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ABSTRACT
Purpose: Timely and accurate monitoring of soil salinity content (SSC) is essential
for precise irrigation management of large-scale farmland. Uncrewed aerial vehicle
(UAV) low-altitude remote sensing with high spatial and temporal resolution
provides a scientific and effective technical means for SSC monitoring. Many existing
soil salinity inversion models have only been tested by a single variable selection
method or machine learning algorithm, and the influence of variable selection
method combined with machine learning algorithm on the accuracy of soil salinity
inversion remain further studied.
Methods: Firstly, based on UAV multispectral remote sensing data, by extracting the
spectral reflectance of each sampling point to construct 30 spectral indexes, and using
the pearson correlation coefficient (PCC), gray relational analysis (GRA), variable
projection importance (VIP), and support vector machine-recursive feature
elimination (SVM-RFE) to screen spectral index and realize the selection of sensitive
variables. Subsequently, screened and unscreened variables as model input
independent variables, constructed 20 soil salinity inversion models based on the
support vector machine regression (SVM), back propagation neural network
(BPNN), extreme learning machine (ELM), and random forest (RF) machine
learning algorithms, the aim is to explore the feasibility of different variable selection
methods combined with machine learning algorithms in SSC inversion of
crop-covered farmland. To evaluate the performance of the soil salinity inversion
model, the determination coefficient (R2), root mean square error (RMSE) and
performance deviation ratio (RPD) were used to evaluate the model performance,
and determined the best variable selection method and soil salinity inversion model
by taking alfalfa covered farmland in arid oasis irrigation areas of China as the
research object.
Results: The variable selection combined with machine learning algorithm can
significantly improve the accuracy of remote sensing inversion of soil salinity. The
performance of the models has been improved markedly using the four variable
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selection methods, and the applicability varied among the four methods, the GRA
variable selection method is suitable for SVM, BPNN, and ELM modeling, while the
PCC method is suitable for RF modeling. The GRA-SVM is the best soil salinity
inversion model in alfalfa cover farmland, with R2

v of 0.8888, RMSEv of 0.1780, and
RPD of 1.8115 based on the model verification dataset, and the spatial distribution
map of soil salinity can truly reflect the degree of soil salinization in the study area.
Conclusion: Based on our findings, the variable selection combined with machine
learning algorithm is an effective method to improve the accuracy of soil salinity
remote sensing inversion, which provides a new approach for timely and accurate
acquisition of crops covered farmland soil salinity information.

Subjects Agricultural Science, Soil Science, Spatial and Geographic Information Science
Keywords Sensitive variable selection, Machine learning, Uncrewed aerial vehicle, Soil salinity,
Inversion model

INTRODUCTION
Soil salinization has become one of the most serious soil problems in arid and semi-arid
areas, leading to soil consolidation, fertility decline, and crop yield reduction, thus
restricting the regional protection of the ecological environment and sustainable economic
development (Dahlawi et al., 2018; Van Zelm, Zhang & Testerink, 2020; Hassani, Azapagic
& Shokri, 2021). According to statistics, the existing saline soil area in China is about
3,600.0 million hm2, which is prominent in the northwest arid area where the saline soil
accounts for 69.03% of the area, limiting healthy agriculture development in the arid area
(Yang et al., 2022; Mishra et al., 2023; Pan et al., 2023). Therefore, rapidly and accurately
obtaining information on soil salt content is a prerequisite for effectively evaluating and
managing soil salinization and reasonably utilizing saline soil (Masoud et al., 2019;
Devkota et al., 2022). Though traditional methods of obtaining information on soil salt
content, such as field sampling, are relatively accurate, they are difficult to realize large area
dynamic monitoring of salinization area due to its long cycle, high cost, complex process
and poor real-time performance (Khasanov et al., 2022; Abdalla et al., 2022). Remote
sensing technology has become an important way to monitor soil salinity content in large
scale because of its large area synchronous observation, high timeliness and powerful data
integration (Wu et al., 2021; Mohamed et al., 2023).

