Leucaena interspecific hybrid 'KX4-Hawaii' as a source of agricultural biomass in a water-scarce small island developing state (#103231)

First submission

Guidance from your Editor

Please submit by 16 Aug 2024 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for guidance.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

- 1 Figure file(s)
- 6 Table file(s)
- 1 Raw data file(s)

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty is not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Leucaena interspecific hybrid 'KX4-Hawaii' as a source of agricultural biomass in a water-scarce small island developing state

Jabarry R. Belgrave Corresp., 1, Angela T Alleyne 1, Jeff S Chandler 2, Francis B Lopez 2

Corresponding Author: Jabarry R. Belgrave Email address: jabarry.belgrave@cavehill.uwi.edu

Background. Leucaena leucocephala is a useful multipurpose tree species for agroforestry systems, but traditional seeded cultivars often become weedy and invasive. A seedless hybrid cultivar, 'KX4-Hawaii', offers a potential solution to this problem. However, relevant agronomic information and information on the performance of KX4-Hawaii under varying growth conditions is required. The goal of this research was to evaluate 'KX4-Hawaii' as a source of agricultural biomass in Barbados, a small island developing state with limited arable land.

Methods. 'KX4-Hawaii' air layers were imported into Barbados to create stock trees. Air layering was used to create propagation material and a field study was established with a 'KX4-Hawaii' hedgerow planted as a field border. Three plant spacings (50 cm, 75 cm, and 100 cm) were evaluated and data on the growth and biomass yields of the trees were collected at 4-month intervals. Precipitation data were used to investigate climatic effects on 'KX4-Hawaii' productivity.

Results. 'KX4-Hawaii' was successfully propagated via air layers and could be planted directly in the field with irrigation. All recorded growth and biomass yields were correlated with precipitation. However, the woody (lignified stems and branches) biomass was more responsive to precipitation than the green (leaves and green tender stems) biomass and made up a large fraction of the total biomass produced. 'KX4-Hawaii' was productive even under drought conditions and biomass yields per meter of hedgerow increased with closer spacings. Of the tested spacing treatments, 75 cm was optimum for a 4-month pruning interval under the conditions seen in Barbados as it produced similar yields to the 50 cm spacing treatment but would require less propagation material.

¹ The Department of Biological and Chemical Sciences, University of the West Indies - Cave Hill, Bridgetown, Saint Michael, Barbados

Formerly of The Department of Biological and Chemical Sciences, University of the West Indies, Bridgetown, Saint Michael, Barbados

Leucaena interspecific hybrid 'KX4-Hawaii' as a

2 source of agricultural biomass in a water-scarce small

3 island developing state

4 5

Jabarry Rashad Belgrave¹, Angela Theodora Alleyne¹, Jeff St. Aubyn Chandler¹, Francis Bede
 Lopez¹

8

¹ Department of Biological and Chemical Sciences, The University of the West Indies - Cave Hill Campus, Bridgetown, Saint Michael, Barbados

10 11

- 12 Corresponding Author:
- 13 Jabarry Belgrave¹
- 14 The University of the West Indies Cave Hill Campus, Cave Hill, Bridgetown, Saint Michael,
- 15 BB11000, Barbados
- 16 Email address: jabarrybelgrave@cavehill.uwi.edu

17 18

Abstract

- 19 **Background.** Leucaena leucocephala is a useful multipurpose tree species for agroforestry
- 20 systems, but traditional seeded cultivars often become weedy and invasive. A seedless hybrid
- 21 cultivar, 'KX4-Hawaii', offers a potential solution to this problem. However, relevant agronomic
- 22 information and information on the performance of KX4-Hawaii under varying growth
- 23 conditions is required. The goal of this research was to evaluate 'KX4-Hawaii' as a source of
- 24 agricultural biomass in Barbados, a small island developing state with limited arable land.
- 25 Methods. 'KX4-Hawaii' air layers were imported into Barbados to create stock trees. Air
- 26 layering was used to create propagation material and a field study was established with a 'KX4-
- 27 Hawaii' hedgerow planted as a field border. Three plant spacings (50 cm, 75 cm, and 100 cm)
- were evaluated and data on the growth and biomass yields of the trees were collected at 4-month
- 29 intervals. Precipitation data were used to investigate climatic effects on 'KX4-Hawaii'
- 30 productivity.
- 31 **Results.** 'KX4-Hawaii' was successfully propagated via air layers and could be planted directly
- 32 in the field with irrigation. All recorded growth and biomass yields were correlated with
- 33 precipitation. However, the woody (lignified stems and branches) biomass was more responsive
- 34 to precipitation than the green (leaves and green tender stems) biomass and made up a large
- 35 fraction of the total biomass produced. 'KX4-Hawaii' was productive even under drought
- 36 conditions and biomass yields per meter of hedgerow increased with closer spacings. Of the
- 37 tested spacing treatments, 75 cm was optimum for a 4-month pruning interval under the
- 38 conditions seen in Barbados as it produced similar yields to the 50 cm spacing treatment but
- 39 would require less propagation material.

