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Wheat is a crucial cereal crop facing climate change and population growth challenges.
Maintaining genetic diversity is vital for breeding drought-tolerant cultivars. This study
assessed the genetic diversity and drought response of diverse wheat cultivars and their
corresponding F1 crosses compared to well-watered conditions. The molecular proûling
was conducted utilizing ISSR and SCoT markers. In total of 76 loci were ampliûed using
ISSR and SCoT-PCR primers, out of which 28 were polymorphic and 48 were monomorphic.
A statistically signiûcant eûect of parental genotypes and their crosses was observed on all
investigated agro-morphological traits, including root length, root weight, shoot length,
shoot weight, proline content, spikelet number / spike, spike length, grain number / spike,
and grain weight/spike. The evaluated genotypes were classiûed based on their agronomic
performance under drought stress into distinct groups ranging from drought-tolerant
genotypes (group A) to drought-sensitive ones (group C). The genotypes P5, P2×P5, and
P3×P5 were identiûed as promising genotypes to improve agronomic performance under
water deûcit conditions. The results demonstrated genotypic variations for drought
tolerance and highlighted the potential of ISSR and SCoT markers in wheat breeding
programs for developing drought-resistant cultivars.
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19 Abstract

20 Wheat is a crucial cereal crop facing climate change and population growth challenges. 

21 Maintaining genetic diversity is vital for breeding drought-tolerant cultivars. This study assessed 

22 the genetic diversity and drought response of diverse wheat cultivars and their corresponding F1 

23 crosses compared to well-watered conditions. The molecular profiling was conducted utilizing 

24 ISSR and SCoT markers. In total of 76 loci were amplified using ISSR and SCoT-PCR primers, 

25 out of which 28 were polymorphic and 48 were monomorphic. A statistically significant effect of 

26 parental genotypes and their crosses was observed on all investigated agro-morphological traits, 

27 including root length, root weight, shoot length, shoot weight, proline content, spikelet number / 

28 spike, spike length, grain number / spike, and grain weight/spike. The evaluated genotypes were 

29 classified based on their agronomic performance under drought stress into distinct groups 

30 ranging from drought-tolerant genotypes (group A) to drought-sensitive ones (group C). The 

31 genotypes P5, P2×P5, and P3×P5 were identified as promising genotypes to improve agronomic 

32 performance under water deficit conditions. The results demonstrated genotypic variations for 

33 drought tolerance and highlighted the potential of ISSR and SCoT markers in wheat breeding 

34 programs for developing drought-resistant cultivars.

35 Keywords: abiotic stress, cereal crops, drought, ISSR markers, molecular diversity, SCoT 

36 markers 

37
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38 1. Introduction

39 Bread wheat (Triticum aestivum L.) is an important staple crop, providing a significant 

40 portion of the daily caloric intake for a large part of the global population) Alomari et al., 2023). 

41 As a hexaploid species, it possesses three sets of related ancestral genomes, each containing 14 

42 chromosomes, resulting in a total of 42 chromosomes (2n = 6x = 42) (Venske et al., 2019). 

43 Climate change is predicted to significantly affect the environment through various 

44 factors, including altered rainfall patterns, temperature fluctuations, increased salinity, reduced 

45 soil fertility, heightened biological stress, escalating pollution levels, and a concerning decline in 

46 biodiversity (Fawzy et al., 2020). These multifaceted environmental changes present a significant 

47 threat to crop production, as plant growth and development are intricately influenced by the 

48 complex interplay of these factors (Chaudhry and Sidhu, 2022). Wheat production faces a 

49 significant challenge in water scarcity, which is increasingly becoming a critical issue in many 

50 wheat-growing regions worldwide. Climate change and population growth are predicted to 

51 exacerbate water shortage, potentially leading to devastating reductions in wheat productivity 

52 (Pequeno et al., 2024; Rezaei et al., 2023). In light of these challenges, assessing wheat genetic 

53 resources for future utilization is of paramount importance (Guzzon et al., 2022). Moreover, 

54 integrating pre-breeding materials and existing cultivars into genomics-assisted breeding 

55 programs offers immense potential for improving the productivity of wheat varieties (Rasheed et 

56 al., 2017). Consequently, developing drought-tolerant bread wheat genotypes and maintaining 

57 and enhancing wheat production, which relies on harnessing its genetic diversity, is crucial to 

58 ensure global food security in these emerging threats.