As an important means of remote sensing, uncrewed aerial vehicle (UAV) remote
sensing has the advantages of real-time image transmission, low operating cost and
flexibility (Maes & Steppe, 2019). The technique is a strong supplement to satellite remote
sensing, which has been widely used recently in the dynamic monitoring of soil
salinization (Zhao et al., 2022b; Zhao et al., 2023; Salgado et al., 2023). Zhang et al. (2022)
established the soil salinity inversion model by calculating spectral index from UAV
multispectral remote sensing images, which enabled dynamic monitoring of soil salinity at
different depths under different coverage of the study area. Moreover, Zhu et al. (2022)
effectively predicted and characterized the spatial distribution pattern of soil salinity using
UAV visible and near-infrared spectra, which also measured salinity data combined with
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the commonly used modeling methods. Ivushkin et al. (2019) studied the potential of UAV
remote sensing in monitoring plant salt stress using three different UAV sensors combined
with vegetation index and canopy temperature parameters. These studies show that the soil
salinity inversion model established using UAV remote sensing data can quickly and
effectively monitor the degree of soil salinization; however, its accuracy is quite low
(R2 of 0.65).

Therefore, scholars have further explored various methods of improving the accuracy of
remote sensing inversion, including sensitive variable selection, which is important for the
accuracy of remote sensing inversion. The common variable selection methods include the
filter methods, wrapper methods, and embedded methods (Ma et al., 2020; Cui et al.,
2022). Lin et al. (2016) used the PCC to effectively prevent the loss of correlation
information between remote sensing data and soil organic matter, thus improving the
inversion accuracy of soil organic matter. Furthermore, Jia et al. (2021) used the GRA to
screen the sensitive variables for the soil PH inversion model and achieved better inversion
accuracy. Cevoli et al. (2022) used the VIP to screen the spectral bands and found that
reducing the number of variables would not affect the accuracy of the model, indicating
that the VIP variable selection method could effectively remove redundant information.
Variable selection can optimize the inverse model and improve the accuracy of the
inversion models. However, the current variable selection methods are mainly used to
measure parameters such as soil organic matter (Cao et al., 2020), soil pH (Miao, Li & Lu,
2018), and vegetation water content (Han et al., 2019) but have not been used for soil
salinity analysis.

In the research method of using UAV remote sensing data to invert soil salinity
information, the variables sensitive to soil salinity are generally selected by means of
spectral transformation, spectral index improvement or spectral index selection, so as to
improve the performance of the model (Wang et al., 2018a; Zhang et al., 2019a). Therefore,
the sensitive variable selection is very important for the construction of soil salinity
inversion model. Zhao et al. (2022b) used the PCC to select the spectral index with high
correlation to construct the inversion model of soil salinity in the surface layer of different
vegetation covers, and the model inversion results can better reflect the real soil salinity
content in the region; Chen et al. (2020) constructed the soil salinity inversion model of
field sunflower at different growth stages and different soil depths based on different
machine learning algorithms on the basis of using GRA to screen the spectral index.
Jia et al. (2024) constructed vegetation and salinity index using remote sensing data, and
constructed a soil salinity monitoring model by selecting the vegetation and salinity index
using the VIP algorithm combined with the extreme learning machine; Zhao et al. (2022a)
used the SVM-RFE algorithm to screen the spectral index, and constructed soil salinity
inversion models with different crop coverage and different depths. Although variable
selection methods combined with machine learning algorithms have been applied by
scholars to the construction of soil salinity inversion models and have achieved good
results, there are significant differences between different variable selection methods in
improving model performance, increasing computational efficiency, and reducing the
impact of redundant information. Therefore, based on the UAV remote sensing platform,
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the comparative study of different variable selection methods combined with different
machine learning algorithms for soil salinity inversion in vegetation-covered farmland
needs to be further deepened, trying to explore: which variable selection method is the
most effective? Which variable selection methods combined with machine learning
algorithms can effectively improve the prediction accuracy of the model?

Considering the foregoing, this study used PCC, GRA, VIP, and SVM-RFE to screen the
variables of the constructed 30 spectral indexes, constructed 20 soil salinity inversion
models based on support vector machine regression (SVM), back propagation neural
network (BPNN), extreme learning machine (ELM), and random forest (RF). This study
aimed to: (1) determine the spectral index suitable for soil salinity inversion in alfalfa
covered farmland in arid oasis areas; (2) compare and evaluate the effectiveness of PCC,
GRA, VIP, and SVM-RFE variable selection methods in selecting sensitive variables,
whether they can improve the accuracy of soil salinity inversion; (3) evaluate the predictive
accuracy of different variable selection methods coupled with machine learning
algorithms, and determine the best variable selection method and soil salinity inversion
model. To provide a new approach for timely and accurate acquisition of crops covered
farmland soil salinity information.

