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ABSTRACT

Astrocytes are widely distributed and play a critical role in the central nervous system
(CNS) of the human brain. During the development of CNS, astrocytes provide
essential nutritional and supportive functions for neural cells and are involved in
their metabolism and pathological processes. Despite the numerous studies that have
reported on the regulation of astrogliogenesis at the transcriptional and epigenetic
levels, there is a paucity of literature that provides a comprehensive summary of the key
factors influencing this process. In this review, we analyzed the impact of transcription
factors (e.g., NFI, JAK/STAT, BMP, and Ngn2), DNA methylation, histone acetylation,
and noncoding RNA on astrocyte behavior and the regulation of astrogliogenesis, hope
it enhances our comprehension of the mechanisms underlying astrogliogenesis and
offers a theoretical foundation for the treatment of patients with neurological diseases.

Subjects Biochemistry, Cell Biology, Molecular Biology, Neuroscience
Keywords Astrogliogenesis, Transcription factor, DNA methylation, Histone, Astrocyte

INTRODUCTION

Neuroscience is an active research field with a multitude of fascinating yet unresolved issues.
Epigenetics, a discipline that has experienced a period of rapid evolution in recent years,
with a focus on phenomena that deviate from the principles of classical Mendelian genetics.
This encompasses DNA modifications, RNA interference, and histone modifications, all
of which play crucial roles and have propelled substantial advancements in neuroscience,
particularly in the investigation of astrogliogenesis. These epigenetic mechanisms exhibit
tremendous potential for elucidating the underlying processes of astrogliogenesis.
Astrocytes represent the most widely distributed and largest type of glial cells in
the mammalian brain. While neurons are the primary cells responsible for processing
information in the brain, astrocytes play a crucial supportive role in this process,
for example, by aiding in neuronal migration and sustaining neuronal growth and
development. Astrocytes are indispensable for the maturation of the central nervous
system (CNS), the maintenance of the blood—brain barrier, the formation of synapses, and
the transmission of neurotransmitters (Bayraktar et al., 2014; Holst et al., 2019). During the
development of the infant brain, both neurons and astrocytes predominantly originate from
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neural stem cells. Astrocytes possess numerous long, branching projections that extend
outward, giving them a star-like appearance. These projections are capable of establishing
contact with neurons, blood vessels, and other glial cells, thereby forming a supportive
network throughout the brain and spinal cord (Volterra ¢» Meldolesi, 2005). It is noteworthy
that astrocytes in the adult mouse brain display remarkable cellular plasticity, which enables
them to be induced into neural progenitor cells that can subsequently generate neurons,
astrocytes, and oligodendrocytes (Zhang et al., 2022). The activation of JAK/STAT signaling
pathway, which is induced by ciliary neurotrophic factor (CTNF), leukemia inhibitors
(LIF), and cytokine family members, has been demonstrated to promote astrogliogenesis
(Bonni et al., 1997; Jain et al., 2021; Kaur et al., 2005). Furthermore, the Notch signaling
pathway interacts with STAT signaling, particularly during organ development (Hu

et al., 2021). The effector molecules of Notch signaling, Hes1 and Hes5, interact with
STAT and JAK to promote STAT phosphorylation, thereby accelerating astrogliogenesis
(Yoshimatsu et al., 2006). The evidence is increasingly suggestive that bone morphogenetic
protein (BMP) signaling plays a role in axon regeneration, neuronal differentiation,
synaptic maturation, and astrogliosis by facilitating cytoskeletal assembly, particularly

in the context of CNS injury (Akram et al., 2022; Zhong ¢ Zou, 2014). Jiang et al. (2020)
demonstrated that exposure to nonylphenol, a stable environmental contaminant, during
the perinatal period resulted in an increase in the number of astrocytes and a decrease in
oligodendrogenesis in the offspring cerebellum, primarily by activating BMP signaling.
The potential for astrocytes to be converted into neurons has been a topic of debate in
recent years. Chen’s laboratory has demonstrated that the gene NeuroD1, when delivered
using an adeno-associated virus, can efficiently reprogram astrocytes in the grey matter into
neurons (Chen et al., 2020; Liu et al., 2020). However, Wang et al. (2021) demonstrated that
astrocyte-restricted NeuroD1 is unable to induce astrocyte-to-neuronal cell conversion
whether in normal conditions or even after brain injury, using lineage-tracing strategies in
vivo.

