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ABSTRACT
Hybrid metagenomic assembly of microbial communities, leveraging both long- and
short-read sequencing technologies, is becoming an increasingly accessible approach,
yet its widespread application faces several challenges. High-quality references may
not be available for assembly accuracy comparisons common for benchmarking,
and certain aspects of hybrid assembly may benefit from dataset-dependent, em-
piric guidance rather than the application of a uniform approach. In this study,
several simple, reference-free characteristics–particularly coding gene content and
read recruitment profiles–were hypothesized to be reliable indicators of assembly
quality improvement during iterative error-fixing processes. These characteristics were
compared to reference-dependent genome- and gene-centric analyses common for
microbial community metagenomic studies. Two laboratory-scale bioreactors were
sequenced with short- and long-read platforms, and assembled with commonly used
software packages. Following long read assembly, long read correction and short read
polishing were iterated up to ten times to resolve errors. These iterative processes
were shown to have a substantial effect on gene- and genome-centric community
compositions. Simple, reference-free assembly characteristics, specifically changes in
gene fragmentation and short read recruitment, were robustly correlated with advanced
analyses common in published comparative studies, and therefore are suitable proxies
for hybrid metagenome assembly quality to simplify the identification of the optimal
number of correction and polishing iterations. As hybrid metagenomic sequencing
approaches will likely remain relevant due to the low added cost of short-read
sequencing for differential coverage binning or the ability to access lower abundance
community members, it is imperative that users are equipped to estimate assembly
quality prior to downstream analyses.
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BACKGROUND/INTRODUCTION
Though the increasing variety of high-throughput short- and long-read (meta)genomic
sequencing technologies are only within their first decades of existence, both the sequencing
technologies and software development have flourished andhave already been implemented
to study microbial ecosystems (Overholt et al., 2020; Singleton et al., 2021; Bertrand et al.,
2019; Liu et al., 2022; Ye et al., 2022; Ravi et al., 2022; Gounot et al., 2022; Van Goethem et
al., 2021; Jin et al., 2022; Zhang et al., 2023b;Meslier et al., 2022; Sereika et al., 2022; Stewart
et al., 2019; Brown et al., 2021; Tao et al., 2022). Integrating both short- and long-read
platforms for single microorganisms or microbial communities is gaining popularity
because they compensate for the other’s weaknesses—shorter reads achieve higher accuracy
while longer reads offer better contiguity (Gounot et al., 2022; Meslier et al., 2022; Chen et
al., 2020; Wick & Holt, 2022; Zhang et al., 2023a; Wick et al., 2017; Weirather et al., 2017).
Despite the decreasing costs and improving technologies, hybrid strategies currently are
more cost-effective for recovering high-quality metagenome-assembled genomes (MAGs)
from microbial communities than either platform alone (Sereika et al., 2022). However,
remaining biological and technical challenges may deter users from seeking relatively
complicated approaches like hybrid (meta)genomic sequencing of microorganisms in
complex ecosystems.

Hybrid (meta)genomic assembly implements multiple and/or iterative processes to help
overcome the limitations of the sequencing technologies. One strategy is to assemble short
reads and then bridge gaps with long reads, leading to assemblies that are accurate but
less contiguous (Overholt et al., 2020; Ye et al., 2022; Van Goethem et al., 2021; Meslier et
al., 2022; Brown et al., 2021; Zhang et al., 2023a; Wick et al., 2017). The second strategy is
to assemble long reads and then iteratively use long and short reads to resolve sequencing
errors, leading to a more contiguous assembly that may yet retain errors (Overholt et al.,
2020; Ye et al., 2022; Van Goethem et al., 2021; Meslier et al., 2022; Brown et al., 2021; Wick
& Holt, 2022; Zhang et al., 2023a;Wick et al., 2017;Weirather et al., 2017; Zimin & Salzberg,
2020; Wick et al., 2021; Wick & Holt, 2021; Wick, Judd & Holt, 2019; Watson & Warr, 2019;
Huang et al., 2021). In the recent past and near future, as long read accuracy increases
tremendously, this second strategy may become overall more favorable for the field
because, intuitively, sequence contiguity better enables downstream gene- and genome-
resolved analyses. Most benchmarks for the second strategy have provided a general set of
guidelines for implementing the iterative processes to improve upon long read assemblies:
using several tools is preferred, long read correction prior to short read polishing is
advantageous, and iterative processes have diminishing returns (Liu et al., 2022; Sereika et
al., 2022; Stewart et al., 2019;Wick & Holt, 2022;Wick et al., 2021; Huang et al., 2021; Vaser
et al., 2017; Chen, Erickson & Meng, 2021; Damme et al., 2021; Belser et al., 2018; Hu et al.,
2020;Mak et al., 2023; Zablocki et al., 2021). These concepts are incorporated into pipelines
for automating the optimization of hybrid microbial (meta)genomic assemblies (Wick et
al., 2017; Damme et al., 2021), suggesting they are core aspects of hybrid metagenomic
assembly for microorganisms.
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Intriguingly, despite its existence in literature essentially since the development of
long-read sequencing, the iterative processes for fixing errors in long-read assemblies
have been less thoroughly investigated. In particular, one challenge in performing hybrid
assembly for a microbial community metagenome is identifying the number of iterations
to maximize the quality of the data. Generally, there is little consistency of tool choice
and the number of iterations among published studies of microbial communities or
other datasets reconstructed using long-read assembly (Overholt et al., 2020; Singleton
et al., 2021; Bertrand et al., 2019; Ye et al., 2022; Ravi et al., 2022; Gounot et al., 2022; Van
Goethem et al., 2021; Jin et al., 2022; Zhang et al., 2023b; Meslier et al., 2022; Stewart et al.,
2019; Brown et al., 2021; Huang et al., 2021; Belser et al., 2018), and similar inconsistency
among benchmarking studies (Bertrand et al., 2019; Meslier et al., 2022; Brown et al., 2021;
Wick & Holt, 2022; Zhang et al., 2023a;Weirather et al., 2017; Zimin & Salzberg, 2020;Wick
et al., 2021; Wick & Holt, 2021; Wick, Judd & Holt, 2019; Huang et al., 2021; Vaser et al.,
2017; Hu et al., 2020; Mak et al., 2023; Zablocki et al., 2021; Chen, Erickson & Meng, 2020;
Kolmogorov et al., 2020; Koren et al., 2017; Firtina et al., 2020; Zeng et al., 2020; Lee et al.,
2021; Li, 2016; De Maio et al., 2019; Antipov et al., 2016; Hu et al., 2021; Huang et al., 2022;
Warren et al., 2019). While most studies have determined the approach a priori, some
evidence suggests that an unsupervised but empirically-guided approach combining
various tools optimizes hybrid microbial assemblies because certain tools are better able to
fix certain errors, while others may even degrade the quality by re-introducing errors (Liu
et al., 2022;Wick & Holt, 2022; Zimin & Salzberg, 2020; Huang et al., 2021; Hu et al., 2020).
It is likely that ideal hybrid assemblies for microbial communities may not be achieved
using a universal or standard protocol but rather may vary depending both on the biology
of the system and tool implementation.

