

First revision

Guidance from your Editor

Please submit by **28 Aug 2024** for the benefit of the authors .

Structure and Criteria

Please read the 'Structure and Criteria' page for guidance.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the [materials page](#).

1 Tracked changes manuscript(s)
1 Rebuttal letter(s)
6 Figure file(s)
3 Table file(s)
1 Raw data file(s)

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING**
- 2. EXPERIMENTAL DESIGN**
- 3. VALIDITY OF THE FINDINGS**
4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review

When ready [submit online](#).

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your [guidance page](#).

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context. Literature well referenced & relevant.
- Structure conforms to [PeerJ standards](#), discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see [PeerJ policy](#)).

EXPERIMENTAL DESIGN

- Original primary research within [Scope of the journal](#).
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty is not assessed.** Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

3

The best reviewers use these techniques

Tip

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57- 86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

1. Your most important issue
2. The next most important item
3. ...
4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Applications of dry chain technology to maintain high seed viability in tropical climates

Filippo Guzzon ^{Corresp., 1}, **Denise Costich** ², **Irfan Afzal** ³, **Luis Barboza-Barquero** ⁴, **Andres Antonio Monge Vargas** ⁴, **Ester Vargas-Ramírez** ⁴, **Pedro Bello** ⁵, **Peetambar Dahal** ⁵, **Cesar Sanchez Cano** ⁶, **Cristian Zavala Espinosa** ⁶, **Shakeel Imran** ⁷, **Soane Patolo Jr.** ⁸, **Tevita Tukia** ⁸, **Johan Van Asbrouck** ⁹, **Elina Young** ¹⁰, **Maraeva Gianella** ¹¹, **Kent J. Bradford** ⁵

¹ European Cooperative Programme for Plant Genetic Resources (ECPGR), c/o Alliance of Bioversity International, CIAT, Rome, Italy, Rome, Italy

² Institute for Genomic Diversity, Cornell University, Ithaca, New York, USA, Ithaca, United States

³ Seed Physiology Laboratory, Department of Agronomy, University of Agriculture, Faisalabad, Pakistan, Faisalabad, Pakistan

⁴ Seed and Grain Research Center (CIGRAS), San José, Costa Rica

⁵ Seed Biotechnology Center, Department of Plant Sciences, University of California, Davis, California, USA, Davis, United States

⁶ International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico State, Mexico, Texcoco, Mexico

⁷ University of Agriculture, Faisalabad, UAF Sub-Campus Burewala, Pakistan, Faisalabad, Pakistan

⁸ MORDI TT (Mainstreaming of Rural Development Innovation Tonga Trust), Nuku'alofa, Kingdom of Tonga, Nuku'alofa, Tonga

⁹ Rung Rueng Consulting Co.,LTD/Rhino, Donmuang, Bangkok, Thailand, Bangkok, Thailand

¹⁰ Centre for Pacific Crops and Trees (CePaCT), Land Resource Division (LRD), Pacific Community (SPC), Suva, Fiji, Suva, Fiji

¹¹ Millennium Seed Bank, Royal Botanic Gardens Kew, Wakehurst Place, Ardingly, UK, Ardingly, United Kingdom

Corresponding Author: Filippo Guzzon

Email address: f.guzzon@cgiar.org

Seed storage life in tropical areas is shortened by high humidity and temperature and the general inaccessibility to dehumidifying and refrigeration systems, resulting in rapid decreases in seed viability in storage as well as a high incidence of fungal and insect infestations. The dry chain, based on rapid and deep drying of seeds after harvest followed by packaging in moisture-proof containers, has been proposed as an effective method to maintain seed quality during medium-term storage in humid climates, even without refrigeration. In addition, seed drying with zeolite drying beads can be more effective and economical than sun or heated-air drying under these warm, humid conditions. In this paper, we review recent published literature regarding the dry chain, considering different crop species, storage environments and seed traits. In addition, we provide new original data on the application of dry chain methods and their implementation at larger scales in South Asia, Latin America and Pacific Island Countries. The clear conclusion is that the combination of reusable drying beads and waterproof storage containers enables the implementation of the dry chain in tropical climates, enhancing seed viability and quality in storage of many crop species. The dry chain approach can therefore significantly enhance seed security for farmers in many tropical countries. Finally, we propose actions and strategies that could guide further scaling-up implementation of this technology.

1 **Applications of dry chain technology to maintain high seed viability in**
2 **tropical climates.**

3

4 Filippo Guzzon¹, Denise E. Costich², Irfan Afzal³, Luis Barboza-Barquero⁴, Andres Antonio
5 Monge Vargas⁴, Ester Vargas-Ramírez⁴, Pedro Bello⁵, Peetambar Dahal⁵, Cesar Sanchez Cano⁶,
6 Cristian Zavala Espinosa⁶, Shakeel Imran⁷, Soane Patolo Jr.⁸, Tevita Tukia⁸, Johan Van
7 Asbrouck⁹, Elina Young¹⁰, Maraeva Gianella¹¹, Kent J. Bradford⁵

8

9 ¹ European Cooperative Programme for Plant Genetic Resources (ECPGR), c/o Alliance of
10 Bioversity International, CIAT, Rome, Italy

11 ² Institute for Genomic Diversity, Cornell University, Ithaca, New York, USA

12 ³ Seed Physiology Laboratory, Department of Agronomy, University of Agriculture, Faisalabad,
13 Pakistan

14 ⁴ Seed and Grain Research Center (CIGRAS), University of Costa Rica (UCR), San José, Costa
15 Rica

16 ⁵ Seed Biotechnology Center, Department of Plant Sciences, University of California, Davis,
17 California, USA

18 ⁶ International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico State,
19 Mexico

20 ⁷ University of Agriculture, Faisalabad, UAF Sub-Campus Burewala, Pakistan

21 ⁸ MORDI TT (Mainstreaming of Rural Development Innovation Tonga Trust), Nuku’alofa,
22 Kingdom of Tonga

23 ⁹ Rung Rueng Consulting Co., LTD/Rhino, Donmuang, Bangkok, Thailand

24 ¹⁰ Centre for Pacific Crops and Trees (CePaCT), Land Resource Division (LRD), Pacific
25 Community (SPC), Suva, Fiji

26 ¹¹ Millennium Seed Bank, Royal Botanic Gardens Kew, Wakehurst Place, Ardingly, UK

27

28 Corresponding Author:

29 Filippo Guzzon

30 Via di San Domenico 1, Rome, 00153, Italy

31 Email address: f.guzzon@cgiar.org

32

33 **Abstract**

34

35 Seed storage life in tropical areas is shortened by high humidity and temperature and the general
36 inaccessibility to dehumidifying and refrigeration systems, resulting in rapid decreases in seed
37 viability in storage as well as a high incidence of fungal and insect infestations. The dry chain,
38 based on rapid and deep drying of seeds after harvest followed by packaging in moisture-proof
39 containers, has been proposed as an effective method to maintain seed quality during medium-
40 term storage in humid climates, even without refrigeration. In addition, seed drying with zeolite

41 drying beads can be more effective and economical than sun or heated-air drying under these
42 warm, humid conditions. In this paper, we review recent published literature regarding the dry
43 chain, considering different crop species, storage environments and seed traits. In addition, we
44 provide new original data on the application of dry chain methods and their implementation at
45 larger scales in South Asia, Latin America and Pacific Island Countries. The clear conclusion is
46 that the combination of reusable drying beads and waterproof storage containers enables the
47 implementation of the dry chain in tropical climates, enhancing seed viability and quality in storage
48 of many crop species. The dry chain approach can therefore significantly enhance seed security
49 for farmers in many tropical countries. Finally, we propose actions and strategies that could guide
50 further scaling-up implementation of this technology.

51

52

53 **Introduction**

54

55 Seed storage in tropical areas is particularly problematic due to high relative humidity (RH) that
56 promotes insect and fungal infestations as well as seed ageing, manifested by rapid losses in seed
57 quality and viability (Roberts and Ellis, 1989; Dickie et al. 1990, Pittendrigh et al. 2003). For most
58 orthodox seeds, drying to low moisture content (MC) (and hermetic packaging to maintain it) can
59 enable storage for up to several years without refrigeration with relatively small losses in viability
60 (Ellis and Roberts, 1981; Ellis, 2022). Preventing these rapid losses in seed viability directly
61 improves seed security for farmers and, as a result, food security for local communities. Seed
62 conservation in some areas of low- and middle-income countries is also affected by the limited
63 availability of dehumidifying and refrigeration systems that are recommended for the long-term
64 storage of seeds (Hay & Timple 2013, Guzzon et al. 2020).

65

66 Bradford et al. (2018) proposed the “dry chain”, i.e., “the initial dehydration of seeds to levels
67 preventing fungal growth (RH <65%) or insect activity (RH < 35%) followed by storage in
68 moisture-proof containers”, as a solution for short- and medium-term seed storage (up to 5 years)
69 in tropical and humid areas. In particular, drying with reactivable desiccants that can absorb water
70 and bind it strongly can be a valuable option for seed drying in humid climates, as sun or heated-
71 air drying are relatively ineffective under warm, humid conditions (Bradford et al., 2018). In the
72 last decade, zeolite “drying beads” were tested in several tropical areas and found to be a very
73 effective reusable desiccant for drying seeds to low equilibrium relative humidity (eRH, i.e., the
74 RH of the air around the seeds in a closed container; Hay et al. 2022). The drying stage must then
75 be followed by storage in moisture-proof containers to maintain the low MC achieved and prevent
76 rehydration in humid climates. In recent years, several hermetic containers have been promoted to
77 enhance quality in storage of dry grains and seeds in warm and humid areas (see e.g., Williams et
78 al. 2017).

79

80 The dry chain approach, understood as the initial desiccation of seeds to safe a MC (the relative
81 amount of water in the seed based on either initial fresh weight or dry weight), coupled with the
82 use of zeolite beads as a desiccant and followed by storage in hermetic containers, has been tested
83 and applied in several areas of Africa (Kenya, Tanzania), Asia (Bangladesh, India, Malaysia,
84 Nepal, Pakistan, Philippines and Thailand), and Latin America (Costa Rica, Guatemala), and in
85 different settings (i.e., community seed banks, genebanks, seed laboratories and seed companies).
86 The dry chain was tested using different crop species, including amaranth (*Amaranthus* L.), cotton
87 (*Gossypium hirsutum* L.), cucumber (*Cucumis sativa* L.), eggplant (*Solanum melongena* L.),
88 groundnut (*Arachis hypogaea* L.), lablab bean (*Lablab purpureus* (L.) Sweet), maize (*Zea mays*
89 L.), mung bean (*Vigna radiata* (L.) R.Wilczek), okra (*Abelmoschus esculentus* (L.) Moench),
90 onion (*Allium cepa* L.), pea (*Pisum sativum* L.), pepper (*Capsicum annuum* L.), quinoa
91 (*Chenopodium quinoa* Willd.), rice (*Oryza sativa* L.), sorghum (*Sorghum* Moench), soybean
92 (*Glycine max* (L.) Merr.), tomato (*Solanum lycopersicum* L.), velvet bean (*Mucuna pruriens* (L.)
93 DC.) and wheat (*Triticum aestivum* L.). In essentially all of these cases, use of the dry chain
94 approach improved the maintenance of seed vigor and viability during storage compared to
95 standard or traditional storage methods. These results indicate that the dry chain should be
96 implemented globally, particularly in warm, humid climates, by farmers, conservation
97 organizations and seed companies.

98

99 This article aims to provide an overview of the results and applications of the dry chain approach
100 for both researchers and practitioners interested in accessible climate-smart technologies for
101 medium-term conservation of seeds. To support this objective, this paper has several goals: 1)
102 provide a thorough review of the published literature on the implementation of the dry chain and
103 the use of zeolite drying beads to enhance seed storage; 2) provide additional original unpublished
104 results from seed conservation and extension projects that employed zeolite beads in Bangladesh,
105 Costa Rica, Mexico, Nepal, Pakistan, and the South Pacific (Fiji and Tonga); and 3) identify
106 challenges encountered and propose opportunities for successful extension and implementation of
107 the dry chain.

108

109

110 **Survey methodology**

111

112 The contents of this article are divided into two main sections, a literature review of recent
113 published research on the dry chain technology and the presentation of original results on the
114 application and extension of this technology in various countries. In the first section, we reviewed
115 all the currently available and accessible literature (to the best of our knowledge) reporting
116 experimental results utilizing the dry chain technology (defined as: “initial seed drying with a
117 reusable desiccant in the form of zeolite beads followed by seed conservation in hermetic
118 containers”; Guzzon et al. 2020). We did not consider articles dealing only with hermetic storage
119 of seeds or only with the use of desiccants other than zeolite drying beads for seed drying (unless

120 the articles dealt with the comparison of drying beads with other desiccants). We retrieved the
121 articles by searching for “dry chain” or “dry chain technology”, “drying beads” or “zeolite beads”
122 also coupled with “seed” in Google Scholar. Twenty-one papers were identified and the main
123 results of all these publications are summarized and organized, by location, species, protocols used,
124 seed quality parameters tested and main results, in Supplementary Table I. With respect to
125 protocols, these primarily refer to the quantities of drying beads used relative to seed weights,
126 containers used for seed storage, and preparation of the desiccants.

127

128 The previously unpublished results presented in the second section were collected by the authors
129 and are organized by country. The studies in different countries vary in terms of approaches
130 followed and in the scales of application of the dry chain. Some focus more on experimental
131 activities while others focus more on the strategies employed to scale up the application of this
132 technology by farmers and seed handlers. The aim of this section is to present different case studies
133 of the implementation of the dry chain at different scales, in different areas of the world and
134 involving various groups of stakeholders. We believe that these case studies will be informative
135 for others attempting to implement dry chain methods for seed storage.

