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Background: The Mephitidae is a family of skunks and stink-badgers that includes 12
extant species in four genera namely, Mydaus, Conepatus, Mephitis and Spilogale. Mydaus
is the only genus within Mephitidae found outside the American continent, with its
distribution limited to the islands of Borneo, Indonesia and Philippines. There are two
extant species of Mydaus i.e. javanensis and marchei. Currently, complete mitogenomes
are unavailable for either species. Here, we present the characterization of the first
complete mitogenome for the Sunda stink-badger (Mydaus javanensis) from the island of
Borneo. Methods: Muscle tissue was obtained and the DNA was sequenced using a
combination of lllumina Barcode Tagged Sequence (BTSeq) and Sanger sequencing
techniques. The genome was annotated with MITOS and manually checked for accuracy. A
circular map of the mitogenome was constructed with Proksee. Relative synonymous
codon usage (RSCU) and codon frequency were calculated using MEGA-X. The protein
coding genes (PCGs) were aligned with reference sequences from GenBank and used for
the construction of phylogenetic trees (ML and Bl). Additionally, due to the lack of available
complete genomes in public databases, we constructed another tree with the cyt b gene.
Results: The complete circular mitogenome was 16,391 base pairs in length. It comprises
the typical 13 protein-coding genes, 22 tRNAs, two ribosomal RNA genes, one control
region (CR) and an L-strand replication origin (O,). The G+C content was 38.1% with a

clear bias towards A and T nucleotides. Of the 13 PGCs, only ND6 was positioned in the
reverse direction, along with five other tRNAs. Five PCGs had incomplete stop codons and
rely on post-transcriptional polyadenylation (TAA) for termination. Based on the codon
count, Leucine was the most common amino acid (589), followed by Threonine (332) and
Isoleucine (325). The ML and BI phylogenetic trees, based on concatenated PCGs and cyt b
gene, respectively, correctly clustered the species with other members of the Mephitidae

family but were unigue enough to set it apart from Conepatus, Mephitis and Spilogale. The
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Abstract

Background: The Mephitidae is a family of skunks and stink-badgers that includes 12 extant
species in four genera namely, Mydaus, Conepatus, Mephitis and Spilogale. Mydaus is the only
genus within Mephitidae found outside the American continent, with its distribution limited to
the islands of Borneo, Indonesia and Philippines. There are two extant species of Mydaus i.e.
javanensis and marchei. Currently, complete mitogenomes are unavailable for either species.
Here, we present the characterization of the first complete mitogenome for the Sunda stink-
badger (Mydaus javanensis) from the island of Borneo.

Methods: Muscle tissue was obtained and the DNA was sequenced using a combination of
[llumina Barcode Tagged Sequence (BTSeq) and Sanger sequencing techniques. The genome
was annotated with MITOS and manually checked for accuracy. A circular map of the
mitogenome was constructed with Proksee. Relative synonymous codon usage (RSCU) and
codon frequency were calculated using MEGA-X. The protein coding genes (PCGs) were
aligned with reference sequences from GenBank and used for the construction of phylogenetic
trees (ML and BI). Additionally, due to the lack of available complete genomes in public
databases, we constructed another tree with the cyt b gene.

Results: The complete circular mitogenome was 16,391 base pairs in length. It comprises the
typical 13 protein-coding genes, 22 tRNAs, two ribosomal RNA genes, one control region (CR)
and an L-strand replication origin (O ). The G+C content was 38.1% with a clear bias towards A
and T nucleotides. Of the 13 PGCs, only ND6 was positioned in the reverse direction, along with
five other tRNAs. Five PCGs had incomplete stop codons and rely on post-transcriptional
polyadenylation (TAA) for termination. Based on the codon count, Leucine was the most
common amino acid (589), followed by Threonine (332) and Isoleucine (325). The ML and BI
phylogenetic trees, based on concatenated PCGs and cyt b gene, respectively, correctly clustered
the species with other members of the Mephitidae family but were unique enough to set it apart
from Conepatus, Mephitis and Spilogale. The result confirms Mydaus as a member of the
mephitids and the mitogenome will be useful for evolutionary analysis and conservation of the
species.

Keywords: Stink-badger; Mitogenome; Mydaus javanensis; Mephitids; Borneo; Skunk
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INTRODUCTION

Stink-badgers and skunks are grouped under the family Mephitidae, which includes 12
extant species placed in four genera: Mydaus (stink-badgers), Conepatus (hog-nosed skunks),
Mephitis (hooded and striped skunks), and Spilogale (spotted skunks). Three other genera under
Mephitidae (Brachyprotoma, Palaeomephitis, and Promephitis) are extinct and known only
through fossil records. The stink-badger Mydaus is the only one within Mephitidae found outside
the American continent. Its resemblance to badgers led early authors to classify the species under
Mustelidae (subfamily: Melinae), but recent molecular evidence has led to its reclassification as
members of Mephitidae (Dragoo & Honeycutt 1997; Hwang and Lariviere 2003). To date, the
genus includes two species: Mydaus javanensis and its only known sister taxon, Mydaus
marchei.

The Sunda stink-badger (Mydaus javanensis), commonly known as the Malay Badger or
Teledu, is one of Southeast Asia’s least-studied carnivores. Its biology and natural history remain
poorly understood. It is thought to be tolerant of anthropogenic disturbance and inhabits a wide
variety of habitat types, including primary and disturbed forests, open areas adjacent to forests,
and oil palm plantations (Md-Zain et al., 2019). Within Borneo, this species is recorded
frequently in the Malaysian state of Sabah, northern Borneo (Samejima et al., 2016; Wong et al.,
2017), but much less frequently in South Kalimantan (Higashide et al., 2018) and exhibits a
much localized distribution in northern Sarawak (Giman and Jukie, 2012). The driver of this
patchy distribution across Borneo is presently unknown (Samejima et al., 2016; Wong et al.,
2017).

