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Background: Neotropical fish species belonging to the Steindachneridion genus are
frequently categorized as endangered due to their high level of endemism. Methods: In
this study, genetic analyses of mitochondrial DNA (mtDNA) D-loop were conducted on four
species within this genus across their respective distributions: Steindachneridion scriptum
(from the Tibagi and Uruguay Rivers), S. melanodermatum (from the Iguacu River), S.
doceanum (from the Doce River), and S. parahybae (from the Paraiba do Sul River).
Zungaro zungaro and Brachyplatystoma rousseauxii were employed as outgroups, and the
topology was inferred using Bayesian Inference (Bl) and Maximum Likelihood (ML)
phylogenetic reconstruction techniques. Sequences were also analyzed to assess genetic
diversity levels. Results: Contrary to the remaining species, which exhibited distinct
species-specific clades, our data suggests that S. scriptum formed two sister clades,
potentially representing distinct operational taxonomic units. Novel haplotypes were
identified for each of the four species, further supporting the conclusions derived from the
phylogenetic analysis. Overall, Steindachneridion species displayed high haplotype
diversity paired with low nucleotide diversity, indicating a demographic expansion event
after a period of reduced effective population size. Nevertheless, genetic structure indexes
were notably high. These findings imply that the genetic diversity within these species
might be undervalued, holding implications for both taxonomic classification and biological
conservation strategies. Conclusion: In conclusion, the study of genetic diversity in
Steindachneridion species has revealed distinct Molecular Operational Taxonomic Units

(MOTUs), highlighting the need for conservation efforts. The detection of new haplotypes
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and intraspecific variability emphasizes the urgency for systematic conservation measures
in the face of looming extinction threats.
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ABSTRACT

Background: Neotropical fish species belonging to the Steindachneridion genus are frequently
categorized as endangered due to their high level of endemism.

Methods: In this study, genetic analyses of mitochondrial DNA (mtDNA) D-loop were conducted
on four species within this genus across their respective distributions: Steindachneridion scriptum
(from the Tibagi and Uruguay Rivers), S. melanodermatum (from the Iguagu River), S. doceanum
(from the Doce River), and S. parahybae (from the Paraiba do Sul River). Zungaro zungaro and
Brachyplatystoma rousseauxii were employed as outgroups, and the topology was inferred using
Bayesian Inference (BI) and Maximum Likelihood (ML) phylogenetic reconstruction techniques.
Sequences were also analyzed to assess genetic diversity levels.

Results: Contrary to the remaining species, which exhibited distinct species-specific clades, our
data suggests that S. scriptum formed two sister clades, potentially representing distinct operational
taxonomic units. Novel haplotypes were identified for each of the four species, further supporting
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the conclusions derived from the phylogenetic analysis. Overall, Steindachneridion species
displayed high haplotype diversity paired with low nucleotide diversity, indicating a demographic
expansion event after a period of reduced effective population size. Nevertheless, genetic structure
indexes were notably high. These findings imply that the genetic diversity within these species
might be undervalued, holding implications for both taxonomic classification and biological
conservation strategies.

Conclusion: In conclusion, the study of genetic diversity in Steindachneridion species has
revealed distinct Molecular Operational Taxonomic Units (MOTUs), highlighting the need for
conservation efforts. The detection of new haplotypes and intraspecific variability emphasizes the
urgency for systematic conservation measures in the face of looming extinction threats.

INTRODUCTIC

Steindachneridion 1is a fish genus endemic to the eastern Brazilian watersheds and can also be
found in the rivers of the Parand and Uruguay basins (Garavello, 2005). Although its placement
within the Pimelodidae is well accepted, its evolutionary history and ancestry remain largely
unknown (A4lbert & Reis, 2011). It 1s regarded as a basal group for the superfamily Pimelodoidea
despite its unresolved phylogenetic relationships (Sullivan et al., 2013).

In terms of taxonomy, six species are recognized under the genus Steindachneridion (Garavello,
2005). Steindachenridion fossils of the S. iheringi species were reported by Woodward, 1898 and
dated to the Oligocene (Lima, 1985), indicating that they first emerged around 13.5 million years
ago, which is compatible with the diversification of pimelodid fish.