PeerJ

78

40 Introduction 41 42 Barbados is a small island developing state located in the Western Atlantic. It has a high food import bill (Madden 2023) and it is in the top 20 most water scare countries worldwide (FAO 43 2015). The island is only 430 km², and arable land coverage is heavily fragmented and has 44 decreased over time such that there were only 7000 hectares in 2021 (The World Bank n.d.) as 45 46 can be seen in Fig. 1 (Zanaga et al. 2022). Other Caribbean islands have similar conditions, leading to calls for sustainable and climate-smart agriculture in the region so that the limited 47 48 resources available are efficiently used to improve food security (Central Bank Of Barbados 49 2023). Several tropical woody tree species have multiple uses in agroforestry and include such species 50 Something missing Leucaena, Gliricidia, Inga, and Sesbania, which can be found on the island (Carrington 2007). They have been described as Multipurpose Tree Species (MPTs) for their use as bioenergy sources, food, and fodder, among other uses (Kang et al. 1999; Verheij 2007). Many 53 54 MPTs are nitrogen fixers and the fixed nitrogen may then be transferred to nearby crops via root exudation, leaf litter, and application of pruned biomass (Kang et al. 1999). Nitrogen-fixing 55 MPTs, such as Leucaena (Leucaena leucocephala (Lam.) de Wit), may be used in agroforestry to 56 57 produce biomass for soil amelioration during crop cultivation and their biomass may be pruned 58 and added to the soil as a mulch or mixed into the soil as a green manure. These soil additions may lead to improvements in soil organic matter, water retention, mineral nutrients, and 59 reductions in nutrient leaching (Kang et al. 1999). Organically improved soils result in more 60 sustainable and resilient agroecosystems (requiring fewer external chemical inputs) particularly 61 to climate change effects such as floods and droughts which influence soil erosion, and water and 62 63 nutrient availability (Kugedera et al. 2022; Lalljee 2013). When MPTs are grown in a different location to the crop and the pruned biomass carried to the 64 crop to be applied the process is described as a biomass transfer system. (Kang et al. 1999). 65 66 However, biomass transfer systems require more human resources to transport the pruned 67 biomass although the MPTs can be grown on less arable land, leaving prime arable land for crop cultivation. Still, biomass transfer systems also eliminate competition between MPTs and crops 68 unlike other agroforestry techniques such as alley cropping. Consequently, research has shown 69 that biomass transfer systems can increase crop productivity. A biomass transfer system using 70 Better to gi Leucaena, Gliricidia (*Gliricidia sepium*) and Senna (*Senna siamea*), resulted in higher yields than control or fertilizer treatments, but was uneconomical due to high labor costs and low land 72 73 availability in Nigeria (Kormawa et al. 1999). Contrastingly, a biomass transfer system in 74 southeast Asia using mountain immortelle (Erythrina poeppigiana) to produce beans (Phaseolus 75 vulgaris) and maize (Zea mays) resulted in greater yields and was more profitable than alley 76 cropping (Prosea Foundation 1997). Also, a biomass transfer system in Hawaii using mulch from Leucaena 'KX2' to produce coffee (Coffea arabica) resulted in increased coffee growth and 77

yield and soil carbon and nitrogen contents (Youkhana & Idol 2016).

79	Higher green (non-lignified leaf and stem) biomass production is helpful for soil nutrient
80	additions, as lower carbon:nitrogen (C:N) ratios result in faster biomass decomposition when
81	biomass is applied to the soil (Kang et al. 1999). Low C:N ratios have also been linked to
82	increased biomass quality and crop yields (Srivastava & Singh 2013; Tian et al. 1995; Vargas-
83	Tierras et al. 2021). However, woody biomass with higher C:N ratios can be used as a mulch that
84	is more resistant to decomposition than green biomass and can reduce soil evaporative water loss
85	for longer periods (Budelman 1988). The configuration of a Leucaena hedgerow can be altered
86	to change the dominant fractions in the pruned biomass to suit the needs of the grower if prior
87	knowledge about its use and responses are available.
88	Research in Hawaii has found that more frequent pruning and wider spacings increased
89	Leucaena green biomass yields (t/ha) (Guevarr 1976). Contrastingly, later studies reported that
90	wider plant spacings led to decreased green and woody Leucaena biomass yields (Chotchutima
91	et al. 2013; Tuncay & Rüstü 1989). This effect was also reported by Elfeel & Elmagboul (2016)
92	who reported increased green and woody biomass yields (t/ha) overall with closer spacing, but
93	decreased woody biomass content.
94	'KX4 Hawaii' is a seedless Leucaena interspecific hybrid with high biomass production levels
95	(Brewbaker 2013). Leucaena is considered invasive in Barbados, and farmers are hesitant to
96	grow it because after its introduction to Barbados it escaped and became widespread across the
97	island with a high reproductive output (Carrington 2007; Proverbs 1984). However, these
98	Leucaena are self-pollinated seeded types with a maximum of 45 pods per flower head, each
99	containing 8 - 18 seeds, while flowering and fruiting year-round (Orwa et al. 2009). Therefore,
100	seedless cultivars offer a possible solution to this concern. They are less likely to escape and
101	become invasive, but little information is available on their productivity in an agronomic setting.
102	The 'KX4-Hawaii' hybrid was released in 2012 and it is a completely seedless and high yielding
103	hybrid of L. leucocephala ssp. glabrata and L. esculenta (Mociño et Sesse ex DC) Benth
104	(Brewbaker 2013). 'KX4-Hawaii' may also have potential to supplant the invasive local
105	Leucaena in Barbados for cut stakes, fish traps, biochar, animal feed, land stabilization, and
106	agronomic purposes (Carrington 2007; Proverbs 1984), without the risk of it becoming feral.
107	This study sought to evaluate the seedless cultivar of Leucaena (cv. 'KX4-Hawaii'), and the
108	effect of intra-row plant spacing on biomass yields when planted as a hedgerow on a field border
109	in Barbados. Both green and woody biomass yields were considered, as green biomass has
110	applications for animal feeds and soil improvements, while woody biomass has applications for
111	wood production, biochar, and biomass to energy, and Leucaena has been used in these roles
112	locally (Carrington 2007; Proverbs 1984). As Barbados is a small water scarce island, the
113	performance of this cultivar under these conditions needs to be established.

114

115

Materials & Methods

116 Establishment of Leucaena 'KX4-Hawaii'

- Forty, 30-cm-long rooted air layers of Leucaena cultivar 'KX4-Hawaii' were imported into
- 118 Barbados from the University of Hawaii in 2015. These were acclimated in the Biology Gardens

119 at the Cave Hill Campus in plastic nursery pots (33 cm diameter, 25 cm high) filled with a 1:1 ratio of loamy topsoil and construction sand with daily irrigation. The surviving air layers (25) 120 were planted at the Barbados Agriculture and Manufacturing Company's (BAMC) research 121 station at Groves, Saint George, Barbados to establish stock trees. These were spaced 2 m apart 122 123 and 15 g of triple super phosphate fertilizer was placed in each planting hole. After the stock trees had been established for 2 years, 240 air layers were created by removing 3 124 125 cm wide strips of bark from branches 4 cm to 6 cm in diameter, and cheese cloth containing 125 cm³ of moist Sphagnum peat moss was applied, before wrapping the wounded portion with 126 plastic wrap. Up to 3 air layers were initiated per branch and the branches were cut after 5 weeks 127 to produce 40 cm long air layers. These were acclimated as was done with the imported 'KX4-128 Hawaii' air layers and 183 air layers (76.25 %) survived. Further air layers were created (cut 129 after 8 weeks) and these were planted directly in the field without acclimatization in pots to test

the feasibility of skipping the nursery stage of propagation. Of the 39 air layers directly planted,

132 133

134

130 131

Experimental field plot and planting

33 survived (84.6 %).