MATERIALS AND METHODS
Study area
In this article, the arid oasis irrigation area in China is selected as the study area (Fig. 1).
This region is located at 98�20′~99�18′E, 39�10′~40�15′N, with temperate continental arid
climate, dry and little rain, strong evaporation, average precipitation of 72.6 mm and
average evaporation of 2,184.0 mm. These characteristics make it a typical “no irrigation,
no agriculture” area, which main crops are grain economic crops such as alfalfa, wheat and
corn. According to the survey, soil salinization in the region is spreading from spotty to
patchy, accompanied by problems such as water shortage and fragile ecological
environment. This article conducts research on inversion model of soil salinity in alfalfa
covered farmland based on sensitive variable selection and machine learning algorithms by
taking alfalfa covered farmland as the research object. The study and the corresponding
results have crucial practical significance and research value for developing precision
agriculture.

Research methods
Data source and preprocessing
(1) UAV multispectral data acquisition and preprocessing

The UAV remote sensing platform used in this study is the DJI P4 multispectral version
with a visible light camera and five multispectral cameras (blue 450 nm, green 560 nm, red
650 nm, near-infrared 840, and nmred edge 730 nm). The work was conducted at the
Bianwan Farm in the Taolai River Basin on June 15, 2023, and the UAV multispectral
image data was acquired between 11:00 am and 14:00. During the experiment, the weather
was clear and cloudless, the flight altitude was 75.0 m, the average speed was 4.0 m/s, the
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ground resolution was 4.0 cm, and the heading and sidetrack overlap was set to 75%, and
standard whiteboards were used to calibrate the data. Finally, the acquired multispectral
images were imported into DJI Wisdom for image correction, cropping, and other
preprocessing procedures, which used to explore the feasibility of different variable
selection methods combined with machine learning algorithms in improving the accuracy
of SSC inversion in crop-covered farmland.

(2) Soil salinity content data acquisition
To ensure temporal consistency between the UAV multispectral remote sensing image

and soil salinity data, the experiment sampled field soil samples on June 15, 2023 at the
Bianwan Farm in the Taolai River Basin, and the data collection time was the flowering

Figure 1 Study area and diagram. Full-size DOI: 10.7717/peerj.18186/fig-1

Figure 2 SSC data acquisition. (A) Sampling point distribution diagram. (B) Soil salinity measure-
ment. Full-size DOI: 10.7717/peerj.18186/fig-2
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period of alfalfa growth stage, and the sampling areas of alfalfa-covered land was 54,000 m2

(Fig. 2). Sixty-four sampling points were evenly distributed in the sampling area, and soil
samples from 0–15 cm were collected using soil augers, and information on the location of
each point was recorded, the longitude and latitude of the sampling points are available in
the Files S5. The location information of each point was recorded. Each soil sample with
weight equal to 30 g was collected into an aluminum box, oven-dried for 8 h, cooled and
then ground and sieved (pore size 2 mm). Distilled water of volume equal to 150 ml was
added to the sieved soil samples and stirred thoroughly, and after a few hours of standing,
the conductivity of the soil solution was determined using a Raymag DJS-1C conductivity
meter. The soil salt content (SSC, %) was calculated according to the empirical formula
SSC = 0.2882EC1:5 + 0.0183 (Zhao et al., 2022a).

Spectral index construction
Crops on saline soil in arid areas usually exhibit sparse coverage, so using only salinity
index and vegetation index could not effectively monitor the degree of soil salinization.
Therefore, we selected 30 spectral indexes (15 for vegetation and another 15 for salinity) as
the input variables of the salinity inversion model (Table 1).

Sensitive variable selection method
(1) Pearson correlation coefficient

Pearson correlation coefficient (PCC) was proposed by Karl Pearson in the late 19th
century as a measure of the linear relationship between two variables (Pearson, 1895). The
following is the calculation formula:

r ¼
P

xi � �xð Þ yi � �y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
xi � �xð Þ2 yi � �y

� �2q (1)

where xi and yi are the observed values of two variables X and Y, �x and �y are the mean
values of variables X and Y.

(2) Gray relational analysis
Gray correlation analysis (GRA) method was proposed by Professor Deng Julong in the

1980s. As an analysis method based on grey system theory, which used to evaluate the
relationship strength between system variables (Deng, 1989). The following is the
calculation formula:

GCD ¼ 1
m

Xm
t¼1

b x0 tð Þ; xi tð Þ½ � (2)

where b x0 tð Þ; xi tð Þð Þ ¼ D minð Þ þ rD maxð Þ
D0i kð Þ þ rD maxð Þ ; r is the determining coefficient, 0.5.