The existence of a hidden diversity in this genus is questioned by some studies using molecular
markers, although morphological taxonomy recognizes some interspecific diversity in
Steindachneridion (Matoso, 2009; Matoso et al., 2011, Paixdo et al., 2018). For S. parahybae, a
species on the verge of extinction (Honji et al., 2017), the use of microsatellite markers and gene
sequences from the mitochondrial DNA controlling region indicated population structure due to
fragmentation and anthropic impacts. However, without showing any signs of population
organization, an unrooted haplotype network analysis employing D-loop sequences separately
grouped the species S. scriptum, S. parahybae, and S. melanodermatum (Souza-Shibatta et al.,
2021).

According to ICMBio/MMA (ICMBio, 2014), “* indachneridion species frequently appear at the
top of Red Book lists of endangered species. This is due to a number of urgent issues, including
overfishing and habitat degradation and fragmentation, which are considered to be the primary
causes of the decline and extinction of freshwater fish species (Paixdo et al., 2018). Given this
situation, defining significant taxonomic units for conservation as well as mapping population
structure and genetic variability are crucial sources of information that serve as a basis for
formulating effective management strategies in the restructuring and/or maintenance of
populations and species of Steindachneridion. To better understand the phylogenetic and
demographic relationships of this important group of Neotropical fish, the goal of this paper is to
present fres ' i* formation concerning molecular genetic variability.
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MATERIALS & METHODS
Sampling and D-loop PCR
Muscle samples were collected for the DNA assessment: ten Steindachneridion scriptum
specimens from Rio Uruguay, six from Rio Tibagi, seventeen S. melanodermatum specimens from
Rio Iguagu, three S. parahybae specimens from Rio Paraiba do Sul, and two S. doceanum
specimens from Rio Doce (Figure 1), following the procedures outlined by (Sambrook et al.,
1989).

----- Figure 1 here -----
The amplification of the D-loop region was conducted using 5 ng of DNA, 1.5 mM MgCl2, 1x
buffer, 200 mM of each ANTP, 0.5 U of Taq DNA polymerase, and 0.5 mM of each primer (FTTF:
5'CAA AGC GCC GGT CTT 3 "and F12R 5'GTC AGG ACC ATG CCT TTG3') (Sivasundar et
al., 2001). PCR was initiated with five cycles, comprising denaturation at 94°C for one minute,
hybridization at 53°C for one minute, and elongation at 72°C for one minute and 30 seconds,
followed by 25 cycles at 50°C for the hybridization step. PCR reactions were conducted using a
PTC-100 thermocycler from MJ Research. PCR products were subjected to electrophoresis in a
0.8% agarose gel utilizing phage 1 as the molecular mass marker. Purification of samples was
performed using the GFX PCR DNA and Gel Band Purification Kit (GE HealthCare), followed
by sequencing using the DYEnamic ET Terminator Cycle Sequencing kit (GE HealthCare) as per
the manufacturer's instructions. Bidirectional sequencing of all templates was carried out on a
Sanger ABI 3130 sequencer (Applied Biosystems), with images documented by the Kodak
Electrophoresis Analysis and Documentation System (EDAS) 290. Sequences of
Steindachneridion scriptum from Rio Uruguay and Rio Tibagi (accession numbers EU930030-
EU930044), S. melanodermatum from Rio Iguagu (accession numbers OQ842480-0Q842496), S.
parahybae from Rio Paraiba do Sul (accession numbers OQ842477-0Q842479), and S. doceanum
from Rio Doce (accession numbers OQ842475-0Q84476) were deposited on GenBank.
This research followed the international standards of animal experimentation, approved by the
Ethics Committee for Animal Use of the Universidade Estadual de Ponta Grossa (CEUA process
number 0769342/2021). The collection was authorized by the Ministério do Meio Ambiente
(MMA/ICMbio number 15115-1).

