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Background. Low oxygen in marine environments, intensified by climate change and
local pollution, poses a substantial threat to global marine ecosystems, especially
impacting vulnerable coral reefs and causing metabolic crises and bleaching-induced
mortality. Yet, our understanding of the potential impacts in tropical regions is incomplete.
Furthermore, uncertainty surrounds the physiological responses of corals to hypoxia and
anoxia conditions. Methods. We initially monitored in situ dissolved oxygen (DO) levels at
Kham Island in the lower Gulf of Thailand. Subsequently, we conducted a 72-hour
experimental exposure of corals with different morphologies—Pocillopora acuta, Porites
lutea, and Turbinaria mesenterina—to low oxygen conditions, while following a 12/12-hour
dark/light cycle. Three distinct dissolved oxygen (DO) conditions were employed: control
(DO 6.0£0.5 mg/L), hypoxia (DO 2.0£0.5 mg/L), and anoxia (DO < 0.5 mg/L). We
measured and compared photosynthetic efficiency, Symbiodiniaceae density, chlorophyll
concentration, respiratory rates, primary production, and calcification across the various
treatments. Results. Persistent hypoxia was observed at the study site. Subsequent
experiments revealed that low oxygen levels led to a notable decrease in the maximum
guantum yield over time in all the species tested, accompanied by declining rates of
respiration and calcification. Our findings reveal the sensitivity of corals to both hypoxia
and anoxia, particularly affecting processes crucial to energy balance and structural
integrity. Notably, P. lutea and T. mesenterina exhibited no mortality over the 72-hour
period, while P. acuta, exposed to anoxia, experienced mortality with tissue loss within 24
hours. This study underscores species-specific variations in susceptibility associated with
different morphologies under low oxygen conditions. The results demonstrate the
substantial impact of deoxygenation on coral growth and health, with the compounded
challenges of climate change and coastal pollution exacerbating oxygen availability,
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Abstract

Background. Low oxygen in marine environments, intensified by climate change and local pollution,
poses a substantial threat to global marine ecosystems, especially impacting vulnerable coral reefs and
causing metabolic crises and bleaching-induced mortality. Yet, our understanding of the potential impacts
in tropical regions is incomplete. Furthermore, uncertainty surrounds the physiological responses of corals
to hypoxia and anoxia conditions.

Methods. We initially monitored in situ dissolved oxygen (DO) levels at Kham Island in the lower Gulf
of Thailand. Subsequently, we conducted a 72-hour experimental exposure of corals with different
morphologies—Pocillopora acuta, Porites lutea, and Turbinaria mesenterina—to low oxygen conditions,
while following a 12/12-hour dark/light cycle. Three distinct dissolved oxygen (DO) conditions were
employed: control (DO 6.0+0.5 mg/L), hypoxia (DO 2.0+£0.5 mg/L), and anoxia (DO < 0.5 mg/L). We
measured and compared photosynthetic efficiency, Symbiodiniaceae density, chlorophyll concentration,
respiratory rates, primary production, and calcification across the various treatments.

Results. Persistent hypoxia was observed at the study site. Subsequent experiments revealed that low
oxygen levels led to a notable decrease in the maximum quantum yield over time in all the species tested,
accompanied by declining rates of respiration and calcification. Our findings reveal the sensitivity of
corals to both hypoxia and anoxia, particularly affecting processes crucial to energy balance and structural
integrity. Notably, P. lutea and T. mesenterina exhibited no mortality over the 72-hour period, while P.
acuta, exposed to anoxia, experienced mortality with tissue loss within 24 hours. This study underscores
species-specific variations in susceptibility associated with different morphologies under low oxygen
conditions. The results demonstrate the substantial impact of deoxygenation on coral growth and health,
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with the compounded challenges of climate change and coastal pollution exacerbating oxygen
availability, leading to increasingly significant implications for coral ecosystems.

Introduction

Oceans worldwide are experiencing a decline in oxygen levels as the climate warms and coastal
pollution accelerates, which could have adverse effects on the diversity and richness of marine
organisms (Bopp et al., 2013; Breitburg et al., 2018; Camp et al., 2018; Sampaio et al., 2021).
'Hypoxia' is defined by oxygen levels of 2 to 3.5 mg O,/L or less, and this is a condition that
some studies have suggested may impose more severe impacts on marine life than ocean
warming, ocean acidification, or their combined effects (Vaquer-Sunyer & Duarte, 2008; Bijma
etal., 2013; Haas et al., 2014).

According to the Intergovernmental Panel on Climate Change (IPCC) and their representative
concentration pathways (RCP 2.6-8.5), the dissolved oxygen content is projected to decrease by
between 1.7% and 4% by 2100 due to climate change drivers (IPCC, 2022). Over the past 50
years, certain tropical areas, including the Central Pacific and the Indian Ocean, have
experienced a significant decline, with up to a 40% reduction in their dissolved oxygen levels
(Schmidtko, Stramma & Visbeck, 2017). This decrease is primarily attributed to the absorption
of rising atmospheric CO, from human activities and the impact of consequent excessive heat
(Levin & Bris, 2015; Henson, Beaulieu & Lampitt, 2016). As the oceans warm, the solubility of
oxygen in seawater decreases, and simultaneously, the physiological oxygen requirements for
many organism’s increase. This scenario can lead to altered behavior, migrations, decreased
growth rates, reduced fecundity, and higher mortality rates (Levin & Bris, 2015; Breitburg et al.,
2018). In addition, coastal areas are experiencing hypoxic or anoxic conditions due to factors
such as, eutrophication and restricted circulation (Nakamura, Yamasaki & Van Woesik, 2003;
Ulstrup, Hill & Ralph, 2005; Keeling, Kortzinger & Gruber, 2009).