136

137 **Review of prior results**

138

139 *Introduction to zeolite drying beads.*

140

141 As mentioned in the survey methodology, we focused our review on studies dealing with seed
142 drying with zeolite drying beads followed by storage in hermetic containers. Briefly, drying beads
143 are composed of zeolite crystals that have sites that can tightly bind individual water molecules.
144 Once the sites are occupied, the water can be removed by heating the beads to over 250°C for
145 approximately 2 h, or until all beads have reached this temperature. The beads are cooled in water-
146 proof containers to prevent reabsorption of water from the atmosphere and then stored hermetically
147 until used. Inside of a closed container, seeds will equilibrate with the RH of the air at the ambient
148 temperature. When beads are present, they will absorb the water from the air, reducing the RH in
149 the container to near zero. The seeds will then lose water to this low RH atmosphere through the
150 vapor phase until the beads reach their capacity or the forces binding water in the seeds become
151 equal to those in the beads. Even an excess quantity of fully activated beads generally will not
152 reduce seed MC (SMC) below about 2-3%, at which point the binding energy of some seed
153 components equals that of the beads. If a specific final MC is desired, the weight of beads to store
154 with a given quantity of seeds at a known MC can be calculated from the amount of water in the
155 seeds and the bead water-holding capacity (Bradford et al. 2018). A drying beads calculator is
156 available to calculate the correct weight of beads to use considering seed quantity, initial moisture
157 content (or eRH), ambient temperature and oil content for 69 different crop species in order to
158 achieve a given final MC when the beads are saturated (see: <http://www.dryingbeads.org/tools>).
159 For larger-scale applications, such as with commercial seeds, a pragmatic approach is to first

160 incubate seeds with 40% of their weight of beads (0.4 ratio). After one or two days, the seed eRH
161 can be easily measured (see chapters below on the application of the dry chain in Costa Rica and
162 Nepal); if it is at the desired level, the beads can be removed, and the seeds packaged for storage.
163 If the SMC (or eRH) is still too high, the process can be repeated a second time, which is generally
164 sufficient unless the initial SMC is very high.

165

166 *Effects of the dry chain on seed moisture content, germination percentage and germination timing.*

167

168 It is important to know the SMC prior to and after drying, but obtaining a precise measurements
169 of SMC is a relatively slow process by means of a standard oven test, which involves weighing a
170 seed sample, drying in an oven for up to 17 h (depending upon the species), and reweighing to
171 determine the weight loss (ISTA 2022). Alternatively, eRH can be measured within a few minutes
172 using a water activity meter or a relative humidity meter (see e.g., Ndinya et al. 2017). However,
173 such equipment is not readily available in rural communities or to individual farmers. Thus, the
174 use of relative humidity indicator cards is recommended to provide a quick estimate of eRH, which
175 can be readily converted to MC if needed (Bradford et al., 2016; Thompson et al. 2017). **These**
176 **humidity indicator strips change color in response to RH and can quickly indicate the RH inside a**
177 **container containing a seed sample.** All that is required to estimate SMC is to insert an indicator
178 strip with the seed sample inside hermetic container (e.g., a clean, dry plastic water bottle), allow
179 it to equilibrate (generally within 30 min), and compare the color to the chart provided with the
180 RH indicator strip/card. For larger quantities of seeds, representative sampling (such as by using a
181 trier to sample large bins) is important (Bradford et al., 2016; ISTA, 2022). As mentioned, eRH
182 measurements can be converted to MC estimates, and online tools are available to facilitate these
183 conversions for many crop and plant species (see e.g. <https://ser-sid.org/viability/moisture-equilibrium> and www.dryingbeads.org/tools).

185

186 In all the studies reviewed, drying beads quickly lowered the MC of the seeds, without damaging
187 them or affecting germination, except for the results of Trial et al. (2022). In this study, zeolite
188 beads (stored with the seeds) dried okra, sorghum and velvet beans to ultradry conditions (<5%
189 MC), ~~detrimetally~~ affecting seed viability in okra and velvet beans but not sorghum. The authors
190 of this study observed that the ratio of beads to seeds was probably too high, considering the initial
191 low moisture contents of seed samples. This highlights that, when using drying beads as a seed
192 desiccant, it is important to utilize the correct ratio of beads to seeds, based on initial moisture
193 content and specific seed characteristics (e.g., oil content) to prevent over-drying of sensitive
194 species. Moreover, such as for long-term germplasm storage, where lower moisture levels are
195 desirable, the seeds should be incubated at ambient (or higher) RH for several days after removal
196 from storage to hydrate the seeds via the vapor phase prior to imbibition in liquid water. This will
197 prevent imbibitional damage that can occur with some species (e.g., legumes) when they are
198 rapidly imbibed from very low MC (Bewley et al., 2013). This rehydration procedure was not

199 employed in the study by Trial et al. (2022), who noted that the damage observed in germination
200 tests of okra and velvet bean seeds appeared to be associated with imbibitional damage.

201

202 Other than the described over-drying risk of sensitive species (Trial et al. 2022), the germination
203 of seeds dried with beads was always higher than the controls (i.e., seeds conserved in open storage
204 and/or undried seeds in hermetic containers) after different periods of storage (Supplementary
205 Table I). For example, Bakhtavar et al. (2019) demonstrated that maize seeds dried with beads and
206 conserved in hermetic plastic bags for only 4 months had a faster mean germination time (MGT)
207 when compared with seeds with a higher pre-storage MC and/or conserved in porous containers.
208 A slower MGT is often observed with seed ageing (Demir et al. 2011; Bradford and Bello, 2022).
209 Yahaya et al. (2022) also showed that seeds dried with beads had faster germination when
210 compared to seeds dried using traditional drying systems or oven drying after six months of
211 storage. Seeds conserved following the dry chain performed better than controls also in terms of
212 seedling vigor (percentage of seedling emergence, seedling length, dry biomass or seedling vigor
213 index) when compared with controls after different storage periods (e.g., Guzzon et al. 2020, six
214 months of storage; Kamran et al. 2020, five months of storage; Yamalle et al. 2020, twelve months
215 of storage; Hilli and Vyakaranah 2019, nine months of storage). Plants derived from seeds of two
216 cotton genotypes dried with beads and hermetically stored produced plants with more bolls and
217 sympodial branches, that bloomed earlier, subsequently producing higher yields when compared
218 to sun-dried seed lots (Kamran et al. 2020, five months of storage). Moreover, drying beads
219 enabled faster drying while maintaining high seed viability when compared with traditional
220 methods such as sun drying (Nassari et al. 2014; Kamran et al. 2020; Yahaya et al. 2022) or drying
221 with cow dung ash (Sultana et al. 2021).

222

223 *Effects of the dry chain on physiological indicators of seed ageing.*

224

225 Seeds dried with desiccants and stored hermetically showed reduced seed deterioration, as
226 indicated by physiological indicators of seed ageing. For example, seeds dried with beads and
227 conserved in hermetic containers had lower levels of malondialdehyde (MDA) when compared
228 with undried seeds and seeds stored in porous containers (Bakhtavar et al. 2019, four months of
229 storage; Bakhtavar and Afzal 2020a, eighteen months of storage; 2020b, four months of storage).
230 MDA is one of the by-products of lipid peroxidation and has been used to quantify seed
231 deterioration due to oxidation (Gianella et al. 2022). Tahir et al. (2023) highlighted that rice seed
232 quality in terms of germination and antioxidant defense mechanisms was preserved when dried to
233 10% MC with desiccant beads and stored hermetically for six months.

234

235 Bakhtavar and Afzal (2020a, eighteen months of storage) found the lowest levels of reducing
236 sugars in quinoa seeds using the dry chain, when compared with poorly dried seeds and seeds
237 stored in porous containers. Reducing sugars, which can interfere with the normal functioning of
238 membranes, are formed during ageing as a result of sugar hydrolysis under high SMC due to the

239 formation of reactive oxygen species (ROS). Therefore, high levels of reducing sugars, together
240 with lipid peroxidation, are among the markers of the biochemical deterioration associated with
241 seed ageing (Murthy and Sun, 2000). Kamran et al. (2020, five months of storage) found that
242 cotton seeds dried with zeolite beads and stored hermetically did not show a significant increment
243 in free fatty acids (FFA). Increases in FFA, due to hydrolyzation of lipids, is another hallmark for
244 seed and grain deterioration (Wang et al. 2020) and was particularly evident in the experiments of
245 Karman et al. (2020) in seeds stored in porous containers.

246

247 Seed quality can also be estimated through conductivity tests that measure electrolytes leaking
248 from seeds. Changes in the organization of cell membranes occur during seed dehydration to
249 preserve them in the dry state (ISTA 1995). During subsequent imbibition, higher vigor seeds
250 reorganize seed cellular membranes and repair cellular damage quicker and to a greater extent than
251 lower vigor seeds, which corresponds to lower measurement of electrolyte leakage (ISTA, 2022;
252 Marin et al. 2018). Yamalle et al. (2020, twelve months), Bakhtavar and Afzal (2020a, eighteen
253 months) and Sultana et al. (2021, nine months of storage) showed that seeds of onion, quinoa and
254 mung beans conserved with the dry chain showed the lowest values of seed leachates upon
255 imbibition when compared with undried seeds and/or seeds conserved in porous containers. High
256 α -amylase activity also indicates vigorous seeds with low deterioration (Marques et al. 2014).
257 Bakhtavar and Afzal (2020a, eighteen months of storage) showed that quinoa seeds stored in
258 hermetic plastic bags exhibited maximum α -amylase activity, thus demonstrating the effectiveness
259 of maintaining low SMC in hermetic bags to preserve seed quality. Moreover, maize and wheat
260 seeds dried with zeolite beads and conserved at low MC in hermetic plastic bags showed the
261 highest starch and protein contents, when compared with control treatments (Bakhtavar et al. 2019,
262 four months of storage; 2020b, four months of storage).

263

264 *Effects of the dry chain on insect and fungal infestations.*

265

266 Seeds dried to low MC and then stored in hermetic containers also were less susceptible to insect
267 and fungal infestations as well as to mycotoxin contamination (Afzal et al. 2017). Maize seeds
268 dried with zeolite beads and stored in hermetic containers showed reduced insect and fungal
269 infestations when compared to undried seeds in rural communities of the Guatemalan highlands
270 (Guzzon et al. 2020, 6 months of storage). Sultana et al. (2021, nine months of storage) confirmed
271 that the dry chain reduced the frequency of seed borne pathogens in mung beans stored in hermetic
272 containers. Seed conservation with the dry chain approach also greatly reduced infestation by the
273 lesser borer in maize (Bakthavar et al. 2019, four months of storage), bruchid beetles in mung bean
274 and groundnut (Kunusoth et al. 2012, seventeen months of storage; Sultana et al. 2021, nine
275 months of storage; Singh and Mishra 2022, six months of storage) as well as rice weevil in wheat
276 (Nelwadker et al. 2022, twelve months of storage). Similarly, the dry chain reduced seed weight
277 loss due to insect damage as well as oviposition and insect respiratory activity in maize and mung
278 bean (Bakhtavar et al. 2019, four months; Sultana et al. 2021, nine months of storage). Singh and

279 Mishra (2022, six months of storage) observed that groundnut pods conserved with zeolite beads
280 reduced weight loss due to insect damage as well as fecundity of bruchids while minimizing losses
281 in seed germination.

282

283 The high moisture content of stored grains can also cause increases in mycotoxin occurrence (e.g.,
284 fumonisins and aflatoxins) that are responsible for severe health effects in consumers, such as liver
285 necrosis and tumors, depressed immune esophageal cancer, stunting and neural tube defects (Bryła
286 et al. 2013; Wu et al. 2014). Bakhtavar et al. (2019, four months of storage; 2020b, four months
287 of storage) determined that drying maize and wheat seeds with zeolite beads and storing them in
288 hermetic plastic bags completely prevented aflatoxin accumulation during storage. Taken as a
289 whole, these results demonstrate that the application of the dry chain can potentially prevent
290 postharvest losses that account for 40% of food losses in developing economies (Claes et al. 2021).
291 In particular, aflatoxin contamination poses a serious health threat to humans and livestock as well
292 as a significant economic burden, causing an estimated annual loss of 25% or more of the world's
293 food supply (WHO 2018, Dahal et al. 2023).

294

295 *Comparison between zeolite drying beads and other desiccants.*

296

297 Some experiments dealt with the comparison between zeolite drying beads and other desiccants,
298 mainly silica gel, which is one of the most used reactivatable desiccants for seeds, due to its low
299 cost and high availability. Hay et al. (2012) demonstrated that zeolite beads showed a higher
300 affinity for water over silica gel, particularly at low MC (< 9-10%), being able to dry rice seeds to
301 lower moisture content than silica gel. In fact, silica gel has a higher water-holding capacity than
302 beads at high RH, but its ability to absorb water declines linearly with RH. Thus, at low SMC,
303 where eRH is low, the capacity of silica gel to absorb water is reduced compared to beads. In
304 contrast, drying beads will absorb a specific amount of water across a wide range of RH, and
305 remain absorbent down to very low RH. Thus, their absorptive capacity does not change as the
306 seeds dry, making it easy to calculate the amount of water that they will absorb
307 (<http://www.dryingbeads.org/tools>). In addition, Kunusoth et al. (2012) highlighted that zeolite
308 beads can be more reusable than silica gel, as they regain their full potential capacity after
309 reactivation, whereas silica gel will gradually lose its capacity with repeated reactivation.
310 Nivethitha et al. (2020) showed that drying beads, at the same bead:seed ratio, can dry okra seeds
311 to lower moisture contents and faster than silica gel. Similar results were obtained by Nassari et
312 al. (2014) in drying tomato seeds with zeolite beads and silica gel. Sultana et al. (2021) confirmed
313 that drying beads, as well as other desiccants such as silica gel, sodium aluminum silicate and
314 activated alumina, can be effective desiccants for mung bean seed storage activities.