Genetic Diversity Analysis

Genetic distances within and between groups were estimated based on the Kimura 2-parameter
evolution model (K2P) (Kimura, 1980). A Neighbor-Joining (NJ) tree (Saitou & Nei, 1987) was
constructed from this model to graphically represent divergences between species to depict species
divergences, and clade support was assessed by 1000 bootstrap pseudo-replicates according to
(Felsenstein, 1985), using MEGA 10.2.2 (Kumar et al., 2018). Genetic diversity parameters (S -
polymorphic sites; Nk - number of haplotypes; 4 - haplotypic diversity; # - nucleotide diversity)
were evaluated utilizing DnaSP 6.12.03 (Rozas et al., 2017) and employed neutrality tests
including Tajima's D (Tajima, 1989), Fu's Fs (Fu, 1997) and R, (Ramos-Onsins & Rozas, 2002).
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Statistical significance was determined via 10,000 permutations under the coalescing process
implemented in DnaSP 6.12.03 (Rozas et al., 2017). To elucidate relationships between species of
the genus Steindachneridion and the population of Steindachneridion melanodermatum studied,
haplotype networks were reconstructed using PopART 1.7 (Leight & Bryant, 2015) through the
TSC method (Clement et al., 2000).

Phylogenetic Analysis of mtDNA D-loop Sequences

For the phylogenetic analyses, we retrieved a D-loop sequence from Brachyplatystoma rousseauxii
with accession number DQ779046 (Batista & Alves-Gomes, 2006) and another sequence from
Zungaro zungaro (accession number EU930046.1), as an outgroup from Genbank. These D-loop
sequences underwent alignment and editing using the Clustal W program (Thompson et al., 1994).
Subsequently, a Bayesian Inference (BI) analysis was conducted employing MrBayes v. 3.2.7
(Ronquist & Huelsenbeck, 2003) through Markov chain Monte Carlo (MCMC) searches on two
simultaneous runs of four chains for 10° generations, sampling trees every 103 generations. A burn-
in of 25% of the sampled trees was implemented, and consensus topology and nodal support were
computed from the remaining trees, estimated as posterior probability values (Huelsenbeck, 2001).
Visualization and finalization of phylogenetic trees were executed using FigTree v. 1.4.4
(http://tree.bio.ed.ac.uk/software/figtree/). Additionally, the PAUP* program (Swofford, 2002)
was utilized to determine the best evolutionary model via Modeltest 3.7 (Posada & Crandall,
1998) under the Hierarchical Likelihod Ratio Tests (hLRTs). The Maximum Likelihood (ML)
analysis was performed using MEGA 11.0.13 (Tamura et al., 2007), employing the HKY model
with a gamma distribution, and bootstrap resampling with 501 replications to assess node support.

RESULTS

Genetic Diversity of Staindachneridion

Nucleotide sequencing retrieved a total of 38 partial D-loop sequences of Steindachneridion
scriptum samples collected from the Rio Uruguay and Rio Tibagi. The calculated average
nucleotide diversity across these sequences was 0.065, and S. scriptum specifically exhibiting a
nucleotide diversity of 0.017. Comparing of the nucleotide diversity and haplotype count within
S. scriptum populations revealed that the Uruguay River harbored a greater number of haplotypes
(N=10), whereas the Tibagi River displayed higher nucleotide diversity (N=6).

For S. doceanum, the determined nucleotide diversity was 0.030, while S. melanodermatun
exhibited a nucleotide diversity of 0.011. Notably, a nucleotide diversity of 0.130 was observed in
S. parahybae. The calculated R, values were substantially higher and statistically significant,
indicating evidence of a departure from neutrality. However, in contrast, the Fu’s (Fs) test metric
showed relatively high values, which, despite their magnitude, did not achieve statistically
significance.

It’s important to note that the R, test has been acknowledged as more effective in detecting
demographic events in smaller samples sizes (Ramos-Onsins & Rozas, 2002), as observed in the
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present study. Conversely, Fu's (Fs) test tends to be more suitable for samples with a larger number
of individuals, as emphasized in the comparison presented in Table 1.

----- Table 1 here -----
In the context of haplotype composition, our analysis revealed the identification of novel
haplotypes within different species. Specifically, two new haplotypes (Haplo 1 and 2) were
identified in S. doceanum, while three distinct haplotypes (Haplo37, Haplo38, and Haplo39) were
found in S. parahybae. Moreover, a total of fifteen haplotypes were detected in S. scriptum, and
sixteen haplotypes were observed in S. melanodermatum, labeled as Haplo28 to Haplo44 (as
depicted in Figures 2-3).