In addition to transcription factors, DNA epigenetic modifications have been
demonstrated to play a crucial role in astrogliogenesis (Albert ¢ Huttner, 2018; Yoon et
al., 2018). A study demonstrated that astrocytes derived from the cerebellum and cortex
exhibit a fundamental transcriptional and epigenomic program, yet display distinct
cellular characteristics. This was revealed through an integrative analysis that included
mRNA sequencing (mRNA-Seq), genome-wide DNA methylation sequencing, and
Assay for Transposase-Accessible Chromatin using sequencing (ATAC-Seq) (Welle et
al., 2021). The DNA methylation and demethylation at CpG dinucleotide sites exert a
profound determination of neural stem cell fate. The DNA methyltransferases Dnmtl and
Dnmt3a have been demonstrated to impede the maturation of astrocyte differentiation by
methylating astrocyte-specific genes, including GFAP and S1008 (He et al., 2020; Urayama
etal., 2013).

A review of the role of multiple transcription factors and epigenetic modifications in
astrogliogenesis provides a comprehensive perspective on the complex process, facilitating
the elucidation of the molecular basis of astrocyte differentiation, the development of novel
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new therapies for neurodegenerative diseases, and the promotion of the application of
astrocytes in regenerative medicine.

Survey methodology

This review comprises a synthesis of the research articles from the past five years in PubMed
database, Scopus database, Embase database, ScienceDirect database, and Web of Science
database.

MECHANISM OF ASTROGLIOGENESIS AT
TRANSCRIPTIONAL LEVEL

Transcription factors are essential molecules in the regulation of gene expression in
eukaryotes. During the development of CNS, neural progenitor cells differentiate into either
neuronal cells or glial cells with the differentiation process being guided by transcription
factors.

The role of NFI genes in astrogliogenesis

The nuclear factor I (NFI) is a family of transcription factors comprises four members, the
four members of the family are NFIA, NFIB, NFIC, and NFIX. These factors regulate glial
cell differentiation by controlling the expression of astrocyte markers in the developing
CNS (Brun et al., 2018). NFIA, comprising 509 amino acids, has been shown to bind to
the DNA sequence 5-TGGCANNNTGCCA-3" (Gronostajski, 2000). NFIA expression
was enriched in astrocytes and oligodendroglia (Chen et al., 2017). Nfia-deficient mice
exhibited abnormal glial cell development and corpus callosum abnormalities (Shu et al.,
2003). NFIA expression was induced in the ventricular zone region at embryonic day 11.5
(E11.5) to maintain the pool of Glast-positive glial progenitor cells (Deneen et al., 2006). It
facilitated the expression of the astrocyte marker GFAP by directly binding to its promoter
(Cebolla & Vallejo, 2006), thereby supporting the notion that NFIA promotes the onset of
early astrogliogenesis (Tiwari et al., 2018). Moreover, NFIA and SOX9 complex has been
demonstrated to play a pivotal role in the initiation of astrogliogenesis (Kang et al., 2012).
The aforementioned studies indicate that NFIA is a crucial and indispensable transcription
factor during the process of astroglial progenitors differentiating into astrocytes. NFIB is
a transcription factor predominantly localized in astrocytes and neuronal cells (Chen et
al., 2017). Tt has been demonstrated that overexpression of NFIB in human pluripotent
stem cells results in the formation of an astrocyte population within a period of two weeks
(Canals et al., 2018; Yeon et al., 2021). Furthermore, NFIB-induced astrocytes exhibit
physiological functions comparable to those of native astrocytes in vivo, as evidenced
by RNA sequencing and cell function analysis (Canals et al., 2018). Huang et al. (2022)
elucidated that the introduction of astrocyte-related transcription factors NFIB and SOX9
into chimeric human cerebral organoids (chCOs) accelerates the differentiation rate

of induced pluripotent stem cells (iPSCs) into astrocytes. It is noteworthy that NFIB and
SOXO9 not only accelerate the differentiation of iPSCs into astrocytes, but their combination
also enables the reprogramming of fibroblasts into astrocytes (Quist et al., 2022). It can
be reasonably deduced that reprogrammed astrocytes, have the great potential to play
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a pivotal role in maintaining brain homeostasis and addressing various neurological
disorders. Furthermore, a study demonstrated that NFIX deletion in mice resulted in
delayed development of both neuronal and glial lineages within the cerebellum (Fraser et
al., 2017). Neurogenesis within the spinal cord remains normal in NFIX-deficient mice,
aspects of terminal astrocytic differentiation are impaired (Matuzelski ef al., 2017). It has
been suggested that NFIX regulated the downstream of NFIA and NFIB coordinated
gliogenesis within the spinal cord (Matuzelski et al., 2017).