An additional challenge of applying hybrid assembly to a complex microbial community
is determining the quality of the assembly itself. Typically during benchmarking of long
read datasets, assembly qualities are assessed by comparing to high-quality references,
e.g., count of differences (mis-assemblies), genomic alignments, or the presence of specific
marker genes (Ye et al., 2022; Sereika et al., 2022; Zhang et al., 2023a; Wick et al., 2021;
Wick & Holt, 2021; Belser et al., 2018; Chen, Erickson & Meng, 2020; Kolmogorov et al.,
2020; Lee et al., 2021; Dida & Yi, 2021), which can lead to poor interpretation of consortia
or divergent genomes. In the absence of high-quality reference genomes, the characteristics
of an ideal hybrid assembly of a complex microbial community are less clear. Common,
reference-independent statistics for comparing assemblies, for example contig counts, total
base pairs assembled, and L/N50 and similar metrics, might not significantly change at a
metagenome assembly scale during iterative processes that fix relatively small-scale errors
(Wick & Holt, 2022; Huang et al., 2021; Chen, Erickson & Meng, 2021; Belser et al., 2018;
Hu et al., 2020). Therefore, typical assembly quality assessments are not suitable for many
complex microbial community metagenomic datasets.

Benchmarking of individual bacterial genome assemblies have suggested that read
recruitment, and to a lesser degree gene counts and/or lengths, are useful reference-free
proxy indicators of assembly quality (Sereika et al., 2022; Wick & Holt, 2022). Supporting
their utility, gene calling and read recruitment are simple to generate, analyze, and interpret,
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especially as they are integral components of nearly all downstream analyses in gene- and
genome-centric studies. In several cases, gene fragmentation and read recruitment profiles,
often in comparison to references, have been used to assess recovered MAG quality or the
accuracy of assemblies themselves (Liu et al., 2022; Van Goethem et al., 2021; Meslier et al.,
2022; Sereika et al., 2022; Stewart et al., 2019; Tao et al., 2022; Wick & Holt, 2022; Zhang et
al., 2023a; Wick et al., 2021; Zablocki et al., 2021; Dohm et al., 2020; Clark et al., 2013), but
in many cases, there was no apparent evaluation or optimization of the hybrid assembly
themselves (Overholt et al., 2020; Singleton et al., 2021; Ye et al., 2022; Jin et al., 2022; Zhang
et al., 2023b;Meslier et al., 2022; Brown et al., 2021;Dohm et al., 2020). Given the challenges
of applying hybrid assembly approaches for microbial community metagenomes, and the
likelihood that no universal approach works best for all datasets, characteristics that are
reference-independent and relative to the dataset may be the most suitable to estimate
quality and empirically guide optimization.

Here, we examined multiple reference-independent and -dependent assembly
characteristics in order to determine which would be effective for estimating the quality
of hybrid metagenomic assemblies of uncharacterized, complex microbial communities,
with a focus on the ability to detect changes during iterative error-fixing processes. Two
long-term laboratory-scale nitrifying bioreactors were sequenced using both Illumina
MiSeq (short-read, SR) and Oxford Nanopore Technology (long-read, LR) platforms
and assembled with multiple programs to allow for initial biological and computational
variation. LR assemblies were then corrected with LRs and polished with SRs using
prevalent tools in the field with low computational demands. Rather than assessing the
efficacy of tools, we sought to (1) observe the impact of iterative processes on assembly
quality and community reconstruction, and (2) analyze reference-independent assembly
characteristics to estimate assembly quality and determine endpoints for correction and
polishing. We first established that the fixing of errors during these iterative processes leads
to substantial variation in recovered community composition. We then demonstrated that
simple, reference-independent assembly characteristics, in particular, coding gene content
and/or SR recruitment statistics. Not only did these reference-independent characteristics
follow the same patterns within this study and published observations, but also were
robustly correlated with reference-dependent characteristics, thus serving as practical
proxies for assembly quality and community reconstruction.

METHODS
The tools, their purpose, and the rationale for or advantages of their use in this study are
described in Text S1 and summarized in Table S1.

Long- and short-read sequencing
Biomass was collected in November 2020 and March 2021 from long-term, autotrophic
nitrifying enrichment cultures maintained in either oxygen- (OLR) or nitrogen-limited
(NLR) conditions in a tandem laboratory-scale bioreactor system inoculated in 2015
with activated sludge from the Bavaria Brewery wastewater treatment plant in Lieshout,
The Netherlands (51.518666 N, 5.613009 E). The cultivation of these bioreactors and the
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reconstruction of their microbial communities is an ongoing project and will be published
separately. Genomic DNA was extracted from the biomass using a conventional N-cetyl-
N,N,N,-trimethyl ammonium bromide (CTAB) protocol in 2020, and the Powersoil
DNA Isolation kit (Qiagen, Hilden, Germany) in 2021 with minimal modifications to the
manufacturer’s directions to reduce DNA shearing such as inverting rather than vortexing
or pipetting to mix. Two DNA isolation protocols were used because it is standard in
our group due to strong evidence that it introduces sufficient bias to aid differential
coverage binning (Albertsen et al., 2015; Weber, De Force & Apprill, 2017; Martin-Laurent
et al., 2001).

In total, 1 ng of DNA for both the OLR and NLR reactors was used to prepare a library
using the Nextera XT kit (Illumina, San Diego, CA, USA) according to manufacturer’s
instructions. After quality and quantity check of the libraries, they were paired-end
sequenced (2×300 bp) using the Illumina MiSeq sequencing machine and the MiSeq
Reagent Kit v3 (San Diego, CA, USA) according to manufacturer’s protocols. Oxford
Nanopore Technologies (ONT) sequencing was done with 840 and 1,670 ng DNA for the
OLR andNLR reactors, respectively, after library preparation using the Ligation Sequencing
Kit 1D (SQK-LSK108) and the Native Barcoding Expansion Kit (EXP-NBD104), according
to the manufacturer’s protocols (Oxford Nanopore Technologies, Oxford, UK). The
libraries were loaded on a Flow Cell (R9.4.1) and sequenced on a MinION device (Oxford
Nanopore Technologies, Oxford, UK), according to the manufacturer’s instructions.
Guppy (version 4.0.11) (Oxford Nanopore Technologies, 2023b) was used to basecall fast5
files using the dna_r9.4.1_450bps_hac.cfg model, both provided by Oxford Nanopore
Technologies.

Raw or basecalled sequencing reads for both bioreactors and technologies are available
at NCBI via BioProject PRJNA1005948 as the following BioSamples: SAMN37004618,
raw MiSeq reads for the OLR; SAMN37004620, basecalled ONT reads for the OLR;
SAMN37004619, raw MiSeq reads for the NLR; SAMN37004621, basecalled ONT reads
for the NLR.

Long-read, short-read, and hybrid microbial community metagenomic
assembly
An overview of the experimental design is shown in Fig. 1. All computational programs
were employed with default settings unless explicitly stated. Generic example code is
available in File S1.