----- Figure 2 here -----

----- Figure 3 here -—--
In the haplotype network analysis, a closer relationship was observed between S. scriptum
populations from Rio Tibagi and Rio Uruguay, with only 9 mutational steps separating these two
populations. Comparatively, when contrasting S. melanodermatum with S. scriptum populations
from the Uruguay River and Tibagi River, 13 and 18 mutational steps were identified, respectively.
In addition, a considerable distance was found between S. parahybae and the other species, with
72 mutational steps from S. parahybae to S. melanodermatum and 61 mutational steps to S.
doceanum.
Regarding the outgroup species, the analysis revealed significant genetic distances. Specifically,
between S. melanodermatum and the outgroup species, Brachyplatystoma rousseauxii and
Zungaro zungaro, 104 and 113 mutational steps were observed, respectively. These findings
provide insights into the genetic divergence and relationships among the studied species,
emphasizing notable genetic distances and relationships within and between species.

Phylogenetic Analysis

The topology resulting from the analyses using the BI (Bayesian Inference) and ML (Maximum
Likelihood) methods showed significant similarities (Figure 4). The genus Steindachneridion was
determined to be monophyletic for the four species examined in this study, grouped in a highly
robust clade supported by a high posterior probability. Steindachneridion scriptum from the Tibagi
and Uruguay Rivers exhibited consistent clustering into two distinct clades, supported by bootstrap
and posterior probability values. Steindachneridion doceanum grouped with S. parahybae, while
S. melanodermatum formed a single clade. The species B. rousseauxii and Z. zungaro clustered
together, comprising the sister group to all the analyzed species.

----- Figure 4 here -----

Annotation and Characterization of Haplotypes of S. melanodermatum

Partial sequencing of the mitochondrial D-/oop gene resulted in an array of 849 base pairs, situated
between positions 15,651 and 16,500 within the mitogenome of S. melanodermatum (ON408064)
(Figure 5). The 27 additional D-/loop haplotypes (Haplo1 to Haplo27) retrieved from references
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MZ672137-MZ672163 encompassed positions 15,590 to 16,460 within the mitogenome (Haplo1),
constituting a sequence length of 870 base pairs (depicted in Figure 3).

----- Figure 5 here ---—--
Alignment of these obtained sequences with those available in Genbank revealed an overlap
spanning 809 base pairs (from positions 15,651 to 16,460), flanked by two non-overlapping
fragments situated upstream (positions 15,590 to 15,650) and downstream (positions 16,461 to
16,500) the overlapping region (as illustrated in Figure 4). Notably, these non-overlapping
fragments represent non-conserved regions within the sequences and did not influence the
identification of S. melanodermatum haplotypes.
This comprehensive alignment and analysis provide clarity on the specific regions used for
sequence comparisons, underscoring the conserved nature of certain segments and their role in
facilitating the accurate identification of S. melanodermatum haplotypes despite the presence of
non-overlapping fragments.

DISCUSSION

Genetic Diversity Unveiled: A glimpse into Stendachneridion is enigmatic
variability

The exploration of genetic diversity among the four Steindachneridion species has revealed a
clustering mosaic of haplotypic variation, boasting substantial diversity levels (h=0.97-1.00 — Tab.
1). Notably, our methodologies, akin to studies on S. scriptum from the Uruguay River (Paixdo et
al., 2018) and S. melanodermatum from the Iguacu River (Souza-Shibatta et al., 2021), resonate
with the findings of these investigations. This revelation assumes particular intrigue given the
status of these species as endemics (Garavello, 2005), believed to inhabit deep wells and facing
looming extinction threats (/ICMBio, 2014).

Our analyses, spanning haplotype networks and Bayesian Inference (BI) and Maximum
Likelihood (ML) phylogenetics, delineated Steindachneridion scriptum populations from the
Tibagi and Uruguay rivers into distinct Molecular Operational Taxonomic Units (MOTUs)
(Figures 1 and 3). This corroborates prior findings in the Upper Uruguay River (Paixdo et al.,
2018). The presence of substantial genetic structure, coupled with evidence of departure from
neutrality (as indicated by the R2 statistic and Fs statistic's results, respectively), underscores the
complexity within these populations.

Remarkably, the discovery of numerous new haplotypes across the four Steindachneridion species
signals an untouched reservoir of genetic variability within the genus. While previous studies, such
as the one by (Fomseca et al., 2017), employing microsatellite markers, revealed low
heterozygosity rates in S. parahybae, the conundrum of how intrapopulation genetic variability is
maintained in Steindachneridion remains unresolved.

