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Background: Determining the BRCA1/2 status is crucial for guiding the treatment of
breast cancer. However, there is an unmet need for BRCA1/2 genetic testing among breast
cancer patients due to high costs and limited resources. We aimed to establish a Bi-
directional Self-Attention Multiple Instance Learning (BiAMIL) algorithm to detect BRCA1/2
status based on H&E pathological images. Method: A total of 319 histopathological slides
from 254 patients with breast cancer were included in our study, consisting of two
dependent cohorts. After pre-processing the images, 633,484 tumor tiles from the training
dataset were used to train our self-developed deep-learning model. The performance of
the network was evaluated in the internal and external test sets. Results: The results
showed that BiAMIL achieved AUC values of 0.917 (95% CI 0.874-0.962) in the training set,
0.819 (95% CI 0.673-0.965) in the internal test set, and 0.817 (95% CI 0.712-0.923) in the
external test set. To explore the relationship between BRCA1/2 pathogenic variants (PV)
and human-interpretable features in pathological images, we visualized the heat map of
tiles with high-attention scores using Class Activation Mapping (CAM). BiAMIL mainly
focused on high-grade tumors and lymphocytic inûltration, the crucial tissue features
closely related to BRCA1/2 PV. Additionally, through unsupervised cell feature clustering
analysis, BiAMIL considered morphological features of tumor cell nuclear areas, which are
the primary cell features of BRCA1/2 PV. Conclusions: We developed an interpretable
deep neural network model based on the attention mechanism to predict the BRCA1/2
status in breast cancer.

PeerJ reviewing PDF | (2024:03:98990:0:1:CHECK 12 Apr 2024)

Manuscript to be reviewed



1 An interpretable deep learning model for detecting 

2 BRCA1/2 pathogenic variants of breast cancer from 

3 hematoxylin and eosin-stained pathological images

4

5 Yi Li1,2*, Xiaomin Xiong1,2*, Xiaohua Liu3, Yihan Wu2, Xiaoju Li4, Bo Liu2, Yu Li4, Bo Lin2, Bo 

6 Xu1,2

7 *These authors contributed equally to this work.

8 1 School of Medicine, Chongqing University, Chongqing, China

9 2 Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University 

10 Cancer Hospital, Chongqing, China

11 3 Bioengineering College of Chongqing University, Chongqing, China

12 4 Department of Pathology, Chongqing University Cancer Hospital, School of Medicine, 

13 Chongqing University, Chongqing, China

14 Corresponding Author:

15 Bo Lin2 

16 Email address: linbo@cqu.edu.cn

17 Bo Xu1,2

18 Email address: xubo731@cqu.edu.cn

PeerJ reviewing PDF | (2024:03:98990:0:1:CHECK 12 Apr 2024)

Manuscript to be reviewed

mailto:linbo@cqu.edu.cn
mailto:xubo731@cqu.edu.cn


19 Abstract

20 Background: Determining the BRCA1/2 status is crucial for guiding the treatment of breast 

21 cancer. However, there is an unmet need for BRCA1/2 genetic testing among breast cancer 

22 patients due to high costs and limited resources. We aimed to establish a Bi-directional Self-

23 Attention Multiple Instance Learning (BiAMIL) algorithm to detect BRCA1/2 status based on 

24 hematoxylin and eosin (H&E) pathological images. 

25 Method: A total of 319 histopathological slides from 254 patients with breast cancer were 

26 included in our study, consisting of two dependent cohorts. After pre-processing the images, 

27 633,484 tumor tiles from the training dataset were used to train our self-developed deep-learning 

28 model. The performance of the network was evaluated in the internal and external test sets. 

29 Results: The results showed that BiAMIL achieved AUC values of 0.917 (95% CI 0.874-0.962) 

30 in the training set, 0.819 (95% CI 0.673-0.965) in the internal test set, and 0.817 (95% CI 0.712-

31 0.923) in the external test set. To explore the relationship between BRCA1/2 pathogenic variants 

32 (PV) and human-interpretable features in pathological images, we visualized the heat map of 

33 tiles with high-attention scores using Class Activation Mapping (CAM). BiAMIL mainly 

34 focused on high-grade tumors and lymphocytic infiltration, the crucial tissue features closely 

35 related to BRCA1/2 PV. Additionally, through unsupervised cell feature clustering analysis, 

36 BiAMIL considered morphological features of tumor cell nuclear areas, which are the primary 

37 cell features of BRCA1/2 PV. 