315

316 *Concerns on the use of drying beads.*

317

318 Despite the overall positive results obtained by the zeolite drying beads, some concerns arose from
319 their use. In particular, Hay et al. (2012) and Hay and Timple (2013) reported that beads did not
320 seem to work to full capacity in a bead-seed system, and therefore calculating the quantity of beads
321 to use to reach the target moisture content was not always straightforward. While these
322 observations deserve further research, it is also important to highlight that, if the drying beads are
323 not fully reactivated before use (by heating to $>250^{\circ}\text{C}$, for two hours), their absorptive capacity
324 could be less than expected. It is therefore good practice to check the maximum capacity of the
325 beads prior to use if their storage conditions since reactivation are not known. This can easily be
326 done by weighing a small quantity of beads, placing them in a sealed container over water (as on
327 a screen supported above the water), and weighing again after incubating at least several hours, or
328 until weight is constant. The weight gain relative to initial weight indicates the current bead
329 adsorptive capacity, which should be compared to that of recently reactivated beads.

330

331 *Seed drying protocols and applications.*

332

333 In the publications analyzed (Supplementary Table I), different drying treatments were used for
334 various species at a range of initial MCs. Several drying protocols, including different beads-to-
335 seed ratios and storage conditions, were used in the different experiments, with some authors (e.g.,
336 Kunusoth et al. 2012, Guzzon et al. 2020) suggesting that to maximize the drying potential of
337 zeolite beads, these should be replaced or reactivated during the drying process. It emerged from
338 our review that, in some experiments, zeolite beads were stored together with seeds (see e.g.,
339 Ndinya et al. 2017, Sultana et al. 2021, Nelwadker et al. 2022, Trail et al. 2022), or removed before
340 storage in hermetic containers (Arjun and Pratima 2014, Guzzon et al. 2020, Bakthavar et al. 2019).
341 It is not necessary to store the desiccant together with the seeds as long as the seeds, once dried to
342 low MC suitable for conservation, are then packaged in hermetic containers to maintain the MC
343 achieved (Bradford et al. 2018). This means that after the initial drying, beads can be removed,
344 reactivated and reused. This reduces the investment required for the acquisition of sufficient zeolite
345 beads. In addition, it is important to note that bead drying can be combined with other drying
346 systems, particularly air and sun drying. Ambient conditions, whether in sun or shade, are
347 universally used to dry seeds and are effective in removing moisture to equilibrium with the
348 ambient RH. However, as seed eRH cannot be lowered below the ambient RH, this often may not
349 be sufficient to reduce SMC to levels for safe storage. However, the remaining moisture can easily
350 be removed using drying beads to lower SMC to levels safe for sealed storage and extended
351 longevity (see, e.g., the section below on the application of the dry chain in Costa Rica). This
352 reduces the quantities of beads (or reactivation cycles) that would be required to process a given
353 quantity of seeds. An initial stage of air or sun drying is recommended, particularly for seeds that
354 are wet at harvest, such as tomatoes or melons, so that no surface water remains on the seeds if
355 they are to come in direct contact with the beads. When beads absorb liquid water quickly, they
356 emit heat, which can be damaging if beads are mixed directly with wet seeds.

357

358 The reusability of the beads is particularly important since it was highlighted that zeolite drying
359 beads are currently logistically and economically inaccessible to individual farmers (Kunusoth et
360 al. 2012, Guzzon et al. 2020, Musebe et al., 2020). It has been proposed that, to increase the access
361 to drying beads, “drying centers” could be organized in farming communities in tropical areas
362 (Dadlani et al. 2016; Bradford et al. 2018; Guzzon et al. 2020). These centers should be organized
363 within infrastructures that are already exist and are being used by local farmers, such as community
364 seedbanks or agricultural cooperatives. Drying kits, including beads, hermetic containers, ovens
365 to reactivate the beads and instruments to evaluate MC and/or eRH (such as DryCards, reusable
366 cards with a strip of relative humidity indicator paper embedded in them; Thompson et al. 2017)
367 can be provided to interested institutions to spread the use of this technology. In this context, it
368 would be important to learn from the experience of the “blue drums”, a drying system developed
369 by the Millennium Seed Bank of the Royal Botanic Gardens, Kew (UK), consisting of a sealable,
370 hermetic plastic drum containing silica gel, placed within a central cone made of metallic net from
371 which bags of seeds are hung for drying (Sutcliffe and Adams 2014). These drums are already
372 being used as a low-tech drying method in seed banks in 47 different countries and territories
373 across the globe (Martens 2018). In this review of the current available literature, most of the
374 studies on the dry chain were realized in seed laboratories in controlled conditions. More research
375 on strategies for applying this technology in rural communities of low- and middle-income
376 countries in tropical areas, as well as studies on the socio-economic implications of the use of dry
377 chain technology are needed. We provide some examples of different strategies to implement the
378 dry chain in rural communities in the following sections of this paper.
379

380 *Hermetic containers for seed storage.*

381
382 Several types of hermetic containers were used to store seeds in order to maintain the low moisture
383 content achieved with desiccants, including plastic containers and drums (Afzal et al. 2019,
384 Guzzon et al. 2020, Sultana et al. 2021), plastic bags (e.g., Super Bags, Bakhtavar et al. 2019),
385 laminated aluminum foil packets (Hay et al. 2012; Yahaya et al. 2022) and glass jars (Trail et al.
386 2022). This highlights that diverse types of moisture-proof containers can be used to store dry
387 seeds, and that this approach can utilize a variety of different locally available hermetic containers.
388 While we have concentrated here on seeds, the same conditions apply for grains or other food
389 products. Anokye-Bempah et al. (2023) demonstrated the potential of the dry chain (in terms of
390 storage with beads within hermetic plastic bags) in maintaining the correct MC during storage and
391 long-distance transportation of green coffee beans otherwise exposed to undesirable fluctuations
392 in temperature and relative humidity, without affecting sensorial qualities. This shows the potential
393 of employing the dry chain also for the postharvest storage of other foods and plant materials of
394 great economic importance.

395 396 *Future applications and research directions.*

398 Most of the experiments on the application of the dry chain technology were performed on seeds
399 of food crops (cereals, pseudocereals, vegetables and legumes), due to their direct importance in
400 food security and farmers' livelihoods. In the future, it would be important to test this technology
401 for the short- and medium-term seed conservation of wild species in local seed banks, restoration
402 seed banks (*sensu* Merrit and Dixon 2011) and in reforestation activities in tropical areas,
403 considering that critical hotspots of plant biodiversity are located in tropical areas and that
404 ecological restoration provides a significant opportunity for achieving global conservation goals
405 in the context of climatic change (De Vitis et al. 2020). In this context, a relatively high percentage
406 of plant species in humid regions have recalcitrant seeds that are intolerant of drying, and the
407 species' desiccation tolerance should be known before dry chain technology is implemented for
408 seed collection, storage or restoration of such species (Wyse and Dickie 2016).

409

410 **Examples of practical implementation of the dry chain technology 411 across tropical countries.**

412

413 In this section of the paper, we present original, unpublished data on implementation strategies for
414 dry chain technology under different conditions. In particular, we address how to further extend
415 this technology, maximize its impact, make it locally accessible and train relevant stakeholders.
416 We organized these contributions in two subsections: 1) Results of previously unpublished
417 research on the implementation of the dry chain technology conducted in Costa Rica, Mexico and
418 Nepal (these country-specific experimental contributions are organized with an introduction,
419 materials and methods, results and conclusions sections); and 2) Examples of extension activities
420 to implement the dry chain approach by presenting brief examples from extension projects to
421 spread the use of this technology in different areas of the world (Bangladesh, Pakistan and the
422 South Pacific).

423

424 ~~Results of research~~ on the implementation of the dry chain technology

425

426 **Costa Rica**

427

428 *Introduction*

429

430 Costa Rica is characterized by a high RH, especially on the Caribbean side of the country. This
431 consistent high humidity can detrimentally affect the storage of seeds, grains and other dried food
432 products. The Seed and Grain Research Center (CIGRAS, by its Spanish acronym) of the
433 University of Costa Rica (UCR) is conducting research and outreach activities to improve seed
434 and grain storage among farmers. The dry chain technology was introduced to CIGRAS in 2019,
435 including RH indicator cards for measuring eRH (Thompson et al. 2017, Bradford et al. 2016) and
436 zeolite beads for seed drying (Bradford et al. 2018). Several experiments were conducted to
437 implement the use of the drying beads, test their reactivation and drying dynamics, and assess

438 containers and bags for hermetic storage. The species studied included papaya (*Carica papaya* L.),
439 maize, rice and beans. In 2021, 250 kg of beads were procured to initiate a series of workshops
440 with communities conserving seeds in Costa Rica. This section describes the implementation and
441 extension of the dry chain in Costa Rica, which happened in three stages: 1) cooperation with the
442 Papaya Seed Production Group to improve the conservation of papaya seeds; 2) additional
443 experiments on bean, maize and rice seeds; and 2) cooperation with several stakeholders to
444 improve the conservation of maize and bean seeds.

445

446 *Materials and methods*

447

448 Papaya seeds were received from the plant breeding and seed production program hosted by the
449 UCR and INTA (an agricultural technology transfer center of the Ministry of Agriculture). Seed
450 drying with beads was preceded by air-drying. Seed drying with beads was conducted in hermetic
451 plastic containers for up to 8 days. The beads' absorption capacity at 75 % RH was ~20%. Papaya
452 seed moisture content was quantified by placing seeds (~1 g) in metallic containers and drying
453 them for 24 h at 105°C. The quantity of beads employed for drying was calculated using this
454 formula,

$$455 \Delta W = [(MC_i - MC_f) * \text{initial seed weight in kg}] / (1 - MC_f)$$

$$456 \text{Beads to add (kg)} = \Delta W / \text{bead capacity as fraction}$$

457

458 where, ΔW = kg of water to remove, MC_i = initial SMC (FW basis) as fraction; MC_f = final SMC
459 (FW basis) as fraction; bead capacity is the amount of water as a fraction of their dry weight that
460 the beads can absorb (~0.2). Seed germination tests were conducted in an incubator at 30°C, using
461 peat moss in plastic containers at nearly 100 % RH, with 12 h dark/light cycles. Before testing,
462 seeds were allowed to equilibrate its SMC with the environment humidity by opening the plastic
463 bags in which they were stored for at least two days. After that seeds were soaked in gibberellic
464 acid at a concentration of 500 ppm for three hours. Counting of normal seedlings was started 10
465 days after sowing and finished on day 21 after sowing.

466

467 Additional drying experiments with zeolite beads were conducted at CIGRAS with certified
468 (commercial) rice, bean (*Phaseolus vulgaris* L.), and maize seeds, undergoing a drying process
469 using 400 grams of zeolite beads per 1000 grams of seed (0.4 ratio). Seeds were placed in hermetic
470 containers with the zeolite beads for a two-day period, after which the beads were removed, and
471 the seeds stored for eight months at room temperature in the same hermetic containers. The MC
472 of the seeds was measured at intervals of zero (initial moisture content, without drying), two, four
473 and eight months of storage. This involved placing five grams of ground seeds in metallic
474 containers and subjecting them to drying in an oven for 2 h (rice), 1 h (beans), and 4 h (maize) at
475 130°C.

476

477 Efforts were also made to implement the dry chain in Costa Rica by working with community seed
478 banks and other local stakeholders on drying and conservation of bean seeds. For this, four
479 communities were targeted as potential users to implement the dry chain and share knowledge: (1)
480 “Red Sancarleña de Mujeres Rurales” (RESCAMUR) (number of users, n = 19); (2) the Ujarrás
481 Indigenous group from “Buenos Aires” (n = 10); (3) Nicoya community seed bank (n = 11); and
482 (4) extensionists, academics and researchers (n = 6). The first three stakeholders maintain rural
483 community seed banks. RESCAMUR is a local women’s organization committed to preserve seeds
484 of traditional crops and conserve landraces for self-consumption. The Ujarrás Indigenous group
485 and Nicoya seed bank are associations of small growers, and, along with RESCAMUR, they
486 preserve and exchange seeds of landraces for their own self-consumption and commercialization
487 in the local market. These rural communities are located in regions with high rainfall, temperature
488 and RH (Table 1). The germination tests with maize and bean seeds in the communities were
489 carried out in transparent plastic boxes with two replicates of 50 seeds sown in an organic substrate
490 (peat moss). Germination was scored at 7 and 8 days after sowing for maize and bean, respectively.
491

492 *Results*

493

494 The Papaya Seed Production Group was among the first users of the dry chain technology in Costa
495 Rica. Papaya seeds are produced in two regions of Costa Rica, one located in the Caribbean side
496 of the country and the other in the Central Valley. The MC of the seeds available varied
497 consistently between the two locations, with an average of 12.4% (± 0.1 SD) for the Caribbean
498 location and 9.0% (± 0.03) for the Central Valley location. A second independent group of seed
499 lots was tested, and the difference was even larger, ranging from 14.7% to 9.3%. This clearly
500 indicated the necessity, especially for the location on the Caribbean side, to include a drying
501 process in the seed production system. Ellis et al. (1991) reported that for papaya seeds, storage at
502 a moisture content between 7.9% and 9.4% and 15°C should maintain original seed germination
503 capacity for a year. Following these results, a target of 8.5% seed moisture content was set for the
504 papaya seeds. The Cromarty et al. (1982) equation (with a linear $R^2 = 0.96$ with the SMC; Fig. 1A)
505 was used to obtain the eRH at which the SMC would be $\sim 8.5\%$ (using 30% seed oil content for
506 ‘Pococí’ hybrid). In preliminary experiments it was observed that drying the papaya seeds to
507 3.02% did not affect the germination (Fig. 1B). Once dried to the desired eRH ($\sim 50\%$), the seeds
508 were packed in hermetic plastic bags and the seed germination was checked before and after drying
509 with no changes (Fig 1C).

510

511 Further experiments on seed drying with beads were carried out by CIGRAS using beans, maize
512 and rice commercial seeds. Seeds were subjected to drying using zeolite beads and subsequently
513 stored in hermetic containers for eight months. The zeolite beads were used at a ratio of 400 g per
514 1000 g of seeds (0.4 seeds to beads ratio) for all the species being conserved. Our findings indicate
515 that this ratio of beads to seeds effectively reduced the moisture content of all three species.
516 Specifically, the moisture content decreased from 13% (rice), 12% (beans), and 13% (maize) to

517 7%, 8%, and 9%, respectively. Furthermore, the study demonstrated that hermetic storage can
518 maintain a consistent and low moisture content over the entire eight-month storage period for rice,
519 beans, and maize seeds (Figure 2). These results underscore the efficacy of employing this zeolite
520 dosage in conjunction with hermetic containers as part of the dry chain technology transferred to
521 local stakeholders.