A field experiment was established at the Barbados Ministry of Agriculture's Graeme Hall 135 136 complex, in the parish of Christ Church, (13.074379°N 59.573093°W), in 2018. This site is located 11 m above sea level in Barbados' black soil association, characterized by fine textured 137 clays (Ahmad 2011). A randomized block design (with 5 blocks) was used to evaluate the plant 138 spacing (50, 75 and 100 cm) between 'KX4-Hawaii' trees planted as a field border hedgerow. 139

Single 4 the Factural was 9 m long and plots were spaced 2 m apart. Due to seasonal variations such as the 141 dry season in Barbados between December and May (Mohan, Clarke, and Chadee 2020), a 4-

- month pruning interval was chosen so that adequate yields could still be acquired during dry 142
- periods when Leucaena biomass production drops (Proverbs 1984). After each pruning a 0.15 % 143
- Roundup Ultra herbicide solution (a.i. glyphosate, Bayer AG, Germany) was sprayed to control 144
- 145 weeds. 45 plants per block? What is meant by block 5 having more space?
- Experimental blocks 1 4 were planted using the 183 acclimated air layers. As more space was 146
- available, block 5 was planted using the 39 air layers directly planted in the field. Supplying was 147
- done two weeks after planting. The trees were established for several months, with daily drip 148
- 149 irrigation for the first month. Then they were pruned to 30 cm to standardize the plants to the
- same height in September 2018 for blocks 1 to 4 (7 months after planting) and in January 2019 150
- 151 for block 5 (9 months after planting). 152

Did you use initial value as covariate?

153 **Biomass Data Collection**

- There were four prunings (spanning 16 months) until the experiment was prematurely concluded 154 due to COVID-19 lockdowns in Barbados in 2020 (Table 1). Block 5 was established later than 155 the other blocks and data was not collected from this block until May 2019 (13 months after 156 planting). Apart from the first interval (ending January 2019) the amount of precipitation 157
- 158 received was low.

Not clear about blocking. How did you block? What is the block arrangement

How many plots per block? Are those randomized

Several? state number

does it mean each plot has 4 plants where

- Plant height and canopy width (perpendicular across hedgerow) of two plants in the continuous meants have been each plot were measured with a meter rule and averaged. Light interception was measured with a meter rule and averaged.
- 161 a LI-190R point quantum sensor and LI 191R line quantum sensor (LI COR, Inc., USA) between
- 162 10:00 am and 12:00 am. The line sensor was centered on the ground below a plant in the center
- 163 of the plot and measurements were only taken if the overhead light was at least 1000 μ mol s⁻¹ m⁻

164 ².

- Plots were pruned to 30 cm high and biomass samples were taken approximately every 4 months.
- All pruned biomass from one plant from the center of each plot was used to determine the green
- biomass (leaves and green tender stems) and woody biomass (lignified stems and branches) yield
- per plant. Subsamples were oven-dried at 105 °C until constant weight and used to determine the
- 169 dry mass of the samples.

170171

Data Analysis

- 172 Block 2 was not analyzed due to very shallow soil depths in that area of the hedgerow that
- 173 resulted in plots 4 and 5, and half of plot 6, performing extremely poorly. The 'jamovi' 2.5.3
- software with the GAMLj: General analyses for linear models 3.2.7 module was used for mixed
- model, correlation, and regression analyses (Gallucci 2019). A log10 transformation/back
- transformation was used during mixed model analyses if the residuals were not normally
- distributed (canopy light interception and the biomass yield variables), and polynomial contrasts
- were applied during mixed modelling for trend analysis. The Tukey honest significant difference
- post hoc test was applied to significant ($p \le 0.05$) mixed model results for pairwise mean
- 180 comparisons. The strength of correlations was defined based on Swinscow (1997).

181 182

183

Results

'KX4-Hawaii' growth

- During 2019, seasonal variations were observed for some growth parameters Plant height, and
- canopy light interception were at their highest on the January 2019, and canopy width was
- highest in September 2019, though not significantly different to January 2019 (Table 2). Plant
- height, canopy width and canopy light interception were at their lowest in May 2019 during the
- dry season. Although differences between the mean plant height achieved were significant
- throughout the sampling period there were no significant differences in canopy width and light
- interception between the January 2019 and September 2019 sampling dates. There was also no
- significant difference in canopy light interception between the May 2019 and January 2020
- sampling dates, although significantly wider canopies were recorded in January 2020 than in
- 193 May 2019.
- The 75 cm spacing treatment consistently resulted in greater plant heights and canopy light
- interception (Table 3). The 75 cm spacing treatment was significantly different to the 100 cm
- spacing treatment in these variables, although it was not significantly different to the 50 cm
- spacing treatment. Similarly, wider canopy widths were observed with a 75 cm spacing interval.
- At the 50 cm, 75 cm, and 100 cm spacing intervals the mean canopy widths were 222 ± 10.1 cm,

 255 ± 10.1 cm, and 220 ± 10.1 cm, respectively, but the linear mixed model results were not 199 significant (F = 4.77, d.f. = 2, p = 0.060). There was a quadratic response of plant height (p = 200 0.013), canopy width (p = 0.023), and light interception (p < 0.001) as plant spacing increased. 201 There was also a linear response of canopy light interception to plant spacing (p < 0.001). 202 203 204 'KX4-Hawaii' Biomass yields Green biomass comprised a lower fraction of the total biomass produced by 'KX4-Hawaii' 205 (Table 4) and its yields were significantly different to the woody biomass yields at each sampling 206 date apart from May 2019. Yet, overall biomass yields recorded in May 2019 did not differ 207 significantly to those recorded in January 2020. However, the woody biomass yields were 208 significantly different between January and September 2019. 209 The 75 cm spacing treatment resulted in consistently higher yields per plant, although this was 210 211 not significant. There were no significant effects of the spacing × date interaction on 'KX4-212 Hawaii' biomass yields and spacing only significantly affected the biomass yields per meter of hedgerow (F = 6.78, d.f. = 2, p = 0.016). The 50 cm, 75 cm and 100 cm spacing treatments 213 resulted in a mean total biomass production of 2.70 ± 0.43 kg, 2.54 ± 0.40 kg, and 1.43 ± 0.23 kg 214 per meter of hedgerow respectively. Biomass yields per meter of hedgerow decreased with 215 higher spacings and polynomial contrasts indicated a significant linear response of biomass yield 216 per meter to spacing (p = 0.009). Notably, the 50 cm and 75 cm spacing treatments did not 217 significantly differ in biomass yields per meter (p = 0.021), but both resulted in significantly 218 219 different biomass yields per meter to the 100 cm treatment. There was a quadratic response (contrast) of the green/woody biomass ratio to plant spacing (p = 220 221 0.048) but the mixed model results were not significant (F = 2.69, d.f. = 2, p = 0.085). However, there was a significant effect of date on the green/woody biomass ratio (F = 64.13, d.f. = 3, p < 222 0.001) and the ratio was significantly different between all sampling dates. The green/woody 223