38 Conclusions: We developed an interpretable deep neural network model based on the attention 

39 mechanism to predict the BRCA1/2 status in breast cancer.

40 Keywords: Breast cancer, BRCA1/2, Deep learning, Self-attention, Interpretability
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41 Introduction

42 Breast cancer is the most common cancer worldwide and is the fourth primary cause of cancer-

43 related mortality in women (Sung et al. 2021). The usual treatment for breast cancer involves a 

44 variety of therapies, such as chemotherapy, radiotherapy, endocrine therapy, and targeted 

45 therapy, which are selected based on the specific molecular subtype of the disease (Asleh et al. 

46 2022; Shubeck et al. 2023). Further genetic testing may be necessary to choose the most 

47 appropriate treatment for each patient. One of the genetic alterations clinically associated with 

48 breast cancer treatment is BRCA1/2, which affects approximately 3-5% of breast cancer patients 

49 (Schettini et al. 2021). Recent studies have revealed that BRCA1/2 mutations can serve as 

50 predictive biomarkers for the response to treatment with Poly (ADP-ribose) polymerase 

51 inhibitors (PARPi) and chemotherapy based on platinum for breast cancer (Chopra et al. 2020; 

52 Tutt et al. 2021).

53 According to guidelines from the National Comprehensive Cancer Network (NCCN) and 

54 the American Society of Breast Surgeons (ASBrS), it is recommended that breast cancer patients, 

55 especially those diagnosed at a young age (f50 years), with a family history of cancer, or with 

56 bilateral breast cancers, should receive BRCA1/2 genetic testing (Daly et al. 2021; Valencia et al. 

57 2017). However, many patients who meet the above criteria have not been tested for BRCA1/2 in 

58 medical practices due to the test's complexity, time-consuming, and high costs (Grindedal et al. 

59 2017). Therefore, there is a growing need to develop a fast, affordable, and reliable approach for 

60 assessing the BRCA1/2 status.

61 In recent years, artificial intelligence (AI) has become increasingly important in various 

62 aspects of tumor screening, diagnosis, therapeutic evaluation, and prognosis prediction (Bhinder 

63 et al. 2021; Lin et al. 2022). Specifically, deep learning (DL), a branch of AI technology, has 

64 emerged as a powerful tool for extracting abundant hidden information from digital whole-slide 
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65 images (WSIs) (Corti et al. 2022; Freeman et al. 2021; Schrammen et al. 2022). Hematoxylin 

66 and eosin (H&E)-stained slides contain enormous information about molecular features, cell 

67 morphology, and tissue structure, which can help reveal changes in molecular biomarkers 

68 (Greenson et al. 2009; Shia et al. 2017). Genetic alterations in tumor cells cause functional 

69 changes that affect the morphology of tumor cells and can also have an impact on the tumor 

70 microenvironment, resulting in genotype-phenotype correlations (Kather et al. 2020). The 

71 morphological features associated with BRCA1/2 mutations, such as high histological grade, a 

72 high mitotic index, pushing tumor margins, and lymphocytic infiltration, can be reflected in 

73 H&E-stained images. Recent studies have shown that DL enables the detection of genetic 

74 alterations from histopathology images (Cifci et al. 2022). For example, DL models can predict 

75 BRAF mutation and microsatellite instability (MSI) in colorectal cancer (Guo et al. 2023), 

76 BRCA1/2 mutations in breast cancer (Wang et al. 2021), IDH1 mutation in brain cancer (Jiang et 

77 al. 2021), and CTNNB1 mutation in hepatocellular carcinoma (Liao et al. 2020) based on WSIs. 

78 Although these techniques demonstrate high precision in identifying genetic changes, 

79 understanding them is still challenging because DL models are often viewed as "black boxes" in 

80 the decision-making process (Vinuesa & Sirmacekc 2021). Several studies have employed 

81 visualization strategies to recognize morphological features identified by DL frameworks. 

82 However, these features often display inaccuracies, inconsistency, and a lack of transparency, 

83 making it difficult to explain the model's predictions (Singh et al. 2020). The main reason is that, 

84 due to the limitations and diversity of training data, the features learned by the models may not 

85 be universal, resulting in inconsistency across different datasets. Furthermore, some visualization 

86 techniques may not fully capture all the subtle features during the prediction process, and the 

87 generated heatmaps do not provide a reasonable medical explanation (Tizhoosh & Pantanowitz 
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88 2018). Therefore, there is a need to provide replicable descriptions of these features and evaluate 

89 their impact on explaining the DL model, which remains a challenge.