59 Recent advancements in molecular biology have resulted in the developing DNA 

60 markers, like Inter simple sequence repeat (ISSR), which offer valuable tools for investigating 

61 genetic diversity within crop germplasm collections (Abdelghaffar et al., 2023; Al-Khayri et al., 

62 2023; Al-Khayri et al., 2022). ISSRs target regions flanking short microsatellites, tandem repeats 

63 of DNA sequences situated nearby and oriented in opposite directions. Amplification of these 

64 flanking regions is achieved through PCR (polymerase chain reaction) using either a single 

65 primer or a set of primers. The primer design incorporates SSR motifs anchored at the 5' or 3' 

66 end, typically consisting of 1-4 pyrimidine or purine residues (Bornet and Branchard, 2001)]. 

67 Moreover, Start Codon Targeted (SCoT) markers offer a reproducible and dominant approach 

68 for genetic analysis. SCoT employs a single 18-mer primer targeting the conserved sequence 

69 flanking the ATG translation start codon in plant genes. This method necessitates an annealing 

70 temperature as low as 50°C (Collard and Mackill, 2009). Both ISSR and SCoT polymorphisms 

71 have proven valuable in characterizing cultivars, differentiating genetic resources, and 

72 introducing marker-assisted selection in various plant species (Abdelghaffar et al., 2023; Al-

73 Ghamedi et al., 2023; Al-Khayri et al., 2023; Atsbeha et al., 2023; Essa et al., 2023a; Essa et al., 

74 2023b; Golkar and Nourbakhsh, 2019; Gupta et al., 2017).

75 This study explored the genetic diversity of 15 wheat genotypes, including ten recently 

76 developed crosses and their five corresponding parental lines. ISSR and SCoT markers were 

77 employed alongside agro-morphological traits to assess genetic variation. We hypothesize that 

78 genotypes with high genetic diversity will be prioritized for breeding programs aimed at 

79 developing wheat cultivars adaptable to diverse climatic conditions. The combination analysis of 

80 both molecular and agro-morphological markers will enhance understanding of the genetic 

81 variability within the germplasm under study.
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82

83 2. Materials and Methods

84 2.1. Plant materials and experimental treatment

85 Five wheat genotypes were utilized in this study (Table 1). A half-diallel mating design 

86 (5×5) produced 10 F1 hybrids during the winter season of 2020�2021. The genotypes of the 

87 parents and their offspring were assessed in field conditions at Experimental Farm of Faculty of 

88 Agriculture belongs to Zagazig University, Egypt (30°352153 N, 31°302073 E, 16 m asl) under 

89 ordinary growing conditions during the growing season of 2021 to 2022. The experimental site 

90 has an arid climate and receives low precipitation with an average annual rainfall of 

91 approximately 55 mm. The experiment was carried out in three replicates using a completely 

92 randomized design. The assessed genotypes (parents and F1 crosses) were represented by fifteen 

93 seeds planted in pots containing 10 kg of soil. After 15 days, the number of plants per pot was 

94 reduced to ten through thinning. Phosphorus and potassium fertilizers were applied as basal 

95 doses with a rate of 30 mg P2O5 per kg of soil for superphosphate and 50 mg K2O per kg of soil 

96 for potassium sulfate. Nitrogen fertilizer was applied in three installments at a rate of 80 mg N 

97 per kg of soil using ammonium sulfate. These installments were done at 20, 35, and 50 days after 

98 sowing, along with irrigation water. Intercultural practices such as weeding were performed as 

99 needed to maintain optimal growing conditions. To induce drought stress, the irrigation schedule 

100 for the pots was adjusted. The stressed pots received water once a week, while the control well-

101 watered pots were irrigated every three days. Soil water tension was measured using a 

102 tensiometer to maintain appropriate irrigation levels for both the well-watered and stressed pots 

103 were maintained.

104 2.2. Extraction of genomic DNA

105 In this experiment, 100 grams of young wheat leaves were employed for the extraction of 

106 genomic DNA utilizing a modified CTAB-based protocol (Doyle, 1991; Scobeyeva et al., 2018). 

107 The quantity and purity of the extracted DNA were assessed using a NanoDroP2000 

108 spectrophotometer (Thermo Scientific�, Waltham, MA, USA). The DNA concentration was 

109 adjusted to 50 ng/¿L, and the isolated DNA was stored at -20°C for subsequent amplification 

110 procedures.