(3) Variable projection importance
Variable importance projection (VIP) algorithm was proposed by Wold, Johansson &

Cocchi (1993). As a variable selection method based on partial least squares algorithm,
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which used to evaluate the importance of each variable in the model (Wold, Johansson &
Cocchi, 1993). The following is the calculation formula:

VIP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m�
Pn
i¼1

Rd Y; tð ÞW2

Pn
i¼1

Rd Y;Tð Þ

vuuuuut (3)

where m for the number of independent variables, n is the number of components; t for the
selected independent variables, Rd Y; tð Þ for the interpretation degree of the dependent
variable components, and W2 designates the effect of variables in each component. The
VIP value greater than one shows a strong relationship between the independent and
dependent variables.

(4) Support vector machine recursive feature elimination
Support vector machine recursive feature elimination (SVM-RFE) algorithm was

proposed by Guyon et al. (2002). As a backward iterative recursive sensitive variable
selection method based on support vector machine, it mainly eliminates the least
important features by recursively training the support vector machine model, so as to
obtain the optimal feature subset (Guyon et al., 2002).

Construction and accuracy evaluation of the salinity inversion model
The collected 60 samples were divided in a ratio of 2:1, with 40 samples as the modeling set
and the remaining 20 as the verification set. Taking the spectral index as the model input
independent variable and their corresponding soil salt content as the dependent variable,
on the basis of variable selection, we constructed 20 soil salinity inversion models based on
SVM, BPNN, ELM and RF. Model accuracy was evaluated using the determination
coefficient (R2), root means square error (RMSE), and performance deviation ratio (RPD)
(Chen et al., 2022). The following is the calculation formula:

R2 ¼
Pn
i¼1

ŷi � �yi
� �2

Pn
i¼1

yi � �yi
� �2 (4)

where the closer R2 is to 1, the higher the accuracy of the model fit.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i¼1

ŷi � yi
� �2

n

vuuut
(5)

where the closer RMSE is to 0, the higher the prediction accuracy of the model.

RPD ¼ SD
RMSE

(6)

where RPD > 2.0 indicates good model capability, 1.4 ≤ RPD ≤ 2.0 indicates a rough
quantitative prediction ability of the model, and RPD < 1.4 shows that the model’s
predictive power is unreliable.
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RESULTS
Statistical analysis of SSC
The 60 soil samples used for salt content analysis were divided into three groups, namely,
mild salinization soil (<0.4%), moderate salinization soil (0.4–0.6%), and severe
salinization soil (0.6–1.0%) (Wang et al., 2018a). The statistical analysis results of SSC are
shown in Table 2. The percentages of mild salinization soil, moderate salinization soil, and
severe salinization soils were 25.0%, 65.0%, and 10.0%, respectively (Table 2), and their
coefficient of variation was 0.20, indicating that the salt content of the soil surface had
moderately weak variability.

Sensitive variable selection
The correlation between spectral index and SSC was analyzed by a correlation analysis
system in SPSS21.0, and the obtained correlation coefficients are shown in Table 3. The
spectral index were significantly correlated with SSC at the p < 0.001 level (SI4 was
significantly correlated with SSC at the p < 0.05 level), except for the spectral indexes EVI
and COSRI, which did not correlate with SSC (Table 3). To screen the sensitive variables,
we selected the spectral index which significantly correlated with SSC (p < 0.001) and set
the correlation coefficient selection threshold to | 0.8 |. The sensitive spectral indexes
screened by PCC were NDVI, PNDVI, SAVI, MSAVI, ARVI, OSAVI, NDSI, S3, S4, S5,
SI1, SI3, and SI.

The relationship between spectral index and SSC was also analyzed by GRA and VIP in
MATLAB R2016a (Fig. 3). The GCD selection threshold was set to 0.7, and the sensitive
spectral indexes screened by GRA were DVI, EVI, TVI, GNDVI, MSAVI, CRSI, RDVI, BI,
S1, S3, S4, S6, SI1, SI2, SI3, SI4, SI, SI-T, and COSRI. Conversely, the VIP selection
threshold was set to 1.0, and the sensitive spectral indexes screened by VIP were NDVI,
GNDVI, PNDVI, SAVI, MSAVI, ARVI, OSAVI, NDSI, BI, S3, S4, S5, S6, SI1, SI2, SI3, and
SI. The sensitive spectral indexes screened by SVM-RFE were NDVI, NDGI, GNDVI,
PNDVI, SAVI, MSAVI, ARVI, OSAVI, NDSI, S3, S4, S6, SI1, and SI.