Sequencing yielded 3.1−4.6 Gbp per library (Table S2) following read trimming and
length and quality control using BBduk (BBtools version 37.76) (Bushnell, 2023) with a
minimum phred score 18 and length of 200 bps for theMiSeq reads, and porechop (version
0.2.3_seqan2.1.1) (Wick, 2023) with minimum split length of 3000 bps for the ONT reads.

Three common SPAdes-dependent programs were used to generate SR-only, LR-only,
and/or SR-first hybrid (i.e., short read assembly followed by connecting contigs using long
read alignments), assemblies: hybridSPAdes (version 3.15.4) (Antipov et al., 2016; Nurk
et al., 2017) known for high-quality metagenomic assemblies, Unicycler (version 0.4.9b)
(Wick et al., 2017) with utilities for optimizing SPAdes to enable recovery of circular
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Figure 1 Schematic overview of assembly, correction, and polishing. (A) Assembly, correction, and
polishing experimental design. Broken lines represent read recruitment steps for either correction or pol-
ishing. Acronyms: SR, short read; LR, long read; Def., default settings; Met., metagenome-optimized set-
tings; Sub., sub-sampled LRs with metagenome-optimized settings. (B) Simplified diagram of analyses
performed and the tools used to perform them for each assembly and after each iteration of correction or
polishing.

Full-size DOI: 10.7717/peerj.18132/fig-1

and high-quality single genomes, and OPERA-MS (version 0.9.0) (Bertrand et al., 2019)
capable of automated refinement of high-quality individual genomes within amulti-species
metagenome (hybrid only). Note that Unicycler, when given only long reads, does not
use SPAdes and instead uses miniasm (Li, 2016) and Racon (Vaser et al., 2017). The k-mer
list generated by automated selection during Unicycler hybrid assembly was used for
hybridSPAdes assemblies. While the focus here was optimizing a hybrid approach that
leverages the contiguity of the long-read assemblies, these SPAdes-dependent assemblies
served as a baseline for comparing SR and LR assembly of the datasets.

Two programswere used for assembly of LR data: Canu (version 1.8) (Koren et al., 2017),
which performs read correction prior to assembly and is generally thought to result in more
accurate assemblies, and Flye (version 2.9-b1768) (Kolmogorov et al., 2020), which performs
correction of the assembly using the input reads. Both assemblers were used in three
different ways: (1) default settings (‘‘def’’) developed for single-genomes, (2) metagenomic
settings (‘‘meta’’) to improve assembly of sequences with uneven depths (Singleton et
al., 2021; Kolmogorov et al., 2020), and (3) metagenomic settings for approximately even
bp sub-samples (‘‘sub’’) of the reads to artificially reduce the sequencing depth and
possibly uncover biological variation. Long reads were sub-sampled into 12 read pools
with approximately the same quantity of bps using the ‘‘subsample’’ utility of Trycycler
(version 0.4.1) (Wick et al., 2021). All assemblies were filtered to a 4 kbp minimum contig
length using BBtools utilities prior to any downstream analyses.
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Long read correction and short read polishing
Rather than identifying the best tool(s) or exact approach, our goal was to demonstrate
that each iteration of correction or polishing assembly quality and ability to reconstruct
communities. Therefore, we chose only one tool each for LR correction and SR polishing.
Consensus correction of individual LR ‘‘meta’’ assemblies was performed using Racon
(version 1.3.1) (Vaser et al., 2017) for up to 10 iterations, the greatest number of iterations
in a hybrid assembly approach that we identified in the literature (Zablocki et al., 2021;
Lee et al., 2021). For each iteration of Racon correction, minimap2 (version 2.17-r941)
(Li, 2018) was used with default settings to recruit LRs to the original assembly or the
previous iteration’s corrected assembly to generate the overlap information. Contigs that
were not corrected were retained with the optional flag ‘‘-u’’. SR pile-up polishing of LR
‘‘meta’’ assemblies was performed using Pilon (version 1.23) (Walker et al., 2014) to 10
iterations after 0 (original assembly), 2, 5, and 10 rounds of LR correction. These stages
were chosen to include common (0 and 2) LR correction endpoints found in literature
and online guidance, and extensive (5 Wick et al., 2021 and 10 Zablocki et al., 2021; Lee
et al., 2021; Zhang et al., 2020) LR correction endpoints that would help demonstrate the
maximum sensible value of this process. Note that many benchmarks, and particularly
studies exploring the quality during iterative processes, focus on individual microbial
genomes and it thus seemed plausible that additional iterations may aid in improving
assembly quality of metagenomic datasets. We did not test SR polishing after 1 iteration of
LR correction because it was rarely observed in published literature or online guidelines,
and essentially never when Racon was used for LR correction. For each iteration of SR
polishing, BBmap (BBtools version 37.76) was used to recruit SRs to the original assembly,
Racon-corrected assemblies, or the previous iteration’s polished assembly, using a 97.5%
identity filter and retaining all ambiguous alignments. As LR correction after SR polishing
is expected to re-introduce errors, and we also found no examples in the literature, this
was not performed.

Assembly characteristics determination
Programs for estimating quality were used with default settings except when explicitly
stated otherwise. Assemblies were compared using metaQuast (version 5.0.2) (Mikheenko,
Saveliev & Gurevich, 2016) without references to examine the distribution of contig counts
and lengths. Recruitment of SRs to the assemblies to quantify aligned reads and ambiguity
was performed using BBmap (BBtools version 37.76) with retaining only perfect mappings
of paired reads and randomly assigning ambiguous mappings. The Assembly Likelihood
Evaluation (ALE) score of each assembly was determined using the program ALE (Clark
et al., 2013) (downloaded 2024) after indexing and alignment using BWA (version 0.7.18-
r1243-dirty) (Li & Durbin, 2009). Open reading frames (ORFs) were predicted using
Prodigal (version 2.6.3) (Hyatt et al., 2010) using the ‘‘meta’’ procedure for quantification
of gene counts and lengths, and as input for downstream analyses of assembled genes. The
‘‘meta’’ procedure of Prodigal was implemented prior to downstream analytical pipelines
because it led to increased marker gene recovery estimates, though following similar trends
(data not shown), compared to the outputs of the analytical pipelines that assume inputs are
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single genomes and therefore run prodigal in ‘‘single’’mode by default. Phylogeneticmarker
gene recovery, fragmentation, and redundancy were estimated by Benchmarking Universal
Single-Copy Orthologs (BUSCO, version 5.1.2) (Manni et al., 2021) using ‘‘genome’’ mode
and only the ‘‘bacteria_odb10’’ lineage, as well as CheckM (version 1.1.3) (Parks et al.,
2015) using the taxonomy workflow for the domain ‘‘Bacteria’’. Gene fragmentation of
entire assemblies was estimated by comparing to a DIAMOND (version 0.9.31) (Buchfink,
Xie & Huson, 2015) database of the uniref50 (downloaded 2023-03-01) (Suzek et al., 2015)
dataset using IDEEL (downloaded 2023-05-13) (Stewart et al., 2019). To more concretely
associate potential complete genome contigs with the domain bacteria, circular and long
(>1 Mbp) contigs were also analyzed individually using the Genome Taxonomy DataBase
toolkit (GTDB-tk, version 1.6.0 with reference database version r202) (Chaumeil et al.,
2020). Based on the GTDB-tk output for circular contigs alone, there were members of at
least six and five distinct bacterial phyla present in the OLR and NLR, respectively (data
not shown). Microbiomes with abundant archaea or eukaryotes may need to adjust these
taxonomically constrained pipelines to better suit their ecosystem.