111 2.3. Inter-Simple Sequence Repeats (ISSR-PCR)

112 Genetic polymorphism analysis of wheat cultivars and their F1 hybrids was conducted 

113 utilizing Inter simple sequence repeat (ISSR)-PCR. Primers for the analysis were presented in 

114 Table 2. The PCR protocol followed the methodology established by Moreno et al. (1998). Each 

115 reaction mixture, with a volume of 25 ¿L, contained the following components: 2 ¿L of 5x 

116 reaction buffer, 20 ng/¿L of template DNA, ¿L of 200 ¿M dNTPs, 2 ¿L of 25 mM MgCl2, 22 

117 ¿L of primer (10 pmol), and 1 unit of Taq DNA polymerase (Promega). The thermocycling 

118 protocol commenced with an initial denaturation step at 94°C for 5 minutes, followed by 35 

119 amplification cycles. Each cycle comprised denaturation at 94°C for 1 minute, annealing at a 

120 primer-specific temperature for 1 minute and extension at 72°C for 1 minute. The procedure 

121 concluded with a final extension at 72°C for 5 minutes..

122

123 2.4. Start Codon Targeted (SCoT) amplification
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124 A 25 ¿L PCR amplification was conducted utilizing a SCoT-PCR based marker system. 

125 The reaction mixture consisted of ten ¿L of GoTaq Green-Master Mix, one ¿L of template DNA, 

126 one ¿L of primers, and nuclease free water to achieve a final volume of 25 ¿L. Thermal cycling 

127 was carried out using an Applied-Biosystems thermal cycler with the following protocol: initial 

128 denaturation at 94°C for 5 mins, followed by 30 cycles of denaturation at 94°C for 1 minute, 

129 annealing at 50°C for 1 minute, and extension at 72°C for 1 minute.

130 2.5. Gel electrophoresis

131 The amplified products from ISSR and SCoT reactions were separated on 1% agarose gels 

132 and visualized using ethidium bromide (MP Biomedicals, Goddard Irvine, CA, USA) staining in 

133 TBE buffer (pH 8.5). DNA fragment sizes were estimated using a 1 kbp DNA ladder. 

134 2.6. Agro-morphological characterization

135 After 60 days from cultivation, measurements were taken for ), shoot length (cm), root 

136 length (cm), shoot fresh weight (g), shoot dry weight (g), root fresh weight (g), and root dry 

137 weight (g). The proline content in the plant samples was assessed as follows: 0.5 g of leaves 

138 were ground and mixed with ten mL of 3% aqueous sulfosalicylic-acid to create an extract. After 

139 filtration through filter paper, two mL of this extract were combined with two mL of acid 

140 ninhydrin-reagent and two mL of glacial-acetic acid. The mixture was heated at 100°C for 1 

141 hour, followed by rapid cooling on ice. To extract the proline, 4 mL of toluene were added to the 

142 reaction mixture, and the resulting supernatant was used for proline determination. Absorbance 

143 was measured at 520-nm employing a spectrophotometer with toluene used as the blank (Bates et 

144 al., 1973). Additionally, the experiment recorded the number of spikelets / spike, spike length 

145 (cm), number of grains / spike, and grain weight /  spike.

146 2.7. Data analysis

147 Using molecular markers, this study explored the genetic diversity and relatedness of wheat 

148 genotypes and crosses. Specific PCR loci based on SCot and ISSR techniques were employed. 

149 Each locus was classified as either absent (0) or present (1) and all loci were regarded as 

150 independent variables. Genetic diversity was assessed by analyzing the banding patterns 

151 generated from the PCR amplifications across all genotypes. The polymorphism level, a measure 

152 of genetic variation, was determined by dividing the number of loci exhibiting polymorphism 

153 (different banding patterns) by the total number of scored loci. Genetic similarities among the 

154 wheat cultivars and hybrids were computed using Dice's coefficient (Dice, 1945). This 

155 coefficient was determined utilizing SPSS software (Noru�is, 1993). A clustering analysis was 

156 subsequently performed to generate a dendrogram depicting the phylogenetic relationships 

157 among the genotypes (Rokach and Maimon, 2005). The dendrogram, principal component, and 

158 heatmap analyses were applied R programming. Statistically significant differences between the 

159 evaluated wheat genotypes were identified employing least significant difference (LSD) test at P 

160 < 0.01.