In summary, the PCC, GRA, VIP, and SVM-RFE variable selection methods screened
13, 19, 17, and 14 sensitive spectral indexes, respectively, indicating that variable selection
can effectively remove redundant information of spectral parameters and improve the
accuracy of soil salinity inversion models.

Table 2 The statistical analysis of SSC.

Sample Number of samples Salt content

Mild
salinization
soil

Moderate
salinization
soil

Severe
salinization
soil

Maximum
(%)

Minimum
(%)

Average
(%)

Standard
deviation

Variance Coefficient
of variation

Alfalfa
covered
land

Total sample 60 15 39 6 0.76 0.37 0.47 0.322 0.104 0.20

Modeling set 40 7 28 5 0.76 0.37 0.49 0.339 0.115 0.21

Verification
set

20 8 11 1 0.62 0.38 0.44 0.252 0.064 0.17
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Construction of soil salinity inversion model
Soil salinity inversion model based on the PCC
The results of soil salinity inversion model based on PCC are shown in Table 4. Based on
the comprehensive analysis of the modeling set R2

c and RMSEc and the validation set R2
v,

RMSEv, and RPD, the SVM model demonstrated to be the best salinity inversion model
under the PCC variable selection method, with the R2

c , R
2
v, RMSEv, and RPD values of

0.8854, 0.8539, 0.1634, and 1.9738, respectively. The other models had smaller differences
in their accuracy, with their R2

c being between 0.7807 and 0.8098, R2
v between 0.7615 and

0.8513, RMSE below 0.2, and RPD above 1.8, thus indicating a good inversion effect.

Table 3 The correlation coefficient between spectral index and SSC.

Spectral
index

Correlation coefficient Spectral
index

Correlation coefficient Spectral
index

Correlation coefficient

NDVI −0.82** MSAVI −0.82** S4 0.87**

DVI −0.39** CRSI −0.68** S5 0.86**

EVI −0.23 ARVI −0.80** S6 0.79**

RVI −0.65** RDVI −0.69** SI1 0.87**

TVI −0.41** OSAVI −0.82** SI2 0.74**

NDGI −0.70** NDSI 0.82** SI3 0.86**

GNDVI −0.78** BI 0.67** SI4 −0.31*

PNDVI −0.80** S1 −0.52** SI 0.87**

GVI −0.65** S2 −0.52** SI-T 0.39**

SAVI −0.82** S3 0.86** COSRI −0.2

Note:
*For significance test p < 0.05, **for p < 0.01.

Figure 3 The analysis results of spectral index and SSC under different sensitive variable selection methods. (A) GRA analysis results. (B) VIP
analysis results. Full-size DOI: 10.7717/peerj.18186/fig-3
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Soil salinity inversion model based on the GRA
The results of soil salinity inversion model based on GRA are shown in Table 5. The
comprehensive analysis of the modeling set (R2

c and RMSEc) and validation set (R2
v, RMSEv

and RPD) showed that the SVM was the best salinity inversion model under the GRA
variable selection method, with R2

c , R
2
v, RMSEv, and RPD values of were 0.7864, 0.8888,

0.1780, and 1.8115, respectively. The other models exhibited slight differences in their
accuracy, with the R2

c ranging between 0.7967 and 0.8004, R2
v between 0.7915 and 0.8634,

RMSE below 0.3, and RPD above 1.7, indicating a good inversion effect.

Soil salinity inversion model based on the VIP
The results of soil salinity inversion model based on VIP are shown in Table 6. Like PCC
and GRA selection methods, the SVM was the best salinity inversion model under the VIP
variable selection method, with R2

c , R
2
v, RMSEv, and RPD values of 0.8986, 0.84470.1699,

and 1.8979, respectively. There were slight accuracy differences in the other models, with

Table 5 The soil salinity inversion model based on GRA.

Variable selection method Algorithm Modeling set Verification set RPD

Rc2 RMSEc Rv2 RMSEv

GRA SVM 0.7863 0.1652 0.8888 0.1780 1.8115

BPNN 0.7997 0.1844 0.8040 0.2946 1.7945

ELM 0.7967 0.1511 0.8634 0.1852 1.7411

RF 0.8004 0.1681 0.7915 0.1770 1.8214

Table 6 The soil salinity inversion model based on VIP.