90 In this study, we developed an interpretable DL network named Bi-directed Self-Attention 

91 Multi-Instance Learning (BiAMIL) to detect BRCA1/2 status from H&E images in breast cancer. 

92 To apply human-interpretable features analysis for the model, we visualized heatmaps and 

93 analyzed morphological patterns significantly associated with BRCA1/2 pathogenic variants (PV). 

94 Additionally, we identified quantifiable changes in cell features that are highly correlated with 

95 BRCA1/2 PV through unsupervised clustering (Fig. 1). 

96 Materials & Methods

97 Patient selection

98 A total of 254 breast cancer patients in two dependent cohorts were enrolled in this retrospective 

99 study. The first cohort comprised 152 patients (217 WSIs) who were obtained from Chongqing 

100 University Cancer Hospital (CUCH) between May 2017 and December 2022. The second cohort 

101 comprised 102 patients (102 WSIs) who were obtained from the Cancer Genome Atlas 

102 (https://gdc.cancer.gov/). The inclusion criteria included:1) Diagnosis with primary breast 

103 invasive ductal cancer (IDC) and invasive lobular carcinoma (ILC); 2) BRCA1/2 gene or 

104 genomic testing was conducted on blood and/or tumor samples, including the examination of 

105 germline and/or somatic variations, confirming the precise records of BRCA1/2 status; 3) 

106 Operative pathological H&E images before antineoplastic treatments were available; The 

107 exclusion criteria included: 1) Lack of operative pathological H&E images; 2) Poor quality of 

108 H&E-stained images; 3) Bilateral, multifocal, or special invasive breast cancer. The study 

109 received approval from the Ethics Committee of Chongqing University Cancer Hospital (Ethics 

110 number: CZLS2023213-A)ÿand patient consent was waived for this retrospective analysis. The 
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111 CUCH cohort was randomly divided into a training set and an internal test set. The TCGA cohort 

112 served as an independent external test set. The training set was utilized for hyperparameter 

113 tuning through cross-validation, while the test sets were employed to assess generalization 

114 performance. 

115 Genomic DNA samples were extracted from peripheral blood and/or surgical tissue samples. 

116 The BRCA1/2 genetic testing was conducted using next-generation sequencing (NGS) 

117 technology. Variants were annotated using the Human Genome Variation Society (HGVS) 

118 nomenclature guidelines (http://varnomen.hgvs.org/). The biological significance of all reported 

119 variants was assessed using the ClinVar database (www.ncbi.nlm.nih.gov/clinvar/). According to 

120 the guidelines of the American College of Medical Genetics and Genomics (ACMG) (Richards 

121 et al. 2015), the detected variants were classified as pathogenic variants, likely pathogenic 

122 variants, variants of uncertain significance, likely benign, or benign. Based on the testing results, 

123 only patients who identified with pathogenic and likely pathogenic variants were classified as 

124 having PV. The BRCA1/2 PV group includes BRCA1 PV and BRCA2 PV. In this study, we 

125 focused on predicting these two binary outcomes, BRCA1/2 PV and BRCA1/2 wild type (WT) 

126 for breast cancer patients.

127 Image preprocessing and sample preparation

128 All samples were fixed using 4% neutral formalin, followed by paraffin embedding, cut into 4 

129 ¿m thick sections, and then stained with H&E. The H&E-stained histopathological slides were 

130 scanned at a magnification level of 40 × using a KFBIO KF-PRO-005 digital scanner and saved 

131 in SVS format. Experienced pathologists with over one year in breast cancer pathology 

132 conducted quality control on the images. Slides of poor quality, especially those affected by 

133 tissue folds and blurriness, were excluded. The TCGA cohort exclusively utilized 40 × FFPE 
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134 WSIs labeled as diagnostic while excluding slides with poor image quality (such as pen marks or 

135 poor staining). The WSIs were segmented into tiles of 512 × 512 pixels, with a 50% overlap. 

136 Tiles that displayed more than 75% of the background were removed. The observed variations in 

137 color can be attributed to differences in raw materials, manufacturing processes, staining 

138 methods, and different digital scanners. These variations in color may cause the model to 

139 concentrate on color distinctions over the essential tissue morphology for analysis. To resolve 

140 this issue, color normalization was applied to all tiles using the structure-preserving color 

141 normalization (SPCN) technique (Vahadane et al. 2016). The model facilitated standardizing all 

142 tiles to resemble the color pattern of the target (Fig. S1). Various types of data augmentation 

143 techniques were employed, including random flipping, random rotation, cropping, and 

144 adjustments to brightness, contrast, saturation, and hue.