161 3. Results

162 3.1. Molecular analyses

163 The genetic diversity analysis among the developed crosses and their parental genotypes 

164 was assessed via ISSR and SCoT molecular markers using six ISSR primers and two SCoT 

165 primers (Figure 1). Seventy-six loci were detected using ISSR and SCoT-PCR primers screened 

PeerJ reviewing PDF | (2024:07:103277:0:0:CHECK 7 Jul 2024)

Manuscript to be reviewed

hendm
Cross-Out

hendm
Comment on Text
10

hendm
Comment on Text
2

hendm
Comment on Text
2

hendm
Comment on Text
spikes and grains  at 60 days old plants?

hendm
Comment on Text
among the studied wheat genotypes!

hendm
Comment on Text
Using R software ! (R version used)

hendm
Comment on Text
Version?



166 in 15 genotypes (Table 2). The amplified loci/primer was 9.5. Among 76 ISSR and SCoT-PCR 

167 loci, 28 were polymorphic (9.5/primer), and 48 were monomorphic (6/primer). Polymorphism 

168 ranged from 58.3% (ISSR3) to 23% (SCoT2), averaging 36.36%. The lowest genetic distance 

169 (1.41) was observed between P1×P4 vs. P4×P5, as well as P3×P5 vs P4×P5. This suggests a 

170 close genetic similarity between these populations. Conversely, the highest genetic distance 

171 (3.61) was detected between P2×P4 vs  P2×P5, indicating greater genetic divergence (Table 4). 

172 The Dice coefficient was employed to analyze similarity matrices constructed from data obtained 

173 with eight primers. According to Table 5, the highest similarity (0.975) was observed between 

174 P4×P5 and P1×P4, whereas the lowest similarity (0.818) was found between P2×P5 and P2. 

175 These findings may be useful for understanding the genetic relationships between different wheat 

176 populations and informing breeding programs.

177 3.2. Phylogeny Analysis

178 The clustering analysis based on ISSR and SCoT banding profiles grouped the evaluated 

179 wheat genotypes into five groups A-E (Figure 2). Cluster A included only P2×P5, while B 

180 contained P1, and C comprised P2. Besides, Group D contained four genotypes P1×P2, P1×P3, 

181 P1×P5, and P3×P4. Finally, cluster E comprised eight genotypes P4, P3, P2×P3, P2×P4, P5, 

182 P1×P4, P3×P5, and P4×P5.

183 3.3. Agro-morphological traits 

184 The performance of the studied wheat genotypes and their corresponding F1 crosses for 

185 agro-morphological traits under both drought and well-watered conditions is illustrated in 

186 Figures 3 to 5. Differences between the assessed genotypes were observed for all studied 

187 attributes. P1 and P3 exhibited high shoot fresh and dry weights under well-watered conditions 

188 which was reflected in the performance of their F1 crosses P1×P3, P1×P2, P3×P5, and P2×P3 

189 (Figure 3). Moreover, under drought stress, P5, P3×P5, and P4×P5 showed superior performance 

190 compared to well-watered conditions, suggesting that the genes controlling these traits were 

191 passed from the parents to the offspring. The greatest root fresh and dry weights under water 

192 deficit were achieved by P5 (Orabi-1881) and its F1 crosses P2×P5 and P3×P5 (Figure 3), 

193 highlighting the significance of these crosses in breeding programs. 

194 Drought significantly reduces overall wheat growth, which is evident in the substantial 

195 reduction in plant height for most genotypes. P1, P3, and their cross P1×P3 showed high shoot 

196 length under normal conditions (Figure 4). Under water deficit conditions, P3, P5, P3×P5, and 

197 P1×P3 performed best for shoot length. P5 and P2×P5 maintained shoot and root length under 

198 both conditions. Root length values of P5, P4×P5, P3×P5, and P3×P4 were higher under drought 

199 than under well-watered conditions (Figure 4). All genotypes showed significantly higher proline 

200 accumulation under drought stress. P2 had the highest proline content under drought and the 

201 lowest under well-watered conditions, while P3 had the opposite (Figure 4).

202 P2×P3, P3×P5, P3, and P3×P4 had the highest mean spike length under normal 

203 conditions, while P1×P5 and P1 had the lowest values (Figure 5). On the other hand, under 

204 drought conditions, P1 spike length was less affected compared to P2, P4, and P2×P4. P3×P5 

205 possessed the uppermost number of spikelets per spike under both conditions, while P2 had the 

206 lowest number. P3, P1×P4, and P3×P4 showed the highest grain number per spike under well-

207 watered conditions, while P1×P5 and P2 showed the lowest. Otherwise, P5, P2×P5, P3×P5, and 

208 P3×P4 exhibited the greatest grain number per spik under drought stress. Moreover, P5, P3×P4, 

209 P2×P5, and P4×P5 had the highest grain weight per spike. Conversely, P3, P1×P3, P1×P5, and 
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210 P4 showed the lowest grain weight per spike under drought, indicating their sensitivity to 

211 drought.