Variable selection method Algorithm Modeling set Verification set RPD

Rc2 RMSEc Rv2 RMSEv

VIP SVM 0.8986 0.1114 0.8447 0.1699 1.8979

BPNN 0.8617 0.1271 0.7530 0.1620 1.9899

ELM 0.8396 0.1343 0.8014 0.1732 1.8615

RF 0.7978 0.1580 0.8264 0.1511 2.1346

Table 4 The soil salinity inversion model based on PCC.

Variable selection method Algorithm Modeling set Verification set RPD

Rc2 RMSEc Rv2 RMSEv

PCC SVM 0.8854 0.1050 0.8539 0.1634 1.9738

BPNN 0.8098 0.1816 0.7615 0.1385 2.3280

ELM 0.8096 0.1463 0.8005 0.1703 1.8935

RF 0.7807 0.1591 0.8513 0.1428 2.2613
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R2
c ranging between 0.7978 and 0.8617, R2

v between 0.7530 and 0.8264, RMSE below 0.2,
and RPD above 1.8, thus showing a good inversion effect.

Soil salinity inversion model based on the SVM-RFE
The results of soil salinity inversion model based on SVM-RFE are shown in Table 7. The
R2
c , R

2
v, RMSEv, and RPD values of 0.8994, 0.8674, 0.2170, and 1.9863, respectively, showed

that the SVM model was the best salinity inversion model under the SVM-RFE variable
selection method. The other models had smaller differences in their accuracy, with their R2

c

ranging between 0.7879 and 0.8855, R2
v between 0.7415 and 0.8144, RMSE below 0.2, and

RPD above 1.7, suggesting a good inversion effect.

Comprehensive evaluation analysis of soil salinity inversion models
The 20 soil salinity inversion models were constructed with the spectral index as the
model input independent variable and the corresponding soil salinity as the dependent
variable. The results of the modeling set and validation set analysis are shown in Table 8
and Fig. 4.

The R2
c and R2

v values of the inversion models generated using the same machine
learning algorithm based on PCC, GRA, VIP, and SVM-RFE variable selection methods
were larger than that of CK (without variable selecting) but were closer to each other
(Table 8), indicating that the models did not exhibit “overfitting” phenomenon.
Conversely, the RMSEc and RMSEv of the models were smaller than CK (except for RMSEv
of the SVM-RFE-SVM model), and their RPD was above 1.7, indicating that the soil
salinity inversion model had a good inversion effect and can improve the accuracy of the
inversion models. For the SVM, BPNN, and ELM algorithms, the inversion model R2

v

based on the GRA variable selection method was larger than that of PCC, VIP, and SVM-
RFE, while for the RF algorithm, the inversion model R2

v based on the PCC variable
selection method was larger than that of GRA, VIP, and SVM-RFE. This shows that the
GRA variable selection method is suitable for SVM, BPNN, and ELM modeling, while the
PCC method is suitable for RF modeling.

Since the differences in RMSE values were small among the models, the
evaluation index of the validation set (R2

v, RMSEv, and RPD) were used as parameters
to draw the evaluation index of the accumulation bar chart for each model (Fig. 5)
to distinguish the models accurately, and further evaluate the inversion effect of
each model.

Table 7 The soil salinity inversion model based on SVM-RFE.

Variable selection method Algorithm Modeling set Verification set RPD

Rc2 RMSEc Rv2 RMSEv

SVM-RFE SVM 0.8994 0.1835 0.8674 0.2170 1.9863

BPNN 0.8686 0.1259 0.7415 0.1797 1.7938

ELM 0.8855 0.1134 0.8084 0.1820 1.7714

RF 0.7879 0.1579 0.8144 0.1502 2.1464
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As shown in Fig. 5A, the length of the model bar chart, based on the variable selection
methods, was greater than that of CK, indicating that the accuracy of the soil salinity
inversion models can be improved by variable selection. The length difference of the model
bar chart generated based on the GRA variable selection method was small, while that
based on the PCC, VIP, and SVM-RFE variable selection methods was large under the
same machine learning algorithm. This showed that the GRA is the best sensitive variable
selection method. Moreover, as shown in Fig. 5B, the length difference of the model bar
chart based on SVM was small, while that based on BPNN, ELM, and RF was large under
the same variable selection method, indicating that the SVMmodelwas the best soil salinity
inversion model. Through comprehensive analysis of the bar graph length of each model,
we found that the differences in inversion model results were due to the different variable
selection methods, indicating the importance of selecting appropriate variable selection
methods for improving the accuracy of the model.