The emerging kinship dynamics among Steindachneridion species paint a clearer picture. Our
haplotype network asserts a robust genetic affinity between S. melanodermatum and S. scriptum
from the Uruguay River. These findings echo the conclusions drawn by (Souza-Shibatta et al.,
2021), who, though employing different methodologies (six microsatellite markers in a larger
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sample size (N=95)), reveled analogous connections between these species. Despite S.
melanodermatum's seemingly uncompromised genetic diversity, clues pointing to a recent
bottleneck were evident in microsatellite data (Matoso et al., 2011). This study expands on
previous knowledge, revealing 16 novel haplotypes for S. melanodermatum, illuminating the
pressing need for deeper investigations into the species' genetic diversity.

Our discovery of several new haplotypes within the studied Steindachneridion species underscores
the potential undervaluation of their genetic diversity. The cohesive groupings observed in the
haplotype network, coupled with BI and ML analyses, accentuate each species' distinctiveness as
a single Operational Taxonomic Unit (OTU), warranting due consideration for conservation
efforts. Additionally, our findings, aligning with those by (Fonseca et a., 2017) in S. parahybae,
highlight the conundrum posed by the combination of low nucleotide diversity and high haplotypic
diversity, hinting at a demographic surge following a period of diminished effective population
size.

Unraveling Evolutionary Enigmas: Insights into Steindachneridion is genetic

tale

The exploration of morphological data and the genetic model data from nuclear and mitochondrial
sources have unveiled a remarkable story within the Pimelodidae family (Lundberg & Littmann,
2003) constituting a monophyletic clade (Sulivan et al., 2013). Similar to this, monophyly is
supported for the species of Steindachneridion (Garavello, 2005) positioning these fish as a basal
lineage among pimelodids (Lundberg et al., 2011). Such evidence beckons for a deeper
comparative and kinship investigation, particularly within the Steindachneridion genus.
Leveraging Bayesian Inference (BI) and Maximum Likelihood (ML) analyses on 38 mitochondrial
D-loop gene sequences from our studied species yielded robust clades, solidifying our results with
a high-reliability index (Figure 3). This analytical exploration was empowered by the
comprehensive mitochondrial genome of S. melanodermatum (Silva et al., 2024), pivotal for
concatenating nucleotide sequences in our phylogenetic algorithms for BI and ML (Figure 4).
Our investigations, rooted in the topology of the Pimelodidae (Lundberg & Akama, 2005),
showcased Brachyplatystoma rousseauxii and Zungaro zungaro as outgroups, delineating the
phylogenetic relationships among examined Steindachneridion species, distinctly positioned
outside these clusters. Internally, these clusters identified within the four Steindachneridion
species under scrutiny stand as conclusive evidence, reverberating uniform biogeographic patterns.
The geological dynamics of the Guiana and Brazilian continental shields, coupled with the
drainage patterns along South America's east coast, have significantly shaped the river systems
(Ribeiro, 2006; Lundberg, 1998). Notably, macrodome uplift, rifts, vertical movements, and
erosive actions along the east bank have been pivotal in shaping the distribution of freshwater
ichthyofauna in these regions. The observed biogeographic patterns (Ribeiro, 2006) underscore
taxa with endemic coastal distributions maintaining phylogenetic ties with neighboring
ichthyofauna, hinting at Steindachneridion is integration within this context. These fish, harboring
endemic distributions across coastal basins (three of their six species) while spanning the Upper
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Parana basins, including the Iguacu River and Uruguay River, exhibit kinship connections with
Zungaro, Sorubim, Pseudoplatystoma, and the Amazon basin-dwelling Brachyplatystoma.

The observed clustering between S. doceanum + S. parahybae and S. melanodermatum + S.
scriptum could be attributed, in part, to biogeographic features along Brazil's east coast, perhaps
associated with the proximity of these species' river headwaters. Comparable findings in the 16S
gene sequences of Hoplias malabaricus (Dergman et al., 2002) unveiled intertwined relationships
across basins like Doce, Paraiba do Sul, and Grande, remnants of a shared past during the Plio-
Pleistocene. The ichthyofauna of these basins is currently a reflection of a relict fauna that still
bears similarities to one another (7Torres et al., 2008, Menezes et al., 2008). Erosive retreats and
headwater capture events might have sculpted the ichthyofauna relationships across these basins
(Ribeiro, 2006).

