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Background: Determining the BRCA1/2 status is crucial for guiding the treatment of
breast cancer. However, there is an unmet need for BRCA1/2 genetic testing among breast
cancer patients due to high costs and limited resources. We aimed to establish a Bi-
directional Self-Attention Multiple Instance Learning (BiAMIL) algorithm to detect BRCA1/2
status based on H&E pathological images. Method: A total of 319 histopathological slides
from 254 patients with breast cancer were included in our study, consisting of two
dependent cohorts. After pre-processing the images, 633,484 tumor tiles from the training
dataset were used to train our self-developed deep-learning model. The performance of
the network was evaluated in the internal and external test sets. Results: The results
showed that BIAMIL achieved AUC values of 0.917 (95% CI 0.874-0.962) in the training set,
0.819 (95% C1 0.673-0.965) in the internal test set, and 0.817 (95% Cl 0.712-0.923) in the
external test set. To explore the relationship between BRCA1/2 pathogenic variants (PV)
and human-interpretable features in pathological images, we visualized the heat map of
tiles with high-attention scores using Class Activation Mapping (CAM). BiAMIL mainly
focused on high-grade tumors and lymphocytic infiltration, the crucial tissue features
closely related to BRCA1/2 PV. Additionally, through unsupervised cell feature clustering
analysis, BIAMIL considered morphological features of tumor cell nuclear areas, which are
the primary cell features of BRCA1/2 PV. Conclusions: We developed an interpretable
deep neural network model based on the attention mechanism to predict the BRCA1/2
status in breast cancer.
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Abstract
Background: Determining the BRCAI/2 status is crucial for guiding the treatment of breast

cancer. However, there is an unmet need for BRCAI/2 genetic testing among breast cancer
patients due to high costs and limited resources. We aimed to establish a Bi-directional Self-
Attention Multiple Instance Learning (BiIAMIL) algorithm to detect BRCA1/2 status based on
hematoxylin and eosin (H&E) pathological images.

Method: A total of 319 histopathological slides from 254 patients with breast cancer were
included in our study, consisting of two dependent cohorts. After pre-processing the images,
633,484 tumor tiles from the training dataset were used to train our self-developed deep-learning
model. The performance of the network was evaluated in the internal and external test sets.
Results: The results showed that BIAMIL achieved AUC values of 0.917 (95% CI 0.874-0.962)
in the training set, 0.819 (95% CI 0.673-0.965) in the internal test set, and 0.817 (95% CI 0.712-
0.923) in the external test set. To explore the relationship between BRCA 1/2 pathogenic variants
(PV) and human-interpretable features in pathological images, we visualized the heat map of
tiles with high-attention scores using Class Activation Mapping (CAM). BiAMIL mainly
focused on high-grade tumors and lymphocytic infiltration, the crucial tissue features closely
related to BRCAI/2 PV. Additionally, through unsupervised cell feature clustering analysis,
BiAMIL considered morphological features of tumor cell nuclear areas, which are the primary
cell features of BRCA1/2 PV.

Conclusions: We developed an interpretable deep neural network model based on the attention
mechanism to predict the BRCA1/2 status in breast cancer.

Keywords: Breast cancer, BRCA1/2, Deep learning, Self-attention, Interpretability
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Introduction
Breast cancer is the most common cancer worldwide and is the fourth primary cause of cancer-

related mortality in women (Sung et al. 2021). The usual treatment for breast cancer involves a
variety of therapies, such as chemotherapy, radiotherapy, endocrine therapy, and targeted
therapy, which are selected based on the specific molecular subtype of the disease (Asleh et al.
2022; Shubeck et al. 2023). Further genetic testing may be necessary to choose the most
appropriate treatment for each patient. One of the genetic alterations clinically associated with
breast cancer treatment is BRCA1/2, which affects approximately 3-5% of breast cancer patients
(Schettini et al. 2021). Recent studies have revealed that BRCAI/2 mutations can serve as
predictive biomarkers for the response to treatment with Poly (ADP-ribose) polymerase
inhibitors (PARPi) and chemotherapy based on platinum for breast cancer (Chopra et al. 2020;
Tutt et al. 2021).