Previous documentation indicates that access to mitochondrial genetic data from
members of Mephitidae has been crucial for accurately defining species boundaries, identifying
unrecognized species diversity within a geographic region, tracing complex evolutionary
histories (such as secondary contacts between insular populations), understanding the influence
of factors like climate change on phylogeographic diversification, and determining the timing
and methods of specific geographic colonization. Such information plays a crucial role in
guiding conservation decisions for the mephitids (McDonough et al., 2022; Bolas et al., 2022).

The absence of a complete mitochondrial genome sequence has been a drawback for
Mpydaus, as existing research entails limited choices of gene markers or the usage of partial genes
(Dragoo & Honeycutt 1997; Md-Zain et al., 2021). A complete mitochondrial genome for
Mydaus will open up avenues for future investigations to ascertain true mitochondrial lineages. A
profound understanding of mitochondrial sequence characterization can shed light on suitable
regions to use as genetic markers. Additionally, a complete mitogenome may offer accurate
signals for phylogenetic reconstruction compared to gene fragments (Lan et al., 2024). In this
context, having a complete reference mitochondrial genome representing a genus can aid in the
sequencing and assembly of additional species from the taxa.

Overall, the complete mitogenome sequence of M. javanensis will provide a wealth of
information on its evolutionary history, genetic diversity, population dynamics, and relationships
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with other members of the Mephitidae. Thus, in the current study, we aim to determine and
characterize the complete mitochondrial sequence of M. javanensis. This effort will not only add
new information but also aid in conservation efforts and management strategies for this
understudied member of the Mephitidae family.

MATERIALS AND METHODS
Sample collection and identification

Muscle tissues were collected from an adult male Sunda stink-badger (sample number
MJ19) found as a road-killed animal during a routine field sampling trip in the Tawau region of
Sabah, Malaysian Borneo (4°19°54.6” N 117° 52°03.9” E). The specimen was placed in ice
during field sampling and subsequently stored in a -20 °C freezer until further use. The sample
was collected as part of a study on the ecology and conservation of Bornean carnivores, under an
access license permit granted by the Sabah Biodiversity Centre (JKM/MBS.1000-2/2
JLD.12(48)) and wunder ethical review by the University of Oxford (Ref. No.
APA/1/5/Z0O0/NASPA/WildCRU/BorneanCarnivores).

DNA extraction, PCR amplification and sequencing

DNA was isolated from approximately 25mg tissue using the DNeasy Blood and Tissue
DNA Extraction Kit (Qiagen, USA) according to the manufactures protocol. After quality
control using gel electrophoresis and UV spectrophotometer, the DNA sample was PCR
amplified with newly designed primers (Table 1) to capture the entire ~16kb mitochondrial DNA
following a similar procedure developed by Deiner et al. (2017). For this purpose, we utilized the
high-fidelity PrimeSTAR® GXL polymerase (Takara Bio, Japan), specifically designed for long-
range PCR amplification for this purpose. The PCR was carried out in a total volume of 25 puL
containing 30 ng of genomic DNA, 0.4 U of PrimeSTAR® GXL polymerase, 1x PrimerSTAR
GXL buffer, 0.5 mm dNTPs (PrimerSTAR), and 10 pmol of primers Leol6SLRpcr F and
Leol6SLRper R. The PCR amplification was performed as follows: pre-denaturation at 98 °C
(10 sec), followed by 40 cycles of denaturation at 98 °C (10 sec), annealing at 60 °C (15 sec) and
extension at 68 °C (14 min). A final extension step at 68 °C for 5 min was included. The PCR
product was then electrophoresed on a 0.8 % agarose gel with 1x TBE buffer. The amplicon was
excised from the gel and purified using the Wizard® SV Gel and PCR Clean-Up System
(Promega, USA). The sample was then sequenced using the Barcode Tagged Sequencing
(BTSeq™) approach on an Illumina platform. Briefly, barcoded adapters are used to tag DNA
fragments, which were then subsequently sequenced on an Illumina platform. Celemics'
exclusive bioinformatics pipeline then organizes the sequencing reads based on molecular
barcodes and aggregates them to rectify NGS errors, resulting in the generation of a complete
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DNA sequence. The sequencing service was provided by Celemics Inc
(http://www.celemics.com).

In order to capture the regions flanking the primer binding sites of the circular
mitogenome, we designed another set of primers (Table 1) to amplify a 688 bp region. This PCR
was carried out as described above but with 15 pmol of primers MJ19F and MJ19R instead. The
PCR amplification was as follows: pre-denaturation at 95 °C (5 min), followed by 40 cycles of
denaturation at 95 °C (30 sec), annealing at 55 °C (30 sec) and extension at 72 °C (45 sec). A
final extension step at 72 °C for 10 min was included. The PCR product was electrophoresed on
a 1.5% agarose gel, purified and subsequently sequenced bi-directionally using BigDye
Terminator v3.1 on an ABI3130 Sequencer.