The SSC in the study area based on the GRA-SVM model inversion is shown in Fig. 6.
As shown in Fig. 6, the spatial distribution map of soil salinity based on GRA-SVM
inversion model can truly reflect the degree of soil salinization in the study area. The study
can provide a theoretical basis for the effective prevention and control of soil salinization in
this area.

Table 8 The soil salinity inversion models based on different variable selection methods and
machine learning algorithms.

Variable selection method Algorithm Modeling set Verification set RPD

R2
c RMSEc R2

v RMSEv

CK SVM 0.7801 0.2023 0.8319 0.2000 1.7697

PCC 0.8854 0.1050 0.8539 0.1634 1.9738

GRA 0.7863 0.1652 0.8888 0.1780 1.8115

VIP 0.8986 0.1114 0.8447 0.1699 1.8979

SVM-RFE 0.8994 0.1835 0.8674 0.2170 1.9863

CK BPNN 0.6819 0.2057 0.6870 0.3428 1.4407

PCC 0.8098 0.1816 0.7615 0.1385 2.3280

GRA 0.7997 0.1844 0.8040 0.2946 1.7945

VIP 0.8617 0.1271 0.7530 0.1620 1.9899

SVM-RFE 0.8686 0.1259 0.7415 0.1797 1.7938

CK ELM 0.7852 0.1517 0.7391 0.1915 1.6840

PCC 0.8096 0.1463 0.8005 0.1703 1.8935

GRA 0.7967 0.1511 0.8634 0.1852 1.7411

VIP 0.8396 0.1343 0.8014 0.1732 1.8615

SVM-RFE 0.8855 0.1134 0.8084 0.1820 1.7714

CK RF 0.7702 0.1687 0.7785 0.1860 1.7937

PCC 0.7807 0.1591 0.8513 0.1428 2.2613

GRA 0.8004 0.1681 0.7915 0.1770 1.8214

VIP 0.7978 0.1580 0.8264 0.1511 2.1346

SVM-RFE 0.7879 0.1579 0.8144 0.1502 2.1464
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Figure 4 Comparison of measured and predicted soil salinity. (A) CK modeling. (B) CK verification.
(C) PCC modeling. (D) PCC verification. (E) GRA modeling. (F) GRA verification. (G) VIP modeling.
(H) VIP verification. (I) SVM-RFE modeling. (J) SVM-RFE verification.

Full-size DOI: 10.7717/peerj.18186/fig-4
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DISCUSSION
UAV remote sensing has great development potential in estimating soil salinity. Based on
its fast information acquisition capability, wide coverage, and low operating cost, UAV
remote sensing also represents the future development direction of precision agriculture
(Khanal, Fulton & Shearer, 2017; Rejeb et al., 2022). This study utilizes UAV remote
sensing technology to obtain rich spectral information. Using this information, it
constructs a alfalfa covered soil salinity inversion model based on variable selection and
machine learning algorithms, significantly improving the accuracy of soil salinity
inversion. By selecting sensitive variables, redundant information of spectral parameters
can be effectively removed, improving the accuracy of soil salinity inversion. The
combination of variable selection method and machine learning algorithm further

Figure 5 The stacked bar graphs of indicators for comprehensive evaluation of different soil salinity inversion models. (A) The different
selection methods under the same algorithm. (B) The different algorithms under the same selection method.

Full-size DOI: 10.7717/peerj.18186/fig-5

Figure 6 SSC spatial distribution map based on GRA-SVM inversion model.
Full-size DOI: 10.7717/peerj.18186/fig-6
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improves the accuracy of soil salinity inversion. This study provide a new approach for
timely and accurate acquisition of crops covered farmland soil salt information.