225226227

228

224

Associations between spacing and precipitation with 'KX4-Hawaii' growth and yield

biomass ratio was 0.41 ± 0.03 in January 2019, increasing to 0.83 ± 0.03 in May 2019, and

declining to 0.67 ± 0.03 in September 2019 and to 0.524 ± 0.03 in January 2020.

229 All recorded growth and biomass yield variables were significantly correlated with the cumulative precipitation received during each cutting interval (Table 5), and these correlations 230 were all positive apart from the strong negative correlation with the green:woody biomass ratio 231 (rho = -0.686, d.f. = 43, p < 0.001). Notably, the correlation with plant height (rho = 0.757, d.f. = 232 43, p < 0.001) was strong as compared to the moderate correlations with canopy width (rho = 233 0.581, d.f. = 42, p < 0.001) and light interception (rho = 0.434, d.f. = 42, p = 0.003). Also, the 234 correlation with green biomass yields was weak (rho = 0.375, d.f. 43, p = 0.011) compared to the 235 strong correlation with woody biomass yields (rho = 0.641, d.f. = 43, p < 0.001). There were no 236 237 significant correlations between any recorded variable and the length of the interval between data

238 collection dates apart from the moderate negative correlation with the green:woody biomass ratio (rho = -0.516, N = 43, p < 0.001).239 Multiple linear regression modelling of spacing, spacing², and the duration of each cutting 240 interval and the amount of precipitation received was not significant when fitted to the green 241 242 biomass yield per plant (Adjusted $R^2 = 0.100$, d.f. = 4,40, p = 0.083) (Table 6). However, the regression model fitted to the woody biomass yield per plant was significant (Adjusted R^2 = 243 0.100, d.f. = 4,40, p = 0.083) and spacing (p = 0.004), spacing² (p = 0.005), and precipitation (p 244 < 0.001) were significant predictors of woody biomass yield. This model explained 47.9 % of the 245 variation in woody biomass yields. However, the duration of the interval between cuts (p = 246 247 0.508) was not a significant predictor of woody biomass yield, likely because the intervals only ranged from 113 to 123 days; a maximum difference of 10 days). There was a quadratic response 248 of woody biomass yield per plant to plant spacing (spacing, B = 8.96e-2; spacing², B = -5.87e-4). 249

indicating that yield increased initially with spacing before declining. Woody biomass yields also

251 252 253

250

Discussion

254

Propagation of Leucaena 'KX4-Hawaii'

increased with increasing precipitation (B = 2.23e-3).

255 256 Air layering is a low-tech method of propagation with a higher than 90 % success rate for 'KX4-Hawaii' propagation under ideal conditions (Idol et al. 2019), so it was used to produce 'KX4-257 Hawaii' planting material in this study. However, the survival rates (76.25 % and 84.6 %) 258 achieved were lower than the 90 % success rate reported by Idol et al. (2019). It should be 259 considered that the rooted air layers directly planted in the field, though irrigated initially, were 260 261 propagated under rain-fed conditions and this may explain the lower success rates. Any differences between these findings and those of Idol et al. (2019) in Hawaii might be due to the 262 use of larger diameter branches for air layering in this study. Idol et al. (2019) also mentioned 263 264 that adequate soil moisture was needed for the best success rate in producing rooted air layers, 265 and the stock trees used in this work were not irrigated. Furthermore, Hawaii is a volcanic island 266 with volcanic soils, while Barbados' soils are mainly of limestone origin (Ahmad 2011). Additionally, the use of larger diameter branches for air layering in this study may also be 267 reflected in the propagation outcome when compared to Idol et al. (2019). Generally, there is 268 agronomic interest in modern seedless Leucaena cultivars but how these cultivars are multiplied 269 270 for distribution and planting needs to be considered.

271 272

Effects of plant spacing on 'KX4-Hawaii' growth and yield

Overall, the 75 cm spacing resulted in the greatest 'KX4-Hawaii' growth and biomass production 273 274 on a per-plant basis. Research has shown that Leucaena does not compensate for wider plant spacings by producing more lateral stems (Guevarr 1976). Therefore, when space is no longer a 275 limiting factor, further stem growth that would normally drive a bigger canopy and greater 276 biomass does not occur. Leucaena biomass yield per plant (effects of experimental treatments at 277