212 3.4. Genotypic classification

213 The data obtained from agro-morphological characters were employed to illustrate the 

214 relatedness among the tested wheat genotypes based on their agronomic performance under 

215 drought stress (Figure 6). The analysis grouped wheat genotypes into three distinct clusters (A-

216 C). Group A included three genotypes: P5, P2×P5, and P3×P5, which exhibited the best 

217 performance under drought stress, identifying them as highly drought-tolerant. Group B 

218 consisted of six genotypes: P4×P5, P1, P1×P3, P3, P3×P4, and P2×P3, which showed 

219 intermediate tolerance to drought stress. This indicates that these genotypes possess moderate 

220 drought resilience. Group C comprised six genotypes: P1×P5, P2, P1×P4, P4, P1×P2, and 

221 P2×P4, which demonstrated the lowest tolerance to drought stress. These genotypes are 

222 considered drought-sensitive. This clustering provides valuable insights for selecting genotypes 

223 for breeding programs to improve wheat drought tolerance.

224 3.5. Association among assessed genotypes and evaluated characters

225 Principal component analysis was performed to illustrate the association among agro-

226 morphological attributes of the wheat crosses and their parental genotypes. The first two PCs 

227 displayed the most variance registering around 85.08% (62.36% and 22.72% for PC1 and PC2 in 

228 the same order), and were used to construct the PC-biplot (Figure 7). PCA1 effectively 

229 categorized the assessed genotypes into groups depending on their position on the positive or 

230 negative side. The genotypes on the positive side of PCA1 were associated with high 

231 performance, particularly P5, P3×P  5, P2×P5, P3×P4, P  2×P3, P4×P5, and P1. Conversely, the 

232 genotypes on the negative side of PCA1 exhibited inferior performance, remarkably P1× P5, P2, 

233 P  1×P4, P1×P2, and P2×P4. Yield-contributing traits showed a strong positive correlation with 

234 root characteristics. Moreover, heatmap based on the agro-morphological attributes characterized 

235 the genotypes into distinct groups (Figure 8). Using a color scale under drought stress, the 

236 heatmap analysis illustrated the relationship between the assessed genotypes and the studied 

237 traits. High values of measured agronomic characteristics were displayed in blue, while low 

238 values were shown in red. The genotypes P5, P3×P5, P2×P5, P2×P3, P3×P4, and P4×P5 

239 exhibited greater values for all agronomic attributes corresponding to blue color in the heatmap. 

240 Otherwise, genotypes P1×P5, P2, P1×P4, P1×P2, and P2×P4 had the lowest values, expressed in 

241 red under water deficit conditions.

242 4. Discussion

243 Genetic diversity analysis employing molecular markers and agro-morphological 

244 characterization is fundamental for wheat breeding programs to develop new stress-tolerant 

245 genotypes (Bapela et al., 2022)The present study underscored the importance of assessing 

246 molecular and agro-morphological diversity in wheat genotypes and their corresponding crosses 

247 to improve drought tolerance in breeding programs. Under varying conditions, the observed 

248 performance differences among evaluated genotypes provided crucial insights into the genetic 

249 factors influencing these traits. This knowledge is instrumental in selecting superior genotypes 

250 for future breeding efforts, thereby enhancing the effectiveness of breeding programs.

251 The genetic diversity analysis utilizing ISSR and SCoT molecular markers (36.36% on 

252 average) suggested moderate genetic diversity among the wheat genotypes. The lowermost 
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253 genetic distance (1.41) was detected between several cross combinations, indicating close 

254 genetic relationships. The uppermost genetic distance (3.61) was detected between P2×P4 and 

255 P2×P5, suggesting a more significant difference between these parental lines and their offspring. 

256 The Dice coefficient analysis revealed similar trends, with the highest similarity between P4×P5 

257 and P1×P4 (0.975) and the lowest between P2×P5 and P2 (0.818). The genetic distances and 

258 similarity coefficients provided further insights into genotype relationships(Herrera et al., 2021; 

259 Sheikh et al., 2021).

260 The clustering based on ISSR and SCoT markers resulted in five clusters (A-E). This 

261 suggests that these markers may capture a broader range of genetic variations. This also suggests 

262 that ISSR and SCoT markers may be more powerful for discriminating between closely related 

263 wheat genotypes(Abouseada et al., 2023; Shaban et al., 2022).Interestingly, P2×P5 formed a 