According to guidelines from the National Comprehensive Cancer Network (NCCN) and
the American Society of Breast Surgeons (ASBrS), it is recommended that breast cancer patients,
especially those diagnosed at a young age (<50 years), with a family history of cancer, or with
bilateral breast cancers, should receive BRCA1/2 genetic testing (Daly et al. 2021; Valencia et al.
2017). However, many patients who meet the above criteria have not been tested for BRCA1/2 in
medical practices due to the test's complexity, time-consuming, and high costs (Grindedal et al.
2017). Therefore, there is a growing need to develop a fast, affordable, and reliable approach for
assessing the BRCA1/2 status.

In recent years, artificial intelligence (AI) has become increasingly important in various
aspects of tumor screening, diagnosis, therapeutic evaluation, and prognosis prediction (Bhinder
et al. 2021; Lin et al. 2022). Specifically, deep learning (DL), a branch of Al technology, has

emerged as a powerful tool for extracting abundant hidden information from digital whole-slide
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images (WSIs) (Corti et al. 2022; Freeman et al. 2021; Schrammen et al. 2022). Hematoxylin
and eosin (H&E)-stained slides contain enormous information about molecular features, cell
morphology, and tissue structure, which can help reveal changes in molecular biomarkers
(Greenson et al. 2009; Shia et al. 2017). Genetic alterations in tumor cells cause functional
changes that affect the morphology of tumor cells and can also have an impact on the tumor
microenvironment, resulting in genotype-phenotype correlations (Kather et al. 2020). The
morphological features associated with BRCA1/2 mutations, such as high histological grade, a
high mitotic index, pushing tumor margins, and lymphocytic infiltration, can be reflected in
H&E-stained images. Recent studies have shown that DL enables the detection of genetic
alterations from histopathology images (Cifci et al. 2022). For example, DL models can predict
BRAF mutation and microsatellite instability (MSI) in colorectal cancer (Guo et al. 2023),
BRCA1/2 mutations in breast cancer (Wang et al. 2021), /DHI mutation in brain cancer (Jiang et
al. 2021), and CTNNBI mutation in hepatocellular carcinoma (Liao et al. 2020) based on WSIs.
Although these techniques demonstrate high precision in identifying genetic changes,
understanding them is still challenging because DL models are often viewed as "black boxes" in
the decision-making process (Vinuesa & Sirmacekc 2021). Several studies have employed
visualization strategies to recognize morphological features identified by DL frameworks.
However, these features often display inaccuracies, inconsistency, and a lack of transparency,
making it difficult to explain the model's predictions (Singh et al. 2020). The main reason is that,
due to the limitations and diversity of training data, the features learned by the models may not
be universal, resulting in inconsistency across different datasets. Furthermore, some visualization
techniques may not fully capture all the subtle features during the prediction process, and the

generated heatmaps do not provide a reasonable medical explanation (Tizhoosh & Pantanowitz
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2018). Therefore, there is a need to provide replicable descriptions of these features and evaluate
their impact on explaining the DL model, which remains a challenge.

In this study, we developed an interpretable DL network named Bi-directed Self-Attention
Multi-Instance Learning (BiIAMIL) to detect BRCA1/2 status from H&E images in breast cancer.
To apply human-interpretable features analysis for the model, we visualized heatmaps and
analyzed morphological patterns significantly associated with BRCA 1/2 pathogenic variants (PV).
Additionally, we identified quantifiable changes in cell features that are highly correlated with

BRCA1/2 PV through unsupervised clustering (Fig. 1).