278 the individual plant level) and per unit area or length of hedgerow (yields under a production setting) are both helpful metrics to measure plant productivity in response to experimental 279 treatments. Our results showed that there were no significant effects of plant spacing on the 280 biomass yield per plant, but there were significant effects of plant spacing on the biomass yield 281 282 per meter of hedgerow. Previous research has shown that Leucaena biomass yield per plant did not significantly increase with intra-row plant spacings above 25 cm (Chotchutima et al. 2013; 283 Tuncay & Rüstü 1989), and 50 cm was the smallest plant spacing used in this current study. As 284 plant spacing did not significantly affect biomass yield per plant, a higher biomass yield per 285 length of hedgerow with smaller plant spacings was due to greater plant densities. 286 The green: woody biomass ratio responded quadratically to plant spacing and the 75 cm spacing 287 treatment resulted in the lowest green: woody biomass ratio (it had the largest proportion of 288 woody biomass). This was unexpected, as literature sources suggest narrower plant spacings are 289 superior for woody biomass production (Chotchutima et al. 2013; Elfeel & Elmagboul 2016; 290 291 Prasad et al. 2011). Another factor in the lower biomass yield per area of the 100 cm plant spacing treatment might have been because it took longer for this treatment to form a solid 292 canopy and shade out weeds (if it ever did within 4 months). This allowed more weeds to grow 293 inside the hedgerow, which would lead to interspecific competition that would counteract the 294 lower intraspecific competition due to a lower plant density. Desmanthus virgatus and 295 Bothriochloa pertusa were common weeds in the `KX4-Hawaii` hedgerow in this study. 296 The biomass yield per meter of hedgerow responded linearly to plant spacing, with an inverse 297 relationship between plant spacing and biomass yields. The 75 cm spacing treatment can be 298 recommended for 'KX4-Hawaii' under similar conditions in the present study as it did not differ 299 300 significantly from the yields per meter of hedgerow of the 50 cm spacing interval but would require less planting material due to the smaller population produced. Our findings are similar to 301 those by Elfeel & Elmagboul (2016), who also used a 4-month pruning interval across 4 biomass 302 sampling dates. Biomass yields recorded from their first biomass sampling responded 303 304 quadratically to plant spacing but responded linearly to plant spacing on the subsequent three sampling dates, with the lowest plant spacing (40 cm) having higher biomass yields. On its 305 initial release, KX4-Hawaii' cultivar was noted for its wood and biofuel production (Brewbaker 306 2013). However, earlier studies with Leucaena by Guevarr (1976) reported that green biomass 307 308 comprised the predominant fraction when compared to woody biomass yields. This differed from later studies by Elfeel & Elmagboul (2016) who reported the production of equal proportions of 309 Leucaena green and woody biomass. In the current study, woody biomass made up the 310 predominant fraction of the 'KX4-Hawaii' biomass produced. The high woody biomass 311 produced here makes KX4-Hawii a suitable cultivar under these conditions as a biofuel source. 312

313 314

315316

317

Impacts of climate conditions during the study period

Leucaena can grow with 650 mm of annual precipitation (Orwa et al. 2009; Proverbs 1984) but this amount is not optimal. Leucaena has been shown to respond to water availability (Maslekar 1984; Noulèkoun et al. 2017) and thrives with over 1200 mm of annual precipitation (Orwa et al.

318 2009). However, there was a drought during the study period 2019 in Barbados (Alleyne 2020; Smith 2020), with the Charnocks weather station receiving only 58 % (736.5 mm) of the 319 climatological average precipitation. This was the lowest amount of precipitation received since 320 1942 (Alleyne 2020). Barbados' climatological average of 1260 mm of annual precipitation 321 322 (Layne 2021) falls into a favorable precipitation regime for Leucaena growth. Therefore, there is potential for greater 'KX4-Hawaii' growth and biomass production than that seen in 2019 323 outside of conditions. Notably, the September 6th to December 31st period in 2018 (580.4 mm) 324 was not dissimilar to the climatological average of 1991-2020 for the September to December 325 period (605.8 mm) (Layne 2021), and this period resulted in the highest woody and total biomass 326 yields when the Leucaena trees were pruned in early January 2019. There were positive 327 correlations between precipitation and all recorded 'KX4-Hawaii' growth and yield variables 328 indicating the potential for higher biomass production. However, 'KX4-Hawaii' was still 329 productive under the drought conditions seen during the study and future dry conditions may not 330 331 hamper the generation of useful woody biomass for agronomic purposes. Elfeel & Elmagboul (2016) also found that the rate of Leucaena biomass production was seasonal, similar to the 332 correlation between precipitation and biomass yields in the current work. So, lower green 333 biomass production under drought conditions was expected as reduced leaf production and 334 335 increased leaf senescence in Leucaena are typical under these conditions (El-Juhany & Aref 1999; Rosecrance 1990). However, as woody biomass was more responsive to precipitation than 336 green biomass, it may make up an even larger fraction of the total biomass produced by 'KX4-337 338 Hawaii' under the climatological norm in Barbados as seen from the January 2019 results.

Limitations of study and future work

Several constraints were encountered during the study period that were outside the control of the authors. First, Barbados is a small island developing state with limited land availability for agroforestry, and there was limited planting material, so the study was restricted to intra-row plant spacing and the pruning regime was fixed. Second, the study had to be terminated prematurely due to national COVID-19 lockdowns. Hedgerow studies typically are run for at least 2 years and include the effect of pruning management such as that by Mullen et al. (2003). This study lasted 16 months from the first cut to the last pruning. Nonetheless, the study provides valuable information on 'KX4-Hawaii', a new cultivar that has not been significantly studied, on a small island with limited land area and creates a base for future research. Future work will build on this research with experiments of longer durations investigating the effects of pruning management on the cultivar and the application of the biomass produced to the soil.

353 Conclusions

339 340

341

342

343 344

345

346

347 348

349

350

351 352

354

355

356

357

Propagation of Leucaena 'KX4-Hawaii' via rooted air layers was successful and can be recommended as a low-tech method of propagating this seedless cultivar. A plant spacing of 75 cm was superior to that of 50 cm and 100 cm for promoting 'KX4-Hawaii' growth. It resulted in similar biomass yields per meter of hedgerow to a spacing interval of 50 cm, and greater

productivity than the 100 cm spacing treatment, but requires less propagation material to establish. 'KX4-Hawaii' was still productive when pruned approximately every 4 months under drought conditions. Contrary to some other Leucaena cultivars, woody biomass comprised a larger fraction of the total 'KX4-Hawaii' biomass produced with a 4-month pruning interval. Growth and biomass yields were correlated with precipitation, and woody biomass production was more responsive to precipitation. Our current results also suggest that 'KX4-Hawaii' is drought tolerant. To the best knowledge of the authors this is the first attempt at understanding the agronomic behavior of 'KX4-Hawii' outside Hawaii and in another island state. Future work is still required to explore the effects of the pruning regime on biomass yields and the ability of 'KX4-Hawaii' biomass to promote the growth of a test crop when applied to the soil.

Acknowledgements

The authors wish to thank Dr. Travis Idol who arranged the transfer of 'KX4-Hawaii' air-layers to Barbados. We would also like to thank Dr. Sandra Bellamy (Barbados Agricultural Management Company) who facilitated the planting of the imported 'KX4-Hawaii' air layers to create stock plants, and Mr. Mark Byer (Barbados Ministry of Agriculture) who facilitated the establishment of this field study. Dr. Adrian Trotman (Caribbean Institute of Meteorology and Hydrology) also assisted this study by the provision of precipitation data for the study period.

References

Ahmad N. 2011. Soils of the Caribbean. Jamaica: Ian Randle Publishers.