The role of JAK/STAT signaling in astrogliogenesis

Leukemia inhibitory factor (LIF) and its receptor (LIFR) have been demonstrated to
play a protective role for cells of central nervous system, including neuronal cells, myelin
oligodendrocytes, and astrocytes against apoptosis induced by hypoxic-glucose deprivation
(Huo, Fan ¢ Wang, 2019). Cytokines such as LIF or CNTF induce the dimerization of
LIFR with the co-receptor gp130, leading to the phosphorylation and activation of Janus
kinases (JAKs). This signaling pathway is of critical importance for the fate determination
of glial lineages during brain development (Bonni et al., 1997). In the hippocampus of
LIF-knockout mice, the number of astrocytes expressing GFAP was markedly decreased
compared to wild-type mice (Bugga et al., 1998). Additionally, neural precursors in the
developing forebrain of mice with reduced expression of LIFR were unable to generate
astrocytes expressing GFAP and exhibit blocked neural differentiation (Koblar et al., 1998).
Moreover, it was observed that gp130-deficient mice exhibited impaired differentiation of
astrocytes (Nakashima et al., 1999a). It was observed that GP130, p-JAK2, and p-STAT3
were downregulated following calycosin treatment in H,O,-induced oxidative injury of
spinal astrocytes (Song et al., 2022). This suggests that the repression of the JAK/STAT
pathway contributes to the survival of spinal astrocytes. Neurogenin-1 (Ngnl) prevents
the differentiation of neural stem cells and progenitor cells (NSCs) into astrocytes by
inhibiting the JAK/STAT pathway (Zhao et al., 2015). Additionally, another molecule,
neurogenin-2 (Ngn2), has been demonstrated to directly bind to the promoters of several
astrocyte-specific genes and suppress their expression independently of STAT activity (Sun
et al., 2019). A deficiency in zinc (Zn) has been demonstrated to impede astrogliogenesis
during the prenatal period and in the context of developmental processes. This is achieved
by affecting the activation of STAT3 signaling via a mechanism of redox regulation
(Supasai et al., 2021). The transplantation of NSCs mainly predominantly results in the
generation of astrocytes in the injured spinal cord (Barnabe-Heider et al., 2010; Liu et al.,
2015; Sabelstrom et al., 2013). Spinal cord injury (SCI) is typically accompanied by the
formation of scar tissue, and astrocytes derived from NSCs play a crucial role in limiting
the expansion of the scar and preventing further axonal loss. In 2010, Barnabe-Heider et al.
(2010) employed genetic fate mapping to ascertain provenance of nascent cells following
an adult mouse SCI. The researchers observed that astrocytes and ependymal cells, which
are typically restricted in their proliferation in the intact spinal cord, were the primary
cell types undergoing proliferation following SCI (Barnabe-Heider et al., 2010). Another
noteworthy study demonstrated the presence of Dil-labelled GFAP-expressing cells derived
from NSCs in the post-injury period. Moreover, the differentiation of astrocytes derived
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from NSCs was significantly higher than that of neuronal cells derived from NSCs in
the spinal cord (Liu et al., 2015). Zhu et al. (2011) isolated NSCs from the subventricular
region of newborn rats and observed that the addition of lithium to the medium resulted
in a reduction in the number of astrocytes and inhibited the proliferation of glia-restricted
progenitor cells (GRPs). Furthermore, the research demonstrated that lithium inhibited
astrogliogenesis by inhibiting STAT3 activation via GSK-38 (Zhu et al., 2011). JAK/STAT
signaling, typically activated by cytokines, has been demonstrated to promote astrocyte
production, while forced activation of JAK/STAT signaling has been observed to result
in precocious astrocyte formation. Conversely, the inhibition of this pathway has been
demonstrated to prevent the astrocyte differentiation (He et al., 2005). Wang et al. (2020a)
clarified that UCA1 expression was significantly inhibited in rats with temporal lobe
epilepsy (TLE) induced by kainic acid (KA). The overexpression of UCAL in these rats
resulted in a prolonged latency period in the Morris water maze assay and a reduction
in the number of GFAP-expressing cells in the hippocampus. The co-localization of
GFAP-positive cells and p-STAT3-positive cells confirmed that STAT3 activation occurred
in astrocytes. UCA1 decreased the expressions of p-JAKI and p-STAT?3, indicating that
KA-induced astrocyte activation is inhibited of via the JAK/STAT signaling pathway (Wang
et al., 2020a). Moreover, this inhibitory effect was mainly mediated by the JAK/STAT
signaling pathway in the temporal lobe epilepsy (Wang et al., 2020a). Furthermore, the
blockade of the JAK/STAT3 pathway in reactive astrocytes has been demonstrated to
increase the frequency of Huntington’s aggregates, a hallmark of Huntingtin’s disease
(Ben Haim et al., 2015). Given the specificity of the JAK/STAT pathway in regulating cell
proliferation, neuroinflammation, and astrocyte differentiation, it has become a potential
drug target for neurological diseases, such as Alzheimer’s disease (Desai et al., 20205 Jain et
al., 2021).