145 We used a stratified sampling approach to randomly assign images to the training and 

146 internal test set, maintaining an 8:2 ratio at the patient level. This method ensures that images of 

147 the same patient are exclusively assigned to either the training set or the internal test set. It 

148 guarantees that images from the same patient do not appear in both sets simultaneously. 

149 Segmentation network

150 We constructed a segmentation network that could automatically identify tumor regions in WSIs. 

151 Two experienced pathologists, each with more than three years of experience in breast cancer 

152 pathology, annotated tumor areas on 145 WSIs using the open-source software Qupath Image 

153 Scope. These annotated areas were then independently reviewed by a pathologist with over ten 

154 years of experience. The labeled slides were randomly divided into a training set (80%) and a 

155 test set (20%), ensuring that WSIs from the same patient did not appear in both sets. Based on 

156 the ResNet 34 architecture, the segmentation network used tiles from tumor and non-tumor 
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157 regions as input. The deep convolutional and pooling layers were utilized to extract features from 

158 each tile. These features were then passed to the fully connected layer. After the fully connected 

159 layer, a softmax function was applied to generate a probability (tumor or non-tumor) for each tile. 

160 The results were compared with the manual annotations made by three pathologists to evaluate 

161 the performance of the network. These pathologists included junior, medium, and senior 

162 pathologists with two, from five to eight, and ten years of experience, respectively. Finally, this 

163 segmentation network was utilized to automatically segment tumor regions in the TCGA cohort.

164 Prediction network

165 The CUCH cohort consisted of 217 WSIs from 152 patients, each with one or two slides. The 

166 dataset was randomly divided into a training set (633,484 tiles from 174 WSIs) and an internal 

167 test set (112,096 tiles from 43 WSIs) through stratified sampling. We developed the BiAMIL 

168 network using a Multi-Instance Learning (MIL) framework and attention mechanisms. The 

169 BiAMIL architecture comprised three main components: the feature extraction module, the bi-

170 directional self-attention module, and the classification module. The feature extraction module 

171 was based on the ResNet 34 model (Sun 2016). A bag containing N image tiles was fed into the 

172 feature extractor, resulting in a feature matrix with dimensions of N × 1000. The feature matrix 

173 was then passed into the attention module for aggregation. In the bi-directional self-attention 

174 module, the original data features were transformed into embedding vectors using a feature 

175 embedding layer. Two attention heads were then designed: a high-risk PV head and a low-risk 

176 PV head. Specifically, the attention distribution among tiles was adjusted by employing the 

177 softmax function, converting the N×1000 feature matrix into a 1×N attention weight. The 

178 weights obtained from the two attention heads were used to multiply the original feature matrix. 

179 Two sets of attention-weighted discriminative feature vectors were generated, each set having a 
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180 dimensionality of 1000. These two 1000-dimensional integrated feature vectors were merged and 

181 inputted into the classification module. The classification module consisted of a three-layer 

182 Multilayer Perceptron (MLP) with 1000, 64, and 2 neurons in each layer, respectively, utilizing 

183 the Tanh function as the activation function. The prediction probability for each instance bag was 

184 ultimately output through the softmax function. To optimize the model, we employed a 5-fold 

185 cross-validation by randomly dividing the training set into five balanced subsets (Fig. S2). Using 

186 the Adam optimizer, the optimal hyperparameters were identified as a bag of N = 35, a learning 

187 rate of 0.001, a batch size of 18, and total epochs of 20 (with the learning rate decreasing by 0.1 

188 every ten epochs). At last, the network was evaluated on the internal and external test sets.

189 Tissue features visualization and cell features quantitative analysis

190 To further understand the critical histological features that contribute the most to the prediction 

191 of the BiAMIL model, we selected the top 20% of tiles based on their attention scores in 

192 predicting BRCA1/2 PV. Attention-based visualization techniques were then employed to 

193 visually represent these tiles. Firstly, we calculated the weight values for each tile. Secondly, we 

194 identified the top 20% of tiles in WSIs with high attention weights and performed Smooth Grad-

195 CAM to identify the regions within each tile that the neural network utilized to generate 

196 predictions.