Alleyne B. 2020. Driest Year since 1947. NationNews. Barbados?

Brewbaker JL. 2013. 'KX4-Hawaii', Seedless Interspecific Hybrid Leucaena. *HortScience* 48:390-391. 10.21273/HORTSCI.48.3.390

Budelman A. 1988. The Decomposition of the Leaf Mulches of Leucaena leucocephala Gliricidia sepium and Flemingia macrophylla under Humid Tropical Conditions. *Agroforestry Systems* 7:33-45. 10.1007/BF01890468

Carrington S. 2007. Wild Plants of Barbados: Macmillan Caribbean.

Central Bank Of Barbados. 2023. Mitigating Food Insecurity in the Caribbean: Strategies for a Sustainable Future. Available at https://www.centralbank.org.bb/news/caribbean-economic-forum/mitigating-food-insecurity-in-the-caribbean-strategies-for-a-sustainable-future (accessed May 09, 2024 2023).

Chotchutima S, Kangvansaichol K, Tudsri S, and Sripichitt P. 2013. Effect of Spacing on Growth, Biomass Yield and Quality of Leucaena (Leucaena leucocephala (Lam.) de Wit.) for Renewable Energy in Thailand. *Journal of Sustainable Bioenergy Systems* 3:48-56. 10.4236/jsbs.2013.31006

El-Juhany LI, and Aref IM. 1999. Growth and Dry Matter Partitioning of Leucaena leucocephala (Lam. De Wit.) Trees as Affected by Water Stress. *Journal of Agricultural Research* 44:237-259.

405

407

408

409

413 414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

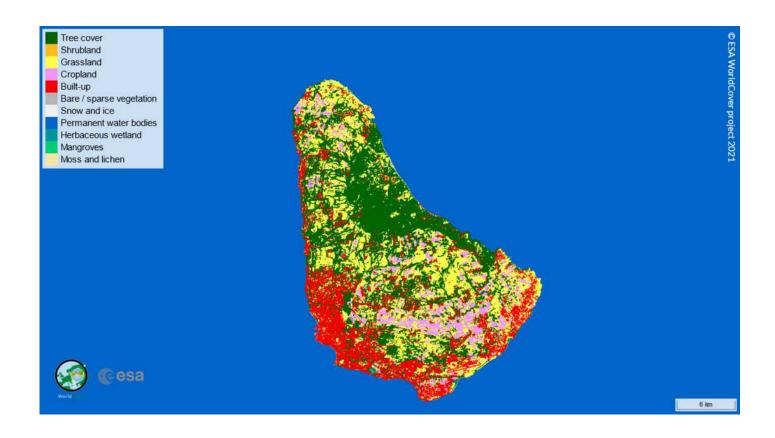
436

437

438

439

440


- 400 Elfeel AA, and Elmagboul AH, 2016, Effect of Planting Density on Leucaena leucocephala 401 Forage and Woody Stems Production under Arid Dry Climate. International Journal of 402 Environmental & Agriculture Research 2:7-11.
- 403 FAO. 2015. FAO AQUASTAT: Country profile - Barbados. Rome, Italy: Food and Agriculture 404 Organisation of the United Nations (FAO).
- Gallucci M. 2019. GAMLj: General Analyses for Linear Models. 1. 2.6.3 ed. Piazza dell'Ateneo 406 Nuovo, Italy: Microsoft Windows. Gallucci. M.
 - Guevarr AB. 1976. Management of Leucaena leucocephala (Lam.) de Wit for Maximum Yield and Nitrogen Contribution to Intercropped Corn PhD dissertation. The University of Hawaii, Hawaii.
- 410 Idol T, Youkhana A, and Santiago RP. 2019. Vegetative and Micropropagation of Leucaena. 411 Tropical Grasslands-Forrajes Tropicales 7:87-95. 10.17138/tgft(7)87-95
- 412 Kang BT, Atta-krah AN, and Reynolds L. 1999. Alley Farming. London: Macmillian Education.
 - Kormawa PM, Kamara AY, Jutzi SC, and Sanginga N. 1999. Economic Evaluation of Using Mulch from Multi-Purpose Trees in Maize-Based Production Systems in South-Western Nigeria. Experimental Agriculture 35:101-109. 10.1017/S0014479799001106
 - Kugedera AT, Mandumbu R, and Nyamadzawo G. 2022. Rainwater Harvesting and Leucaena leucocephala Biomass Rates Effects on Soil Moisture, Water Use Efficiency and Sorghum bicolor [(L.) Moench] Productivity in a Semi-arid Area in Zimbabwe. Journal of the Science of Food and Agriculture 102:6443-6453. 10.1002/jsfa.12011
 - Lalljee B. 2013. Mulching as a Mitigation Agricultural Technology against Land Degradation in the Wake of Climate Change. International Soil and Water Conservation Research 1:68-74. 10.1016/S2095-6339(15)30032-0
 - Layne D. 2021. Barbados Climate Data 1991-2020. Barbados: Barbados Meteorological Services.
 - Madden M. 2023. Fuel Bill Nearly Doubles, Food Bill Also Sees Major Jump. Barbados Today. Barbados.
 - Maslekar AR. 1984. Biomass Production in Rainfed and Irrigated Subabul Leucaena leucocephala Plantations. *Indian Forester* 110:749-753.
 - Mullen BF, Gabunada F, Shelton HM, and Stür WW. 2003. Agronomic evaluation of Leucaena. Part 2. Productivity of the genus for forage production in subtropical Australia and humid-tropical Philippines. Agroforestry Systems 58:93-107. 10.1023/A:1026040631267
 - Noulèkoun F, Khamzina A, Naab JB, and Lamers JPA. 2017. Biomass Allocation in Five Semiarid Afforestation Species Is Driven Mainly by Ontogeny Rather than Resource Availability. Annals of Forest Science 74:78. 10.1007/s13595-017-0676-4
 - Orwa C, Mutua A, Kindt R, Jamnadass R, and Simons A. 2009. Agroforestree Database: A Tree Reference and Selection Guide Version 4.0. Kenya: World Agroforestry Center.
 - Prasad JVNS, Korwar GR, Rao KV, Mandal UK, G.R.Rao, Srinivas I, Venkateswarlu B, Rao SN, and Kulkarni HD. 2011. Optimum stand density of Leucaena leucocephala for wood production in Andhra Pradesh, Southern India. Biomass and Bioenergy 35:227-235. 10.1016/j.biombioe.2010.08.012
- 441 Prosea Foundation. 1997. Plant resources of South-East Asia 11, Auxiliary plants. Leiden: 442 Backhuys Publishers.
- 443 Proverbs G. 1984. Leucaena: 'A Versatile Plant'. Barbados: Caribbean Agricultural Research 444 and Development Institute.
- 445 Rosecrance RC. 1990. Leaflet Drop in the Leucaena Genus. Leucaena Research Reports 446 11:118-120.
- 447 Smith K. 2020. Dry Spell 'To Drag On, Effects to Worsen'. Barbados Today.
- 448 Srivastava R, and Singh KP. 2013. Implications of Multipurpose Tree Leaf Application on Wheat 449 Productivity in Dry Tropics. Journal of Forestry Research 24:777-782. 10.1007/s11676-450 013-0416-z