The role of BMP signaling in astrogliogenesis

Bone morphogenetic proteins (BMPs) constitute a family of proteins within the
transforming growth factor beta superfamily, and BMP-mediated signaling pathways play
a pivotal role in the process of astrogliogenesis (Huang ¢» Xiong, 2016). In the CNS, BMPs
facilitate the generation of astrocytes while simultaneously inhibiting the differentiation
of oligodendrocyte progenitor cells (OPCs) (Costa et al., 2019). During the early stage of
development, BMPs are expressed in the lateral edge of the neural plate and subsequently
in the dorsal midline of the neural tube, and this promote dorsal-medial patterning and
the development of the ventral forebrain (Gdmez, Rodriguez-Carballo & Ventura, 2013;
Mehler et al., 1997). BMPs are widely expressed during late development, especially in the
hippocampus and cerebral cortex (Gdinez, Rodriguez-Carballo ¢ Ventura, 2013; Mehler et
al., 1997). Furthermore, YAP signaling is indispensable for the formation of neocortical
astrocytes. Huang ¢ Xiong (2016) elucidated that neogenin is necessary for the activation
of RhoA by BMP2 and revealed that neogenin promotes the formation of neocortical
astrocytes through the cascade reaction of BMP2-Neogenin-YAP-Smad1 cascade reaction
(Huang ¢ Xiong, 20165 Wu et al., 2021) (Fig. 1). In BMP4 transgenic mice, an increase
in astrocyte density of 40% was observed in several brain regions, while oligodendrocyte
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Figure 1 Neural stem cells can differentiate into astrocytes under BMP2-induction. Briefly, BMP2 pro-
motes p-Smad1/5/8 getting into nuclei in the presence of YAP and activates RhoA assisted by neogenin.
Ultimately, BMP2 accelerates astrocyte differentiation without the cooperation of p-Smad1/5/8 signaling
and YAP signaling (modified from Huang ¢ Xiong, 2016: Fig. 1).

Full-size Gal DOI: 10.7717/peerj.18151/fig-1

density decreased by 11% to 26% (Gomes, Mehler ¢ Kessler, 2003). In a recent study, Lattke
et al. (2021) demonstrated that the addition of BMP4 to culture conditions promoted
the differentiation of neural stem cells (NSCs) into astrocytes, which is consistent with

a previous study in the field. Fibrinogen derived from blood has been demonstrated to
significantly enhance astrogliogenesis via the activation of the BMP receptor signaling
pathway while simultaneously inhibiting neuronal differentiation in the subventricular
zone (SVZ) and hippocampal neural stem cells (NSCs) (Pous et al., 2020). Furthermore,
the absence of fibrinogen markedly impairs astrocyte formation following cortical injury
(Pous et al., 2020). In addition, simultaneous knockout of BMPR1a and BMPRI1b in mice
has been shown to reduce the number of mature glial cells in the neural tube by 25% to
40% (See et al., 2007). Introducing TGF-B1 via intraventricular in-utero injection resulted
in the disorganization of radial glial fibers and premature gliogenesis with the appearance
of GFAP-positive cells (Stipursky et al., 2014).

Other transcription factors in astrogliogenesis
WNT/B-catenin, as a classic transcriptional regulator, plays a pivotal role in maintaining
the equilibrium between cell proliferation and differentiation during neurogenesis.
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Figure 2 Ngn2 and Ngnl participate in the astrogliogenesis. (A) WNT/ B-catenin promotes Ngn2 ex-
pression by binding to the promoter of Ngn2 via putative TCF/LEF binding sites. Next, increased Ngn2
inhibits astrocytic gene Fgfr3 and Gfap transcription by binding to their promoters, leading to restriction
of astrogliogenesis. (B) Ngnl activates miR-9 expression via promoting its transcription, and mature miR-
9 decreases the expression of JAK/STAT upstream molecules, such as LIFR- 8, gp130, and Jak1, by bind-
ing to their 3’ UTR. ultimately leading to inhibition of astrogliogenesis (modified from Huang ¢ Xiong,
2016: Fig. 1).