522

523 In all three community seed banks involved in this project (see Fig. 3), the most commonly grown
524 crops are maize and beans, both orthodox seeds, suitable for storage using the dry chain. One key
525 need was to provide the communities with an affordable method to know whether their seeds were
526 dry enough for storage. For this, an inexpensive dry-circle RH indicator card was designed and
527 produced with instructions in local language (Fig. 3 B, C). The main intentions in the design of the
528 dry-circle card were to avoid using plastic and to maximize the reuse of the indicator to limit costs.
529 At first, in all communities, all the dry-circles incubated with seeds exhibited pink color (Fig. 3B,
530 D), indicating high eRH of the seeds, consistent with the high ambient RH in these locations (Table
531 1). Thus, seed drying beyond open-air drying was needed, so the communities were instructed on
532 how to store zeolite beads with the seeds in a sealed container (beads equal to 40% of the total
533 weight of the seeds, 0.4 ratio) for two days before storing the seeds in a hermetic container. An
534 average of 9% and 11% of SMC for maize and beans was detected after drying these samples. The
535 training also included evaluating seed physiological quality employing a seed germination test.
536 The germination tests were carried out two weeks after the storage in the hermetic containers,
537 showing 91% of germination in maize (average of 5 samples) and 78% for beans (average of 27
538 samples). However, in beans the values ranged from 62% to 94%, indicating a range of initial
539 viabilities among the accessions.

540

541 *Conclusions*

542

543 The stakeholders involved in this project have found the implementation of dry chain technology
544 to be important and valuable. The studies conducted to demonstrate that drying using beads had
545 no detrimental effects on initial seed quality were useful in promoting adoption of the method.
546 Similarly, the use of the dry circles in the community seed banks to easily indicate eRH was
547 immediately appreciated by the participants. The activities conducted since 2019 have given them
548 support to organize and improve the quality of community seed banks (Fig. 3 E-H). One of the
549 main limiting factors for the full implementation of the dry chain remains the local unavailability
550 of zeolite beads. Reactivation of the beads by heating has been conducted by CIGRAS. Moisture-
551 saturated, inactive beads are received and exchanged for dry, active ones. However, access to
552 relatively inexpensive electric or gas ovens could enable local communities to reactivate beads
553 themselves. In the future, improving local supplies of zeolite beads and follow-up trainings will
554 be necessary. Regarding work with extensionists and academics, the use of the dry chain has been
555 important to decrease moisture contents of orthodox seeds and preserve germplasm. At CIGRAS,
556 long-term seed storage experiments with beans, maize, and rice are being conducted, following a

557 similar experimental design as the one conducted by Guzzon et al. (2020). Moreover, tissue drying
558 with zeolite beads for DNA extraction purposes is being used routinely, avoiding the use of
559 expensive equipment (e.g., freeze drying) to dry and preserve the samples.

560

561 **Mexico**

562

563 *Introduction*

564

565 The dry chain technology was introduced at the International Maize and Wheat Improvement
566 Centre (CIMMYT, Texcoco, Mexico) in 2015 to support community seed banks in Guatemala and
567 Mexico (see e.g., Guzzon et al. 2020). Moreover, the application of the dry chain was also tested
568 within the CIMMYT Germplasm Bank itself (the largest germplasm collection of maize and wheat
569 genetic resources in the world) as a potential opportunity to enhance seed processing and drying
570 in the tropical research stations in Mexico where the regeneration of tropical maize material is
571 carried out, especially in the research station of Agua Fría (Venustiano Carranza, Puebla State;
572 hereafter referred as to AF) where a high occurrence of fungal and insect infestations as well as
573 rapid losses of seed viability were observed. This research station has an old heat-based seed drier
574 (6 DOOR, STONE CONVEYOR Co. Inc., USA, 1967) that was no longer in use. In 2018 the
575 heating system was removed and the drying cabinet underwent some renovations (painting and
576 porous trays to allow air flow were added; see Fig. 4A). The aim of this project was to test the use
577 of drying beads coupled with the air flow generated by the ventilator of the cabinet to enable fast
578 drying of the seeds before they were transported to CIMMYT Genebank for the last phases of seed
579 processing and packing (El Batán, Texcoco, Mexico State, hereafter referred to as GB), without
580 adversely affecting seed longevity in storage.

581

582 *Materials and methods*

583

584 In order to compare the two drying methodologies, the same quantities of seeds of 21 maize
585 accessions (see Table 2 for the initial weight and MC of the accessions employed in this research)
586 were dried in AF with the use of beads in the drying cabinet as well as in GB in a conventional dry
587 room. Additionally, the seeds of the same accessions and origin dried in AF and GB with the two
588 methods to similar MC (see Table 2 for MC values after drying) were then exposed to accelerated
589 ageing to assess whether the drying with beads had influenced potential seed longevity.

590

591 The 21 accessions employed for this experiment were regenerated at the high-altitude CIMMYT
592 research station in Metepec (Toluca, Mexico State) in 2019. These accessions were sown on 14
593 March 2019, and the harvest occurred between 10 October and 26 November 2019. The harvested
594 cobs were then brought to CIMMYT GB, air dried and shelled, and stored under room conditions
595 in porous containers until the beginning of the experimental phase in January 2020. Just before the
596 start of the comparative drying trials on 20 January 2020, the MC of each accession was tested

597 with three replicates per seed lot using a moisture meter (SL95, Steinlite, Atchison, KS, USA) and
598 the seeds of all accessions were weighed (see Table 2 for initial seed weight and MC data for all
599 accessions) and then divided into two seed lots of the same weight. One seed lot per accession was
600 put in the dry room of GB at 9–15 °C and 10–20 % RH. The other seed lots were brought to AF
601 to be dried with the beads in the drying cabinet. A total of 34.8 kg of seeds were dried with both
602 methods. Drying beads were put in mesh bags, which were placed on the metal grid at the bottom
603 of each section of the drying cabinet; a total of 8 kg of beads were put in Section 0 (see Fig. 4B),
604 4 kg in the other sections (Sections 1-6, see Fig. 4C) for a total of 32 kg of beads. The seed lots
605 were organized in the upper porous trays in the cabinet (see Fig. 4). The SMC (via the above-
606 mentioned moisture reader) and weight of each seed lot were monitored daily; the RH and
607 temperature inside the cabinet were also monitored every 10 minutes with three dataloggers
608 (DataLogger, Centor Thai) placed in different parts of the cabinet for the four-day duration of the
609 experiment. The mesh bags of drying beads in the cabinet were replaced daily with bags of beads
610 that had been reactivated in the oven of the kitchen of the research station at 200-250°C for 2-3
611 hours.

612

613 At the end of the four days of drying in AF, the seeds were packed in heat-sealed trilaminate
614 aluminum pouches. The average temperature and RH in the drying cabinet at AF were $27.5 \pm 2^\circ\text{C}$
615 and $21.4 \pm 5\%$ RH, respectively. The seed lots in the dry room at GB were dried until they reached
616 a MC value within the 95% confidence interval of the MC of the seed lot of the same accessions
617 dried at AF. After reaching the appropriate MC in the dry room, these seed lots were also packed
618 in trilaminate aluminum pouches.

619

620 The accelerated ageing experiment was carried out on 12 accessions randomly selected (see Table
621 2) and started on 31 July 2020 in the Seed Laboratory of the CIMMYT Germplasm Bank (GB). A
622 total of 420 seeds of each of the seeds lots (dried at AF and GB) were placed in open petri dishes
623 randomly interspersed in two $300 \times 300 \times 130$ mm sealed electrical enclosure boxes (Ensto UK
624 Ltd, Southampton, UK) placed in a compact incubator (UN160, Memmert, Germany) at 60% RH
625 and 45°C in the dark. The target 60% RH was controlled by placing the Petri dishes over a LiCl
626 solution prepared following Newton et al. (2009). The RH in the box was monitored with a data
627 logger inside the enclosure box (DataLogger, Centor Thai). When necessary, the bulk solution was
628 adjusted by adding distilled water, stirring and allowing the solution to equilibrate (Hay et al. 2008;
629 Newton et al. 2009).

630

631 Germination of each seed lot was tested with duplicates of 30 seeds each at the beginning of the
632 experiment and with seeds retrieved from the boxes after 9, 21, 28, 37, 44 days of ageing. Each
633 replicate was sown in rolled filter paper moistened with distilled water. Filter paper rolls were
634 inserted in transparent plastic trays, and the trays were randomly dispersed in an incubator at a
635 constant temperature of 25°C and a 12 h photoperiod. Distilled water was added to the trays as
636 needed, to avoid desiccation. Germination scoring was performed 1 week after sowing. A seed

637 was considered to be germinated if it had developed into a normal seedling, according to ISTA
638 (2018) criteria (see Guzzon et al. 2021 for the description of the germination protocol employed
639 at the CIMMYT maize collection).

640

641 Statistical analyses and data visualization were carried out in R version 4.2.3 and RStudio
642 2023.06.0. Statistical significance was set at 0.05. Binomial GLMs were used to extract the p50s
643 (the time for viability to decline to 50%) using the probit link function after comparing logit and
644 probit with their AIC (Akaike Information Criterion, AF logit – probit: 6.8, GB logit – probit: 7.5).
645 The p50s for each accession and drying method are presented in Table 2. A binomial GLM with
646 probit link function was also applied to determine the effect of drying method, accession and their
647 interaction on the p50 as longevity correlate. A post-hoc multiple comparison analysis (Tukey)
648 was applied to evaluate the differences between drying method for each of the accessions analyzed.

649

650 *Results*

651

652 The final MC values of the seeds dried at GB as well as the time (in days) taken to reach the target
653 MC in the conventional dry room (this ranged from 11 to 21 days) are shown in Table 2. The
654 different accessions had significantly different p50s ($p<0.001$, Deviance: 213.84, Df.: 11) while
655 the effect on longevity estimates of the different drying methods as well as the interaction of drying
656 method and accessions were not significant ($p=0.63$, Deviance: 0.22, Df.: 1 & $p=0.4$, Deviance:
657 11.48, Df.: 11). The longevity estimates from the two drying methods were not significantly
658 different in any of the accessions ($p>0.05$). The raw data of the accelerated ageing experiment are
659 presented in Supplementary Table 2.

660

661 *Conclusions*

662

663 The results of this experiment highlighted that the use of activated drying beads coupled with air
664 flow can quickly dry large seed lots without any detrimental effects on seed longevity, estimated
665 through accelerated ageing, when compared to equilibrium drying in a conventional dry room
666 following international standards for long-term seed conservation (FAO 2014). Further research
667 with more accessions and crop species as well as different methods to estimate seed longevity can
668 be performed to ensure that this drying methodology can be integrated into the processes of a
669 genebank without detrimentally affecting the long-term conservation of stored accessions.

670

671 *Nepal*

672

673 *Introduction*

674

675 Several experiments on the use of dry chain technology in different crop species were performed
676 in Nepal by both private and public institutions starting in 2012. Some of these experiments were

677 conducted in collaboration with iDE, an international nonprofit organization, the non-profit Center
678 for Environmental and Agricultural Policy Research, Extension and Development (CEAPRED)
679 and Nepal Agriculture Research Council (NARC) (Arjun and Pratima, 2014).

680

681 *Materials and methods*

682

683 The dry chain technology was evaluated on several crops, including onion, okra, bean and
684 cucumber seeds (Fig. 5A, B, C and D, respectively). The experiments included comparison
685 between seeds stored in cloth bags and in plastic hermetic containers with drying beads (beads
686 equal to approximately 40% of the total weight of seeds, or 0.4 ratio) for up to 20 months under
687 ambient temperature and RH conditions. Germination was tested at the Seed Quality Control
688 Center of Nepal using standard paper towels seed testing methods at 25°C.

689

690 *Results*

691

692 Storage with drying beads lowered eRH of onion seeds from 70.6% (± 11.3 SD) to 20% or lower
693 (minimum reading for measuring instrument) and hermetic storage maintained low seed eRH at
694 two sites near Bhairahawa (low elevation), two sites in Tansen (mid-hills), Kavre, Kathmandu and
695 Rukum (mid-hills) districts. Control seeds in porous bags showed variable seed eRH as ambient
696 RH varied with the seasons. At all tested locations, initial germination averaged 84% (± 6.36 SD)
697 and storage with beads in hermetic plastic containers maintained viability levels between 66%-
698 85% ($75\% \pm 6.82$ SD) up to 20 months, while the final germination averaged only 10.9% (± 13.3
699 SD) in the control treatment (Fig. 5A). The decline in seed viability in the controls was more rapid
700 in warmer sites in the plains than in the relatively cooler sites in the mid-hills (Fig. 5A, dashed
701 lines with triangle shapes), similar to the results of Guzzon et al. (2020) in Guatemala.

702

703 Okra seed experiments conducted at three sites in Kavre in Nepal (Dhulikhel, Methinkot and
704 Amaltari) displayed the benefit of the drying beads on seed quality during storage by reducing
705 eRH from 78% (± 5.2 SD) to 23.3% (± 2.08 SD) and maintaining seed viability at 76.9% (± 2.76
706 SD) as compared to 33% at Dhulikhel, 11% at Methinkot and 46% at Amaltari in the control
707 treatments (mean of 30% ± 17.7 SD) (Fig. 5B).

708

709 Bean seed eRH was reduced from 78% (± 5.2 SD) to 27.7% (± 2.52 SD) with beads at the different
710 sites as compared with weather-dependent variable eRH in control treatments, measured at 62.3%
711 (± 3.06) at 18 months. Germination was maintained at 90.6% (± 3.36 SD) with beads while control
712 seeds in cloth bags exhibited declining viability ranging from 78% (± 1.41 SD) at Dhulikhel and
713 Amaltari to 21% at Methinkot at 18 months of storage (only 1 replication tested due to the lack of
714 control seeds) (Fig. 3C). Beads also lowered eRH of cucumber seeds at the same sites from 78%
715 (± 5.20 SD) to 22.7% (± 2.08 SD). Some containers with beads leaked initially, so the seeds were
716 transferred to better hermetic plastic containers and the beads were replaced. Germination

717 remained high after 18 months of storage at 95.9% (± 2.15 SD) with the drying beads, compared
718 to 75% (± 11.7 SD) in the controls (Fig. 5D). The relatively high germination in the control
719 treatment in cucumber could be attributed to conservation in the cooler mid-hills of the Himalayas
720 where the experiments were performed.