Mitogenome annotation and analysis

The two high-quality reads from BTSeq and Sanger sequencing were manually
assembled to form complete contiguous circular reads. The mitogenome was annotated using
MITOS webserver (http://mitos2.bioinf.uni-leipzig.de; Donath et al. 2019). To ensure accuracy,
the annotation, intergenic spacers, and overlapping regions between genes were manually
checked, counted and compared with complete and near complete mitogenomes of other related
taxa from NCBI. All boundaries and secondary structures of tRNA gene were crossed-checked
with tRNAscan-SE v2.0 (http://lowelab.ucsc.edu/tRNAscan-SE; Chan & Lowe, 2019) with the
parameters: source = “Mito/Chloromast” and genetic code = “Vertebrate Mito and ARWEN v1.2
(Laslett & Canbéck, 2008), under default settings. A circular map of the mitogenome with all its
respective features was drawn using the Proksee online tool (https://proksee.ca).

Base composition and relative synonymous codon usage (RSCU) were analyzed using
MEGA-X (Kumar et al., 2018). Strand asymmetry was calculated using the formulas by Perna &
Kocher (1995) i.e. AT skew = (A - T)/(A + T) and, GC skew = (G - C)/(G + C).

Characterization of the control region (CR)

The control region (CR) sequence of M. javanensis was mined from its complete
mitogenome, which was sequenced in this study. The organization of M. javanensis was
compared with those of other mephitids, whose CR regions were retrieved from their respective
complete mitogenomes downloaded from NCBI GenBank. Incomplete sequences with gaps were
discarded, prior to further analysis. The remaining sequences were examined for termination of
the displacement loop (D-loop) motif, termination-associated sequences (TAS-A), and putative
conserved sequence blocks, according to previous reports for Lutra lutra (Eurasian otter),
Conepatus chinga, and Conepatus leuconotus leuconotus (Ketmaier & Bernardini, 2005). The
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alignment of these structural features was performed using MUSCLE in MEGA X, version
10.2.6 (Kumar et al., 2018). The repeats in the CR region among the available mephitids were
identified using the Tandem Repeat Finder program (http://tandem.bu.edu/trf/trf.html) (Benson,
1999), under default settings.

Phylogenetic analysis

In order to infer the phylogenetic relations of M. javanensis and other mephitids,
concatenated nucleotide sequences were generated based upon 13 PCGs of the mitogenome. We
also included members from Mustelidae, Procyonidae, Ailuridae and from the suborder
Caniformia for comparison purposes. Neofelis nebulosa (Suborder: Feliformia) was treated as an
outgroup. The sequences were downloaded from the Genbank. Complete mitogenomes were not
available for Conepatus humboldtii, Mephitis macroura and Mydaus marchei and thus, excluded
from the tree.

PartitionFinder 2.1.1 (Lanfear et al., 2017) was used to select the best substitution models
and partition schemes (Supplementary Data S1) with “greedy” algorithm and Bayesian
information criterion (BIC), to be used in the subsequent phylogenetic analyses. Maximum
Likelihood (ML) and Bayesian Inference (BI) approaches were applied for these analyses. The
ML analysis was performed in IQ-TREE version 1.6.12 (Nguyen et al., 2015) with the node
reliability assessed with 1,000 replicates of ultrafast likelihood bootstrap (Minh ef al., 2013). The
BI analysis was conducted with MrBayes on XSEDE v3.2.7a (Ronquist et al., 2012) available
through the CIPRES Science Gateway (https://www.phylo.org/) (Miller, Pfeiffer & Schwartz,
2010). The Markov chain Monte Carlo (MCMC) runs were conducted for 10,000,000
generations and the trees were sampled every 1,000 generations with a burn-in of 25%. The
software Tracer v1.7.2 (Rambaut et al., 2018) was employed to assess the parameters (effective
sampling size for all parameters > 200).

In addition, we conducted phylogenetic analyses (ML and BI) using only cyt b gene
sequences due to the scarcity of whole mitogenomes for the mephitids. Our analysis
encompassed all accessible cyt b gene sequences from GenBank for members of the Mephitidae
family. The first 37 nucleotide bases of the gene were trimmed for all species, considering the
availability of partial gene for Spilogale putorius putorius and Spilogale putorius ambarvalis.
The ML analysis was performed in IQ-tree version 1.6.12 (Nguyen et al., 2015) based on the
best-substitution model (TIM2+F+I+G4) selected by ModelFinder (Kalyaanamoorthy et al.
2017) in the IQ-TREE package with 1,000 ultrafast bootstrap replicates (Minh et al., 2013). The
BI analysis was executed with Mrbayes on XSEDE v3.2.7a (Ronquist et al., 2012) where the
best-fit substitution model (TIM2+I1+G) was determined via Jmodeltest2 (Darriba et al., 2012)
and these were available through CIPRES Science Gateway (https://www.phylo.org/) (Miller,
Pfeiffer & Schwartz, 2010). The Markov chain Monte Carlo (MCMC) runs were performed for
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10,000,000 generations and the trees were sampled every 1,000 generations with a burn-in of
25%. Tracer v1.7.2 (Rambaut et al., 2018) was used to assess the parameters (effective sampling
size for all parameters > 200). The resulting trees were visualized using Figtree v1.4.4.

RESULTS
Mitogenome organization and composition

The complete mitogenome of M. javanensis sample MJ19 was 16,391 bp and the
GenBank accession number is OP442081. It was sequenced at a high quality at about 1100x
coverage. The size of the mitogenome was within the range of the complete mitogenomes from
other mephitids (Table 2). It comprises of the typical 13 protein-coding, 22 tRNAs, two
ribosomal RNA genes, one control region (CR) and an L-strand replication origin (O ). The ND6
gene, along with eight other tRNAs (trnQ, trnA, trnN, trnC, trnY, trnS2, trnE and trnP), was
positioned on the reverse direction (Fig. 1). All other genes and miscellaneous regions were in
the forward direction. The #nL and trnS were made up of two major codons i.e. trnlLl (UUR)
and trnL2 (CUN) and trnS1 (AGY) and trnS2 (UCN), respectively. A total of nine pairs of genes
(or regions) overlapped with one another, with overlaps ranging from 1 to 43 nucleotides (Table
3). We noticed that five PCGs had incomplete stop codons and likely rely on post-transcriptional
polyadenylation (TAA) for termination.