Automated binning and beta diversity
Programs for automated binning and estimation of genome quality, as well as identification
and read depth calculation of marker genes, were used with default settings except where
noted otherwise.

LRs and SRs from both bioreactor datasets were used for read depth calculation
of contigs using the mmlong (version 0.1.2) (SorenKarst, 2022) utility readcoverage2.
Automated binning using composition (i.e., tetranucleotide frequency) and coverage (i.e.,
read depth) was then performed using Metabat2 (version 2.12.1) (Kang et al., 2019). The
quality of automated bins was estimated using CheckM (version 1.1.3) (Parks et al., 2015),
with cutoffs of >50% completeness and <10% contamination scores as ‘‘medium quality’’
(MQ), and >90% completion and <5% contamination as ‘‘high quality’’ (HQ). These
oversimplified thresholds are no longer en vogue but represent computationally simple,
rapid, and bulk estimates compared to contemporary, thorough requirements that include
other information like rRNA presence and tRNA counts (Shaffer et al., 2020).

The RNA polymerase subunit B (rpoB) is a protein-coding gene typically found only
once in a genome and is universally conserved among Bacteria, Archaea, and Eukarya.
This gene is therefore is tractable to serve as a marker gene for individual species to
complement the often poorly assembling 16S rRNA gene in gene-centric phylogenetic
analyses of metagenomes. RpoB genes were identified in assembled contigs using hmmer
(version 3.1b2) (Eddy, 2011) with the available model and thresholds for the Protein
FAMily (pfam) identifier PF04563.15 (downloaded 2020-06-09). To observe beta-diversity,
rpoB-containing contigs throughout the iterative correction and polishing processes were
compiled for each bioreactor and assembler separately. Then the LRs and SRs from both
bioreactor datasets were used for read depth estimation for rpoB-containing contigs using
the mmlong (version 0.1.2) (SorenKarst, 2022) utility readcoverage2. The Bray-Curtis
abundance-rank dissimilarity between each read set was calculated for subsequent two-axis
non-metric multi-dimensional scaling (NMDS) performed using vegan (version 2.5-7)
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(Oksanen et al., 2022) in R (version 4.1.2) (R Core Team, 2021), with the values manually
mean-centered and scaled for better comparability. These NMDS analyses did not converge
after 50 tries due to low stress, but here the species scores were used to view the clustering
and trajectories of the rpoB-containing contigs’ ‘‘species scores’’ for each assembly rather
than the four reads’ ‘‘site scores’’.

Further data analysis and visualization
Logs and outputs were mined for data using various bash commands. Data were ultimately
imported into R (version 4.1.2) (R Core Team, 2021) for analysis and visualization relying
primarily on tidyverse (version 1.3.1) (Wickham et al., 2019). Most calculations were
additionally normalized to contig length in Mbps to make bioreactors and assemblers
more comparable. No specific code was developed for this project due to the focus on
applying end-user tools.

RESULTS
Single read type and automated hybrid assembly baselines
SR sequencing of the OLR and NLR yielded 7.56 million paired-end reads totaling 4.06
Gbp, and 8.73 million paired-end reads totaling 4.60 Gbp of data, after low-quality read
removal and base trimming, respectively. LR sequencing of the OLR and NLR yielded 318
thousand reads totaling 3.13 Gbp, and 416 thousand reads totaling 4.01 Gbp of data, after
low quality read removal and base trimming, respectively (Table S2). Reads were either
assembled alone (SR-alone or LR-alone) or used as inputs for automated SR-first hybrid
assembly. There were substantial differences between the assemblies of the bioreactors,
but, more importantly, they also varied across assembly programs and certain settings,
including total size, contiguity, and circularity (Text S1, Dataset S1, Figs. S1–S3). These
largely recapitulated most benchmarking studies showing that LR assemblies lead to better
contiguity, but SR assemblies tend to be more accurate (Overholt et al., 2020; Ye et al., 2022;
Van Goethem et al., 2021;Meslier et al., 2022; Wick & Holt, 2022; Zimin & Salzberg, 2020).

From here, we explored the metagenome-optimized LR assemblies over the iterative
LR correction and SR polishing iterations to ultimately determine the optimal assembly
for these datasets with empirical information. We assessed the microbial composition and
its variability using standard gene- and genome-centric analyses like beta-diversity and
automated bin recovery. We then further analyzed characteristics that should noticeably
change, in contrast to for example the size and contiguity of the assembly, and that ideally
would also be reference-free: reduction in gene fragmentation because errors in LR and their
assemblies lead to frameshifts that fracture genes, and increase in SR recruitment because
these higher-accuracy reads should recruit better tomore accurate assemblies. Additionally,
we followed automated bin recovery and single phylogenetic marker gene beta diversity
to see how well these simple, reference-free characteristics may serve as indicators of
community reconstruction. In absence of a ‘‘gold standard’’ for uncharacterized microbial
communities, comparisons of the LR correction and SR polishing iterations of the LR
assemblies were made to SR-alone and SR-first hybrid assemblies to approximate a
comparison to high-quality references that are typically derived from SR datasets.
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Marker gene beta diversity
Many studies of microbial communities applying hybridmetagenomic assembly performed
gene-centric analyses (Singleton et al., 2021; Ye et al., 2022; Ravi et al., 2022; Gounot et al.,
2022; Van Goethem et al., 2021; Zhang et al., 2023b; Stewart et al., 2019; Brown et al., 2021),
often as a means of inferring metabolic capabilities and therefore ecosystem functions,
but also to help access less well-assembled community members to better assess extant
diversity. While genome recovery has been examined as a proxy for microbial metagenomic
assembly accuracy, there is substantially less effort put into examining the remainder of the
community members and how this might impact downstream analyses of the community.
To test this, we used the RNA Polymerase subunit B (rpoB) gene as a phylogenetic marker
for all domains of life for beta-diversity clustering analysis by exploring their SR recruitment
profiles via non-metric multi-dimensional scaling (NMDS).