Steindachneridion is included in the National List of Aquatic Vertebrates and Fish Threatened
with Extinction (/ICMBio, 2018) highlighting its conservation urgency. Species like S. punctatum
and S. amblyurum, absent in our study due to sampling difficulties, emphasize their precarious
status and the challenges in preserving them.

This study aims to illuminate the evolutionary dynamics within this fish group, even though
numerous questions regarding the phylogenetic relationships of the Steindachneridion genus
persist. Since the diversification of Siluriformes in the Neotropical region came before the division
of South America from other continental blocks (Pinna, 1998). Thus, to achieve a more
comprehensive phylogenetic and biogeographic scenario, comparative data with taxa beyond the
Neotropical region are imperative. Future research on Sorubiminae's systematics promises to
elucidate the phylogenetic intricacies of basal lineages within this group, potentially fortifying
conclusions derived herein.

Four of the six known Steindachneridion species were central to our study. S. punctatum,
unfortunately, is no longer found in the wild. Beyond contributing to the evolutionary narrative of
this endangered endemic genus, our primary aim was to unveil the latent genetic variability within
these species. Our crucial takeaway underscores distinct Molecular Operational Taxonomic Units
(MOTUs) among Steindachneridion species, advocating for their conservation. Remarkably,
recent events might have influenced genetic differentiation, hinting at intraspecific variability
suggestive of speciation processes, demanding systematic consideration, as exemplified in the case
of S. scriptum.

CONCLUSIONS

In conclusion, the study of genetic diversity within the Steindachneridion genus has revealed a
wide range of variability, highlighted by distinct Molecular Operational Taxonomic Units
(MOTUs) among species. This discovery of genetic intricacies not only provides insight into the
evolutionary dynamics within this group of fish, but also emphasizes the urgent need for
conservation efforts. As we navigate through the enigmatic evolutionary tale of
Steindachneridion, further research remains imperative to fully comprehend the phylogenetic
intricacies and biogeographic context of these basal lineages within the Pimelodidae family.
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Furthermore, the identification of new haplotypes and detection of intraspecific variability
suggest ongoing speciation processes. This highlights the need for systematic consideration and
proactive conservation measures, particularly in light of the looming extinction threats faced by
these endemic species.
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Figure 1

Geospatial analysis of Steindachneridion species distribution across South American
river basins.
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Figure 1. Geospatial analysis of Steindachneridion species distribution across South American river
basins.
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Figure 2

Haplotype network depicting mitochondrial D-loop gene variation among
Steindachneridion species (Pimelididae) from South America.

Haplotypes are represented for each species and their respective river basins: S. doceanum
from the Rio Doce basin (orange); S. parahybae from the Rio Paraiba do Sul basin (pink); S.
scriptum from the Rio Tibagi and Rio Uruguay basins (yellow and red, respectively); S.
melanodermatum from the Rio Iguagu basin (green). The outgroup species are depicted in

black: Zungaro zungaro; Brachyplatystoma rousseauxii (haplotype D31).
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Figure 2. Haplotype network depicting mitochondrial D-loop gene variation among
Steindachneridion species (Pimelididae) from South America. Haplotypes are represented for each
species and their respective river basins: S. doceanum from the Rio Doce basin (orange): S. parahybae
from the Rio Paraiba do Sul basin (pink); 5. scriprum from the Rio Tibagi and Rio Uruguay basins
(yellow and red, respectively); S. melanodermatum from the Rio Iguagu basin (green). The outgroup
species are depicted in black: Zungaro zungaro; Brachyplatystoma rousseauxii (haplotype D31).
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Figure 3

Phylogenetic topology and genetic distances (HKY model) among Steindachneridion
species sourced from South American rivers utilizing mitochondrial D-loop gene data.