With regards to the base composition, the mitogenome was skewed with a clear bias
towards an A+T content of 62.9%, while G+C was 38.1% (Table 4). Composition analysis
revealed that the mitogenome exhibited a positive AT (0.095) and a negative GC skew (-0.307)
as a whole, as well as in the 13 PCGs (AT skew: 0.045; GC skew: -0.337), 2 rRNAs (AT skew:
0.201; GC skew: -0.099) and the control region (AT skew: 0.039; GC skew -0.253). However,
for the tRNA genes, both the AT and GC skews were positive, at 0.031 and 0.073, respectively
(Table 4).

Protein coding genes (PCGs) and codon usage

The mitogenome was comprised of the typical 13 PCGs found in mammals. The
concatenated lengths of the 13 PCGs were 11,424 bp and a total of 3,808 codons were involved
in protein translation. Based on the codon count, Leucine was the most common amino acid
(589), followed by Threonine (332) and Isoleucine (325). It was interesting to note that the
RSCU indicated that degenerate codons were biased towards using more A and C at the third
codon compared to G and U (Fig. 2).

Transfer RNA and ribosomal RNA genes

The M. javanensis mitogenome contained the typical 22 tRNA genes and their lengths
ranged from 59 (&rnSI) to 75 (trnl2). All tRNA exhibited the typical cloverleaf secondary
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structure, with the exception of #nS14¢Y which lacks the dihydrouridine loop (Fig. 3). There was
a total of 38 mismatches (U-G, U-U, C-A, A-A, A-G and C-U) with the U-G (74%) being the
most common.

In addition, the two rRNA genes (r7nL and rrnS) were highly conserved across the
mephitids. The putative lengths of rrnL and rrnS were 1,572 and 957 bp, respectively, and both
ha a positive AT skew and a negative GC skew (Tables 3 and 4).

Control Region (CR)

At position 162 of the M. javanensis’s control region, we identified a motif homologous
to the termination-associated sequences (TAS-A). The motif of the D-loop termination of the CR
(GCCCC) was identified few nucleotides upstream of TAS-A. In addition, all the eight putative
conserved sequence blocks (CSB1-3 and B-F) were identified within the CR region. A single
region with tandem repeats, referred to as RS3, was discovered in between CSB-1 and CSB-2. A
schematic diagram illustrating the organization of the control region of M. javanensis is shown in
Fig. 4.

A comparative analysis of the control region was conducted according to previous reports
on Eurasian otter and other mephitids (Fig. 5). The analysis reveals the presence of fundamental
structures, such as the D-loop termination, TAS-A, and multiple conserved sequence blocks, in
all the mephitids. The identification and comparison of the tandem repeats among mephitids
were also conducted, revealing differences in the distribution of the repeat regions (Table 5).
Similar to M. javanensis, mephitids such as Mephitis mephitis, Conepatus chinga, and Conepatus
leuconotus leuconotus display a single repeat region located in the right domain, between CSB-1
and CSB-2. Conversely, Spilogale angustifrons showed the presence of a repeat region in the left
domain. In contrast, Spilogale putorius exhibited two repeat regions, one in the right domain and
the other in the left domain. Interestingly, the Tandem Repeat Finder did not detect any repeats
in either of the subspecies of Spilogale gracilis. Both Spilogale gracilis gracilis and Spilogale
gracilis leucoparia had the smallest control region sizes, with 819 bp and 853 bp, respectively
(Table 5). Overall, the mitochondrial control region maintains conservation in its basic
structures, with differences appearing in the tandem repeat regions.

Phylogenetic analysis

Phylogenetic trees of ML (Fig. 6) and BI (Fig. 7) analyses were built on concatenated
sequences of 13 PCGs from 30 species, with 13 members representing the Mephitidae. Overall,
both the trees were highly congruent and received high bootstrap support for the majority of
branches, accurately clustering the species within its specific genera and family. Both the
topologies confirmed the monophyly of the family Mephitidae which included the members
representing Spilogales, Mephitis, Conepatus and Mydaus. M. javanensis MJ19 (Borneo,
Malaysia) was placed into this monophyletic group together with the other member from Java,
Indonesia, with high nodal supports from both the trees (boostrap support values (BS)=100 and
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Bayesian posterior probability (BPP) was equal to 1.00). Meanwhile, we have also observed that
Mustelidae form sister clade with Procyonidae.

Meanwhile, ML (Fig. 8) and BI (Fig. 9) trees constructed based on cyt b gene included
additional species within Mephitidae. The resulting trees generated the same topology and BI
analysis provided more resolution with strong supports than ML analysis. The trees correctly
grouped the Javanese and Bornean Sunda stink-badger with high bootstrap values (BS=100).