Materials & Methods

Patient selection

A total of 254 breast cancer patients in two dependent cohorts were enrolled in this retrospective
study. The first cohort comprised 152 patients (217 WSIs) who were obtained from Chongqing
University Cancer Hospital (CUCH) between May 2017 and December 2022. The second cohort
comprised 102 patients (102 WSIs) who were obtained from the Cancer Genome Atlas

(https://gdc.cancer.gov/). The inclusion criteria included:1) Diagnosis with primary breast

invasive ductal cancer (IDC) and invasive lobular carcinoma (ILC); 2) BRCAI1/2 gene or
genomic testing was conducted on blood and/or tumor samples, including the examination of
germline and/or somatic variations, confirming the precise records of BRCAI/2 status; 3)
Operative pathological H&E images before antineoplastic treatments were available; The
exclusion criteria included: 1) Lack of operative pathological H&E images; 2) Poor quality of
H&E-stained images; 3) Bilateral, multifocal, or special invasive breast cancer. The study
received approval from the Ethics Committee of Chongqing University Cancer Hospital (Ethics

number: CZLS2023213-A), and patient consent was waived for this retrospective analysis. The
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CUCH cohort was randomly divided into a training set and an internal test set. The TCGA cohort
served as an independent external test set. The training set was utilized for hyperparameter
tuning through cross-validation, while the test sets were employed to assess generalization
performance.

Genomic DNA samples were extracted from peripheral blood and/or surgical tissue samples.
The BRCAI/2 genetic testing was conducted using next-generation sequencing (NGS)
technology. Variants were annotated using the Human Genome Variation Society (HGVS)
nomenclature guidelines (http://varnomen.hgvs.org/). The biological significance of all reported
variants was assessed using the ClinVar database (www.ncbi.nlm.nih.gov/clinvar/). According to
the guidelines of the American College of Medical Genetics and Genomics (ACMG) (Richards
et al. 2015), the detected variants were classified as pathogenic variants, likely pathogenic
variants, variants of uncertain significance, likely benign, or benign. Based on the testing results,
only patients who identified with pathogenic and likely pathogenic variants were classified as
having PV. The BRCA1/2 PV group includes BRCA1 PV and BRCA2 PV. In this study, we
focused on predicting these two binary outcomes, BRCA1/2 PV and BRCA1/2 wild type (WT)
for breast cancer patients.
Image preprocessing and sample preparation
All samples were fixed using 4% neutral formalin, followed by paraffin embedding, cut into 4
um thick sections, and then stained with H&E. The H&E-stained histopathological slides were
scanned at a magnification level of 40 x using a KFBIO KF-PRO-005 digital scanner and saved
in SVS format. Experienced pathologists with over one year in breast cancer pathology
conducted quality control on the images. Slides of poor quality, especially those affected by

tissue folds and blurriness, were excluded. The TCGA cohort exclusively utilized 40 x FFPE
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WSIs labeled as diagnostic while excluding slides with poor image quality (such as pen marks or
poor staining). The WSIs were segmented into tiles of 512 x 512 pixels, with a 50% overlap.
Tiles that displayed more than 75% of the background were removed. The observed variations in
color can be attributed to differences in raw materials, manufacturing processes, staining
methods, and different digital scanners. These variations in color may cause the model to
concentrate on color distinctions over the essential tissue morphology for analysis. To resolve
this issue, color normalization was applied to all tiles using the structure-preserving color
normalization (SPCN) technique (Vahadane et al. 2016). The model facilitated standardizing all
tiles to resemble the color pattern of the target (Fig. S1). Various types of data augmentation
techniques were employed, including random flipping, random rotation, cropping, and
adjustments to brightness, contrast, saturation, and hue.