Full-size B DOI: 10.7717/peerj.18151/fig-2

Furthermore, its activation results in an increased expression of neurogenin 2 (Ngn2),
which in turn disrupts astrogliogenesis in the developing spinal cord (Sun et al., 2019).
It is of particular significance that Ngn2, acting as a transcription repressor, directly
binds to astrocytic gene promoters, including Fgfr3 and Gfap, and thereby inhibits their
transcription, thus impeding astrogliogenesis in the developing spinal cord (Sun et al.,
2019) (Fig. 2A). Gan et al. (2014) demonstrated that the deletion of -catenin in hGFAP-
Cre mice inhibited neocortex formation, primarily by disrupting the development of
radial glial cells. Furthermore, the JAK-STAT pathway, another classic transcription factor
pathway, has also been demonstrated to play a role in astrogliogenesis. For example, Zhao
etal. (2015) demonstrated that the molecule Ngn1 binds to the promoter of miR-9 to
promote its expression in the brain. miR-9 directly targets key upstream molecules of the
JAK-STAT signaling pathway, such as LIFR-8, Il6st (gp130), and Jakl, preventing STAT
phosphorylation and ultimately leading to the inhibition of astrogliogenesis (Fig. 2B).
The transcription factor zinc finger and BTB domain-containing protein 20 (ZBTB20)
is also involved in cell-specific regulation during neocortical development, particularly in
the process of astrogliogenesis. The protein is expressed in the proliferative regions of the
mouse neocortex during embryonic stages E15 to E18 and is also transiently expressed
in projection neurons of the upper cortex during the early postnatal period. In adults, its
expression is primarily limited to astrocytes (Mitchelmore et al., 2002; Nagao et al., 2016;
Tonchev et al., 2016). Recently, the role of ZBTB20 in modulating astrogliogenesis has
been a topic of contention in recent studies. It has been demonstrated that ZBTB20 is
highly expressed in late-stage NPCs and their astrocytic progeny. While overexpression
of ZBTB20 promoted astrocytogenesis and its knockdown suppressed it, this process was
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dependent on Sox9 and NFIA, and not through direct activation of the Gfap promoters
(Nagao et al., 2016). However, Medeiros de Aratijo et al. (2021) demonstrated that in mice
in which ZBTB20 was conditionally deleted, the number of astrocyte subsets expressing
with SOX9 and GFAP were increased after P10, while the number of S1008+ cells remained
unaltered. Furthermore, the expression of Zbtb20 W' at E16.5 was observed to significantly
increased the number of S10087 astrocytes, while the expression of Zbtb20PN (DN:
dominant-negative mutation) which is associated with Primrose syndrome (Cordeddu

et al., 2014), was found to significantly reduced their number of astrocytes. This was
attributed to its impact on the collaboration with other ZBTB family members to regulate
astrogliogenesis (Medeiros de Aratijo et al., 2021). SOX9 is an important transcription factor
that is astrocyte-specific and directly regulates GFAP expression by binding to its promoter
(Byun et al., 2020). It facilitates astrogliogenesis by coordinating with NFIA (Kang et al.,
2012) and targeting the JAK-STAT and BMP pathways.

MECHANISM OF ASTROGLIOGENESIS AT THE EPIGENETIC
LEVEL

DNA methylation

DNA methylation represents a crucial epigenetic mechanism in mammalian genomes,
whereby alterations in gene expression can be achieved without any modification to the
underlying DNA sequences. In bacteria, DNA methylation provides the regulatory basis for
host adaptation to various environments and serves as a defense method to protect bacterial
DNA from foreign phage DNA (Bhootra et al., 2023; Casadestis ¢» Sanchez-Romero, 2022).
This process is catalyzed by a group of enzymes known as DNA methyltransferases (Dnmts),
which transfer a methyl group from S-adenosine methionine (SAM) to the fifth carbon
of a cytosine residue, resulting in the formation of 5-methylcytosine (5mC) (Moore, Le &
Fan, 2013; Nakagawa et al., 2020). It should be noted that DNA methylation is not limited
to gene promoters; it also occurs in gene bodies, enhancers, silencers, and transposons
(Wang & Xu, 2014). When DNA methylation occurs at gene promoters, it has the potential
to modulate gene expression by recruiting proteins involved in gene suppression or by
affecting the binding of transcription factors to DNA (Jaenisch ¢ Bird, 2003; Moore, Le ¢
Fan, 2013).

DNA methylation is a key process in the differentiation of astrocytes during the fetal
stage of brain development. At E11.5 days, the GFAP promoter, which is bound by STAT3,
underwent rapid demethylation in response to STAT3 signaling activation ( Takizawa ef al.,
2001). Over 90% of cells within CNS displayed DNA hypomethylation, which resulted in the
enhanced expression of GFAP and S1008. This ultimately resulted in premature astrocyte
differentiation in mice with conditional deletion of DNMT1 (Fan et al., 2005). However,
the absence of DNA methylation in the GFAP promoter is not sufficient for STAT3 binding
to its target sites. The knockout of DNMT1, DNMT3a, and DNMT3b in mouse embryonic
stem cells resulted in the complete demethylation on the GFAP promoter region, however,
STAT3 was unable to bind to the GFAP promoter to induce GFAP transcription, instead,
it induced Socs3 transcription which is another target for the JAK-STAT signaling pathway
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Figure 3 Astrocytic gene regulation in astrocyte generation. MiR-153 inhibits NFIA expression at the
transcriptional level and impedes NFIA binds to the distal promoter of GFAP. The activation of STAT3
promotes the hypomethylation of the GFAP promoter. SOX9 directly binding to the GFAP promoter ac-
tivates GFAP expression and it also can cooperate with NFIA or STATS3 affecting GFAP expression. FGF2
facilitates STAT/CBP complex accessing to GFAP promoter by increasing the level of H3K4me3 in STAT
binding sites and inhibiting the level of H3K9me3. HDAC genes compete with the STAT/CBP complex on
p300.