The error-fixing processes clearly affected the trajectories of community composition
by increased rpoB recovery and changes to read depth profiles. The recovery and read
recruitment of rpoB was impacted by the assembler program, as well as the number of
LR correction and SR polishing iterations, generally showing an increase in rpoB recovery
primarily via SR polishing (Text S1, Dataset S1, Fig. S4). Even with both LR correction
and SR polishing, fewer rpoB genes were recovered from LR assemblies than SR-alone
or SR-first hybrid assemblies. However, their gene lengths were comparable suggesting
that these genes generally assembled and polished well (Text S1, Dataset S1, Fig. S5).
There was an unexpected trend of reduced mean depth with LR correction and polishing
(Text S1, Dataset S1, Fig. S6), which was likely due to the recovery of genes that were
initially fragmented in the assemblies of lower abundance community members. The
clustering of assemblies with only LR correction were noisy and remained distant from
one another, compared to the convergence observed due to the first few SR polishing
iterations (Fig. 2, Dataset S1). In most cases, assemblies without LR correction were
distant from assemblies with both LR correction and SR polishing, highlighting the
beneficial impact of LR correction that may only become apparent after SR polishing
(Fig. 2, Dataset S1). Unfortunately, while communities converged during SR polishing,
they remained somewhat distinct depending on the number of LR correction iterations,
indicating that LR correction impacts community reconstruction even with SR polishing
(Fig. 2, Dataset S1). These results show that iterative LR correction and SR polishing
processes together are vital for gene-centric community reconstruction, and thus their
downstream analyses.

Automated bin recovery
Complementing gene-centric approaches, the primary goal for manymicrobial community
metagenomic sequencing approaches is to reconstruct high-quality, ideally essentially
complete genomes of as many members as possible (Overholt et al., 2020; Singleton et
al., 2021; Bertrand et al., 2019; Liu et al., 2022; Ye et al., 2022; Ravi et al., 2022; Gounot
et al., 2022; Van Goethem et al., 2021; Jin et al., 2022; Zhang et al., 2023b; Sereika et al.,
2022; Stewart et al., 2019). Hybrid assembly of microbial metagenomes has already been
employed to recover microbial genomes from a variety of ecosystems from plant-rich
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Figure 2 Beta diversity estimated from RNA Polymerase subunit B (rpoB) gene profiles for each biore-
actor and long read (LR) assembly throughout the iterative LR correction and short read (SR) polish-
ing processes. The two bioreactors are separated over vertical panels, the two LR assemblers are separated
over the horizontal panels. Points are the mean-centered species scores for all rpoB genes per assembly,
with gray lines showing the standard errors of the mean. Each point is colored by the SR polishing itera-
tion, with colored lines connecting points to the preceding LR correction and subsequent SR polishing it-
eration. White text over points indicates the LR correction iteration prior to any SR polishing. Inset shows
the overlapping points of the second LR correction stage as the communities converge due to SR polishing
for the Nitrogen-Limited Bioreactor’s Flye assembly.

Full-size DOI: 10.7717/peerj.18132/fig-2

sediments to waste sludge, to human guts, and more (Overholt et al., 2020; Singleton et
al., 2021; Bertrand et al., 2019; Liu et al., 2022; Ye et al., 2022; Ravi et al., 2022; Gounot et
al., 2022; Van Goethem et al., 2021; Jin et al., 2022; Zhang et al., 2023b; Sereika et al., 2022;
Stewart et al., 2019). Tomaximize the value of recovered genomes, the assembly itself needs
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to be accurate because both the binning of contigs into genomes and the subsequent bin
quality estimation via marker gene identification depend on the accuracy of the assembly.
In some cases, genome recovery has already been used to demonstrate or compare the
accuracy of LR and/or hybrid assemblies of microbial (meta)genomes (Overholt et al., 2020;
Gounot et al., 2022; Zhang et al., 2023b; Tao et al., 2022; Zhang et al., 2023a; Kolmogorov et
al., 2020). Assemblies were automatically binned at each stage of LR correction and SR
polishing, and both the assemblies and bins were assessed with CheckM to estimate the
total redundancy of the assemblies and the completion of microbial genomes.

Similar to the marker gene beta-diversity analysis, iterative LR correction and SR
polishing processes impacted genome recovery, but was noisier. For the initial assemblies
and throughout LR correction, the count and quality of medium quality (MQ) or better
bins were lower than after SR polishing (Fig. 3, Text S1, Dataset S1, Fig. S7). In contrast to
rpoB recovery, LR assemblies with LR correction and SR polishing yielded more medium-
and high-quality bins than SR-alone or SR-first hybrid assemblies (Dataset S1, Fig. S8).
Automated bin recovery metrics remained somewhat noisy and often never reached a
clear plateau (Fig. 3, Text S1, Dataset S1, Fig. S7), suggesting that genome recovery may
not be a robust assembly quality indicator. The saturation patterns in binning mostly
mirrored assembly-level marker gene copy recovery, as well as total redundancy, i.e., sum
of completeness and contamination scores, which was also predictive of MQ bin recovery
(adjusted R2 = 0.85, p << 0.05, Text S1, Fig. S9). While the slope (∼0.01) indicated an
approximately 100:1 relationship between total redundancy and MQ genome recovery, the
distance from the idealized line (i.e., y-intercept of 0, Fig. S9) indicated that the recovery
of genomes representing all community members was unlikely, even from this hybrid
assembly strategy. In summary, like marker gene beta-diversity, the integration of LR
correction and SR polishing of LR assemblies is crucial for maximizing the yield of quality
microbial genomes.

Gene fragmentation
Small-scale errors (i.e., insertions, deletions, and, to a lesser extent, substitutions) in LRs
are known issues that cause gene fragmentation in the resulting assemblies (Gounot et
al., 2022; Sereika et al., 2022; Stewart et al., 2019; Wick & Holt, 2022; Weirather et al., 2017;
Wick & Holt, 2021; Huang et al., 2021; Belser et al., 2018; Hu et al., 2020; Dohm et al., 2020;
Walker et al., 2014; Amarasinghe et al., 2020). Theoretically, as errors are fixed during the
iterative LR correction and/or SR polishing processes, then gene fragmentation should
decrease, resulting in fewer genes with more bps within them. In benchmarking studies,
this is often indirectly measured by comparing differences in gene counts or marker gene
inventories (i.e., completion scores), and some have already demonstrated that directly
assessing gene lengths works as a reasonable proxy for the accuracy of hybrid assemblies of
microbial (meta)genomes (Liu et al., 2022; Gounot et al., 2022; Meslier et al., 2022; Sereika
et al., 2022; Stewart et al., 2019; Wick & Holt, 2022; Zhang et al., 2023a; Wick et al., 2021;
Lee et al., 2021; Dohm et al., 2020). As a precursor to many downstream analyses, coding
gene identification with programs like Prodigal allows direct estimates of coding gene
lengths, while programs like IDEEL and BUSCO can estimate gene fragmentation by
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Figure 3 Stair plots of automated medium-quality or better (MQ) bin recovery for each bioreactor
and long read (LR) assembly throughout the iterative LR correction and short read (SR) polishing pro-
cesses. The two bioreactors are separated over vertical panels, the two LR assemblers are separated over
the horizontal panels. The LR correction and SR polishing iterations are spread across the x-axis so that
the ten SR polishing steps are immediately to the right of the respective preceding LR correction step. Each
colored line represents the proportion of the maximum observed value per combination of bioreactor and
assembler of one of the following characteristics MQ automated bins: the number of MQ bins recovered
(‘‘count’’), the mean completeness score of the bins estimated by CheckM (‘‘mean completeness’’), the
number of contigs in MQ bins (‘‘contigs’’), and the quantity of bps in MQ bins (‘‘bps’’). Matching color
diamonds indicate the LR correction and/or SR polishing stage with the maximum observed value for each
characteristic.