721

722 *Conclusions*

723

724 These trials in Nepal confirmed the benefits of the dry chain methodology. All involved
725 stakeholders, including farmers and officials, were fully convinced of the importance of drying
726 and waterproof storage containers. Many district-level orientation trainings were held on drying
727 bead technology and the dry chain approach. Several of the experiment participants managed
728 storage of cereals and vegetable seeds in very challenging regions for maintaining seed viability
729 in open storage. The successful results of activities during training sessions, as well as long-term
730 experimental outcomes described here, activated a committed community that could benefit
731 directly from and further disseminate the dry chain approach in Nepal.

732

733

734 **Examples of extension activities to implement the dry chain approach**

735

736 *Bangladesh*

737

738 With support from the Horticulture Innovation Laboratory of the United States Agency for
739 International Development (USAID), Rhino Research (Bangkok, Thailand) conducted projects
740 aiming to create the foundation for spontaneous diffusion and large-scale adoption of drying
741 technologies in Bangladeshi agriculture. The lack of efficient drying and storage systems in the
742 hot, humid climate of Bangladesh poses a significant challenge to seed production and
743 dissemination (Alam et al. 2018). Bangladeshi seed companies estimated that they lost 5-10% or
744 more of their seeds from rapid ageing due to insufficient drying, a percentage that is worth tens of
745 millions of dollars in horticultural seeds alone.

746

747 In contrast with many agricultural development projects that focus first at the individual farmer
748 level, the concept of this project was to focus on the strongest links in the seed supply chain: the
749 seed-producing companies. The approach was to encourage the major Bangladeshi seed
750 production and agricultural processing companies to adopt this technology, enabling it to diffuse
751 through commercial channels throughout the sector, including to smallholder farmers.

752

753 The project was initiated by signing Memoranda of Understanding (MOUs) with various
754 Bangladeshi organizations, including Lal Teer Seed Ltd., Getco Agro Vision, Metal Seed Ltd. and
755 Development Alternatives Incorporated (DAI). These companies were offered complete hands-on
756 training of their key quality control employees on the use of zeolite bead-based seed drying

757 methods. Seven week-long trainings enabled the trainees to implement these methods in their own
758 facilities and follow up with questions and further training in the subsequent sessions. This enabled
759 each company to adapt the basic technology to their own crop species, processes, and clients. A
760 key adaptation by Lal Teer, for example, was to provide their seed growers with activated drying
761 beads and hermetic containers, rather than require the growers to purchase them. The growers were
762 instructed to place the seeds into the containers with the beads provided and send the sealed
763 containers back to the company. The seeds then arrived at the company already dried and ready
764 for further processing and storage, and the beads could be efficiently reactivated for reuse in
765 company facilities. This system proved to be highly efficient, particularly in the high humidity
766 conditions prevailing in Bangladesh that make air drying relatively ineffective. As a result, these
767 companies have completely adopted the drying beads technology with good results.

768

769 Moreover, the government of Bangladesh has proactively adopted the concept of dry chain
770 technology aimed at providing the necessary training, equipment and tools to the local seed
771 producing communities. In support of this, the Bangladeshi Ministry of Agriculture (BAM)
772 directed its public research organizations, such as Bangladesh Rice Research Institute (BRRI),
773 Bangladesh Agriculture and Development Cooperation (BADC), and Department of Agricultural
774 Extension (DAE), as well as academic institutions, to dry and store their high value seed using the
775 dry chain. The Bangladeshi government has initiated a program to provide these basic supplies to
776 rural communities and to individual farmers. They have successfully trained more than five
777 hundred farmers through a funded project and equipped them with necessary dry chain tools to
778 earn better livelihoods with improved seed quality. Apart from the government organizations, the
779 Bangladesh Seed Association (BSA), representing the private seed sector, has emerged as an active
780 support organization for all of the seed companies and seed-producing communities. BSA
781 organizes various training workshops focusing on dry chain technology and continuously
782 emphasizes its adoption through seminars, workshops, or webinars. Keeping in view the keen
783 interest of all the key stakeholders of Bangladeshi seed sector, a new company named Rhino
784 Bangladesh has recently been established by Rhino Research in collaboration with Lal Teer. The
785 newly developed company has already started commercial production of Dry Chain commodities
786 and is successfully meeting the needs of local and international seed market.

787

788 ***Pakistan***

789

790 As mentioned above in the literature review section and in Supplementary Table 1, researchers
791 from University of Agriculture, Faisalabad (UAF) have widely tested the use of zeolite beads for
792 seed drying and seed storage in diverse hermetic containers across different regions of Pakistan
793 and with numerous crops. In addition to these research activities, UAF have also promoted the use
794 of the dry chain technology among farmers at four locations (Athmuqam, Hattian Bala,
795 Muzaffarabad and Rawlakot) of Azad Jammu and Kashmir, Pakistan. In these locations, UAF
796 researchers demonstrated that germination and integrity of maize seed were maintained better in

797 hermetic bags as compared to conventional bags at all locations (Khalid et al. 2024). The incidence
798 of mold and insect infestations and aflatoxin contamination was also monitored in the stored seed.
799 Maize seed preserved at low seed moisture contents (<12%) in Purdue Improved Crop Storage
800 (PICS) bags (moisture- and oxygen-proof) showed higher seed quality, maintaining dryness during
801 storage (Afzal et al. 2017). Educational and technical workshops were organized to share results
802 and learnings from dry chain experiments with public and private sector stakeholders, including
803 farmers.

804

805 Additionally, the dry chain technology was tested and adopted by vegetable seed companies in
806 Pakistan that are currently utilizing desiccant beads for preservation of high value vegetable seeds.
807 In particular, a study (also at UAF) on the use of zeolite drying beads was carried out on onion
808 seeds, which is relatively short-lived in storage when compared to other crops (Walters et al. 2005).
809 Onion seeds (100g for each experimental unit, 8% was the initial SMC) were stored in hermetic
810 plastic containers after equilibrating at 6, 8, 10 and 12% MC. The MC of 6% was achieved by
811 drying the seeds with desiccant beads, calculated by using the abovementioned drying beads
812 calculator tool. The MCs of 10 and 12% were achieved by adding a calculated amount of water to
813 the seeds, mixed thoroughly in an airtight container. The following equation was used to calculate
814 the amount of water required to increase the seed moisture content of crop seeds up to desired
815 moisture levels (initial and final SMC values are in percentage and on a fresh weight basis and
816 initial seed weight is in grams).

817

820

821 In this experiment it was found that onion seed with 6% MC conserved in hermetic plastic
822 container had generally superior seed quality when compared with seed stored in conventional
823 cloth bags. Seeds stored in cloth bags at 10 and 12% MC showed less than 20% germination (tested
824 in Petri dishes with filter paper at in an incubator at 25°C for 10 days). Seed moisture content was
825 maintained in hermetic plastic containers while MC fluctuated in cloth bags at ambient RH after
826 six months storage (Fig. 6).

827

828 The researchers from UAF also conducted several additional experiments to identify the most
829 suitable hermetic containers for Pakistani farmers and seed producers. Several studies were
830 conducted on seeds of vegetable crops, cereals, moringa (*Moringa oleifera* Lam.), oilseeds and
831 pulses, testing multiple seed traits to evaluate seed quality (e.g., accelerated ageing, electrical
832 conductivity of seed leachates, germination, insect infestation, grain damage and weight loss,
833 MDA content, SMC, oil and protein contents, total soluble sugars, mycotoxin contamination).
834 These studies clearly revealed that porous woven polypropylene and cloth bags are not
835 recommended for seed and grain storage in the season of high RH and that the dry chain through
836 hermetic storage of seeds at low moisture contents in different types of containers (PICS and Super

837 bags, plastic drums and glass jars) helps to preserve seed quality throughout the supply chain (see
838 e.g., Afzal et al., 2019; 2020; Khalid et al. 2024).

839

840 To enhance the conservation of cereal seeds after harvest in spring season when weather is
841 relatively dry (RH <60%), hermetic bags were introduced to the farmers of South Punjab and Sindh
842 with the support of NGOs (non-governmental organizations). This helps to protect stored grains
843 from insects and fungi, and therefore mycotoxins, during the monsoon season when RH exceeds
844 90%. In the desert areas of Sindh, smallholder farmers are facing postharvest losses of cereal grains
845 and pulses due to coastal rains that raise RH during the hot summer season; seed quality rapidly
846 deteriorates in these extreme environmental conditions. In these areas, capacity-building initiatives
847 were conducted to equip farmers with the knowledge and skills necessary for the proper
848 implementation and maintenance of the dry chain technology. UAF collaborated with national and
849 international NGOs, district governments, and farmer cooperatives for further technology
850 dissemination in areas prone to and affected by natural disasters. In recent floods (2022), about 33
851 million people were affected and farmers had no wheat seed for the next growing season. The
852 concept of dry chain technology was introduced to resource-poor farmers of flood-prone areas.
853 The farmers received training on strategies to strengthen their own seed production as well as
854 storage through use of hermetic systems. Low-cost hermetic drums of high-density polyethylene
855 with a built-in digital hygrometer in the lid to measure eRH of stored seeds were introduced to the
856 farmers and seed industry (Afzal et al. 2019). Farmers in flood-affected areas gained access to
857 hermetic containers in order to safeguard their seeds from floods, excess moisture, pests, and
858 diseases. As a result, the loss of viable seeds was reduced, ensuring a reliable seed supply for future
859 planting seasons. These results highlight how the dry chain technology can have a significant
860 positive impact on the livelihoods of smallholder farmers of humid regions of Pakistan.

861

862 ***South Pacific: Fiji and Tonga***

863

864 Dry chain technology is being tested and used in the Pacific Island Countries and Territories
865 (PICTs) since June 2022 as part of the work of the Seed Laboratory of CePaCT (Centre for Pacific
866 Crops and Trees, Suva, Fiji), the largest genebank of the Pacific region, belonging to the Pacific
867 Community (SPC). Drying beads, RH indicator cards, dataloggers and hermetic plastic boxes were
868 acquired and are now being tested for drying of tree seeds at CePaCT as part of initiating long-
869 term seed conservation activities at the Centre. After drying, seed lots are packed in heat-sealed
870 aluminum pouches and conserved in freezers at -18°C. Several experiments are ongoing at
871 CePaCT, in collaboration with the Fiji National University (FNU), in order to: 1) test dry chain
872 technology for the long-term storage of native and endemic Pacific tree seed species, as well as
873 exotic species of economic importance; 2) compare seed drying with silica gel and drying beads;
874 and 3) promote the use of this technology for small-scale seed drying for genebanks, seed
875 enterprises and community seed banks in the PICTs.

876

877 As part of this activity, a one-week training event on seed conservation (12 participants) was
878 carried out by CePaCT staff at MORDI Tonga Trust (Mainstreaming of Rural Development
879 Innovation, Nuku‘alofa, Tonga) in April 2023 and the dry chain was introduced to the Kingdom
880 of Tonga (including drying beads, RH indicator cards and dataloggers). MORDI Tonga Trust
881 currently conserves 94 accessions of 21 crops (including local Tongan varieties as well as
882 commercial cultivars) in aluminum pouches and hermetic plastic buckets in its seed vault at 5°C.
883 These accessions are distributed to local farmers and growers across the Kingdom either as seeds
884 or as plantlets grown in MORDI’s nurseries. The dry chain is being tested to enhance the drying
885 of the seed accessions prior to long-term conservation in the seed vault, which at the moment is
886 the only seed cold storage facility in the Kingdom.

887

888

889 **Challenges and Opportunities**

890

891 The review of published reports and previously unpublished data provided in this paper indicate
892 ~~conclusively~~ that dry chain technology, including the use of zeolite drying beads and waterproof
893 storage containers, significantly extends high seed quality and viability during storage of many
894 crop species in different tropical areas. This technology can therefore significantly enhance seed
895 security for farmers in many tropical countries. Here we describe some challenges and
896 opportunities that could guide further applications of this technology.

897

- 898 - Zeolite drying beads, as well as the means of reactivating them, are still inaccessible in
899 many areas. Supply chains and local dealers have not been established in most locations
900 where they would be most useful. Provision of these resources by seed companies or the
901 government directly to farmers, as has been done in Bangladesh, is an effective way to
902 reach small farmers who may not have the means to invest in this technology individually.
- 903 - In this scenario, a network approach where used drying beads can be exchanged for
904 reactivated ones at central community, public service or company nodes (Bradford et al.,
905 2018; see also the sections on Costa Rica and Bangladesh) can be an efficient use of
906 resources, as farmers only require drying beads at harvest time, allowing a fixed quantity
907 of drying beads to serve larger numbers of farmers of different crops maturing at different
908 times. Stronger collaborations among all the different actors involved (e.g., seed
909 companies, central/local governments, NGOs, genebanks) in promoting this approach
910 could be an important strategy for spreading this technology and its beneficial impacts on
911 local seed systems. After initial introduction and adoption of dry chain methods, local agro-
912 services dealers would recognize the opportunities and provide ongoing supply needs.
- 913 - The use of zeolite drying beads as desiccant for seed drying proved very useful for drying
914 of relatively small (e.g., <50 kg) seed quantities at the same time in one hermetic container.
915 As drying is relatively rapid (a few days), larger quantities of seeds can be processed
916 through this system as the drying beads can be reactivated for reuse. This batch-based
917 process has sufficient capacity for handling most horticultural seeds. For much larger seed

918 quantities, such as cereal grains, sun or heated-air drying is still required, although the use
919 of waterproof storage containers after drying using hermetic bags is still essential. Further
920 research is needed to engineer the use of drying beads for drying large seed quantities (see
921 the section on Mexico, coupling drying beads with air flow). Designs have been developed
922 for continuous flow systems that could simultaneously utilize drying beads and reactivate
923 them, enabling drying of much larger quantities of seeds or grains. An opportunity for
924 humid regions would be to invest in practical development of such systems rather than
925 purchasing heated-air driers that perform poorly at high temperature and humidity.
926 - Despite numerous scientific papers published on the dry chain, there is still some
927 uncertainty on the best protocol to employ to maximize the benefits of the dry chain and
928 related tools. We have tried to fill this gap in this paper by proposing solutions that have
929 succeeded in practice. In particular, international organizations and governmental
930 institutions involved in supporting farmers and agricultural systems in humid regions
931 should adopt the dry chain as a valuable and sustainable practice and include it in their
932 outreach subsidy programs. Such organizations could also take the lead in creating
933 accessible protocols and training materials based on experience to date to better guide the
934 final users.
935 - In addition to the drying of crop seeds, the dry chain and drying with zeolite beads have
936 also shown important potential for use in other activities from the conservation of native
937 orthodox plant species (see e.g., the section on Fiji) to the storage of grains and other food
938 products in tropical areas (e.g., spices, dried fruits, etc.). Further development of practical
939 applications as well as research on additional plant species and locations are needed to fully
940 exploit the potential of this technology.