We used a stratified sampling approach to randomly assign images to the training and
internal test set, maintaining an 8:2 ratio at the patient level. This method ensures that images of
the same patient are exclusively assigned to either the training set or the internal test set. It
guarantees that images from the same patient do not appear in both sets simultaneously.
Segmentation network
We constructed a segmentation network that could automatically identify tumor regions in WSIs.
Two experienced pathologists, each with more than three years of experience in breast cancer
pathology, annotated tumor areas on 145 WSIs using the open-source software Qupath Image
Scope. These annotated areas were then independently reviewed by a pathologist with over ten
years of experience. The labeled slides were randomly divided into a training set (80%) and a
test set (20%), ensuring that WSIs from the same patient did not appear in both sets. Based on

the ResNet 34 architecture, the segmentation network used tiles from tumor and non-tumor
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regions as input. The deep convolutional and pooling layers were utilized to extract features from
each tile. These features were then passed to the fully connected layer. After the fully connected
layer, a softmax function was applied to generate a probability (tumor or non-tumor) for each tile.
The results were compared with the manual annotations made by three pathologists to evaluate
the performance of the network. These pathologists included junior, medium, and senior
pathologists with two, from five to eight, and ten years of experience, respectively. Finally, this
segmentation network was utilized to automatically segment tumor regions in the TCGA cohort.
Prediction network

The CUCH cohort consisted of 217 WSIs from 152 patients, each with one or two slides. The
dataset was randomly divided into a training set (633,484 tiles from 174 WSIs) and an internal
test set (112,096 tiles from 43 WSIs) through stratified sampling. We developed the BIAMIL
network using a Multi-Instance Learning (MIL) framework and attention mechanisms. The
BiAMIL architecture comprised three main components: the feature extraction module, the bi-
directional self-attention module, and the classification module. The feature extraction module
was based on the ResNet 34 model (Sun 2016). A bag containing N image tiles was fed into the
feature extractor, resulting in a feature matrix with dimensions of N x 1000. The feature matrix
was then passed into the attention module for aggregation. In the bi-directional self-attention
module, the original data features were transformed into embedding vectors using a feature
embedding layer. Two attention heads were then designed: a high-risk PV head and a low-risk
PV head. Specifically, the attention distribution among tiles was adjusted by employing the
softmax function, converting the Nx1000 feature matrix into a 1xN attention weight. The
weights obtained from the two attention heads were used to multiply the original feature matrix.

Two sets of attention-weighted discriminative feature vectors were generated, each set having a
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dimensionality of 1000. These two 1000-dimensional integrated feature vectors were merged and
inputted into the classification module. The classification module consisted of a three-layer
Multilayer Perceptron (MLP) with 1000, 64, and 2 neurons in each layer, respectively, utilizing
the Tanh function as the activation function. The prediction probability for each instance bag was
ultimately output through the softmax function. To optimize the model, we employed a 5-fold
cross-validation by randomly dividing the training set into five balanced subsets (Fig. S2). Using
the Adam optimizer, the optimal hyperparameters were identified as a bag of N = 35, a learning
rate of 0.001, a batch size of 18, and total epochs of 20 (with the learning rate decreasing by 0.1
every ten epochs). At last, the network was evaluated on the internal and external test sets.
Tissue features visualization and cell features quantitative analysis

To further understand the critical histological features that contribute the most to the prediction
of the BIAMIL model, we selected the top 20% of tiles based on their attention scores in
predicting BRCAI1/2 PV. Attention-based visualization techniques were then employed to
visually represent these tiles. Firstly, we calculated the weight values for each tile. Secondly, we
identified the top 20% of tiles in WSIs with high attention weights and performed Smooth Grad-
CAM to identify the regions within each tile that the neural network utilized to generate
predictions.

Cell features, including cell morphology, nuclear morphology, and staining features, were
extracted from the tumor regions using QuPath (Bankhead et al. 2017). The k-means clustering
method was applied to partition cells into different clusters based on their cell features. The
resulting clusters were then projected onto a 2-D UMAP projection (Dorrity et al. 2020). The
difference in cell features between BRCA1/2 PV and WT was evaluated by the Wilcoxon rank-

sum test.

Peer] reviewing PDF | (2024:03:98990:0:1:CHECK 12 Apr 2024)



PeerJ

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

Statistical analysis

We evaluated the performance of the model at the slide level. The model generated a probability
value for each bag, and we assigned a final probability to each slide by calculating the average
probability across all bags in the slide. The performance of the model was evaluated using
several measures, including the area under the receiver operating characteristic curve (AUROC),
accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value
(NPV), and the F1 score. The most relevant cell features for discriminating between BRCA1/2
PV and BRCA1/2 WT were identified using the Wilcoxon rank-sum test. All statistical analyses
were performed using scikit-learn 0.24.2 in Python and R (version 4.1.1), with a p-value of less
than 0.05 was considered statistically significant.