197 Cell features, including cell morphology, nuclear morphology, and staining features, were 

198 extracted from the tumor regions using QuPath (Bankhead et al. 2017). The k-means clustering 

199 method was applied to partition cells into different clusters based on their cell features. The 

200 resulting clusters were then projected onto a 2-D UMAP projection (Dorrity et al. 2020). The 

201 difference in cell features between BRCA1/2 PV and WT was evaluated by the Wilcoxon rank-

202 sum test.

PeerJ reviewing PDF | (2024:03:98990:0:1:CHECK 12 Apr 2024)

Manuscript to be reviewed



203 Statistical analysis

204 We evaluated the performance of the model at the slide level. The model generated a probability 

205 value for each bag, and we assigned a final probability to each slide by calculating the average 

206 probability across all bags in the slide. The performance of the model was evaluated using 

207 several measures, including the area under the receiver operating characteristic curve (AUROC), 

208 accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value 

209 (NPV), and the F1 score. The most relevant cell features for discriminating between BRCA1/2 

210 PV and BRCA1/2 WT were identified using the Wilcoxon rank-sum test. All statistical analyses 

211 were performed using scikit-learn 0.24.2 in Python and R (version 4.1.1), with a p-value of less 

212 than 0.05 was considered statistically significant.

213 Results

214 Clinical characteristics of patients

215 A total of 254 patients from two independent cohorts were included in our study based on the 

216 inclusion and exclusion criteria. Specifically, patients from the CUCH cohort (n=152) were 

217 randomly assigned to a training set and an internal test set, while patients from the TCGA cohort 

218 (n=102) served as an external test set. The detailed clinicopathological characteristics of the 

219 patients in the training, internal test, and external test sets are provided in Table 1. In the training 

220 set, 62 (50.8%) of patients were ER and PR positive, 12 (9.8%) were HER2 positive, and 48 

221 (39.4%) were negative for ER, PR, and HER2. In the internal test set, 16 (53.4%) of patients 

222 were ER and PR positive, 5 (16.6%) were HER2 positive, and 9 (30.0%) were negative for ER, 

223 PR, and HER2. In the external testing group, 70 (68.6%) of patients were ER and PR positive, 11 

224 (10.8%) were HER2 positive, and 18 (17.6%) were negative for ER, PR, and HER2. In the 

225 training group, 29 patients had BRCA PV, with 17 (58.6%) for BRCA1 and 12 (41.3%) for 

PeerJ reviewing PDF | (2024:03:98990:0:1:CHECK 12 Apr 2024)

Manuscript to be reviewed



226 BRCA2. The internal test set consisted of seven patients with BRCA PV, including 4 (57.1%) 

227 with BRCA1 and 3 (42.9%) with BRCA2. In the external test group, among the 26 patients with 

228 BRCA PV, there were 13 (50.0%) with BRCA1, 11 (42.3%) with BRCA2, and 2 (7.7%) with both 

229 BRCA1 and BRCA2.

230 Performance of the segmentation network

231 We developed a segmentation network to accurately distinguish tumor regions from WSIs. The 

232 segmentation model demonstrated high performance in identifying tumor regions, achieving an 

233 AUC of 0.960 (95% CI, 0.959-0.961). The accuracy, sensitivity, and specificity were 0.888 (95% 

234 CI, 0.887-0.890), 0.859 (95% CI, 0.856-0.861), and 0.908 (95% CI, 0.906-0.909), respectively. 

235 Additionally, compared with three pathologists at different levels (junior, medium, and senior), 

236 the performance of our segmentation model is almost equal to that of a medium-level pathologist 

237 (Fig. 2A). The confusion matrix is presented in Fig. 2B. Finally, typical examples of the 

238 segmentation model output are presented in Fig. 2C, where the tumor regions are highlighted in 

239 red.

240 Performance of BiAMIL network 

241 To demonstrate that focusing on the most relevant and important regions within WSIs can 

242 improve the prediction accuracy of BRCA1/2 PV, we developed the BiAMIL model, which adds 

243 an attention structure to ResNet 34. Color-normalized tiles were fed into a pre-trained ResNet 34 

244 model to extract a 1000-dimensional feature vector. These feature vectors were then stacked and 

245 input into an attention-based Multiple Instance Learning (MIL) framework to predict the 

246 probability of BRCA1/2 PV (Fig. 3). BiAMIL achieved AUC values of 0.917 (95% CI 0.874-

247 0.962) in the training set, 0.819 (95% CI 0.673-0.965) in the internal test set, and 0.817 (95% CI 