DISCUSSION

The mitogenome of the Sunda stink-skunk was sequenced and characterized. This is the
first publicly available complete mitogenome for the species. The information provided here has
added new information to the relatively understudied members of Mephitidae family. It is
important to note that we still do not have mitogenomes for another three mephitids (Conepatus
humboldtii, Mephitis macroura and Mydaus marchei), while some mitogenomes (C. leuconotus,
C. semistriatus, S. pygmaea) were incomplete and contained stretches of Ns in their sequences
(Table 2). The primers used in the study managed to amplify the entire mitochondrial DNA in a
single PCR following the approach originally used by Deiner et al. (2017) and Kato-Unoki et al.
(2020). Targeting the entire mitogenome in a single PCR is preferable as it prevents the
amplification of nuclear encoded pseudo mitochondrial genes and avoids the misalignment of
gene order during assembly and annotation (Parr ef al., 2006; Montafia-Lozano et al., 2022).
However, one drawback of this approach is that DNA sequencing is unable to capture sequences
at the primer binding sites, hence, a second set of primers were needed to target this region. Our
primers were based on conserved regions and may be useful to other researchers who are
working on mephitids or other closely related species. In addition, these primers could be used
to fill up the gaps in the partial mitogenomes mentioned in Table 2.

The structure of the Mydaus javanensis MJ19 mitogenome was similar with other
vertebrates with the typical 13 protein-coding genes, 22 tRNAs, two ribosomal RNA genes, one
control region (CR) and an L-strand replication origin (Or) (Boore, 1999; Pereira, 2000;
Montafia-Lozano et al., 2022). These components make up the mammalian mitochondrial
oxidative phosphorylation (OXPHOS) system (Signes et al., 2018; Shokolenko & Alexeyev,
2022). Overlapping among 10 gene pairs was observed and such occurrence has been proposed
to extend genetic information within the constraints of limited genome size (Sun et al., 2020).

The AT and GC skew of M. javanensis was similar to other members of the Mephitidae
and to that reported previously in Mustelidae (Skorupski, 2022). It is interesting to note that the
bias toward A and T and against G and C is a common feature in metazoan mitogenomes. This
naturally leads to a subsequent bias in the corresponding encoded amino acids as seen in the
codon usage. However, when compared to members of Proconidae, Ailuridae, Canidae and
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Ursidae, we noticed a smaller GC skew (an average of -0.268) in the species (Skorupski, 2022),
indicating smaller disproportionate of G bases compared to Cs. This is reflected that in M.
Jjavanensis, the degenerate codons were biased to use more A and C at the third codon.

With regards to the 22 tRNA genes in M. javanesis, we observed a typical and conserved
arrangement as found in most vertebrates (Watanabe ef al., 2014). One unique feature is the lack
of the dihydrouridine (DHU) loop in #nS14°Y which is commonly observed in all vertebrates
(Pereira, 2000). The DHU loop is important as it is involved in the aminoacylation of the tRNA
molecule. The loop functions as a recognition site for aminoacyl-tRNA synthetase (Watanabe et
al., 2014). In contrast, trnS2YCN has the complete typical cloverleaf pattern features of tRNAs
including the DHU loop. While both the #7nS149Y and trnS2VCN are capable of translation on the
ribosome, Hanada et al. (2001) has shown that the lack of DHU loop in #rnS14°Y results
inconsiderably lower translational activity. This explains why #7nS2Y¢N is the preferred tRNA for
Serine as observed by the codon count and RSCU distribution in M. javanensis (Figure 2).

In regard to the analysis of the control region (CR) organization in M. javanensis, we
discovered the presence of the fundamental conserved structures similar to those previously
identified in Eurasian otter (a mustelid) as well as other mephitids, such as the D-loop
termination motif, TAS-A and eight conserved sequence blocks (Ketmaier & Bernardini, 2005).
Additionally, the CR of mammals known to have two potential locations with tandem repeats:
one in the left and the other in the right domains of the gene, respectively (Wilkinson et al.
1997). In M. javanensis we found a single repeat region (RS3) which is placed between CSB-1
and CSB-2, similar to various other skunks (Ketmaier & Bernardini, 2005). Notably, this
location has only been described in mammals (Ketmaier & Bernardini, 2005). As such, CSB-1
and CSB-2 can serve as potential primer binding sites for future amplifications of RS3 regions,
especially for the species under Mydaus.

Additionally, a comparative analysis of CR structural organization among mephitids
showed that the CR region is well structured with the central region being highly conserved and
tandemly repeated sequences occurring only within the two peripheral domains. These peripheral
domains are rapidly evolving regions characterized by a high rate of nucleotide substitutions and
variations in the copy number of tandem repeats. This variability in the number of tandemly
repeated sequences is considered as the pivotal source of mitochondrial DNA length variation in
animals (Brown et al. 1986). Consistent with this, we found that species lacking the repeat
regions had the smallest overall control regions sizes (Table 5). Species within the Mephitidae
family exhibited diverse distributions of repeat regions. Some had none, some had two, and those
with a single repeat region had it located in either the right or left domains. Interestingly, the
distribution of repeat regions was found to be species-specific. In future studies, additional
species within the genus Mydaus can be investigated to gain further insights into the distribution
and evolutionary patterns of tandem repeats in the control region (CR).