The outgroup species are represented in black: Zungaro zungaro; Brachyplatystoma

rousseauxii (haplotype D31).
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Figure 3. Phylogenetic topology and genetic distances (HKY model) among Steindachneridion
species sourced from South American rivers utilizing mitochondrial D-loop gene data. The outgroup
species are represented in black: Zungaro zungare; Brachyplatystoma rousseauxii (haplotype D31).
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Figure 4

Distribution of mitochondrial D-loop gene barcodes among S. melanodermatum samples
sourced from South American rivers, alongside sequences available in GenBank
mitogenomes (accession ON408264).

Base pair (bp) positions are indicated. Haplotypes are designated as Haplol to 27 -
MZ672137 to MZ672163 (refer to Souza-Shibatta et al., 2021) and Haplo28 to 44 - 0Q842475
- 0Q842496 (from this study). GenBank accessions include Haplol - ON408064 (accepted by
Silva et al., unpublished data).
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Figure 4. Distribution of mitochondrial D-loop gene barcodes among Steindachneridion
melanodermatum samples sourced from South American rivers, alongside sequences available in
GenBank mitogenomes (accession ON4(8264). Base pair (bp) positions are indicated. Haplotypes are
designated as Haplo1 to 27 - MZ672137 to MZ672163 (refer to Souza-Shibatta et al., 2021) and Haplo28
to 44 - 0Q842475 - 0Q842496 (from this study). GenBank accessions include Haplol - ON408064

(accepted by Silva et al., unpublished data).
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Figure 5

Haplotype network illustrating the mitochondrial D-loop gene variation in
Steindachneridion melanodermatum (S.m, n= 18) sourced from South American
regions.

The identified haplotypes range from Haplo28 to Haplo44 (sequences 0Q842475 -
0Q842496, obtained in this study), alongside GenBank accessions such as Haplol -
ON408064 (refer to Silva et al., unpublished data). Haplotypes not detected are represented

by black circles.
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Figure 5. Haplotype network illustrating the mitochondrial D-loop gene variation in
Steindachneridion melanodermatum (S.m, n= 18) sourced from South American regions. The
identified haplotypes range from Haplo28 to Haplo44 (sequences OQ842475 - 0Q842496, obtained in
this study), alongside GenBank accessions such as Haplo1 - ON408064 (refer to Silva et al., unpublished
data). Haplotypes not detected are represented by black circles.
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Table 1l(on next page)

Genetic diversity characterization for Steindachneridion fishes (Pimelodidae) in South
America.

N - number of individuals examined; n - total number of sites; S = number of segregating
sites; Nh = number of haplotypes; h - haplotype diversity; m = nucleotide diversity; D -
Tajima’s neutrality test; Fs—Fu’s neutrality test; R - neutrality test [21]; SD - Standard
Deviation; n/c - not calculated; ns - not significant (p > 0.05); * significant (p < 0.05),**

highly significant (p < 0.01).
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1 Table 1. Genetic diversity characterization for Steindachneridion fishes (Pimelodidae) in South America.
2 N —number of individuals examined; n — total number of sites; S = number of segregating sites;
3 Nh=number of haplotypes; % - haplotype diversity; z = nucleotide diversity; D — Tajima’s
4 neutrality test; Fs—Fu’s neutrality test; R - neutrality test [21]; SD — Standard Deviation; n/c —
5 not calculated; ns — not significant (p > 0.05); * significant (p < 0.05),** highly significant (p <
6 0.01).
Sampling N n s Nh h+SD  z+SD D Fs R,
Steindachneridion 0,997 0,07254 ns ns sk
Total-mean) 38 861 237 36 0,007 L0.01656 169962 0444 0,162
, 0,992 0,01668 . . .
S. scriptum 16 849 58 15 £0,025 £0,00217 -1,07389 1 0,450 0,162
L 1,000 0,01205 . . .
Tibagi River 6 843 25 6 0,096 £0,00220 054595 0451 0,162
o 0,978 0,00777 . . o
Uruguai River 10 849 29 9 0,054 L0.00158 190383 * 0439 0,162
S. melanodermatum
. 0,993 0,01093 s o
Iguagu River 17 846 43 16 10,023 1000156 1-33687™ 0,437 0,162
S. doceanum
. 1,000 0,03011 . o
Doce River 2 814 24 2 +0.500 £0,01506 n/c 0,363 0,161
S. parahybae
. . 1,000 0,13060 s o
Paraiba do Sul River 3 658 117 3 10272 +£0,04295 n/c 0,348 0,161
7
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