941

942 **Conclusions**

943

944 The dry chain is a very versatile approach for seed and food storage that can be adapted to local
945 conditions and applied at very different scales, i.e., seed companies, farmers' cooperatives,
946 community seed banks and genebanks at regional, national and international levels. As reviewed
947 and presented here, the effectiveness of the dry chain has been confirmed through research
948 conducted around the globe. It is time to focus on distributing and implementing this technology
949 in the regions and for the farmers and consumers who are in most need of it. Governments, NGOs
950 and the seed and food industries all have important parts to play in this process.

951

952 **Acknowledgements**

953

954 We are grateful to the CIMMYT Genebank Team in Agua Fria for their help in carrying out the
955 drying experiment in Mexico. We also would like to thank Fiona Hay (Aarhus University) for
956 providing the enclosure boxes used for the accelerated ageing tests at CIMMYT. The authors of
957 the Bangladesh chapter sincerely acknowledge the technical assistance of the Horticulture
958 Innovation Lab (University of California, Davis, USA) for the Bangladesh project. The authors

959 are also grateful to Costa Rican community seed banks for their work and interest in the dry chain
960 project, and also are thankful with Marcelo Murillo who provided technical assistance in the
961 experiments. We also acknowledge the collaboration of CEAPRED, iDE, Nepal Agriculture
962 Research Council, FORWARD, and CIMMYT in Nepal.

963

964

965 **References**

966

967 Afzal I, Bakhtavar MA, Ashfaq M, Sagheer M, Baributsa D (2017) Maintaining dryness during
968 storage contributes to higher quality of maize seeds. *Journal of Stored Products Research*. 72, 49-
969 53.

970

971 Afzal I, Khalid E, Basra SMA, Afzal A, Mahmood K (2019) Maintaining seed quality of maize
972 and wheat through dry chain technology in Pakistan. *International Journal of Agriculture and*
973 *Biology*. 22, 1363–1368

974

975 Afzal I, Jaffar I, Zahid S, Rehman H, Basra SMA (2020) Physiological and biochemical changes
976 during hermetic storage of *Moringa oleifera* seeds. *South African Journal of Botany*.

977 <https://doi.org/10.1016/j.sajb.2019.11.011>

978

979 Alam MJ, Amed KS, Sultana A, Firoj SM, Hasan IM (2018) Ensure Food Security of
980 Bangladesh: Analysis of Post-harvest Losses of Maize and Its Pest Management in Stored
981 Condition. *Journal of Agricultural Engineering and Food Technology*: 5: 26-32.

982

983 Anokye-Bempah L, Han J, Konbluth K, Ristenpart W, Donis-González IR (2023) The use of
984 desiccants for proper moisture preservation in green coffee during storage and transportation.
985 *Journal of Agriculture and Food Research*, 11, 100478.

986

987 Arjun, K. and Pratima, P., (2014) Evaluation of zeolite beads technology for drying vegetable
988 seeds to low moisture content prior to long-term storage in Nepal. *International Journal of*
989 *Research*, 1(8), pp.140-149.

990

991 Bakhtavar MA, Afzal I, Basra SMA, Wahid A (2019) Implementing the “dry chain” during
992 storage reduces losses and maintains quality of maize grain. *Food Security* 11:345–357

993

994 Bakhtavar MA, Afzal I (2020a) Climate smart Dry Chain technology for safe storage of quinoa
995 seeds. *Scientific Reports* 10:12554

996

997 Bakhtavar MA, Afzal I (2020b) Preserving wheat grain quality and preventing aflatoxin
998 accumulation during storage without pesticides using dry chain technology. *Environmental
999 Science and Pollution Research*. <https://doi.org/10.1007/s11356-020-10212-5>.

1000

1001 Bewley, J.D., Bradford, K.J., Hilhorst, H.W.M. and Nonogaki, H. (2013) *Seeds: Physiology of
1002 Development, Germination and Dormancy*. Third edition, Springer, New York.

1003

1004 Bradford, K.J. and Bello, P. (2022) Applying population-based threshold models to quantify and
1005 improve seed quality attributes in Buitink, J. and Leprince, O. (Eds) *Advances in Seed Science
1006 and Technology for More Sustainable Crop Production*. Cambridge, UK, Burleigh Dodds
1007 Science Publishing. <https://doi.org/10.19103/AS.2022.0105.05>.

1008

1009 Bradford KJ, Dahal P, Bello P (2016) Using relative humidity indicator paper to measure seed
1010 and commodity moisture contents. *Agricultural and Environmental Letters* 1:160018.
1011 <https://doi.org/10.2134/ael2016.04.0018>

1012

1013 Bradford KJ, Dahal P, Van Asbrouck J, Kunusoth K, Bello P, Thompson J, Wu F (2018) The dry
1014 chain: reducing postharvest losses and improving food safety in humid climates. *Trends in Food
1015 Science and Technology* 71:84–93

1016

1017 Bryła M, Roszko M, Szymczyk K, Jedrzejczak R, Obiedzinski M, Sekul J (2013) Fumonisins in
1018 plant-origin food and fodder: a review. *Food Additives and Contamination A* 30:1626–1640

1019

1020 Claes J, De Clercq D, Denis N, Fiocco D, Katz J (2021) How to reduce postharvest crop losses in
1021 the agricultural supply chain. [https://www.mckinsey.com/industries/agriculture/our-
1023 insights/how-to-reduce-postharvest-crop-losses-in-the-agricultural-supply-chain](https://www.mckinsey.com/industries/agriculture/our-
1022 insights/how-to-reduce-postharvest-crop-losses-in-the-agricultural-supply-chain). Accessed
16/04/2022.

1024

1025 Dadlani M, Mathur P, Gupta A (2016) Community seed banks. *Agriculture World* 2:6–9

1026

1027 Dahal P, Bradford K, Bello P, Van Asbrouck J, Kunusoth K, Afzal I, Guzzon F, Kafle R (2023).
1028 Cold and Dry Chain to Reduce Food Loss and Waste. *Agrilinks*, [https://agrilinks.org/post/cold-
1030 and-dry-chain-reduce-food-loss-and-waste](https://agrilinks.org/post/cold-
1029 and-dry-chain-reduce-food-loss-and-waste).

1031

1032 Demir I, Celikkol T, Sarikamis G, Eksi C (2011) Vigor Tests to Estimate Seedling Emergence
1033 Potential and Longevity in *Viola* Seed Lots. *HortScience* 46(3):402–405

1034

1035 De Vitis M, Hay FR, Dickie JB, Trivedi C, Choi J, Fiegener R (2020) Seed storage: maintaining
1036 seed viability and vigor for restoration use. *Restoration Ecology* 28, S249–S255

1037 Dickie JB, Ellis RH, Kraak HL, Ryder K, Tompsett PB (1990) Temperature and seed storage
1038 longevity. *Annals of Botany* 65:197–204

1039

1040 Ellis, R.H. (2022) Seed ageing, survival and the improved seed viability equation; forty years on.
1041 *Seed Science and Technology* 50: 1-20.

1042

1043 Ellis, R., Hong, T., & Roberts, E. (1991). Effect of storage temperature and moisture on the
1044 germination of papaya seeds. *Seed Science Research* 1: 69-72.

1045

1046 Ellis RH, Roberts, EH (1981) The quantification of aging and survival in orthodox seeds. *Seed*
1047 *Science and Technology* 9: 373-409.

1048

1049 FAO (2014) Genebank standards for plant genetic resources for food and agriculture. FAO,
1050 Rome.

1051

1052 Gianella M, Doria E, Dondi D, Milanese C, Gallotti L Börner A, Zannino L, Macovei A, Pagano
1053 A, Guzzon F, Biggioggera M, Balestrazzi A (2002) Physiological and molecular aspects of seed
1054 longevity: Exploring intra-species variation in eight *Pisum sativum* L. accessions. *Physiologia*
1055 *Plantarum* 174: e13698.

1056

1057 Guzzon, F.; Bello, P.; Bradford, K.J.; Mérida Guzman, M.; de los, A.; Costich, D.E. (2020)
1058 Enhancing Seed Conservation in Rural Communities of Guatemala by Implementing the Dry
1059 Chain Concept. *Biodiversity and Conservation* 29: 3997–4017.

1060

1061 Guzzon, F.; Gianella, M.; Velazquez Juarez, J.A.; Sanchez Cano, C.; Costich, D.E. (2021) Seed
1062 Longevity of Maize Conserved under Germplasm Bank Conditions for up to 60 Years. *Annals of*
1063 *Botany* 127: 775–785.

1064

1065 Hay FR, Thavong P, Taridno P, Timple S (2012) Evaluation of zeolite seed ‘Drying Beads’ for
1066 drying rice seeds to low moisture content prior to long-term storage. *Seed Science and*
1067 *Technology* 40: 374–395

1068

1069 Hay FR, Timple S (2013) Optimum ratios of zeolite seed Drying Beads to dry rice seeds for
1070 genebank storage. *Seed Science and Technoloby* 41: 407–419

1071

1072 Hay FR, Rezaei S, Buitink J (2022) Seed Moisture Isotherms, Sorption Models, and Longevity.
1073 *Frontiers in Plant Science* 13: 891913 <https://doi.org/10.3389/fpls.2022.891913>

1074

1075 Hilli NJS, Vyakaranahal BS (2019) Effect of desiccants on seed quality of Brinjal during ultra-
1076 dry storage. *The Pharma Innovation Journal* 2019; 8(1): 71-73.

1077

1078 ISTA [International Seed Testing Association] (1995) Handbook of Vigour Test Methods. 3rd
1079 edition. International Seed Testing Association. Zurich, Switzerland.

1080

1081 ISTA. 2018. ISTA handbook on seedling evaluation, 4th edn. Bassersdorf, Switzerland:
1082 International Seed Testing Association.

1083

1084 ISTA [International Seed Testing Association] (2022) International Rules for Seed Testing.
1085 International Seed Testing Association. Zurich, Switzerland.

1086

1087 Kamran M, Afzal I, Basra SMA, Mahmood A, Sarwar G (2020) Harvesting and post-harvest
1088 management for improving seed quality and subsequent crop yield of cotton. *Crop and Pasture
1089 Science*. <https://doi.org/10.1071/CP20129>

1090

1091 Khalid E, Afzal I, Khan, SHU, Awan SI (2024) Comparison of hermetic and conventional bags
1092 for maize seed preservation in Azad Kashmir, Pakistan. *Journal of Stored Products Research*, 95
1093 (In press)

1094

1095 Kunusoth K, Dahal P, Van Asbrouck JV, Bradford KJ (2012) New technology for post-harvest
1096 drying and storage of seeds. *Seed Times* (New Delhi) 5:33–38

1097

1098 Marin, M., Laverack, G., Powell, A.A., Matthews, S. (2018). Potential of the electrical
1099 conductivity of seed soak water and early counts of radicle emergence to assess seed quality in
1100 some native species. *Seed Science and Technology* 46, 71–86.
1101 <https://doi.org/10.15258/sst.2018.46.1.07>

1102

1103 Marques ER, Araújo RF, Araújo EF, Martins Filho S, Soares PS, Gomes Mendonça E (2014)
1104 Dormancy and enzymatic activity of rice cultivars seeds stored in different environments.
1105 *Journal of Seed Science*, 36: 435-442

1106

1107 Merrit DJ, Dixon KW (2011) Restoration seed banks—A matter of scale. *Science* 332: 424-425.

1108

1109 Murthy UMN, Sun WQ (2000) Protein modification by Amadori and Maillard reactions during
1110 seed storage: roles of sugar hydrolysis and lipid peroxidation. *Journal of Experimental Botany*,
1111 51: 1221–1228.

1112

1113 Musebe, R.O., Karanja, D., Bradford, K.J. and Day, R. (2020) Relative costs and benefits of
1114 implementing desiccant bead drying/hermetic storage and alternative drying and storage
1115 technologies for vegetable seeds in Kenya and Tanzania. *African Journal of Agricultural
1116 Research* 16: 992-1006.

1117
1118 Nassari PJ, Keshavulu K, Rao M, Reddy KSC, Raheem A (2014) Post harvest drying of tomato
1119 (*Lycopersicon esculentum* Mill) seeds to ultra low moisture safe for storage using desiccant
1120 (Zeolite) beads and their effects on seed quality. American Journal of Research Communication,
1121 2(4): 74-83.

1122
1123 Ndinya C, Weller S, Karanja D, Chacha D, Mudheri M (2017) Postharvest Drying and Storage
1124 of Amaranth Seed Using Zeolite Beads and Effect on Seed Quality. Conference Proceedings, 1st
1125 All Africa Postharvest Congress.