Peer] reviewing PDF | (2023:03:83689:1:1:NEW 18 Jun 2024)


jessi
Comment on Text
a smaller proportion

jessi
Comment on Text
Restructure this sentence for grammatical correctness: this is reflected in M. javanensis, where the degenerate codons were biased towards A and C nucleotides at the third codon position.

jessi
Comment on Text
in considerably

jessi
Comment on Text
a DHU

jessi
Comment on Text
With regards

jessi
Cross-Out

jessi
Comment on Text
in the

jessi
Comment on Text
is known

jessi
Comment on Text
well-structured,


PeerJ

360
361
362
363
364
365
366
367
368
369
370
371

372
373
374
375
376
377
378
379
380
381
382
383
384
385

386

387

388
389
390
391
392
393
394

395
396

The ML and BI trees based on the concatenated sequences of 13 Protein Coding Genes
(PCGs) correctly grouped the 9 (out of 12) extant species of mephitids in four 4 genera of the
family Mephitidae. M. javanensis was accurately grouped with the mephitids and not with the
mustelids. The genus Mydaus was initially placed as a member of Mustelidae till the revision
using DNA studies revealed otherwise that the skunks, along with stink badgers (Mydaus spp.)
belong to a separate family (Mephitidae) which is highly divergent from the mustelids (Koepfli
et al., 2017). The phylogeny using the complete set of core protein coding genes of the
mitochondrial genome conducted in this study, is in concordance to this finding. Additionally,
both the ML and BI trees reflected a common observance of Mustelidae forming sister clade
with Procyonidae. The sister-group relationship between these two families is congruent to
previous documentations, supported by morphological characters and molecular data (Sato et al.,
2003).

To utilize the sequences available in GenBank for the mephitids, we used the cyt b gene
sequences to perform ML and BI analyses. In both topologies, sample M. javanesis MJ19, from
northern Borneo (Sabah, Malaysia) was grouped together with the Javanese sample from
Indonesia with high support values (BS=100 and BPP=1.0). However, we noticed 27 nucleotide
variations between the two individuals in the partial cyt b gene (the first 37 nucleotide bases were
trimmed to standardize the lengths of all sequences under study) (Supplementary Data S2 and
S3). All nucleotide variants at the third codon base were degenerate and did not result in changes
in the amino acid. However, when the nucleotide variants were in the first codon base, it
invariably led to seven non-synonymous amino acid changes (Supplementary Data S4). These
results indicate that even within a conserved gene region like the cyt b, there are polymorphisms
that can differentiate the Sunda stink-badgers from Java and Borneo. It would be worthwhile to
sequence the complete mitogenomes from the Javanese species and surrounding Southeast Asian
populations to determine its genetic diversity, enhancing our understanding of the evolutionary
patterns of Mydaus.

CONCLUSION

In the present study, we sequenced the first mitogenome of the Sunda stink-skunk (M.
javanensis) and presented its structures and characteristics. We observed a consistency in the
genome size (16,391 bp) across metazoan mitogenomes. There were nine genes which were
found to overlap each other in the mitogenome. Some PCGs lacked complete stop codons,
possibly functioning through post-transcriptional polyadenylation for termination. M. javanensis
showed the typical bias towards A and T which is commonly observed in metazoan
mitogenomes.

The mitogenome of M. javanensis also featured some unique characteristics. Although
the 22 tRNA genes had conserved arrangements, the DHU was absent in the #nSI4°Y tRNA
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gene. This may lead to lower translational activity, potentially explaining why #nS2VCV is
preferred for Serine over #rnS14¢Y. Our analysis also shed new light on the organization of the
mitochondrial control region (CR) in M. javanensis as compared to other mephitids, showing
species-specific variation in the presence and distribution of tandem repeats within the CR. The
phylogenetic relationships constructed by both ML and BI methods, based on concatenated
sequences of 13 PCGs as well as ¢yt b gene, were consistent and supported the monophyly of
Mephitidae. The phylogenetic trees clearly placed M. javanensis with Conepatus, Mephitis, and
Spilogale, confirming its position within the extant species of Mephitidae. The information
provided here has added new information to the relatively understudied members of Mephitidae
family.
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Table 1l(on next page)

Details of the PCR primers and conditions used in the amplification of the Sunda stink-
badger (Mydaus javanensis) mitogenome.
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1 Table 1 Details of the PCR primers and conditions used in the amplification of the Sunda stink-badger
(Mydaus javanensis) mitogenome.

Annealing
Primer name Sequence (5°-3%) Amph.ﬁcatlon temperature
size used
({9
Leol6SLRpcr F Forward CAGGACATCCCGATGGTGCAG
~16 kb 60
Leol6SLRpcr R Reverse ATCCAACATCGAGGTCGTAAAC
MIJ19F Forward TGAAATTGACCTCCCCGTGA
688 bp 55
MIJI9R Reverse AGGCGCCTTTAGACTAACAGA
3
4

Peer] reviewing PDF | (2023:03:83689:1:1:NEW 18 Jun 2024)



PeerJ

Table 2(on next page)

Availability of mitogenome and cytb gene sequences for the 12 extant species in the
family Mephitidae.

No mitogenome sequences were available for C. humboldtii, M. macroura, M. javanensis and
M. marchei. Of these four, cytb gene sequences were only available for M. macroura and M.

javanensis.
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1 Table 2 Availability of mitogenome and ¢yt b gene sequences for the 12 extant species in the
2 family Mephitidae. No mitogenome sequences were available for C. Aumboldtii, M. macroura, M.
3 Jjavanensis and M. marchei. Of these four, cytb gene sequences were only available for M.
4 macroura and M. javanensis.
Availability of Availability of
Genera Species Mitogenome sequences cytb gene .
in GenBank sequences in
GenBank
C. chinga NC_042596 (complete) Available
Conepatus C. humboldtii None _ Non_e
C. leuconotus MW205848 (partial genome) Available
C. semistriatus MW205849 (partial genome) Available
Mephitis M. macroura None KYO_26063
M. mephitis NC_020648 (complete) Available
Mydaus M. javanensis None AB564095
M. marchei None None
MW205870 (complete) Available
S. angustifrons ~ MW205885 S. angustifrons yucatanensis Avai
vailable
(complete)
MW?205896 S. gracilis gracilis (complete) Available
S, gracilis MW205880 5. graC/://:s /eucopar/a: (complete) Ava!lable
Spilogale ’ MW205868 S. gracilis martirensis (complete) Available
MW205862 S. gracilis lucasana (complete) Available
NC_010497 (complete) Available
S, putorius MW205890 S. /interrupta (complete) Available
’ S. putorius putorius (None) MG753651
S. putorius ambarvalis (None) MG753655
S. pygmaea MW205863 (partial) Available
5
6
7
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Table 3(on next page)