Full-size DOI: 10.7717/peerj.18132/fig-3

comparison to reference databases and are commonly used by benchmarking or other
comparative studies (Liu et al., 2022; Sereika et al., 2022; Stewart et al., 2019; Wick et al.,
2021; Belser et al., 2018; Lee et al., 2021; Krakau et al., 2022).

Gene fragmentation substantially decreased and plateaued during iterative error-fixing
processes. Analysis of coding genes showed substantial improvements in gene counts and
lengths, particularly in response to SR polishing (Text S1, Dataset S1, Fig. S10). This was
apparent for the entire assembly, and, to an even greater extent, circular and long contigs
that may represent essentially complete microbial sequences, and automated MQ bins
(Text S1, Dataset S1, Figs. S10 and S11). These patterns were matched by reductions in
fragmented marker genes found by BUSCO (Text S1, Dataset S1, Fig. S11), and were
robustly correlated to the proportion of coding genes within 5% of their nearest reference

Smith et al. (2024), PeerJ, DOI 10.7717/peerj.18132 13/28

https://peerj.com
https://doi.org/10.7717/peerj.18132/fig-3
http://dx.doi.org/10.7717/peerj.18132#supp-2
http://dx.doi.org/10.7717/peerj.18132#supp-1
http://dx.doi.org/10.7717/peerj.18132#supp-15
http://dx.doi.org/10.7717/peerj.18132#supp-2
http://dx.doi.org/10.7717/peerj.18132#supp-1
http://dx.doi.org/10.7717/peerj.18132#supp-15
http://dx.doi.org/10.7717/peerj.18132#supp-16
http://dx.doi.org/10.7717/peerj.18132#supp-2
http://dx.doi.org/10.7717/peerj.18132#supp-1
http://dx.doi.org/10.7717/peerj.18132#supp-16
http://dx.doi.org/10.7717/peerj.18132


Slope = 2.5*10−08

Coeff = 0.88
p = < 2.2*10−16

Slope = 1.7*10−08

Coeff = 0.92
p = < 2.2*10−16

Slope = 2.3*10−08

Coeff = 0.97
p = < 2.2*10−16

Slope = 1.7*10−08

Coeff = 0.99
p = < 2.2*10−16

1.00 1.25 1.50 1.75 1.00 1.25 1.50 1.75

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

O
xygen-Lim

ited B
ioreactor

N
itrogen-Lim

ited B
ioreactor

Total basepairs in genes (108)

P
ro

po
rti

on
 o

f g
en

es
 w

ith
in

 5
%

 o
f r

ef
er

en
ce

 le
ng

th

0 1 2 3 4 5 6 7 8 9 10
SR polishing:

Canu Flye

Figure 4 Linear correlation between calculated bps in genes and the proportion of genes on suffi-
ciently deeply (>1x) sequenced contigs estimated to be similar length to reference database entries us-
ing IDEEL for each bioreactor and long read (LR) assembly through. The two bioreactors are separated
over vertical panels, and the two LR assemblers are separated over the horizontal panels. Each point is col-
ored by the SR polishing iteration, with lines connecting the points from the same LR correction iteration,
all of which are partially transparent. The light blue solid lines and shaded regions are the linear regres-
sions for the displayed data and their 95% confidence intervals. Slopes, correlation coefficients (adjusted
R2) and p-values are displayed in the upper-left corner of each panel.

Full-size DOI: 10.7717/peerj.18132/fig-4

length determined using IDEEL (adjusted R2 =0.94, p-adj << 0.05, Text S1, Dataset S1).
However, the fraction of these genes was low and reached only ∼25% of the total coding
genes (Text S1, Dataset S1, Fig. S12). The removal of contigs with low SR depth (<1x)
drastically improved this to ∼50% (Text S1, Dataset S1), which was on par with SR-alone
and SR-first hybrid assemblies and remained robustly correlated with IDEEL scores
(adjusted R2 =0.94, p-adj <<0.05, Fig. 4, Text S1, Dataset S1, Fig. S13). As expected based
on both the theory behind the iterative error-fixing processes and most published studies
assessing this information (Liu et al., 2022; Meslier et al., 2022; Sereika et al., 2022; Stewart
et al., 2019; Wick & Holt, 2022; Zhang et al., 2023a; Wick et al., 2021; Lee et al., 2021; Dohm
et al., 2020), gene fragmentation was improved primarily due to the first few iterations of
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SR polishing. However, we show here the feasibility of estimating this from coding gene
contents alone without the requirement of comparison to reference sequences.

Short read recruitment
Multiple iterations of LR correction and SR polishing are often performed in benchmarks
and published studies with the expectation that newly fixed errors allow different read
pools to align. Theoretically, SR recruitment will reach a stable maximum as the assembly
approaches high accuracy because fewer errors are fixed in each iteration, leading to fewer
changes in read alignment. Several studies have already shown a relationship between
microbial (meta)genome quality and read recruitment (Liu et al., 2022;Meslier et al., 2022;
Sereika et al., 2022; Tao et al., 2022; Wick & Holt, 2022; Wick et al., 2021; Dohm et al., 2020;
Clark et al., 2013). For example, ALE was developed to use SR alignments to assess assembly
quality, though its negative log-likelihood outputs are not intuitive and limits comparability
between studies. In contrast, other SR alignment information, for example the proportion
of aligned SR, total SR bps recruited, or SR ambiguity, is generally intuitive to interpret
and may be comparable between studies.

Consistent with expectations and gene fragmentation results, SR recruitment increased
greatly due to SR polishing and then saturated after the first few iterations. While LR
correction caused little change, there were substantial improvements during SR polishing
including the proportion of total reads and bps, total read count and bps, read ambiguity,
and contigs lacking aligned SR (Fig. 5, Dataset S1, Text S1). These results were consistent
with many studies that have demonstrated that the greatest improvements occur within the
first few iterations of SR polishing, with at least two rounds necessary (Singleton et al., 2021;
Jin et al., 2022; Zhang et al., 2023b; Meslier et al., 2022; Sereika et al., 2022; Stewart et al.,
2019; Tao et al., 2022;Wick & Holt, 2022;Wick et al., 2021;Damme et al., 2021; Kolmogorov
et al., 2020; Dohm et al., 2020; Walker et al., 2014). Furthermore, the proportion of total
SR bps recruited was robustly correlated with the inverse relative ALE score (adjusted
R2 =0.87, p-adj <<0.05, Dataset S1, Fig. S14), indicating that SR recruitment alone
was predictive of assembly quality. Similar to gene fragmentation, the ALE scores were
drastically improved by the removal of contigs with low SR depth (<1x), which resulted in
SR-polished LR assemblies achieving rawALE scores similar to SR-alone and SR-first hybrid
assemblies (Dataset S1, Fig. S15). Overall, SR polishing led to the greatest improvements
in SR recruitment, and simple SR alignment statistics appear to be reliable indicators of
assembly quality without the requirement of further complex computations.