Results

Clinical characteristics of patients

A total of 254 patients from two independent cohorts were included in our study based on the
inclusion and exclusion criteria. Specifically, patients from the CUCH cohort (n=152) were
randomly assigned to a training set and an internal test set, while patients from the TCGA cohort
(n=102) served as an external test set. The detailed clinicopathological characteristics of the
patients in the training, internal test, and external test sets are provided in Table 1. In the training
set, 62 (50.8%) of patients were ER and PR positive, 12 (9.8%) were HER2 positive, and 48
(39.4%) were negative for ER, PR, and HER2. In the internal test set, 16 (53.4%) of patients
were ER and PR positive, 5 (16.6%) were HER2 positive, and 9 (30.0%) were negative for ER,
PR, and HER?2. In the external testing group, 70 (68.6%) of patients were ER and PR positive, 11
(10.8%) were HER2 positive, and 18 (17.6%) were negative for ER, PR, and HER2. In the

training group, 29 patients had BRCA PV, with 17 (58.6%) for BRCAI and 12 (41.3%) for
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BRCA2. The internal test set consisted of seven patients with BRCA PV, including 4 (57.1%)
with BRCAI and 3 (42.9%) with BRCA2. In the external test group, among the 26 patients with
BRCA PV, there were 13 (50.0%) with BRCAI, 11 (42.3%) with BRCA2, and 2 (7.7%) with both
BRCAI and BRCA2.

Performance of the segmentation network

We developed a segmentation network to accurately distinguish tumor regions from WSIs. The
segmentation model demonstrated high performance in identifying tumor regions, achieving an
AUC of 0.960 (95% CI, 0.959-0.961). The accuracy, sensitivity, and specificity were 0.888 (95%
ClI, 0.887-0.890), 0.859 (95% CI, 0.856-0.861), and 0.908 (95% CI, 0.906-0.909), respectively.
Additionally, compared with three pathologists at different levels (junior, medium, and senior),
the performance of our segmentation model is almost equal to that of a medium-level pathologist
(Fig. 2A). The confusion matrix is presented in Fig. 2B. Finally, typical examples of the
segmentation model output are presented in Fig. 2C, where the tumor regions are highlighted in
red.

Performance of BIAMIL network

To demonstrate that focusing on the most relevant and important regions within WSIs can
improve the prediction accuracy of BRCA1/2 PV, we developed the BIAMIL model, which adds
an attention structure to ResNet 34. Color-normalized tiles were fed into a pre-trained ResNet 34
model to extract a 1000-dimensional feature vector. These feature vectors were then stacked and
input into an attention-based Multiple Instance Learning (MIL) framework to predict the
probability of BRCAI1/2 PV (Fig. 3). BIAMIL achieved AUC values of 0.917 (95% CI 0.874-
0.962) in the training set, 0.819 (95% CI 0.673-0.965) in the internal test set, and 0.817 (95% CI

0.712-0.923) in the external test set (Fig. 4 and Table S1). Comparatively, ResNet 34 achieved
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AUC values of 0.874 (95% CI, 0.700-0.978) in the training set, 0.783 (95% CI 0.624-0.941) in
the internal test set, and 0.684 (95% CI, 0.559-0.810) in the external test sets (Fig. 4 and Table
S2). The BIAMIL model outperformed the ResNet 34 model in terms of accuracy, sensitivity,
specificity, positive predictive value (PPV), negative predictive value (NPV), and the F1 score
(Fig. 5). Due to hormone receptor-positive and triple-negative breast cancer accounting for 80%
of breast cancer cases and the high occurrence of BRCA1/2 in triple-negative breast cancer, we
conducted a subgroup analysis of BiAMIL's performance in hormone receptor-positive and
triple-negative breast cancer. We obtained similar results in Table 2. These findings demonstrate
that the BIAMIL model is a more accurate and reliable approach for estimating the BRCA1/2
status compared to the traditional ResNet 34 model.