264 distinct cluster (A) in the ISSR/SCoT analysis, suggesting a unique genetic makeup despite its 

265 parents belonging to separate clusters (B and C). The ISSR and SCoT molecular markers 

266 employed in this study were informative and distinguished in the genetic diversity among the 

267 studied genotypes. Numerous studies have explored the molecular diversity of bread wheat using 

268 these markers (Abouseada et al., 2023; Atsbeha et al., 2023; Jabari et al., 2023; Shaban et al., 

269 2022). Some studies revealed that SRAP molecular marker has the great potential to determine 

270 genetic diversity(Al-Ghamedi et al., 2023; Essa et al., 2023a; Yi et al., 2021; Zhou et al., 2021). 

271 Additionally, Several studies have employed SCoT markers alongside ISSR markers in some 

272 cases (Etminan et al., 2016), to assess genetic diversity in wheat germplasm. These studies 

273 include durum wheat breeding lines and landraces (Etminan et al., 2016), Iranian Triticum 

274 species (Pour-Aboughadareh et al., 2017), North African wheat cultivars (Mohamed et al., 2017), 

275 and Triticum urartu accessions(Gholamian et al., 2019).

276 Considerable differences were detected between the parental genotypes and their crosses 

277 for all evaluated agro-morphological attributes. Under drought stress, the genotypes P5, P3 × P5, 

278 P2×P5, P2 × P3, P3×P4, and P4 × P5 demonstrated superior performance, with enhanced shoot 

279 and root growth, underscoring their resilience. These genotypes appear to have inherited 

280 drought-tolerant traits, making them vital for breeding programs to improve root and shoot traits 

281 under water deficit conditions (Zhang et al., 2017). Moreover, the spike traits of these genotypes 

282 were also less affected by water-limited conditions compared to other genotypes. This highlights 

283 their potential to enhance drought tolerance in wheat breeding programs (Adel and Carels, 2023). 

284 All studied genotypes exhibited significantly higher proline accumulation under drought stress, 

285 an indicator of stress tolerance, suggesting varied stress response mechanisms among the 

286 genotypes (Guizani et al., 2023). In contrast, under well-watered conditions, P1 and P3 showed 

287 excellent agro-morphological performance, which was also reflected in their F1 crosses P1×P3, 

288 P1 × P2, P3× P5, and P2×P3. This indicates that these genotypes possess traits that are beneficial 

289 for growth in optimal conditions. These findings underscore the importance of specific 

290 genotypes and their crosses in breeding programs aimed at both optimal growth and drought 

291 tolerance conditions (Lazaridi et al., 2024).

292 5. Conclusions

293 Exploring genetic diversity employing molecular markers and agro-morphological 

294 characterization is essential for developing stress-tolerant wheat genotypes. Genetic diversity 

295 analysis utilizing ISSR and SCoT markers showed a moderate diversity level, with unique 

296 genetic makeups in specific crosses such as P2×P5. The genotypes P5, P3 × P5, P2×P5, P2 × P3, 

297 P3 × P4, and P4×P5 performed well under drought stress, indicating their resilience and 
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298 suitability for drought-tolerance breeding programs. Otherwise, genotypes P1 and P3 and their 

299 F1 crosses exhibited better agro-morphological performance under well-watered conditions. 

300 These findings highlight the importance of selecting specific genotypes for improving both 

301 drought tolerance and growth performance and demonstrate that integrating molecular markers 

302 with agro-morphological traits is a broad approach to advancing wheat breeding strategies and 

303 enhancing crop resilience and productivity.
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Figure 1
ISSR and SCoT-PCR ampliûcation patterns of 15 wheat genotypes

ISSR and SCoT-PCR ampliûcation patterns of 15 wheat genotypes using six ISSR primers (A-
F)and two SCoT primers (G and H). M=1kbp DNA ladder
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Figure 2
The phylogenetic tree of developed crosses and their parental wheat genotypes

The phylogenetic tree of developed crosses and their parental wheat genotypes were
revealed according to ISSR and SCoT banding proûles.
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Figure 3
Comparative performance of developed crosses and their parental genotypes

Comparative performance of developed crosses and their parental genotypes: (A) shoot fresh
weight, (B) shoot dry weight, (C) root fresh weight, and ( D) root fresh weight (D). The bars at
the top of the columns indicate the standard error (SE). Diûerent letters on the columns
indicate a signiûcant diûerence using LSD, p<0.01. Uppercase letters represent well-watered
conditions, while lowercase letters represent water deûcit conditions.
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Figure 4
Comparative performance of developed crosses and their parental genotypes

Comparative performance of developed crosses and their parental genotypes: (A) shoot
length, (B) root length, and (C) proline content . The bars at the top of the columns indicate
the standard error (SE). Diûerent letters on the columns indicate a signiûcant diûerence
using LSD, p<0.01. Uppercase letters represent well-watered conditions, while lowercase
letters represent water deûcit conditions.