Composition and annotation of the newly sequenced mitogenome of the Sunda stink-
badger (Mydaus javanensis).
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Table 3 Composition and annotation of the newly sequenced mitogenome of the Sunda stink-badger

(Mydaus javanensis).

Feature Type Start End Size  Direction  Start Stop  Intergenic

name position  position codon codon nucleotides
1  tnF tRNA 1 69 69 Forward - - 0
2 S rRNA 70 1,026 957 Forward - - 0
3 trnV tRNA 1,027 1,094 68 Forward - - 0
4  rral rRNA 1,095 2,666 1,572  Forward - - 0
5  trul2 tRNA 2,667 2,741 75 Forward - - 3
6 NDI gene 2,745 3,700 956 Forward ATG TA(A) 0
7 trnl tRNA 3,701 3,769 69 Forward - - -3
8 trnQ tRNA 3,767 3,839 73 Reverse - - 1
9 trnM tRNA 3,841 3,910 70 Forward 0
10 ND2 gene 3,911 4,952 1,042 Forward ATA T(AA) 0
11 traW tRNA 4,953 5,019 67 Forward - - 13
12 trnd tRNA 5,033 5,100 68 Reverse - - 1
13 trnN tRNA 5,102 5,174 73 Reverse - - 0
14 Op rep origin 5,175 5,207 33 Forward - - -1
15 tnC tRNA 5,207 5,272 66 Reverse - - 0
16 trnY tRNA 5,273 5,339 67 Reverse - - 1
17 COI gene 5,341 6,885 1,545 Forward ATG TAA -3
18 trnS2 tRNA 6,383 6,951 69 Reverse - - 5
19 trnD tRNA 6,957 7,023 67 Forward - - 0
20 coIll gene 7,024 7,707 684 Forward ATG TAA 3
21 K tRNA 7,711 7,779 69 Forward - - 1
22 ATPS gene 7,781 7,984 204 Forward ATG TAA -43
23 ATP6 gene 7,942 8,622 681 Forward ATG TAA -1
24 Coill gene 8,622 9,405 784 Forward ATG T(AA) 0
25 trnG tRNA 9,406 9,474 69 Forward - - 0
26 ND3 gene 9,475 9,821 347 Forward ATA TA(A) 0
27 trnR tRNA 9,822 9,889 68 Forward - - 0
28 ND4L gene 9,890 10,186 297 Forward ATG TAA -7
29 ND4 gene 10,180 11,557 1,378 Forward ATG T(AA) 0
30 trnH tRNA 11,558 11,626 69 Forward - - 0
31 nSl tRNA 11,627 11,685 59 Forward - - 0
32 trnlLl tRNA 11,686 11,755 70 Forward - - 0
33 ND5 gene 11,756 13,576 1,830 Forward ATT TAA -17
34 ND6 gene 13,560 14,087 528 Reverse ATG TAA 0
35 trnE tRNA 14,088 14,156 69 Reverse - - 4
36 CYTB gene 14,161 15,300 1,140 Forward ATG AGA 0
37 trnT tRNA 15,301 15,369 69 Forward - - -1
38 trnP tRNA 15,369 15,434 66 Reverse - - -40
39 Control D-loop 15,395 16,391 997 Forward - - 0

region
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Table 4(on next page)

Nucleotide composition and skewness of the mitogenome in the Sunda stink-badger
(Mydaus javenensis).
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1 Table 4 Nucleotide composition and skewness of the mitogenome in the Sunda stink-badger (Mydaus
2 javenensis).

Regions Size A%  T% C% G% A+T C+G AT GC
% % skew skew
Whole genome 16,391 339 28.0 249 132 619 38.1 0.095 -0.307

PCGs 11,416 324 296 254 126 620 38.0 0.045 -0.337
tRNA genes 1,509 333 313 164 190 646 354 0.031 0.073
rRNA genes 2,529 371 247 210 172  61.8 38.2 0.201 -0.099

Control region 997 304 281 260 155 585 41.5 0.039 -0.253
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Table 5(on next page)

Details of tandem repeats within control regions of mephitids

Details of tandem repeat regions detected within mitochondrial control regions of mephitids
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1  Table 5 Details of tandem repeat regions detected within mitochondrial control regions of mephitids

Species (Genbank Gene size  No. of tandem Tandem repeat positions in control
accession number) (bp) repeat regions region
Mydaus javanensis MJ19 997 1 a. Right domain

(OP442081) (Between CSB-1 & CSB-2)
Spilogale gracilis 853 None None

leucoparia (MW205880)

Spilogale gracilis gracilis 819 None None
(MW205896)

Spilogale putorius 1138 2 a. Right domain
(NC_010497) (Between CSB-1 & CSB-2)

b. Left Domain

Mephitis mephitis 1103 1 a. Right domain

(NC 020648) (Between CSB-1 & CSB-2)
Spilogale augustifrons 899 1 a. Left domain

(MW205870)

Conepatus chinga™® 1067 1 a. Right domain

(NC 042596) (Between CSB-1 & CSB-2)
Conepatus leuconotus 1218 1 a. Right domain

leuconotus* (AY159816) (Between CSB-1 & CSB-2)

2 Note: The asterisk (*) denotes that the sequence is treated as a reference, according to Ketmaier & Bernardini (2005).

Peer] reviewing PDF | (2023:03:83689:1:1:NEW 18 Jun 2024)



PeerJ Manuscript to be reviewed

Figure 1

Circular map of the Sunda stink-badger (Mydaus javanensis) mitochondrial genome.