Full-size Gl DOI: 10.7717/peerj.18151/fig-3

(Urayama et al., 2013) (Fig. 3), suggesting that hypomethylation in the GFAP promoter
containing the STAT3-binding site alone is not sufficient to induce GFAP expression. It is of
particular importance to note that the accessibility of STAT3 to the binding site in the GFAP
promoter region is a crucial factor in the process of astrogliogenesis. The forced expression
of NFIA in NSCs at E11 results in the dissociation of DNMT1 from the GFAP promoter,
thereby preventing the late NSCs from replicating the methylation signature on the newly
synthesized chain in the daughter cells (MuhChyi et al., 2013; Namihira et al., 2009). In
mice with a conditional mutation in Dnmt1, there were approximately 90% of cortical and
hippocampal cells from E13.5 in the dorsal forebrain exhibited hypomethylation (Hutnick
et al., 2009).

Histone modifications

In mammalian genomes, a nucleosome is composed of an octamer consisting of two
molecules each of histones H2A, H2B, H3, and H4, with 147 bp DNA wrapped around
it (Chong & Gan, 2023). While the core part of the histone in the nucleosome remains
relatively uniform, the free N-terminal tails are subject to a range of modifications, including
acetylation, methylation, phosphorylation, ubiquitination, and ADP ribosylation. These
modifications play a crucial role in influencing the transcriptional activity of genes (Zhang
etal, 2021).

The diverse range of histone modifications can either inhibit or activate gene
transcription depending on whether they lead to chromatin closure or opening, respectively.
This ultimately influences the expression of astrocyte lineage genes. Setdbl (Eset), a
histone H3K9-specific methyltransferase, has been demonstrated to inhibit the gene
expression through its interaction with the co-repressor KAPI (Nakagawa et al., 2020).
Setdb1 is highly expressed during the early stages of mouse brain development. As Setdb1
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expression decreases over time, the level of H3K9 trimethylation also decreases, resulting
in dysregulation of the specific neural cell gene expressions (Tan et al., 2012). However,
Setdb1 has also been observed to activate the expression of certain non-neural genes,
including those related to the astrocyte lineage, thereby promoting the formation of
astrocytes (Tan et al., 2012). It has been reported that various chromatin marks engage
in crosstalk at regulatory elements in gene expression. Specifically, during the stages of
astrogliogenesis, ChIP-seq profiles revealed that the levels of H3K27ac and H3K4mel
are enriched at astroglial genes, including Gfap and Aqp4 (Tiwari et al., 2018). have
been demonstrated to impede the process of HDAC genes by regulating the acetylation
level of STAT3 and competing with STAT3 for binding to p300 (Zhang et al., 2016). In
CKO-Oligl mice, the loss of HDAC3 has been observed to interfere with neurogenesis
and astrocyte development, leading to myelination defects and altered astrocyte responses
(Zhang et al., 2016). The STAT-SMAD-p300/CBP complex is essential for the expression
of astrocyte-specific gene. Furthermore, it has been demonstrated that STAT and BMP
signaling act in a synergistic manner to regulate the astrocyte gene expression (Nakashima
et al., 1999b). Histone H3K4me3 is also critical for gene expression regulation, particularly
in transcriptional activation. Fibroblast growth factor 2 (FGF2) has been demonstrated
to confer the potential for NSCs to differentiate into astrocytes by modifying histone H3
in vitro (Song ¢ Ghosh, 2004). Although FGF2 itself does not induce GFAP expression, it
promotes the binding of the STAT/CBP complex to the GFAP promoter by increasing
the level of H3K4me3 at STAT binding sites and reducing the level of H3K9me3, thereby
enhancing CNTF-induced astrogliogenesis (Song & Ghosh, 2004) (Fig. 3). It has been
demonstrated that the MAPK signaling is activated by FGF in the process of cortical
development, which is critical to the fate determination of NSCs differentiation into
neural cells or astrocytes (Dinh Duong et al., 2019). Hirabayashi ¢ Gotoh (2010) provided
the genetic evidence to support the hypothesis that the histone modifications play a
role in astrocyte formation. It has been demonstrated that the polycomb protein EZH2
inhibited the premature differentiation of glial cells in neural progenitor cells (Sparmann
et al., 2013). This inhibition occurs as a result of EZH2 preventing GFAP expression
by interacting with the chromatin helicase DNA-binding protein 4 (CHD4). In CHD4-
deficient mice, astrogenesis was enhanced during neocortex development (Sparmann et
al., 2013). Additionally, Sher, Boddeke ¢ Copray (2011) reported that EZH2 expression
in astrocytes induced dedifferentiation of astrocytes back into neural stem cells (NSCs).
Moreover, another epigenetic modification, histone serotonylation, has been identified
as a factor in astrocytic Slc22a3-regulated sensory processing (Sardar et al., 2023). The
aforementioned studies suggest that the differentiation of neural stem cells (NSCs) into
astrocytes, as well as the generation and functional roles of astrocytes, are subject to a
number of epigenetic modification processes.