451	Swinscow TDV. 1997. Statistics at Square One. London: BMJ Publishing Group.
452	The World Bank. n.d. Arable land (hectares) - Barbados. Available at
453	https://data.worldbank.org/indicator/AG.LND.ARBL.HA?locations=BB (accessed May 09,
454	2024 2024).
455	Tian G, Brussaard L, and Kang BT. 1995. An Index for Assessing the Quality of Plant Residues
456	and Evaluating Their Effects on Soil and Crop in the (Sub-) Humid Tropics. Applied Soil
457	Ecology 2:25-32. 10.1016/0929-1393(94)00033-4
458	Tuncay T, and Rüstü H. 1989. The Effects of Intra-Row Spacings and Cutting Heights on the
459	Yield of Leucaena leucocephala in Adana, Turkey. Journal of Range Management
460	42:502-503. 10.2307/3899236
461	Vargas-Tierras Y, Díaz A, Caicedo C, Macas J, Suárez-Tapia A, and Viera W. 2021. Benefits of
462	Legume Species in an Agroforestry Production System of Yellow Pitahaya in the
463	Ecuadorian Amazon. Sustainability 13:9261. 10.3390/su13169261
464	Verheij E. 2007. <i>Agroforestry</i> . Wageninge: Agromisa Foundation.
465	Youkhana AH, and Idol TW. 2016. Leucaena-KX2 Mulch Additions Increase Growth, Yield and
466	Soil C and N in a Managed Full-Sun Coffee System in Hawaii. Agroforestry Systems
467	90:325-337. 10.1007/s10457-015-9857-z
468	Zanaga D, Van De Kerchove R, Daems D, De Keersmaecker W, Brockmann C, Kirches G,
469	Wevers J, Cartus O, Santoro M, Fritz S, Lesiv M, Herold M, Tsendbazar NE, Xu P,
470	Ramoino F, and Arino O. 2022. ESA WorldCover 10 m 2021 v200.
471	

All references are cited - good

Figure 1

Map of Barbados showing land coverage. Arable crop land is indicated in pink. Map © 2024 ESA WorldCover Project at https://viewer.esa-worldcover.org.

Table 1(on next page)

Data collection dates, and the duration and the amount of precipitation received, for each hedgerow pruning interval.

Measurements activities refer to recording plant height, canopy width and canopy light interception. Sampling activities refer to biomass yield sampling. The precipitation data are from the Charnocks (Grantley Adams International Airport) weather station, which was the station closest to the study site.

- 1 Table 1 Data collection dates, and the duration and the amount of precipitation received, for each hedgerow pruning
- 2 interval.

Pruning	Blocks	Previous Cut	Activity	Date	Duration	Precipi	tation
					(Days)	(mm)	per year or per
1	All	2018.09.08	Measurements	2019.01.06	120	576.0	dura tion?
(Jan 2019)			& sampling				
2	All	2019.01.07	Measurements	2019.05.02	115	150.5	
(May 2019)	All	2019.01.07	Sampling	2019.05.04	117	150.5	
3	1-2	2019.05.14	Measurements	2019.09.05	116	277.1	why this previous cut
(Sep 2019)	3-5	2019.05.12	Measurements	2019.09.05	114	277.4	and date in column
	1-2	2019.05.14	Sampling	2019.09.07	118	296.9	not matching except pruning 1 and 2
	3-5	2019.05.12	Sampling	2019.09.07	116	297.2	pruning rand 2
4	1-2	2019.09.18	Measurements	2020.01.10	114	266.3	
(Jan 2020)	3-5	2019.09.09	Measurements	2020.01.10	123	284.7	
	1-2	2019.09.18	Sampling	2020.01.09	113	265.1	
	3-5	2019.09.09	Sampling	2020.01.09	122	283.5	

³ Note: Measurements activities refer to recording plant height, canopy width and canopy light interception. Sampling

sample size

⁴ activities refer to biomass yield sampling. The precipitation data are from the Charnocks (Grantley Adams

⁵ International Airport) weather station, which was the station closest to the study site.

Table 2(on next page)

Leucaena plant height, canopy width, and canopy light interception at each pruning date ± standard error from linear mixed model analyses.

Plant height F = 167.32, d.f. = 3, p < 0.001. Canopy width F = 114.70, d.f. = 3, p < 0.001. Canopy light interception F = 17.61, d.f. = 3, p < 0.001. Means in the same column with a common attached letter are not statistically different based on the Tukey HSD post hoc test $(p \le 0.05)$.

- 1 Table 2 Leucaena plant height, canopy width, and canopy light interception at each pruning date ± standard error
- 2 from linear mixed model analyses.

Time (Sampling Date)	Plant Height	Canopy Width	Canopy Light	
	(cm)	(cm)	Interception (%)	
January 2019	$284 \pm 6.88 \text{ d}$	$273 \pm 9.34 \text{ c}$	89.13 ± 2.59 b	
May 2019	$130 \pm 6.09 \text{ a}$	152 ± 8.56 a	69.18 ± 2.01 a	
September 2019	$259 \pm 6.09 \text{ c}$	$292 \pm 8.56 \text{ c}$	81.28 ± 2.53 b	
January 2020	$203 \pm 6.09 \text{ b}$	$213 \pm 8.56 \text{ b}$	67.61 ± 2.10 a	

- 3 Note: Plant height F = 167.32, d.f. = 3, p < 0.001. Canopy width F = 114.70, d.f. = 3, p < 0.001. Canopy light
- 4 interception F = 17.61, d.f. = 3, p < 0.001. Means in the same column with a common attached letter are not
- 5 statistically different based on the Tukey HSD post hoc test ($p \le 0.05$).

sample size?