DISCUSSION
Correction and polishing iterations affect gene- and genome-centric
community reconstructions
Hybrid assembly approaches, leveraging the complementary, beneficial attributes of both
LR and SR sequencing platforms to overcome their limitations, are already being used
to study microbial communities in various environments (Overholt et al., 2020; Singleton
et al., 2021; Bertrand et al., 2019; Liu et al., 2022; Ye et al., 2022; Ravi et al., 2022; Gounot
et al., 2022; Van Goethem et al., 2021; Jin et al., 2022; Zhang et al., 2023b; Meslier et al.,
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Figure 5 Polar coordinate plot of short read (SR) recruitment for each bioreactor and long read (LR)
assembly throughout the iterative LR correction and SR polishing processes. The two bioreactors are
separated over vertical panels, and the two LR assemblers are separated over the horizontal panels. Each
panel shows a polar coordinate plot of the LR correction or SR polishing iteration in a circle with the per-
centage of total bps in recruited SR as the distance from the center. The innermost ten points (due to
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number of LR correction steps preceding SR polishing. The size of the points indicates the fraction of SR
that were ambiguously recruited, i.e., SR aligning to 2 or more position.

Full-size DOI: 10.7717/peerj.18132/fig-5

2022; Sereika et al., 2022; Stewart et al., 2019; Brown et al., 2021; Tao et al., 2022). Due
to the ability to achieve greater contiguity, assembly of LRs offers a major advantage
over SR data alone. However, it comes at the cost of lower accuracy and necessitates
the use of additional steps to improve the reliability of the assemblies (Overholt et al.,
2020; Ye et al., 2022; Van Goethem et al., 2021; Meslier et al., 2022; Brown et al., 2021; Wick
& Holt, 2022; Zimin & Salzberg, 2020; Wick et al., 2021; Wick & Holt, 2021; Wick, Judd &
Holt, 2019; Chen, Erickson & Meng, 2020). Most studies performing benchmarking or
comparison of community reconstructions applied different methods in their hybrid
assembly approaches, and the biological and technical complexity of microbial community
metagenomes probably limits the implementation of uniform methods across different
studies. The iterative process of LR correction and SR polishing to improve the quality of
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LR assemblies is one of the most inconsistently applied methods during hybrid assembly,
and is likely both dataset- and tool-dependent.

Few studies have explored the impacts of these iterative processes, despite being
implemented by most of them. Generally, the consensus appears to be that while SR
polishing offers the greatest improvements, some LR correction is advantageous, and
both offer diminishing returns with increasing iterations (Stewart et al., 2019; Wick &
Holt, 2022; Zimin & Salzberg, 2020; Huang et al., 2021; Hu et al., 2020; Mak et al., 2023;
Zablocki et al., 2021; Lee et al., 2021). Substantial amounts of changes still occur even after
10 iterations of SR polishing (Fig. S16), but it is unclear if these changes are beneficial or
detrimental, possibly resulting in collapsing of real variation. However, it has not been
clearly demonstrated that they affect community reconstruction, and therefore also impact
downstreammicrobial metagenome analysis and interpretation. Here, we first showed that
beta diversity clustering substantially changed during these iterative processes, which was,
as far as we know, the first demonstration of this phenomenon. We further showed that
genome recovery was also impacted by these processes. Together, these demonstrated that
endpoints of these LR correction and SR polishing have a significant impact on community
reconstruction from metagenomic datasets. Fortunately, the results here followed similar
patterns with each other, and also mirrored published studies comparing different aspects
of hybrid assembly across multiple tools and over several iterations (Overholt et al., 2020;
Singleton et al., 2021; Liu et al., 2022; Gounot et al., 2022; Zhang et al., 2023b; Sereika et al.,
2022; Stewart et al., 2019; Brown et al., 2021; Tao et al., 2022; Wick & Holt, 2022; Zhang et
al., 2023a; Wick et al., 2021; Huang et al., 2021; Vaser et al., 2017; Chen, Erickson & Meng,
2021; Damme et al., 2021; Belser et al., 2018; Hu et al., 2020; Mak et al., 2023; Zablocki et
al., 2021; Lee et al., 2021). However, there is not only substantial methodological variation
between approaches published and performed here, but also biological variation between
each dataset which limits the application of a standardized methodology for hybrid
metagenomic assembly of microbial communities. Therefore, we posit that each dataset
needs to be empirically evaluated to determine the optimal hybrid assembly approach.

Simple, reference-independent assembly characteristics as proxies
for the quality of hybrid assemblies of microbial community
metagenomes
Hybrid assembly of microbial community metagenomes is complicated by the lack of
a clear assessment strategy for assembly quality. The most common assembly quality
metrics include estimates of mis-assemblies and contiguity, but these characteristics either
require high-quality reference genomes that may not be available for poorly characterized
ecosystems, or would not change during LR correction or SR polishing (Ye et al., 2022;
Sereika et al., 2022; Wick & Holt, 2022; Zhang et al., 2023a; Wick et al., 2021; Wick & Holt,
2021; Huang et al., 2021; Vaser et al., 2017; Chen, Erickson & Meng, 2021; Belser et al., 2018;
Hu et al., 2020; Chen, Erickson & Meng, 2020; Kolmogorov et al., 2020; Lee et al., 2021; Dida
& Yi, 2021). We note that in a clustering analysis of the results from commonly used tools,
assemblies grouped by the strategy used to generate them as well as the analyses themselves
(Dataset S1, Fig. S17). SR-first and LR-first hybrid assemblies migrate towards each other,
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i.e., become more similar in these statistical snapshots, which appears largely driven by the
results from analysis of automated bin recovery, gene fragmentation, and SR recruitment
analyses. Therefore, assembly characteristics appropriate for a microbial community may
need to be both dataset- and assembly strategy-dependent.

Here, to help optimize hybrid assembly of uncharacterized microbial community
metagenomes, several assembly characteristics were tracked during the iterative processes
of LR correction and SR polishing to help determine suitable proxies for assembly quality.
Specifically, gene fragmentation and SR recruitment were focused on because these features
have already been proposed as suitable proxies for hybrid assembly of microbial genomes
(Liu et al., 2022; Meslier et al., 2022; Sereika et al., 2022; Stewart et al., 2019; Wick & Holt,
2022;Wick et al., 2021; Zablocki et al., 2021;Dohm et al., 2020). These simple characteristics
followed patterns consistent with many benchmarking and comparative studies (Liu et al.,
2022; Sereika et al., 2022; Stewart et al., 2019; Wick & Holt, 2022; Wick et al., 2021; Huang
et al., 2021; Vaser et al., 2017; Chen, Erickson & Meng, 2021; Damme et al., 2021; Belser et
al., 2018;Hu et al., 2020;Mak et al., 2023; Zablocki et al., 2021; Zablocki et al., 2021): (1) LR
correction improved the accuracy of the assemblies, which was not always apparent until
after SR polishing; (2) the greatest improvements occurred within the first three iterations
of SR polishing; (3) beyond five iterations, neither LR correction nor SR polishing offered
observable improvements. Furthermore, the number of coding genes and the bps within
them were robustly correlated with profiles produced by IDEEL, and SR recruitment was
robustly correlated with ALE scores, which demonstrated their value as assembly quality
proxies without the need for further computational analyses. Additionally, coding gene
and SR recruitment characteristics followed similar patterns as automated bin recovery
and marker gene beta diversity trajectories, and therefore are suitable to estimate the
point at which community reconstruction will not change substantially between iterations,
representing appropriate endpoints of the iterative correction and polishing processes.
Thus, these simple, reference-independent assembly characteristics are reliable means to
assessing assembly accuracy and can be used to empirically optimize hybrid assemblies of
uncharacterized microbial community metagenomes.

