ischaemic heart
disease can cause interruptions or complete absence of blood flow, resulting in
cardiac pathological changes. C. Doxorubicin has been shown to be cardiotoxic
and long-term use may cause cardiac dysfunction. D. overloading the heart with

sugars and lipids can lead to the accumulation of toxic metabolites.
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