1126
1127 Nelwadker RR, Uppar DS, Hilli JS, Nawalagatti CM, Biradar SS (2022). Effect of packaging
1128 materials and desiccant on insect population in wheat (*Triticum aestivum* L.). The Pharma
1129 Innovation Journal 2022; 11(12): 5279-5283.

1130
1131 Nivethitha M, Bineeta MB, Chaurasia AK, Manimurugan C, Singh PM (2020) Standardization
1132 of ultra- seed drying of okra cv. Kashi Kranti with Zeolite beads and silica gel. Journal of
1133 Pharmacognosy and Phytochemistry 9: 1198-1202.

1134
1135 Pittendrigh BR, Huesing GE, Shade RE, Murdock LL (2003) Monitoring of rice weevil,
1136 *Sitophilus oryzae*, feeding behavior in maize seeds and the occurrence of supernumerary molts in
1137 low humidity conditions. Entomol Exp Appl 83:225–231

1138
1139 Roberts, E.H. and Ellis, R.H. (1989) Water and seed survival. Annals of Botany 63, 39-52.

1140
1141 Singh R, Mishra PR (2022) Effects of desiccant beads on groundnut bruchid *Caryedon serratus*
1142 (Olivier) infestation in stored groundnut. International Journal of Environmental and Climate
1143 Change 12:1086-1100.

1144
1145 Sultana R, Kunusoth K, Amineni L, Dahal P, Bradford KJ (2021) Desiccant drying prior to
1146 hermetic storage extends viability and reduces bruchid (*Callosobruchus chinensis* L.) infestation
1147 of mung bean (*Vigna radiata* (L.) R. Wilczek) seeds, Journal of Stored Products Research 94:
1148 101888.

1149
1150 Tahir A, Afzal I, Khalid E, Razzaq M, Arif MAR (2023) Rice seed longevity in the context of
1151 seed moisture contents and hypoxic conditions in the storage environment. Seed Science
1152 Research 33: 39-49.

1153
1154 Thompson JF, Reid MS, Felix L, Donis-Gonzalez I, Mjawa B, Ambuko J (2017) Dry CardTM --
1155 A low-cost dryness indicator for dried products. AIMS Agriculture and Food 2: 339-344.

1156

1157 Trail P, Motis T, Swartz S, Bicksler A (2022) Low-cost seed storage technologies for
1158 development impact of small-scale seed saving entities in tropical climates. *Experimental*
1159 *Agriculture* 57: 324-337.

1160

1161 Van Asbrouck J, Taridno P (2009) Fast field drying as a method to maintain quality, increase
1162 shelf life and prevent post harvest infections on *Cucumis sativum*. L. *Asian Journal of Food and*
1163 *Agro-Industry Special Issue*: 133-137.

1164

1165 Walters C, Wheeler LM, Grothenius JM. 2005. Longevity of seeds stored in a genebank: species
1166 characteristics. *Seed Science Research* 15: 1–20.

1167

1168 Wang Q, Han F, Wu Z, Lan T, Wu W (2020) Estimation of Free Fatty Acids in Stored Paddy
1169 Rice Using Multiple-Kernel Support Vector Regression. *Applied Sciences* 10: 6555

1170

1171 Williams SB, Murdock LL, Baributsa D (2017) Storage of maize in Purdue Improved Crop
1172 Storage (PICS) bags. *PLoS One* 12: e0168624.

1173

1174 WHO (2018) Mycotoxins. <https://www.who.int/news-room/fact-sheets/detail/mycotoxins>
1175 Accessed 16/04/2022.

1176

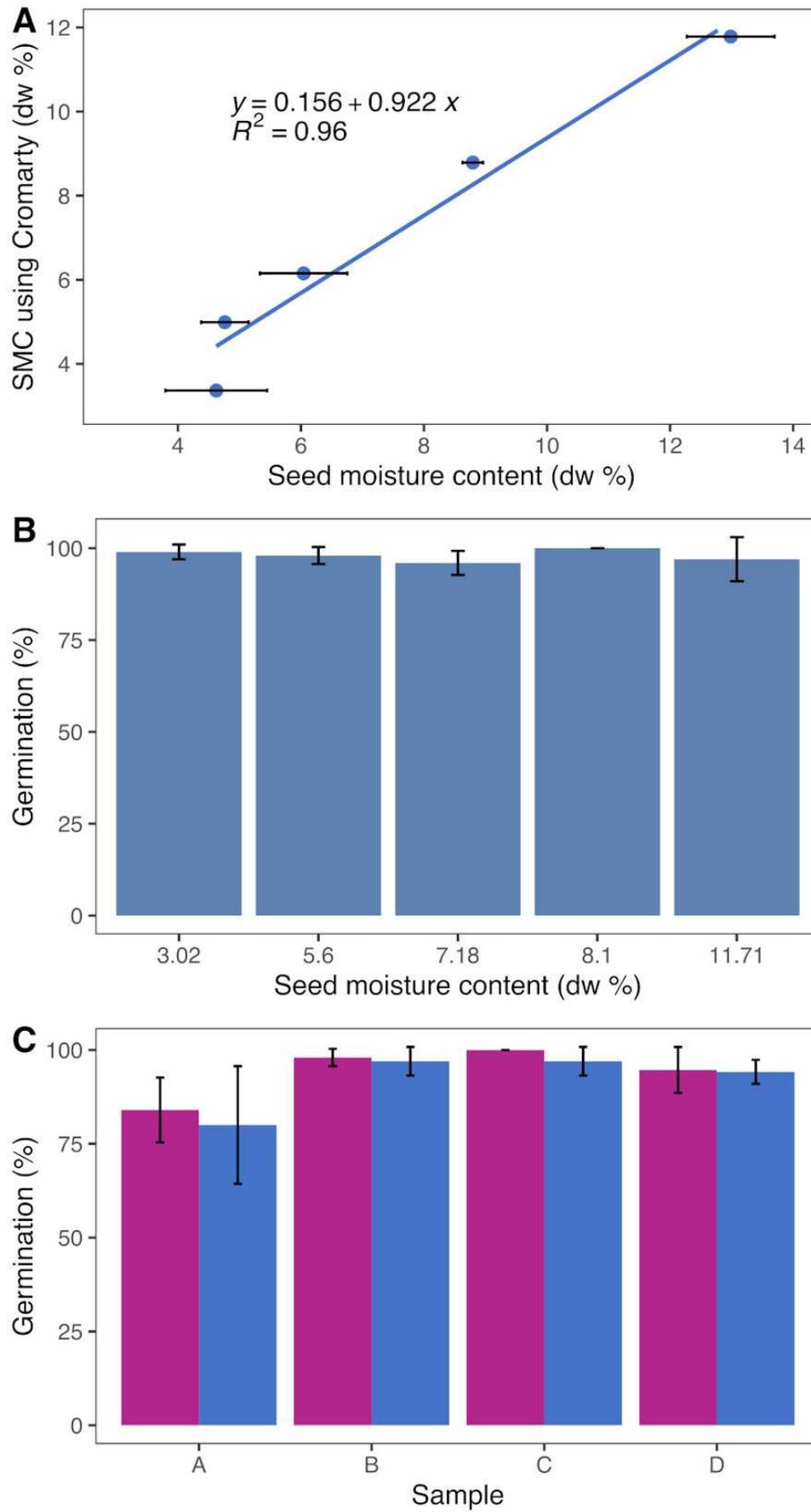
1177 Wu F, Groopman JD, Pestka JJ (2014) Public health impacts of foodborne mycotoxins. *Annual*
1178 *Review of Food Science and Technology* 5: 351–372.

1179

1180 Wyse SV, Dickie JB (2017) Predicting the global incidence of seed desiccation sensitivity.
1181 *Journal of Ecology* 105: 1082-1093.

1182

1183 Yahaya AM, Sinniah UR, Misran A (2022). Seed Quality of Lablab Beans (*Lablab purpureus*
1184 L.) as Influenced by Drying Methods and Storage Temperature. *Agronomy* 12: 699.


1185

1186 Yamalle VR, Khade Y, Singh M (2020) Effect of ultra-drying on storability and vigour of onion
1187 seeds. *Vegetable Science* 47: 224-229.

Figure 1

Figure 1. Dry chain experiments in Costa Rica (1)

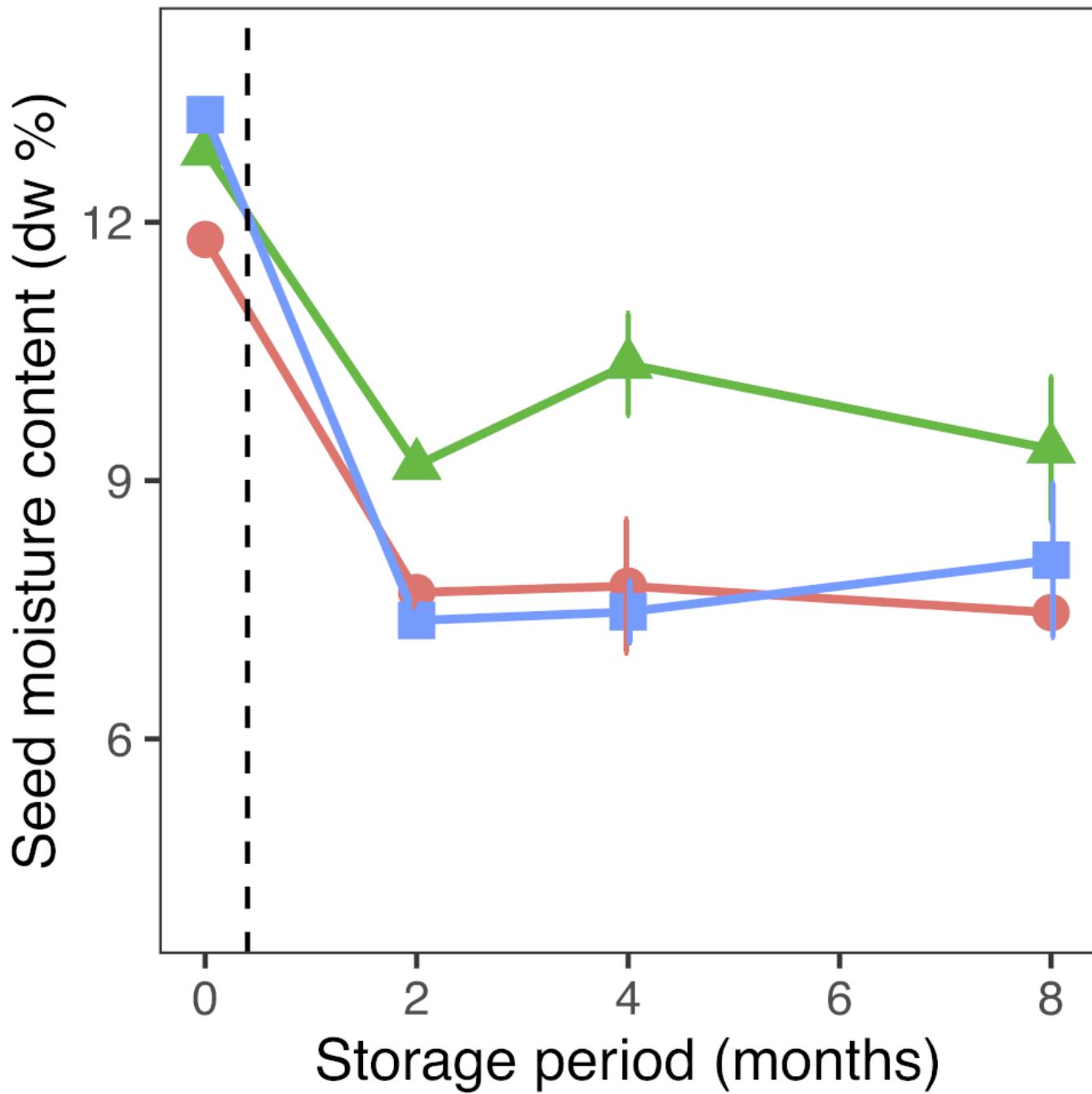

A. Relation between seed moisture content (SMC) on a dry weight (dw) basis and estimated SMC using the Cromarty equation in *Carica papaya*. **B.** Relation between SMC and seed germination after drying using zeolite beads. **C.** Germination before (purple bars) and after drying (blue bars) with zeolite beads in different seed lots (A-D).

Figure 2

Figure 2. Dry chain experiments in Costa Rica (2)

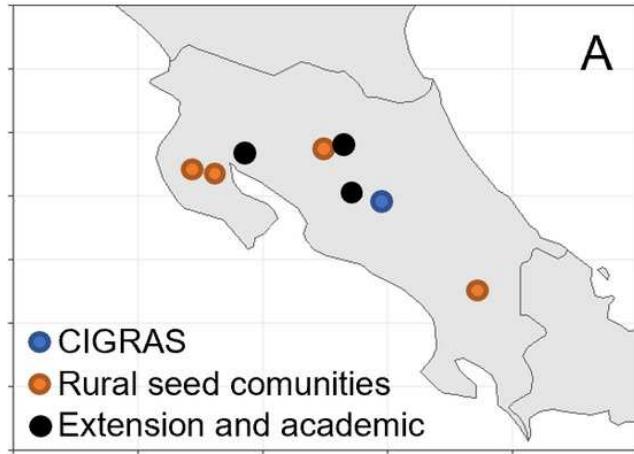

Seed moisture contents of rice, bean and maize seeds dried with zeolite beads and stored in hermetic containers for eight months at room temperature. The dotted line denotes the time of seed drying.

Figure 3

Figure 3. Dry chain implementation in Costa Rica.