Interpretability analysis of tissue features

To explore the relationship between pathological tissue features and BRCA1/2 PV, we conducted
a post-hoc explanation of the BIAMIL model using Class Activation Mapping (CAM). The
model generated heatmaps for the top 20% of tiles based on attention scores, with the areas that
contributed the most displayed in red. Overlaying the original image tiles with the CAM analysis
results, we observed that the regions with high-grade tumors and lymphocytic infiltration
exhibited the most significant contributions in our model. In contrast, areas associated with the
stromal matrix demonstrated comparatively lower contributions. These findings indicate that
BiAMIL identifies the known morphological features of BRCA1/2 PV (Fig. 6). Subsequently, we
used t-distributed Stochastic Neighbor Embedding (t-SNE) to perform cluster analysis on the
features generated by BIAMIL, where patients in the same class remained clustered and clearly
separated from those in the other class (Fig. 7).

Interpretability analysis of cell features

Peer] reviewing PDF | (2024:03:98990:0:1:CHECK 12 Apr 2024)



PeerJ

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

We employed the Qupath software to automatically identify tumor cells in regions that
significantly contributed to the BIAML model. Pathologists reviewed and modified the tumor
cells delineated in each WSI, extracting relevant features such as cell shape, color, and other
characteristics (Fig. 8A). The cells were then clustered into six groups using the k-means
algorithm based on single-cell features, which corresponded to cell solidity, nuclear eccentricity,
nuclear area, nuclear roundness, nuclear staining, and cytoplasmic staining (Fig. 8B). Notably,
the features related to nuclear size and shape were particularly enriched in Cluster 2 (Fig. 8C,
Fig. S3). To further investigate nuclear morphological differences between the BRCA1/2 PV and
WT groups, we analyzed the changes in nuclear features within Cluster 2. Specifically, compared
to the WT group, tumor cells in the BRCA1/2 PV group exhibited a larger nuclear area (180.00
versus 168.75, p < 0.001) and a higher nuclear cell area ratio (0.34 versus 0.36, p < 0.001) (Fig.
8D). At the level of cell feature interpretability, nuclear size and the nuclear cell area ratio of
tumor cells emerged as the most distinctive features distinguishing the BRCA1/2 PV group from
the WT group. We showed examples of high tumor cell nuclear areas and low tumor cell nuclear
areas (Fig. 8E), each associated with BRCA1/2 PV and WT, respectively.

Discussion

Accurately identifying BRCA1/2 status is crucial for clinical decision-making, as it facilitates the
selection of appropriate therapeutic agents and enables effective patient management. However,
due to costs and resource constraints, BRCA1/2 genetic testing is not widely adopted in clinical
practice. In this study, we developed a DL model to directly detect the BRCA1/2 status of breast
cancer from histopathology images. Furthermore, we explored the interpretability of the model
from the perspectives of tissue and cell features using visualization and clustering techniques,

providing medical interpretability for our model.
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Wang et al. (Wang et al. 2021) proposed a traditional DL algorithm to predict BRCAI1/2
mutations in breast cancer through H&E pathological images. The study assumed equal
contributions of all tiles to predicting BRCA1/2 mutation status. This assumption might be
ineffective and potentially lower the accuracy of the predictions. In practice, each WSI
comprises hundreds to thousands of tiles, but most do not significantly contribute to the final
prediction. Conversely, only a few key tiles play a significant role in the prediction. Our DL
model, based on the attention mechanism (Mobadersany et al. 2021; Yao et al. 2020),
autonomously identified the contribution of each tile to the overall WSI-level prediction,
allowing the model to concentrate more accurately on the most vital regions within the WSI.
This mechanism enables the network to capture crucial information more effectively within the
WSI, ultimately improving prediction accuracy. Compared to the ResNet 34 model, our results
demonstrated better performance in terms of AUC, sensitivity, specificity, etc.