248 0.712-0.923) in the external test set (Fig. 4 and Table S1). Comparatively, ResNet 34 achieved 
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249 AUC values of 0.874 (95% CI, 0.700-0.978) in the training set, 0.783 (95% CI 0.624-0.941) in 

250 the internal test set, and 0.684 (95% CI, 0.559-0.810) in the external test sets (Fig. 4 and Table 

251 S2). The BiAMIL model outperformed the ResNet 34 model in terms of accuracy, sensitivity, 

252 specificity, positive predictive value (PPV), negative predictive value (NPV), and the F1 score 

253 (Fig. 5). Due to hormone receptor-positive and triple-negative breast cancer accounting for 80% 

254 of breast cancer cases and the high occurrence of BRCA1/2 in triple-negative breast cancer, we 

255 conducted a subgroup analysis of BiAMIL's performance in hormone receptor-positive and 

256 triple-negative breast cancer. We obtained similar results in Table 2. These findings demonstrate 

257 that the BiAMIL model is a more accurate and reliable approach for estimating the BRCA1/2 

258 status compared to the traditional ResNet 34 model.

259 Interpretability analysis of tissue features 

260 To explore the relationship between pathological tissue features and BRCA1/2 PV, we conducted 

261 a post-hoc explanation of the BiAMIL model using Class Activation Mapping (CAM). The 

262 model generated heatmaps for the top 20% of tiles based on attention scores, with the areas that 

263 contributed the most displayed in red. Overlaying the original image tiles with the CAM analysis 

264 results, we observed that the regions with high-grade tumors and lymphocytic infiltration 

265 exhibited the most significant contributions in our model. In contrast, areas associated with the 

266 stromal matrix demonstrated comparatively lower contributions. These findings indicate that 

267 BiAMIL identifies the known morphological features of BRCA1/2 PV (Fig. 6). Subsequently, we 

268 used t-distributed Stochastic Neighbor Embedding (t-SNE) to perform cluster analysis on the 

269 features generated by BiAMIL, where patients in the same class remained clustered and clearly 

270 separated from those in the other class (Fig. 7).

271 Interpretability analysis of cell features 
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272 We employed the Qupath software to automatically identify tumor cells in regions that 

273 significantly contributed to the BiAML model. Pathologists reviewed and modified the tumor 

274 cells delineated in each WSI, extracting relevant features such as cell shape, color, and other 

275 characteristics (Fig. 8A). The cells were then clustered into six groups using the k-means 

276 algorithm based on single-cell features, which corresponded to cell solidity, nuclear eccentricity, 

277 nuclear area, nuclear roundness, nuclear staining, and cytoplasmic staining (Fig. 8B). Notably, 

278 the features related to nuclear size and shape were particularly enriched in Cluster 2 (Fig. 8C, 

279 Fig. S3). To further investigate nuclear morphological differences between the BRCA1/2 PV and 

280 WT groups, we analyzed the changes in nuclear features within Cluster 2. Specifically, compared 

281 to the WT group, tumor cells in the BRCA1/2 PV group exhibited a larger nuclear area (180.00 

282 versus 168.75, p < 0.001) and a higher nuclear cell area ratio (0.34 versus 0.36, p < 0.001) (Fig. 

283 8D). At the level of cell feature interpretability, nuclear size and the nuclear cell area ratio of 

284 tumor cells emerged as the most distinctive features distinguishing the BRCA1/2 PV group from 

285 the WT group. We showed examples of high tumor cell nuclear areas and low tumor cell nuclear 

286 areas (Fig. 8E), each associated with BRCA1/2 PV and WT, respectively.

287 Discussion

288 Accurately identifying BRCA1/2 status is crucial for clinical decision-making, as it facilitates the 

289 selection of appropriate therapeutic agents and enables effective patient management. However, 

290 due to costs and resource constraints, BRCA1/2 genetic testing is not widely adopted in clinical 

291 practice. In this study, we developed a DL model to directly detect the BRCA1/2 status of breast 

292 cancer from histopathology images. Furthermore, we explored the interpretability of the model 

293 from the perspectives of tissue and cell features using visualization and clustering techniques, 

294 providing medical interpretability for our model.
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295 Wang et al. (Wang et al. 2021) proposed a traditional DL algorithm to predict BRCA1/2 

296 mutations in breast cancer through H&E pathological images. The study assumed equal 

297 contributions of all tiles to predicting BRCA1/2 mutation status. This assumption might be 

298 ineffective and potentially lower the accuracy of the predictions. In practice, each WSI 

299 comprises hundreds to thousands of tiles, but most do not significantly contribute to the final 

300 prediction. Conversely, only a few key tiles play a significant role in the prediction. Our DL 

301 model, based on the attention mechanism (Mobadersany et al. 2021; Yao et al. 2020), 

302 autonomously identified the contribution of each tile to the overall WSI-level prediction, 

303 allowing the model to concentrate more accurately on the most vital regions within the WSI. 