The use of numerous spectral variables complicates the construction of the selection
model due to information redundancy associated with such an amount of spectral
variables. Therefore, selecting appropriate variable selection methods is an effective way of
improving the monitoring accuracy of soil salt content (Maes & Steppe, 2019; Ivushkin
et al., 2019;Wang et al., 2018b; Jang et al., 2022). This study constructed 30 spectral indexes
using UAV multispectral remote sensing data and screened 13, 19, 17, and 14 sensitive
spectral indexes based on PCC, GRA, VIP, and SVM-RFE, respectively. Thus, GRA
screened the highest, while PCC screened the lowest number of sensitive spectral index.
These results show that the variable selection method can effectively remove redundant
information in the spectral variables, reduce the complexity of the salinity inversion model,
and improve the accuracy of the soil salinity inversion model. However, each variable
selection method exhibits different model optimization, as reported by previous studies
(Cao et al., 2020; Miao, Li & Lu, 2018; Han et al., 2019; Mwinuka et al., 2022; Jia et al.,
2020). A comprehensive comparative analysis of the accuracy of the inversion model based
on the variable selection methods showed that GRA was the best among the four sensitive
variable selection methods, consistent with the findings of previous studies (Zhao et al.,
2023; Jia et al., 2020). This is mainly due to the small amount of calculation of GRA,
applicable with multiple samples, and exhibits no discrepancies between quantitative and
qualitative analysis results; thus can better reflect the correlation between variables. Wang
et al. (2019a) used GRA, VIP, and stepwise regression analysis (SR) to screen the sensitive
variables and showed that the model accuracy based on VIP variable selection method was
the highest. Furthermore, Wang et al. (2019b) used PCC, VIP, GRA, and random forest
(RF) to the screen variables and found that the model inversion effect of the RF variable
selection method was the best. This may be due to the differences in soil texture,
meteorological environment, and planting structure among the study subjects.

In addition, due to the influence of soil environment, anthropogenic causes and other
factors, the independent variables and dependent variables are in a nonlinear relationship,
and the predictive ability of the crops covered farmland soil salinity inversion model
constructed based on the linear regression algorithm will not be able to meet the accuracy
requirements (Leroux et al., 2019; Periasamy, Ravi & Tansey, 2022). Therefore, this study
constructed 20 crops covered farmland soil salinity inversion models by using SVM,
BPNN, ELM and RF four machine learning algorithms based on the spectral index
screened by the sensitive variable selection method. The results showed that the overall
inversion effect of the salt inversion model based on the four sensitive variable selection
methods was better than that of the unscreened, and the RPD of the model is above 1.7,
indicating that the process of selection the spectral index by the sensitive variable selection
method can further improve its correlation with salt, thereby improving the accuracy of
the salt inversion model. The results also showed that under the same sensitive variable
selection method, different modeling methods are selected, and the effect of salt inversion
model is different. It is pointed out that the salt inversion model based on support vector
machine (SVM) is the best inversion model, which is consistent with the research results of
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Jia et al. (2020), Feng et al. (2018). By comparing the inversion accuracy of different
machine learning algorithms, Zhang et al. (2019b), Ge et al. (2019) and Wei et al. (2020)
found that random forest (RF) achieved the highest inversion accuracy. Liu et al. (2022)
pointed out that BP neural network (BPNN) is the best soil salinity inversion model. This
is mainly due to the complex composition of soil salinity and strong spatial variability, so
that different algorithms may have different inversion effects in different regions.

CONCLUSIONS
In this study, we evaluated the feasibility of different variable selection methods combined
with machine learning algorithms in improving the accuracy of SSC inversion in
crop-covered farmland, and reached the following conclusions:

1. The RPD values of all models were greater than 1.7, indicating all models have an
ability to quantitatively estimate SSC, so the variable selection combined with machine
learning algorithm is an effective method to improve the accuracy of soil salinity remote
sensing inversion.

2. The performance of the models has been improved markedly using the four variable
selection methods, and the applicability varied among the four methods: the GRA variable
selection method is suitable for SVM, BPNN, and ELMmodeling, while the PCCmethod is
suitable for RF modeling.

3. The choice of different variable selection combined with machine learning algorithm
had a great effect on the prediction accuracy of the model. The GRA-SVM is the best soil
salinity inversion model in alfalfa cover farmland, with R2

v of 0.8888, RMSEv of 0.1780, and
RPD of 1.8115 based on the model verification dataset, and the spatial distribution map of
soil salinity can truly reflect the degree of soil salinization in the study area.

By comparative research, this study found that different variable selection methods can
effectively improve the prediction accuracy of soil salinity, and are not affected by
sampling time, location and differences in spectral reflectance. At the same time, this study
further compared and verified the applicability of variable selection methods combined
with machine learning algorithms in soil salinity inversion, and determined the
characteristic variables suitable for soil salinity inversion in alfalfa covered farmland in arid
oasis areas, as well as the optimal variable selection method and soil salinity inversion
model. Although the models in the study performed satisfactorily in the inversion of SSC,
their accuracy needs further improving. In future research, the feasibility of coupling
different variable method methods to improve model prediction accuracy will be further
explored, as well as the differences in other variable method methods in improving model
performance, increasing computational efficiency, and reducing the impact of redundant
information.
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