The interpretability of DL models is a challenge in medical applications (Teng et al. 2022;
Yao et al. 2020). These models should provide medical interpretability to enable clinicians to
understand better, validate, and trust them in clinical routine (Ibrahim et al. 2020; Liu et al.
2019). To explore this issue, we visualized the important tiles identified by the attention
mechanism during the decision-making process, aiming to gain a better understanding of the
morphological characteristics related to BRCA1/2 PV. By this approach, we found that the model
primarily captures the features of high-grade tumors and lymphocytic infiltration, which
correlate with the predicted BRCA1/2 PV. Previous studies have reported that the morphological
characteristics primarily associated with BRCA1/2 mutations include the absence of gland
formation, a high mitotic index, nuclear pleomorphism, increased necrotic cells, and lymphocytic

infiltrates (Lakhani et al. 1998; Larsen et al. 2014). The tissue features extracted by our model

Peer] reviewing PDF | (2024:03:98990:0:1:CHECK 12 Apr 2024)



PeerJ

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

were consistent with previous research findings. More importantly, we conducted further
analysis of cell features such as cell morphology, nuclear morphology, and staining to provide a
more comprehensive interpretation of the pathological features. Cell morphology, functionality,
and genetic characteristics are crucial in predicting BRCA1/2 mutations (Alizadeh et al. 2020;
Roy et al. 2011). Cell morphological features include cell shape, size, structure, etc. BRCA1/2
mutations may exhibit cellular morphological abnormalities, such as irregular shapes and size
variations. Observing these cellular morphological features can provide valuable insights for
predicting BRCA1/2 PV. Therefore, the features of tissues and cells are related to BRCA1/2 PV,
which improves the medical interpretability of the features extracted by our model when
determining the BRCA1/2 status.

There are some limitations in our study. Firstly, the model was built from a relatively small
sample size in this retrospective study. To improve the accuracy and applicability of the model, it
would be beneficial to collect larger samples from multiple centers. Secondly, the model only
focused on assessing BRCA1/2 status and did not include other genes in the homologous
recombination-deficient (HRD) pathway. It is possible that other gene mutations may also
contribute to the typical pathological image features. Finally, further investigation is required to
establish the correlation between gene-related features extracted from pathological images and

the effectiveness of targeted treatment outcomes.

Conclusions

In conclusion, we developed a DL model to detect BRCAI/2 status directly from
histopathological images. The interpretability of this model was explored through the

characteristics of pathological tissues and cell features. In the future, further optimization and
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validation on larger and more diverse datasets may allow it to serve as a pre-screening tool,

providing clinical value in selecting breast cancer patients for BRCA 1/2 genetic testing.
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Figure 1

Workflow for detecting BRCA1/2 status using a deep learning algorithm.

Firstly, we collected and processed the H&E images, including scanning the images,
delineating and segmenting the tumor regions, and normalizing the color of the tiles.
Secondly, we input the color-normalized tiles into the prediction network to deduce the
BRCA1/2 status. Finally, we generated attention heat maps using visualization techniques to

explore the medical interpretability of the model.
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Figure 2

Performance of the segmentation network .

Manuscript to be reviewed

(A) Receiver Operating Characteristic (ROC) curve for the performance of the segmentation

network versus three pathologists (senior pathologist, medium pathologist, junior

pathologist) in identifying tumor areas. (B) Confusion matrices for the segmentation network.

(C) Original WSIs and representative maps identified by the segmentation network. Left:

original WSI images; Right: corresponding segmentation maps.
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Figure 3

Architecture of the BiAMIL model.
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Figure 4
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Evaluation of the prediction network performance.

(A-C) Receiver operating characteristic (ROC) curves of different models on the training,

internal test, and external test sets.
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Figure 5

Performance comparison between BIAMIL and ResNet 34.
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Figure 6

Visualization of the important regions in H&E images for the detection of BRCA1/2 PV.