PeerJ reviewing PDF | (2024:07:103277:0:0:CHECK 7 Jul 2024)

Manuscript to be reviewed



PeerJ reviewing PDF | (2024:07:103277:0:0:CHECK 7 Jul 2024)

Manuscript to be reviewed



Figure 5
Comparative performance of developed crosses and their parental genotypes

Comparative performance of developed crosses and their parental genotypes: (A) spike
length, (B) spikelet number/spike, (C) grain number/spike and (D) grain weight/spike (D). The
bars at the top of the columns indicate the standard error (SE). Diûerent letters on the
columns indicate a signiûcant diûerence using LSD, p<0.01. Uppercase letters represent
well-watered conditions, while lowercase letters represent water deûcit conditions.
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Figure 6
Dendrogram of developed crosses and their parental wheat genotypes

Dendrogram of developed crosses and their parental wheat genotypes according to the
evaluated traits under water deûcit conditions.
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Figure 7
The principal component biplot for the developed crosses and their parental wheat

The principal component biplot for the developed crosses and their parental wheat according
to the traits studied under water deûcit conditions.
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Figure 8
Heatmap categorizing the developed crosses and their parental wheat

Heatmap categorizing the developed crosses and their parental wheat genotypes under
water deûcit conditions into distinct clusters based on studied traits.
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Table 1(on next page)

Pedigree and origin of the wheat genotypes

Pedigree and origin of the wheat parental genotypes.
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1 Table 1. Pedigree and origin of the wheat parental genotypes.

Code Genotype Pedigree

P1 Orabi-52
New promising mutant line G-168-3-1 of M7 generation by using EMS 0.5 % 

(Giza168- EMS), DUS no 269, 2018 year

P2 Orabi-73
promising mutant-line of M7 generation by using Gamma rays 300-Gy dose 

(Seds12), DUS no 270, 2018 year

P3 Gemmiza  11 BOW-  s/KVZ/7C-SERI 82/3-GIZA 168-SAKHA 61

P4 Orabi-56
New promising mutant line G- 168-5-1atM7 generation by using EMS 0.5 % 

(Giza 168-EMS), DUS no, 2023

P5 Orabi-1881
New promising mutant line of M7 generation by using EMS 0.25 % 

(Sakha93-EMS) ), DUS no 284, 2018
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Table 2(on next page)

Characterization of ISSR and SCoT primers

Characterization of ISSR and SCoT primers.
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1 Table 2.  Characterization of ISSR and SCoT primers.

Primer Nucleotide sequences (52-32) Tm (°C)
Molecular

weight (g mol-1)

Primer

Length (bp)
GC content (%)

ISSR1 AGAGAGAGAGAGAGAGYC 56.3 5366.6 18 52.94%

ISSR2 CTCTCTCTCTCTCTCAT 53.5 4998.3 17 52.94%

ISSR3 GAGAGAGAGAGAGAGATT 54.3 5685.8 18 44.44%

ISSR4 AGAGAGAGAGAGAGAGC 56.3 5366.6 17 52.94%

ISSR5 GAGAGAGAGAGAGAGC 54.1 5053.4 16 56.25%

ISSR6 ACACACACACACACACG 60.6 5086.4 17 52.94%

SCoT1 ACGACATGGCGACCACGC 68.2 5478.6 18 66.67%

SCoT2 CCATGGCTACCACCGCAG 65.8 5429.6 18 66.67%

2 Y = C or T  
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Table 3(on next page)

Number of bands (NB), monomorphic bands (MB) and polymorphic bands (PB)
generated by eight primers (six ISSR and two SCoT)

Number of bands (NB), monomorphic bands (MB) and polymorphic bands (PB) generated by
eight primers (six ISSR and two SCoT) in 15 wheat genotypes and the related polymorphism
(%).
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1 Table 3. Number of bands (NB), monomorphic bands (MB) and polymorphic bands (PB) generated by 

2 eight primers (six ISSR and two SCoT) in 15 wheat genotypes and the related polymorphism (%). 