304 This mechanism enables the network to capture crucial information more effectively within the 

305 WSI, ultimately improving prediction accuracy. Compared to the ResNet 34 model, our results 

306 demonstrated better performance in terms of AUC, sensitivity, specificity, etc.

307 The interpretability of DL models is a challenge in medical applications (Teng et al. 2022; 

308 Yao et al. 2020). These models should provide medical interpretability to enable clinicians to 

309 understand better, validate, and trust them in clinical routine (Ibrahim et al. 2020; Liu et al. 

310 2019). To explore this issue, we visualized the important tiles identified by the attention 

311 mechanism during the decision-making process, aiming to gain a better understanding of the 

312 morphological characteristics related to BRCA1/2 PV. By this approach, we found that the model 

313 primarily captures the features of high-grade tumors and lymphocytic infiltration, which 

314 correlate with the predicted BRCA1/2 PV. Previous studies have reported that the morphological 

315 characteristics primarily associated with BRCA1/2 mutations include the absence of gland 

316 formation, a high mitotic index, nuclear pleomorphism, increased necrotic cells, and lymphocytic 

317 infiltrates (Lakhani et al. 1998; Larsen et al. 2014). The tissue features extracted by our model 
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318 were consistent with previous research findings. More importantly, we conducted further 

319 analysis of cell features such as cell morphology, nuclear morphology, and staining to provide a 

320 more comprehensive interpretation of the pathological features. Cell morphology, functionality, 

321 and genetic characteristics are crucial in predicting BRCA1/2 mutations (Alizadeh et al. 2020; 

322 Roy et al. 2011). Cell morphological features include cell shape, size, structure, etc. BRCA1/2 

323 mutations may exhibit cellular morphological abnormalities, such as irregular shapes and size 

324 variations. Observing these cellular morphological features can provide valuable insights for 

325 predicting BRCA1/2 PV. Therefore, the features of tissues and cells are related to BRCA1/2 PV, 

326 which improves the medical interpretability of the features extracted by our model when 

327 determining the BRCA1/2 status.

328 There are some limitations in our study. Firstly, the model was built from a relatively small 

329 sample size in this retrospective study. To improve the accuracy and applicability of the model, it 

330 would be beneficial to collect larger samples from multiple centers. Secondly, the model only 

331 focused on assessing BRCA1/2 status and did not include other genes in the homologous 

332 recombination-deficient (HRD) pathway. It is possible that other gene mutations may also 

333 contribute to the typical pathological image features. Finally, further investigation is required to 

334 establish the correlation between gene-related features extracted from pathological images and 

335 the effectiveness of targeted treatment outcomes.

336 Conclusions

337 In conclusion, we developed a DL model to detect BRCA1/2 status directly from 

338 histopathological images. The interpretability of this model was explored through the 

339 characteristics of pathological tissues and cell features. In the future, further optimization and 
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340 validation on larger and more diverse datasets may allow it to serve as a pre-screening tool, 

341 providing clinical value in selecting breast cancer patients for BRCA1/2 genetic testing.

342
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Figure 1
Workûow for detecting BRCA1/2 status using a deep learning algorithm.

Firstly, we collected and processed the H&E images, including scanning the images,
delineating and segmenting the tumor regions, and normalizing the color of the tiles.
Secondly, we input the color-normalized tiles into the prediction network to deduce the
BRCA1/2 status. Finally, we generated attention heat maps using visualization techniques to
explore the medical interpretability of the model.
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Figure 2
Performance of the segmentation network .

(A) Receiver Operating Characteristic (ROC) curve for the performance of the segmentation
network versus three pathologists (senior pathologist, medium pathologist, junior
pathologist) in identifying tumor areas. (B) Confusion matrices for the segmentation network.
(C) Original WSIs and representative maps identiûed by the segmentation network. Left:
original WSI images; Right: corresponding segmentation maps.
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Figure 3
Architecture of the BiAMIL model.
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Figure 4
Evaluation of the prediction network performance.