Noncoding RNAs

MicroRNAs (miRNAs) which are approximately 21 nucleotides in length and bind to the
3’ untranslated region (UTR) of target genes, they regulate growth, development, and
various cellular processes by promoting the degradation or hindering the translation of
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these target genes (Krol, Loedige ¢ Filipowicz, 2010; Lu & Rothenberg, 2018). Mounting
evidence has demonstrated that miRNAs participate in the regulation of astrogliogenesis at
the post-transcriptional level. For example, overexpression of miR-153 in the developing
cortex via lentiviral infection resulted in a decrease in astrocytes expressing the bubblegum
family member 1 (ACSBG1), while increasing the number of neuronal cells expressing
NeuN™ (Tsuyama et al., 2015). The 3’ untranslated regions of NFIA and NFIB containing
binding sites for miR-153, and they expressions were downregulated when miR-153 was
overexpressed in sensory neurons and telencephalic neurons (Tsuyama et al., 2015). miR-
153 targeted NeuroD1 in glial cells and was involved in LPS-induced neuroinflammation
through inhibiting the phosphorylation of MAPK signaling (Choi et al., 2022).

miR-124 has been demonstrated to play a pivotal role in the reprogramming of
astrocytes into immature neuronal cells. This process is initiated by direct targeting of
the RNA-binding protein Zfp36L1 at the post-transcriptional level, which is crucial for
the successful reprogramming of these cells. This interaction is associated with ARE-
mediated mRNA decay, which subsequently inhibits the neurogenic interaction group of
Zfp36L1 (Papadimitriou et al., 2023). In addition to post-transcription regulation, miR-
124 contributes to neurogenesis by interacting with polypyrimidine-tract-binding protein
(PTBP) to regulate nervous system-specific alternative splicing patterns (Wang et al., 2023).
In the agomiR-124 treated SCI model, mRNA sequencing revealed a total of 85 upregulated
genes and 80 downregulated genes, of these, Tall was identified as a potential target gene
of miR-124 that mediated the proliferation and differentiation of neuronal precursor
cells (Wang et al., 2020b). In another study, miR-124 overexpression was observed to
promote the proliferation and neural differentiation in NSCs, while overexpression of
its target gene DLL4 was found to reverse these promotive effects (Jiao et al., 2017).
Furthermore, miR-124 has been demonstrated to induce the neuronal generation by acting
on endogenous neurogenetic pathways, and the addition of the neurogenic compound
ISX9 greatly promoted the differentiation and functional maturation of induced neurons
(Papadimitriou et al., 2023). These results implicate that miR-124 facilitates neuronal
differentiation by targeting Zfp36L1, PTBP1, Tall, DLL4, and other mechanisms. The
question of whether the RNA-binding protein PTB (also known as PTBP1) can induce
astrocytes to differentiate into neurons has the subject of considerable debate in recent
times. In 2020, Qian et al. (2020) reported that the depletion of PTBP1 via lentivirus in
mouse cortical astrocytes resulted in the conversion of astrocytes into neurons, as evidenced
by the expression of pan-neuronal markers Tujl and MAP2. Similarly, in the same year,
Yang’s laboratory demonstrated that the efficient generation of dopaminergic neurons
from Miiller glia could be achieved by knocking down PTBP1 using the CRISPR system
CasRx (Zhou et al., 2020). However, subsequent studies presented evidence that challenges
the hypothesis that PTBP1 can convert astrocytes into neuronal cells. Wang et al. confirmed
that in vivo knockdown of PTBP1 did not result in the conversion of resident astrocytes
into neurons, as evidenced by lineage tracing strategies (Hoang et al., 2023; Wang et al.,
2021). Another two additional studies have also reported that the knockdown or depletion
of PTBP1 was unable to convert astrocytes into hippocampal neurons or dopaminergic
neurons in Alzheimer’s mouse models or Parkinson’s mouse models, respectively (Chen
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et al., 2022; Guo et al., 2022). These contrasting results suggest that the consequences of
PTBP1 knockout at the genomic level may differ from those of knockdown at the mRNA
level. These findings underscore the significance of genetic manipulation, lineage tracing,
and gene expression profiling in scientific research.