Primers NB MB PB Polymorphism (%)

ISSR1 6 4 2 33.3%

ISSR2 8 5 3 37.5%

ISSR3 12 5 7 58.3%

ISSR4 9 5 4 44.4%

ISSR5 9 5 4 44.4%

ISSR6 10 8 2 20%

SCoT1 10 7 3 30%

SCoT2 12 9 3 23%

Total 76 48 28

Average 9.5 6 3.5 36.36%
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Table 4(on next page)

Genetic distance among the ûve wheat cultivars and their F1 hybrids

Genetic distance among the ûve wheat cultivars and their F1 hybrids based on SCoT and
ISSR banding proûles.
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1Table 4. Genetic distance among the f��� wheat cultivars and their F� hybrids based on SCoT and ISSR banding prof�p���

G���	
�� P1 P2 P3 P4 P5 P1P�
 P1P�� P1P�� P1P�� P2P�� P2P�� P2P�� P3P�� P3P�� P4P��

P1 0.00               

P2 3.32 0.00              

P3 3.00 2.00 0.00             

P4 2.45 2.65 1.73 0.00            

P5 3.32 3.16 2.83 2.65 0.00           

P1P�
 3.16 3.32 2.65 2.45 2.24 0.00          

P1P�� 2.65 3.16 2.45 2.24 2.45 1.73 0.00         

P1P�� 2.45 3.00 2.24 2.00 2.24 2.00 1.73 0.00        

P1P�� 2.83 3.32 2.65 2.45 3.00 2.00 1.73 2.45 0.00       

P2P�� 3.16 2.65 1.73 2.45 2.24 2.00 2.24 2.00 2.83 0.00      

P2P�� 2.83 2.65 2.65 2.45 2.24 2.45 2.65 2.00 2.83 2.45 0.00     

P2P�� 3.32 3.46 3.16 3.32 3.16 3.00 2.83 3.00 2.65 3.00 3.61 0.00    

P3P�� 2.65 3.16 2.45 2.24 2.45 2.24 2.00 2.24 1.73 2.65 2.65 2.45 0.00   

P3P�� 2.83 2.65 1.73 2.00 2.24 2.45 2.24 2.00 2.45 2.00 2.45 3.00 2.24 0.00  

P4P�� 2.83 3.00 2.24 2.00 1.73 2.00 1.73 1.41 2.45 2.00 2.45 3.00 2.24 1.41 0.00
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Table 5(on next page)

Dice measurement for similarity coeûcient of the ûve wheat cultivars and their F1
hybrids

Dice measurement for similarity coeûcient of the ûve wheat cultivars and their F1 hybrids
based on SCoT and ISSR banding proûles.

PeerJ reviewing PDF | (2024:07:103277:0:0:CHECK 7 Jul 2024)

Manuscript to be reviewed



1 Table 5.  D��� measurement ��� similarity coe������c� o� the ���� wheat cultivars and their �� hybrids based on SCoT and ISSR 

2 banding pro�����

��� !"#�   P1  P2  P3  P4  P5 P1$%& P1$%' P1$%( P1$%) P2$%' P2$%( P2$%) P3$%( P3$%) P4$%)

P1   1.00

P2   0.84  1.00

P3   0.87  0.94  1.00

P4   0.91  0.90  0.96  1.00

P5   0.85  0.87  0.90  0.91  1.00

P1$%&   0.86  0.85  0.90  0.92  0.94  1.00

P1$%'   0.90  0.86  0.92  0.93  0.92  0.96   1.00

P1$%(   0.92  0.88  0.93  0.95  0.94  0.95   0.96  1.00

P1$%)   0.88  0.84  0.90  0.91  0.88  0.94   0.96  0.92  1.00

P2$%'   0.86  0.90  0.96  0.92  0.94  0.95   0.93  0.95  0.89  1.00

P2$%(   0.90  0.91  0.91  0.92  0.94  0.93   0.91  0.95  0.90  0.93  1.00

P2$%)   0.83  0.82  0.85  0.84  0.86  0.87   0.88  0.87  0.89  0.87  0.82  1.00

P3$%(   0.90  0.86  0.91  0.93  0.92  0.93   0.94  0.93  0.96  0.90  0.91  0.91  1.00

P3$%)   0.89  0.90  0.96  0.95  0.94  0.92   0.93  0.95  0.92  0.95  0.93  0.87  0.93 1.00

P4$%)   0.89  0.88  0.93  0.95  0.96  0.95   0.96  0.98  0.92  0.95  0.93  0.87  0.93 0.97 1.00
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