(A-C) Receiver operating characteristic (ROC) curves of diûerent models on the training,
internal test, and external test sets.
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Figure 5
Performance comparison between BiAMIL and ResNet 34.
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Figure 6
Visualization of the important regions in H&E images for the detection of BRCA1/2 PV.

The highly predicted BRCA1/2 PV tiles are primarily characterized by high-grade tumors and
lymphocytic inûltrations. In each panel, the ûrst row displays the original high-attention tiles
of WSI, while the second row shows the corresponding heatmap. The red areas on the
heatmap represent regions with large contributions from the model.
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Figure 7
Visualization of the classiûcation features learned by BiAMIL using the t-SNE algorithm.
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Figure 8
Comparison of cell features between the BRCA1/2 PV and BRCA1/2 WT.

(A) The representative H&E images and the cell quantitative analysis masks. Using Qupath
for segmentation, tumor cells are indicated in red and TILs in blue. (B) Uniform Manifold
Approximation and Projection (UMAP) visualization of cell-type features by clusters. (C)
Cluster heatmap of normalized cell features. (D). Comparison of the nuclear features
between BRCA1/2 PV and BRCA1/2 WT. (E). The mean tumor cell nuclear area of the typical
tiles inferred in the model. P values were calculated using the two-tailed Mann-Whitney U-
test.
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Table 1(on next page)

Characteristics of patients in the training, internal test, and external test sets.
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1

CUCH cohort TCGA 

cohort

Factors Training set

(n=122)

Internal test set

(n=30)

External test 

set

(n=102)

Age (years, mean ñ SD) 47.89±9.42 49.66±7.66 59.14±12.59

ER status 

Positive 58(47.5%) 16(53.4%) 76(74.5%)

Negative 64(52.5%) 14(46.6%) 23(22.5%)

Missing 0 0 3(2.9)

PR status

Positive 52(42.6%) 14(46.6%) 68(66.7%)

Negative 70(57.4%) 16(53.4%) 31(30.4%)

Missing 0 0 3(2.9%)

HER2 status 

Positive 28(23.0%) 10(33.4%) 15(28.3%)

Negative 94(77.0%) 20(66.6%) 84(82.4%)

Missing 0 0 3(2.9%)

Subtype 

HR + 62(50.8%) 16(53.4%) 70(68.6%)

HER2+ 12(9.8%) 5(16.6%) 11(10.8%)

Triple-negative 48(39.4%) 9(30.0%) 18(17.6%)

Missing 0 0 3(1.2%)

Stage (%)

I 34(27.9%) 6(20.0%) 22(21.6%)

II 73(59.8%) 17(56.6%) 55(53.9%)

III 11(9.0%) 6(20.0%) 23(22.5%)

IV 4(3.3%) 1(3.4%) 2(2.0%)

2

3 ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2; HR, 

4 hormone receptor. PV, pathogenic variants; WT, wild type.

PeerJ reviewing PDF | (2024:03:98990:0:1:CHECK 12 Apr 2024)

Manuscript to be reviewed



Table 2(on next page)

The performance of BiAMIL in predicting BRCA1/2 PV in HR+ and Triple-negative breast
cancer.
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1

Cohorts AUC

(95% CI)

Accuracy

(95% CI)

Sensitivity

(95% CI)

Specificity

(95% CI)

PPV

(95% CI)

NPV

(95% CI)

F1 score

(95% CI)

HR+

Internal 

test

0.859

(0.667-1.000)

0.812

(0.593-0.971)

0.750

(0.503-0.996)

0.875

(0.693-1.000)

0.857

(0.663-1.000)

0.777

(0.542-0.940)

0.799

(0.574-1.000)

External

test

0.850

(0.713-0.986)

0.785

(0.630-0.941)

0.615

(0.437-0.792)

0.824

(0.679-0.969)

0.444

(0.274-0.614)

0.903

(0.790-1.000)

0.516

(0.339-0.692)

Triple-

negative

Internal 

test

0.761

(0.445-1.000)

0.800

(0.509-1.000)

0.857

(0.612-1.000)

0.666

(0.300-1.000)

0.857

(0.612-1.000)

0.666

(0.300-1.000)

0.857

(0.612-1.000)

External

test

0.740

(0.505-0.975)

0.666

(0.411-0.922)

0.666

(0.411-0.922)

0.666

(0.411-0.922)

0.666

(0.411-0.922)

0.666

(0.411-0.922)

0.666

(0.411-0.922)

2

3 PV, pathogenic variants.
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