Unexplored factors and limitations of this study
The approach in this study was not without issue, and we therefore describe expected
deviations from our approach that may be necessary for certain users or datasets.

First, while recent technological advances in LR sequencing will ease LR integration
into hybrid metagenomic assembly of microbial communities, this study was performed
using older sequencing chemistry and basecalling algorithms. Some differences remain,
but both major LR platforms, Pacific Biosciences (PacBio) and Oxford Nanopore
Technologies (ONT) have achieved large improvements in chemistry and basecalling
that have increased sequencing depth and accuracy (Liu et al., 2022; Meslier et al., 2022;
Sereika et al., 2022; Wick, Judd & Holt, 2019; Dohm et al., 2020; PacBioRevio, 2023; Oxford
Nanopore Technologies, 2023a). As a result of these LR sequencing advances, LR-alone
assemblies can be sufficient for retrieving HQ genomes without SR polishing (Sereika
et al., 2022; Zhao et al., 2023). However, resources may restrict users to older and more
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accessible technologies, or projects may already have older datasets that still need analyses
integrating short- and long-read technologies. Additionally, for the foreseeable future,
SR complements to LR datasets will likely continue to increase the sample count for
differential coverage binning. Furthermore, SRs still appear to aid assembly accuracy for
high-quality microbial genomes reconstructed from LR (Sereika et al., 2022; Zhang, Jain &
Aluru, 2020). Therefore, combining both sequencing technologies will remain attractive as
a cost-effective approach yielding the highest quality data compared to any single platform
(Sereika et al., 2022).

Second, the myriad of programs and pipelines to process LRs, including basecalling,
read correction, assembly, assembly correction, SR recruitment and polishing, and more,
continuously improve and expand (Bertrand et al., 2019; Liu et al., 2022; Brown et al., 2021;
Wick & Holt, 2022; Zhang et al., 2023a; Zimin & Salzberg, 2020; Wick et al., 2021; Wick &
Holt, 2021; Wick, Judd & Holt, 2019; Huang et al., 2021; Vaser et al., 2017; Damme et al.,
2021; Hu et al., 2020; Mak et al., 2023; Kolmogorov et al., 2020; Koren et al., 2017; Firtina
et al., 2020; Zeng et al., 2020; Lee et al., 2021; Li, 2016; Antipov et al., 2016; Hu et al., 2021;
Huang et al., 2022; Warren et al., 2019; Dohm et al., 2020; Oxford Nanopore Technologies,
2023b; Nurk et al., 2017; Walker et al., 2014; Zhang et al., 2020; Amarasinghe et al., 2020;
Krakau et al., 2022; Kundu, Casey & Sung, 2019; Shafin et al., 2021; Oxford Nanopore
Technologies, 2023c; Huang, Liu & Shih, 2021; Ruan & Li, 2020; Shafin et al., 2020; Vaser &
Šikić, 2021; Chen et al., 2021; Hu et al., 2023; Pagès-Gallego & De Ridder, 2023; Konishi et
al., 2021; Xu et al., 2021; Lv et al., 2020; Miculinić, Ratković & Šikić, 2019). To reasonably
perform this study and analyze the results, only two assembly, one LR correction, and one
SR polishing programs were tested, thus introducing technical variation during assembly
but limiting it during LR correction and SR polishing. These programs were chosen largely
based on their observed prevalence in literature and online resources, but we acknowledge
that, in particular, Racon and Pilon may be outcompeted by others that yield better results
(Wick & Holt, 2022; Zimin & Salzberg, 2020; Huang et al., 2021; Hu et al., 2020; Mak et
al., 2023; Firtina et al., 2020; Lee et al., 2021; Hu et al., 2021; Warren et al., 2019; Kundu,
Casey & Sung, 2019; Shafin et al., 2021; Oxford Nanopore Technologies, 2023c; Huang, Liu
& Shih, 2021; Ruan & Li, 2020). Still, the programs we used are also dataset agnostic,
and have relatively minimal computational requirements in contrast to tools that are
dataset-dependent or demand advanced/specific computational capacities, making them a
relatively universal option. For several available LR or hybrid assembly programs, Racon or
Pilon are already implemented (Wick et al., 2017; Huang et al., 2021; Damme et al., 2021),
indicating their value to the field even though other tools or combinations may yield more
accurate assemblies. We further note that each of these computational tools also comes
with a suite of settings to fine-tune performance that were not explored here.

Third, we did not separate contig pools for some analyses in order to simplify the
workflow. Specifically, in this workflow large circular or linear contigs that likely constituted
nearly complete genomes were not removed from the assemblies prior to LR correction
or SR polishing. This simplification might result in the introduction of errors, derived
particularly from SR that ambiguously align to conserved regions within different strains.
However, SR ambiguity decreased during the iterative error-fixing processes, presumably
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due to the availability of multiple, more accurate sequences to differentially recruit
ambiguous reads after each iteration of SR polishing.

Fourth and lastly, we acknowledge that time points of biomass collection for DNA
isolation and sequencing with the different platforms were separated by several months.
Though largely stable after enrichment for over five years, the communities in these
bioreactors still shift slowly, likely largely due to strains competing for the same niches,
which will be examined in follow-up studies. These differences could impact ideal
integration of the LR and SR datasets if strains substantially shifted in abundance, leading
to improper error-fixing events and possibly producing inaccurate consensus genomes
rather than a realistic strain representation.

CONCLUSIONS
Integrating LR and SR sequencing platforms for hybrid assembly of microbial community
metagenomes is challenging due to both biological and technical complexities. Benchmarks
and comparative studies seeking to maximize high-quality data yields by combining these
technologies have led to some consensus in the approach, but it is possible that direct
replication of the methods may not serve all datasets equally well. More specifically,
here we have shown that the iterative process of resolving errors in LR assemblies has a
substantial impact on the community reconstruction, which may not have been observed,
or even observable, in benchmarks. Additionally, we have demonstrated that coding
gene contents and SR recruitment are simple, reference-free assembly characteristics that
are both sensitive to changes made during iterative correction and polishing process.
Furthermore, these can serve as reliable indicators of community reconstruction ability
because they were also robustly correlated to complex, reference-dependent analyses of
assembly quality. Rather than informing the field on the ‘‘best’’ approach for all datasets,
we encourage users correcting and/or polishing LR assemblies to use coding gene contents
(counts, lengths, or bps in them) and/or SR recruitment (proportion of total reads, total bps
in reads, or ambiguous alignments) to help empirically determine the optimal endpoints
of the iterative processes.
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