The brain-specific molecule miR-9/9* (Jung et al., 2012), which directs chromatin
remodeling in conjunction with miR-124, targets BAF53a at the post-transcriptional level
(Yoo et al., 2009). Overexpression of miR-9/9* and miR-124 in neonatal retinal progenitor
cells by electroporation in vivo also affected the cell fate of glial cells, these cells were
observed to have reduced the expressions of SOX9 and GS, and increased the level of
TUBBS3 in the postnatal day 14 retina (Suzuki et al., 2020). It suggests that miR-9/9* and
miR-124 tend to induce the differentiation of NSCs and retinal progenitor cells into
neuronal cells.

It has been reported that in the members of Let-7 family of miRNAs regulate the
timing of glial differentiation. Let-7 plays a pivotal role in the determination of the fate
of neural progenitor cells, mainly through the targeting of the chromatin-associated
protein HMGA?2 (Patterson et al., 2014), which promoted Notch intracellular domain
entry into Hes5 promoter and subsequently induced astrogliogenesis (Patterson et al., 2014;
Rodriguez-Rivera et al., 2009). Induced deletion of let-7 and miR-125 in glial progenitors
inhibits astrocyte differentiation (Shenoy, Danial & Blelloch, 2015). Due to Dgcr8 encodes
a key cofactor in miRNA generation, Shenoy, Danial ¢ Blelloch (2015) demonstrated that
BMP signaling was not affected in Dgcr8-knockout mice, but that pSTAT signal was
significantly impaired astrocyte differentiation. The reexpression of let-7 and miR-125
in glial progenitor cells was observed to significantly rescue the differentiation disorders
caused by Dgcr8 defects, and this rescued mechanism was found to be parallel to JAK-STAT
signaling activating astrogliogenesis (Shenoy, Danial & Blelloch, 2015). In future studies, it
would be interesting to determine how the fusion of the JAK-STAT pathway and miRNA
to promote astrocyte formation.

CONCLUSIONS AND PERSPECTIVE

In conclusion, this paper provides an overview of the key transcription factors, including
NFIA, NFIB, and JAK/STAT signaling, which have been demonstrated to play pivotal roles
in directing neural stem cells towards an astrocytic fate. NFIA and NFIB are particularly
crucial for astrocyte differentiation, whereas JAK/STAT signaling is activated by cytokines
such as LIF and CNTF, which facilitate astrogliogenesis. BMP signaling, represents
another crucial pathway, facilitating astrogliogenesis while inhibiting oligodendrocyte
differentiation. Additionally, other factors, including WNT/S-catenin, ZBTB20, and
microRNAs, have been demonstrated to influence this process, either by promoting or
inhibiting astrocyte development. At the epigenetic level, DNA methylation, histone
modifications, and noncoding RNAs play crucial roles in regulating gene expression
during astrogliogenesis. The action of DNA methyltransferases, such as DNMT1, has been
demonstrated to inhibit the astrocyte differentiation by methylating astrocyte-specific gene
promoters. Histone modifications, including acetylation, methylation, and ubiquitination,
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affect chromatin accessibility and, as a consequence, regulate astroglial gene transcription.
MicroRNAs, including miR-124, miR-9, and Let-7 family members, facilitate the process
by targeting specific transcripts and modulating their expression post-transcriptionally.
These molecular mechanisms not only enhance our comprehension of astrogliogenesis
but also provide novel perspectives and potential therapeutic avenues for the treatment of
neurological diseases. Furthermore, it is anticipated that this will facilitate the application
of astrocytes in regenerative medicine. The presence of astrocytes is of significance to
diseases that have communication barriers with synapses or axons. Perhaps, astrocytes
have great inherently plastic with regard to their capacity to “listening to”, “talking to”,
and form memories of neuronal cells. Future research could investigate the interactions
between transcription factors and epigenetic modifications in greater depth, elucidating
their specific mechanisms of action across a range of disease models. Moreover, the
development of targeted therapeutic drugs against these specific points holds considerable
promise for offering novel strategies and therapeutic approaches for neurological disorders,
including Parkinson’s disease (PD), Alzheimer’s disease (AD), and epilepsy.
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