The highly predicted BRCA1/2 PV tiles are primarily characterized by high-grade tumors and
lymphocytic infiltrations. In each panel, the first row displays the original high-attention tiles
of WSI, while the second row shows the corresponding heatmap. The red areas on the

heatmap represent regions with large contributions from the model.
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Figure 7

Visualization of the classification features learned by BIAMIL using the t-SNE algorithm.
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Figure 8

Comparison of cell features between the BRCA1/2 PV and BRCA1/2 WT.

(A) The representative H&E images and the cell quantitative analysis masks. Using Qupath
for segmentation, tumor cells are indicated in red and TILs in blue. (B) Uniform Manifold
Approximation and Projection (UMAP) visualization of cell-type features by clusters. (C)
Cluster heatmap of normalized cell features. (D). Comparison of the nuclear features
between BRCA1/2 PV and BRCA1/2 WT. (E). The mean tumor cell nuclear area of the typical
tiles inferred in the model. P values were calculated using the two-tailed Mann-Whitney U-

test.
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Table 1l(on next page)

Characteristics of patients in the training, internal test, and external test sets.
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CUCH cohort TCGA
cohort
Factors Training set Internal test set ~ External test
(n=122) (n=30) set
(n=102)

Age (years, mean + SD) 47.89+9.42 49.66+7.66 59.14£12.59
ER status

Positive 58(47.5%) 16(53.4%) 76(74.5%)

Negative 64(52.5%) 14(46.6%) 23(22.5%)

Missing 0 0 3(2.9)
PR status

Positive 52(42.6%) 14(46.6%) 68(66.7%)

Negative 70(57.4%) 16(53.4%) 31(30.4%)

Missing 0 0 3(2.9%)
HER?2 status

Positive 28(23.0%) 10(33.4%) 15(28.3%)

Negative 94(77.0%) 20(66.6%) 84(82.4%)

Missing 0 0 3(2.9%)
Subtype

HR + 62(50.8%) 16(53.4%) 70(68.6%)

HER2+ 12(9.8%) 5(16.6%) 11(10.8%)

Triple-negative 48(39.4%) 9(30.0%) 18(17.6%)

Missing 0 0 3(1.2%)
Stage (%)

I 34(27.9%) 6(20.0%) 22(21.6%)

I 73(59.8%) 17(56.6%) 55(53.9%)

11 11(9.0%) 6(20.0%) 23(22.5%)

v 4(3.3%) 1(3.4%) 2(2.0%)

3 ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2; HR,

4 hormone receptor. PV, pathogenic variants; WT, wild type.
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Table 2(on next page)

The performance of BiAMIL in predicting BRCA1/2 PV in HR+ and Triple-negative breast
cancer.
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Cohorts AUC Accuracy Sensitivity Specificity PPV NPV F1 score
(95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI)

HR+

Internal  0.859 0.812 0.750 0.875 0.857 0.777 0.799

test (0.667-1.000) (0.593-0.971) (0.503-0.996) (0.693-1.000) (0.663-1.000) (0.542-0.940) (0.574-1.000)

External 0.850 0.785 0.615 0.824 0.444 0.903 0.516

test (0.713-0.986) (0.630-0.941) (0.437-0.792) (0.679-0.969) (0.274-0.614) (0.790-1.000) (0.339-0.692)
[riple-
1egative

Internal ~ 0.761 0.800 0.857 0.666 0.857 0.666 0.857

test (0.445-1.000) (0.509-1.000) (0.612-1.000) (0.300-1.000) (0.612-1.000) (0.300-1.000) (0.612-1.000)

External 0.740 0.666 0.666 0.666 0.666 0.666 0.666

test (0.505-0.975) (0.411-0.922) (0.411-0.922) (0.411-0.922) (0.411-0.922) (0.411-0.922) (0.411-0.922)

2

3 PV, pathogenic variants.

Peer] reviewing PDF | (2024:03:98990:0:1:CHECK 12 Apr 2024)