Table 3(on next page)

Leucaena plant height and canopy light interception for each spacing treatment ± standard error from linear mixed model analyses.

Plant height F = 4.86, d.f. = 2, p = 0.039. Canopy light interception F = 17.92, d.f. = 2, p < 0.001. Means in column with a common attached letter are not statistically different based on the Tukey HSD post hoc test ($p \le 0.05$).

- 1 Table 3 Leucaena plant height and canopy light interception for each spacing treatment ± standard error from linear
- 2 mixed model analyses.

Spacing	Plant Height	Canopy Light Interception
(cm)	(cm)	(%)
50	211 ± 7.48 ab	81.28 ± 1.91 b
75	$238 \pm 7.48 \text{ b}$	$85.11 \pm 2.00 \text{ b}$
100	$208 \pm 7.48 \text{ a}$	69.18 ± 1.63 a

- Note: Plant height F = 4.86, d.f. = 2, p = 0.039. Canopy light interception F = 17.92, d.f. = 2, p < 0.001. Means in
- 4 column with a common attached letter are not statistically different based on the Tukey HSD post hoc test
- 5 $(p \le 0.05)$.

sample size?

Table 4(on next page)

Leucaena biomass yields (dry weight) for each biomass component at each pruning date ± standard error from linear mixed model analyses.

Note: F = 3.86, d.f. = 6, p = 0.002. Means in the same column with a common attached letter are not statistically different based on the Tukey HSD post hoc test ($p \le 0.05$).

- 1 Table 4 Leucaena biomass yields (dry weight) for each biomass component at each pruning date ± standard error
- 2 from linear mixed model analyses.

Time (Sampling Date)	Biomass	Yield/plant	Yield/meter of hedgerow
		(kg)	(kg)
January 2019	Green	$0.66 \pm 0.08 \ bc$	0.91 ± 0.11 bc
	Woody	$1.56 \pm 0.18 \text{ fg}$	$2.17 \pm 0.25 \text{ fg}$
	Total	2.22 ± 0.26 g	$3.08 \pm 0.36 \text{ g}$
May 2019	Green	0.56 ± 0.06 ab	$0.77 \pm 0.08 \text{ ab}$
	Woody	$0.68 \pm 0.07 \ bc$	$0.94 \pm 0.10 \ bc$
	Total	$1.23 \pm 0.13 \text{ ef}$	$1.71 \pm 0.19 \text{ ef}$
September 2019	Green	$0.69 \pm 0.08 \text{ bc}$	$0.96 \pm 0.10 \text{ bc}$
	Woody	$1.04 \pm 0.11 de$	$1.44 \pm 0.16 de$
	Total	$1.74 \pm 0.19 \text{ g}$	$2.41 \pm 0.26 \text{ g}$
January 2020	Green	0.40 ± 0.04 a	0.56 ± 0.06 a
	Woody	$0.78 \pm 0.09 \text{ cd}$	$1.08 \pm 0.12 \text{ cd}$
	Total	$1.19 \pm 0.13 \text{ ef}$	$1.65 \pm 0.18 \text{ ef}$

Note: F = 3.86, d.f. = 6, p = 0.002. Means in the same column with a common attached letter are not statistically

⁴ different based on the Tukey HSD post hoc test ($p \le 0.05$).

Table 5(on next page)

Spearman's rank correlations between precipitation and the recorded growth and yield variables.

1 Table 6 Spearman's rank correlations between precipitation and the recorded growth and yield variables.

Plant Height	Canopy Width	Canopy Light	Green Biomass	Woody Biomass	Green:Woody
(cm)	(cm)	Interception	Yield per	Yield per Plant (kg)	Biomass Ratio (kg/kg)
		(%)	Plant (kg)	(- 	(g g)
rho = 0.757	rho = 0.581	rho = 0.434	rho = 0.375	rho = 0.641	rho = -0.686
d.f. = 43	d.f. = 43	d.f. = 42	d.f. = 43	d.f. = 43	d.f. = 43
p < 0.001	p < 0.001	p = 0.003	p = 0.011	p < 0.001	p < 0.001

2

I guess this is pooled data? where growth and other parameters are different in different spacing? What will happen if you analyse within each treatment?

Table 6(on next page)

Multiple linear regression models of green and woody biomass yields per plant fitted to plant spacing, plant spacing squared, and the duration and the amount of precipitation received for each cutting interval.

 R^2 = adjusted R^2 statistic.

- 1 Table 7 Multiple linear regression models of green and woody biomass yields per plant fitted to plant spacing, plant
- 2 spacing squared, and the duration and the amount of precipitation received for each cutting interval. this says ppt for the given interval?

Model Fit	Predictor	Estimate	S.E.	t	р
		(B)			r
$R^2 = 0.100$	Intercept	0.82	1.644	0.50	0.620
d.f. = 4,40	Spacing (cm)	3.60e-2	1.60e-2	2.23	0.031
p = 0.083	Spacing (cm) ²	-2.36e-4	1.07e-4	-2.20	0.033
	Precipitation (mm)	4.59e-4	2.36e-4	1.95	0.058
	Interval (Days)	-1.39e-2	1.30e-2	-1.04	0.303
$R^2 = 0.479$	Intercept	-4.73	3.01	-1.57	0.124
d.f. = 4,40	Spacing (cm)	8.96e-2	2.96e-2	3.03	0.004
p < 0.001	Spacing (cm) ²	-5.87e-4	1.96e-4	-2.99	0.005
	Precipitation (mm)	2.23e-3	4.31e-4	5.16	< 0.001
	Interval (Days)	1.62e-2	2.42e-2	0.67	0.508
	d.f. = 4,40 p = 0.083 $R^2 = 0.479$ d.f. = 4,40	$R^2 = 0.100 \qquad \text{Intercept}$ $d.f. = 4,40 \qquad \text{Spacing (cm)}$ $p = 0.083 \qquad \text{Spacing (cm)}^2$ $\text{Precipitation (mm)}$ Interval (Days) $R^2 = 0.479 \qquad \text{Intercept}$ $d.f. = 4,40 \qquad \text{Spacing (cm)}$ $p < 0.001 \qquad \text{Spacing (cm)}^2$ $\text{Precipitation (mm)}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Note: R^2 = adjusted R^2 statistic.

sample size?