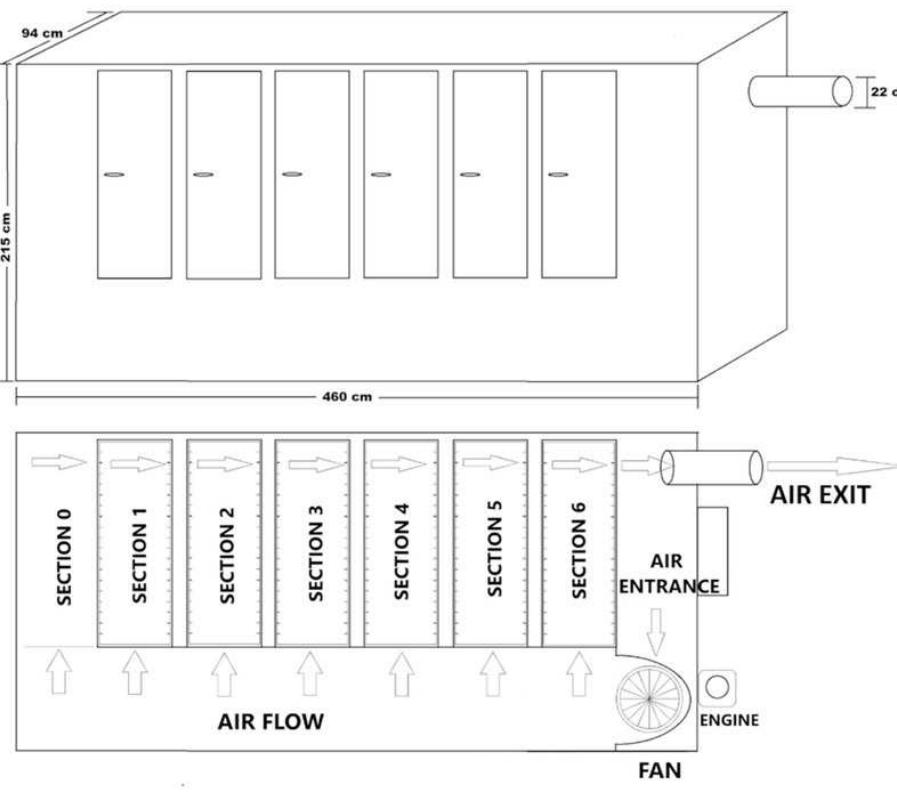
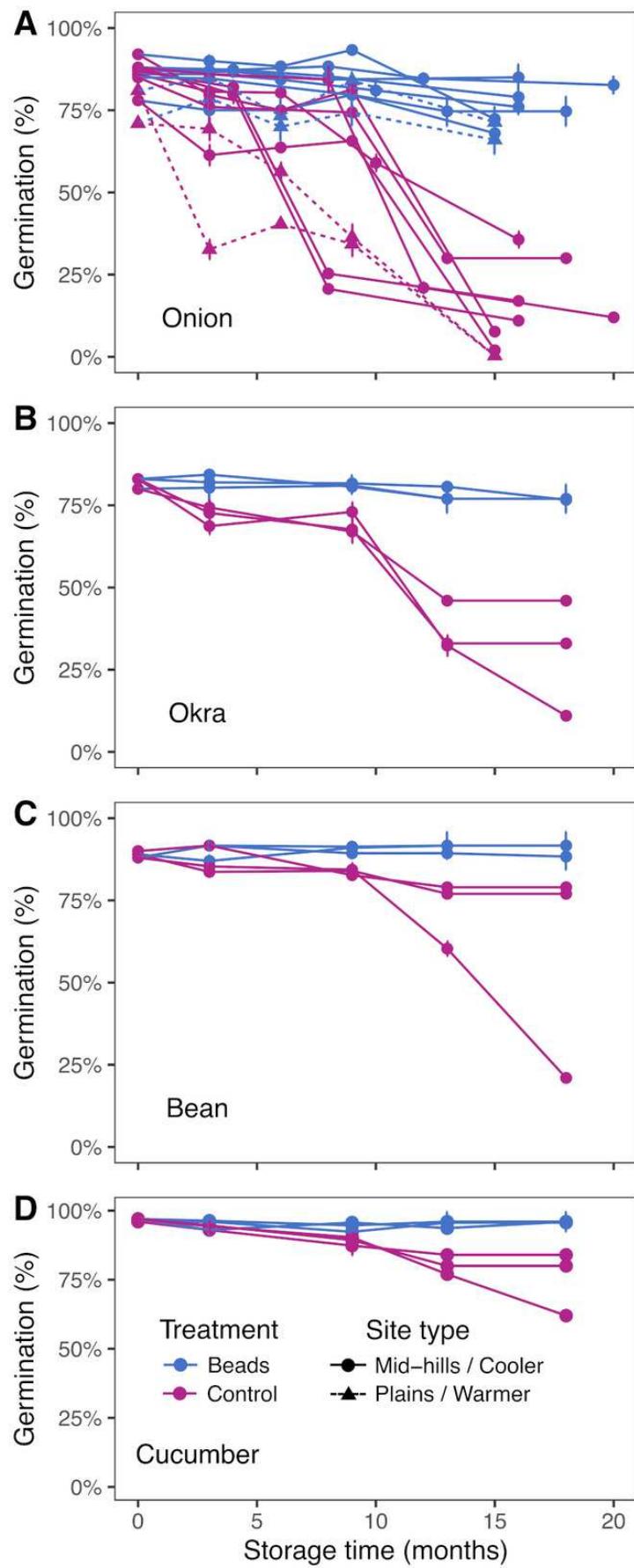

A. Locations of the seed communities in Costa Rica using dry chain tools (the map was generated with ggplot 2 (version 3.4.2) using Rstudio 2023.12.0 "Ocean Storm". **B, C.** Wet (B) and dry (C) rice samples, both containing a dry-circle indicator inside (photos: Ester Vargas). **D, E.** Bean seed accessions from the community of Nicoya (photos: Andrés Monge). **F.** Seed sanctuary from Rescamur community (photo: Andrés Monge).

Figure 4

Figure 4. The cabinet used for seed drying in CIMMYT's Agua Fria Research Station (Mexico).


A. The drying cabinet in 2019, after renovation work, with porous trays in the middle of the sections where mesh bags with seeds are placed, as well as metal grids at the base of each section where mesh bags with beads are placed (Photos: D.E. Costich). **B, C.** Schematic views of the drying cabinet.

A**B****C**

Figure 5

Figure 5. Seed germination and viability during storage in different areas and communities in Nepal.

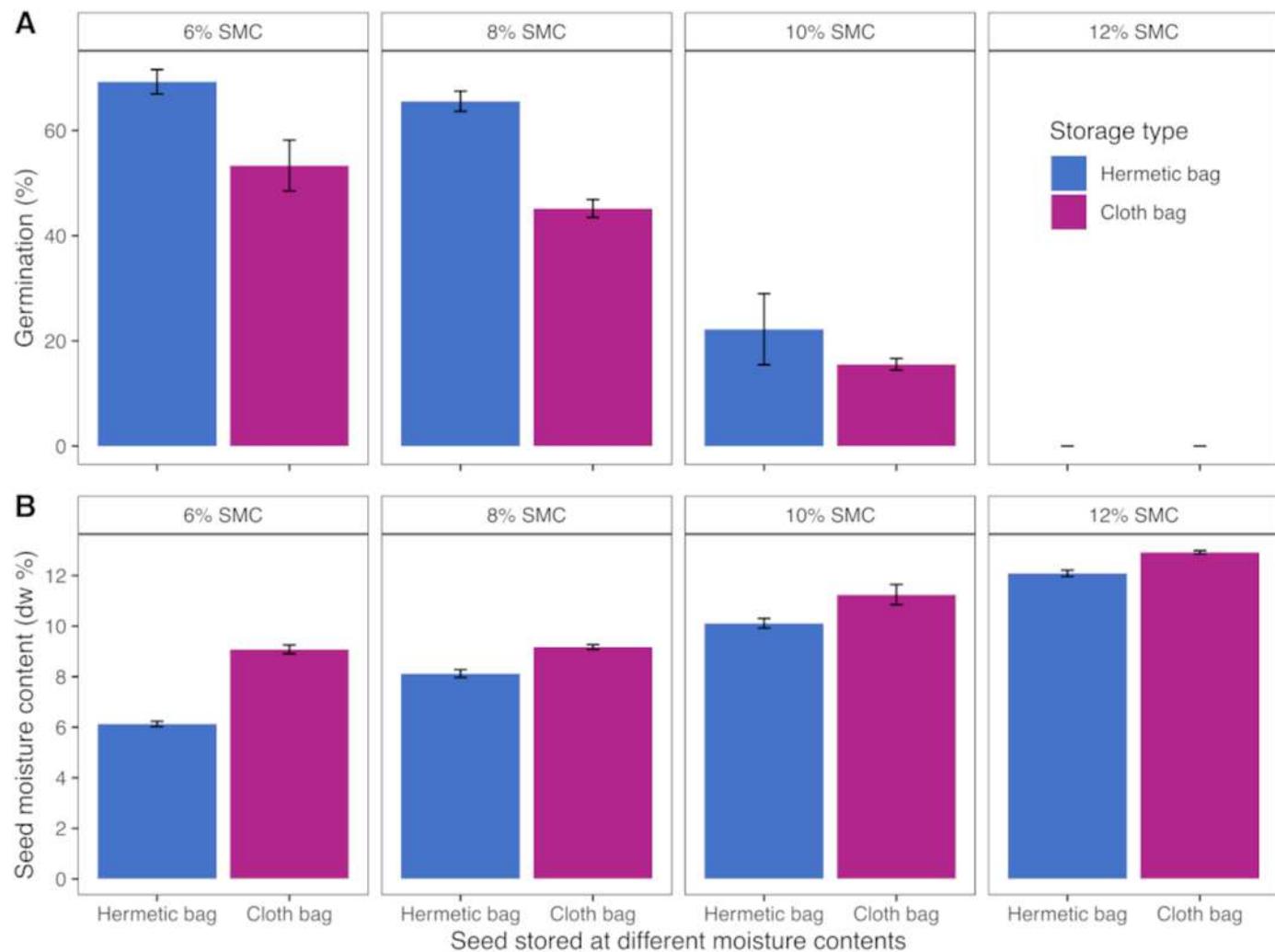

Experiments were managed by CEAPRED on onion (**A**), okra (**B**), bean (**C**) and cucumber (**D**) seed. Most experiments were conducted in mid-hills and cooler regions within Nepal (circles and continuous lines) but also in plains and warmer regions (triangles and dotted lines).

Figure 6

Figure 7. Results of the drying and storage experiment on onion seeds in Pakistan.

Germination (**A**) and moisture contents (**B**) of onion seeds having different seed moisture contents stored in hermetic and cloth bags for six months.

Table 1(on next page)

Average yearly rainfall, temperature (maximum, minimum), and relative humidity in three locations of Costa Rica where community seed banks are located (period 2012-2022)

1 **Table 1:**

2 **Average yearly rainfall, temperature (maximum, minimum), and relative humidity in three**
3 **locations of Costa Rica where community seed banks are located (period 2012-2022).** Data
4 source: National Institute of Meteorology (IMN, by its acronym in Spanish).

5

Location	Rainfall (mm)	Temp max (°C)	Temp min (°C)	Relative humidity (%)
San Carlos	3460.9	30.4	21.4	86.5
Buenos Aires	3140.7	31.3	20.4	84.9
Nicoya	1794.5	33.7	23.2	74.4

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Table 2(on next page)

Maize accessions tested in drying experiments at CIMMYT

1 **Table 2:**

2 **Maize accessions tested in drying experiments at CIMMYT.** The CIMMYT Accession ID, the
 3 initial weight of each accession, the moisture content (MC) of each accession before the drying
 4 treatments, the final MCs of the two seed lots per accession exposed to the drying treatments as
 5 well as the days taken by the seed lots dried in the conventional dry room at GB to reach the target
 6 MCs are indicated. The p50s of the seeds dried with the two methods are also presented for the 12
 7 accessions exposed at accelerated ageing. The asterisk near the accessions ID indicates the
 8 accessions for which the final MC after drying at GB was outside the 95% confidence range of the
 9 MC after drying with beads in AF.

Accession ID	Initial Weight (grams)	Initial MC (%)	MC after drying AF (%)	MC after drying GB (%)	Days of drying GB	p50 AF (days) ±s.e.	p50 GB (days) ±s.e.
CIMMYTMA 31977*	2248	16.15	8.74	8.5	15	15.95 ± 1.07	15.91 ± 1.08
CIMMYTMA 31979	2156	10.39	8.46	8.41	11	12.08 ± 1.09	11.6 ± 1.09
CIMMYTMA 31995*	4214	15.33	8.6	8.44	21	17.08 ± 1.07	15.9 ± 1.07
CIMMYTMA 32008*	2556	13.06	8.57	8.17	15	12.56 ± 1.09	14.73 ± 1.08
CIMMYTMA 32012	2576	17.63	8.2	8.21	15	20.38 ± 1.06	20.27 ± 1.07
CIMMYTMA 32019	2123	17.02	8.5	8.58	15	17.11 ± 1.08	17.14 ± 1.08
CIMMYTMA 32037	3810	16.02	8.6	8.71	15	18.71 ± 1.07	19 ± 1.06
CIMMYTMA 32040	3134	15.08	8.62	8.64	17	15.06 ± 1.07	19.86 ± 7.78
CIMMYTMA 32044	4000	10.81	8.37	8.26	15	11.89 ± 1.09	14.7 ± 1.07
CIMMYTMA 32064	3160	9.90	8.3	8.28	11	22.51 ± 1.06	19.2 ± 1.07
CIMMYTMA 32070*	2858	10.45	8.72	8.41	11	21.52 ± 1.06	20.25 ± 1.07
CIMMYTMA 32120	3786	15.43	8.79	8.89	15	20.21 ± 1.07	25.24 ± 1.05
CIMMYTMA 32122	4035	13.15	8.66	8.65	17	-	-
CIMMYTMA 32123	3018	10.46	8.43	8.47	11	-	-
CIMMYTMA 32126	4310	11.09	8.43	8.43	17	-	-
CIMMYTMA 32136	3376	11.85	8.6	8.55	15	-	-
CIMMYTMA 32179	2700	10.02	8.12	7.97	15	-	-
CIMMYTMA 31990	4266	10.16	8.08	8.23	15	-	-
CIMMYTMA 32033	3966	11.64	7.87	8.00	17	-	-
CIMMYTMA 32055	3600	11.67	8.16	8.32	15	-	-
CIMMYTMA 32088	3694	11.73	7.92	7.76	15	-	-

10

11