The protein coding and ribosomal genes are shown in standard abbreviations. Different

colors represent the different gene blocks or regions in the mitogenome.

trnF

|
trnP  control region 128 ribosomal RNA

tr nT% \ " / /t mV

16S ribosomal RNA

Mydaus javanensis ., -
16,391 bp

M rRNA

I Rep_origin /
. 4

M Control region b "// / /

Il GC Content S / \ \ \

. GC Skew+ trnG colll '

M GC Skew-

A\

\\
\Em&?:?f

coln tmD

ATP6 ATP%

trnK

Peer] reviewing PDF | (2023:03:83689:1:1:NEW 18 Jun 2024)



PeerJ

Figure 2

Manuscript to be reviewed

The codon number and relative synonymous codon usage

The codon number and relative synonymous codon usage (RSCU) of the 13 protein coding

genes (PCGs) in Mydaus javanensis mitogenome.
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Figure 3

Putative secondary structures of Mydaus javanensis tRNAs indicating the typical clover
leaf shape

Putative secondary structures of Mydaus javanensis tRNAs indicating the typical clover leaf
shape consisting of the acceptor stem, DHU loop, Anticodon loop, TWC Loop, variable arm
and the discriminator base. The tRNAs are labeled with their corresponding amino acids. The
dashes (-) indicate the Watson-Crick bonds and the dot () indicate a mispairing between the

nucleotides.
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Figure 4

Schematic diagram of the organization of the mitochondrial control region (CR) of
Mydaus javanensis

Schematic diagram of the organization of the mitochondrial control region (CR) of Mydaus

javanensis. The CR is shown to bound by the tRNA™and tRNA"genes. The termination of the
displacement loop (D-loop) motif (D-loop termination; blue block), termination-associated
sequence (TAS-A; orange block) and conserved sequence blocks (CSBs; green blocks) were
specified according to Ketmaier and Bernardini (2005). The grey striped region indicates that

the repeat region, RS3 (position: 607-727) is located between CSB1 and CSB?2.
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Figure 5

Alignment of the D-loop termination, TAS-A, and eight CSBs of mitochondrial control
region (CR) of Mydaus javanensis and other related species

Alignment of the D-loop termination, TAS-A, and eight CSBs of mitochondrial control region
(CR) of Mydaus javanensis and other related species included in the study. The sequences of
Conepatus chinga, Conepatus leuconotus leuconotus and Lutra lutra serve as references for
the alignments, according to Ketmaier and Bernardini (2005). The black background
indicates conserved bases while white background indicates variations observed in the
nucleotides. Numbers above the alignment point out the first nucleotide positions of each

region based on mitochondrial control region of Mydaus javanensis.
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Figure 6

Maximum Likelihood (ML) phylogenetic tree of the Sunda stink-badger

Maximum Likelihood (ML) phylogenetic tree of the Sunda stink-badger (Mydaus javanensis) in
comparison with mitogenomes of Mephitidae and other selected members of suborder
Caniformia. The tree was based on the concatenated sequences of 13 Protein Coding Genes
(PCGs). The clouded leopard (Neofelis nebulosa) was used as an outgroup. The sequence
characterized in this study is highlighted in red. Genera of the mephitids are indicated in blue

highlights. The bootstrap values of the branches were displayed at each node.
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Figure 7

Bayesian inference (BI) phylogenetic tree of the Sunda stink-badger

Bayesian Inference (BI) phylogenetic tree of the Sunda stink-badger (Mydaus javanensis) in
comparison with mitogenomes of Mephitidae and other selected members of suborder
Caniformia. The tree was based on the concatenated sequences of 13 Protein Coding Genes
(PCGs). The clouded leopard (Neofelis nebulosa) was used as an outgroup. The sequence
characterized in this study is highlighted in red. Genera of the mephitids are indicated in blue

highlights. The probability values of the branches were displayed at each node.
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Figure 8

Maximum Likelihood (ML) Phylogenetic tree based on cyt b gene of the Sunda stink-
badger

Maximum Likelihood (ML) phylogenetic tree of the Sunda stink-badger (Mydaus javanensis) in
comparison with mitogenomes of Mephitidae and other selected members of suborder
Caniformia. The tree was based on the cyt b gene. The clouded leopard (Neofelis nebulosa)
was used as an outgroup. The sequence characterized in this study is highlighted in red.
Genera of the mephitids are indicated in blue highlights. The bootstrap values of the

branches were displayed at each node.
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Figure 9

Bayesian inference (Bl) phylogenetic tree based on the cyt b gene of the Sunda stink-
badger

Bayesian Inference (Bl) phylogenetic tree of the Sunda stink-badger (Mydaus javanensis) in
comparison with mitogenomes of Mephitidae and other selected members of suborder
Caniformia. The tree was based on the cyt b gene. The clouded leopard (Neofelis nebulosa)
was used as an outgroup. The sequence characterized in this study is highlighted in red.
Genera of the mephitids are indicated in blue highlights. The probability values of the

branches were displayed at each node.
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