Hermatypic scleractinian corals are pivotal as the primary reef-building species, thriving in
shallow, warm water environments with adequate light. They play a vital role in supporting a
diverse array of marine species by providing food, shelter, and substrate (Liao, Xiao & Li, 2019;
Raphael et al., 2020). Their metabolic needs, constituting up to 90% of metabolism, are fulfilled
through a mutualistic interaction with endosymbiotic dinoflagellate algae known as
Symbiodiniaceae (Muscatine, 1990). However, unfavorable environmental factors can lead to the
disruption of this essential symbiosis (Zhu et al., 2004; Suggett & Smith, 2020), with hypoxia
acknowledged as one of the primary drivers.

The extent and consequences of low oxygen are increasingly recognized (Hughes et al., 2020).
Previous findings underscore a growing concern as they highlight the widespread deaths of
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corals and coral reef associated animals attributed to hypoxia and dead zones (Altieri & Gedan,
2015; Altieri et al., 2017). Notably, the consequences of coral mass mortality extend beyond
direct impacts, as many faunas associated with coral reef habitats are also affected (Alderdice et
al., 2020). It has been established that inadequate oxygen hampers cellular processes,
deteriorating coral health and rendering it susceptible to severe bleaching under hypoxia
(Alderdice et al., 2020; Figuerola et al., 2021; Jain et al., 2023). Our recent study along the
Andaman coast of Thailand reveals that hypoxia significantly impacts various coral health
parameters, resulting in reduced photosynthetic efficiency, Symbiodiniaceae density, chlorophyll
concentration, and overall coral growth in certain species. The study further emphasizes distinct
susceptibility levels to hypoxia among the different tested coral species, underscoring the
importance of identifying species-specific responses for effective management strategies (Jain et
al., 2023).

The present study by Kham Island in the southern Gulf of Thailand was initiated by measuring in
situ dissolved oxygen. Building upon these data, an experimental approach was employed to
assess the susceptibility to low oxygen conditions among three morphologically distinct
dominant coral species at Kham Island: P. acuta, P. lutea, and T. mesenterina. The investigation
explored changes in the physiological performances and metabolism of these corals across a
range of dissolved oxygen levels categorized as hypoxia and anoxia. As the first findings from
the lower Gulf of Thailand and complementing our previous study, this research aims to offer
guidance for prioritizing management initiatives to alleviate the adverse effects of low oxygen in
tropical shallow-water coral reefs. Within the broader context of global climate change, the study
provides essential baseline information to enhance ecological risk assessment.

Materials & Methods

Assessment of in situ environmental parameters:

The study site is located at the northern part of Kham Island (6°58°24.3” N 100°51°24.8” E),
situated in the lower Gulf of Thailand within Songkhla Province (Fig. 1). The depth in the study
area ranges within 3-5 meters. According to the Department of Marine and Coastal Resources,
Thailand (DMCR) survey conducted in 2019, the primary reef areas in both the northern and
southern regions of the island were reported to be in very good condition.

To establish baseline conditions for experimental simulations, we recorded environmental
parameters at the study site. One HOBO® U26-001 data logger (Onset, USA) was strategically
positioned at a depth of 5 meters in the northern part of the reef area of Kham Island. This logger
was programmed to record DO values at hourly intervals from 22 June 2021 to 30 June 2022
(except for 20 Jan 2022- 4 Mar 2022), contributing to a detailed temporal profile of the DO
dynamics within the specified aquatic environment. Additionally, we employed the AAQ-
RINKO 176 multiprobe (JFE Advantech Co. Ltd., Hyogo, Japan) to collect data on various

Peer] reviewing PDF | (2024:01:95392:0:1:NEW 18 Jan 2024)


Owner
Highlight
Update this reference to the correct publication date of 2021.

Owner
Comment on Text
Provide an alternative reference as this reference does not support this statement.

Owner
Comment on Text
Provide reference for this sentence

Owner
Comment on Text
change to 'previous work'

Owner
Comment on Text
in terms of? specify how the condition of the reef was deteremined

Owner
Comment on Text
was the logger attached to a coral or? this is important information to specify for interpreting the recorded data.

Owner
Comment on Text
reformat to 22nd June, correct throughout paper

Owner
Comment on Text
specify how often in main text

Owner
Comment on Text
provide full names when first mentioned


PeerJ

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

parameters, including temperature, salinity, chlorophyll a concentration, pH and irradiance.
Detailed information is provided in Supplementary Table 1.

Figure 1. Sampling site location, southern Gulf of Thailand

Coral sampling and acclimation

In June 2022, healthy colonies (n = 8) of each of the coral species P. acuta, P. lutea and T.
mesenterina were collected using stainless hammer and chisel. These are the dominant coral
species at Kham Island. The research permission in the Non-Hunting Area was approved by the
Department of National Parks, Wildlife and Plant Conservation (permission number: 21685).
Coral collection was permitted by the Department of Fisheries, Ministry of Agriculture and
Cooperatives (permission number: 409) under Wild Animal Conservation and Protection Act,
B.E. 2562 (A.D. 2019). The live samples were transferred to the aquarium facility of Coastal
Oceanography and Climate Change Research Center (COCC) at Prince of Songkla University
(PSU) within 2 hours. Here, they were acclimated in a 600 L holding tank that simulated the
environmental conditions (light 120 umol photons m= s, temperature 29°C, salinity 33 psu, and
pH 8.20) of the sampling area. Following a week of acclimation in the holding tank, each colony
was cut into 3—5 cm nubbins (totaling 72 nubbins, with 24 nubbins per species) and subjected to
an additional week of acclimation.

Experiment design

The experiment of this study was conducted according to the Animals for Scientific Purposes
Act, B.E. 2558 (A.D. 2015) and approved by Institutional Animal Care and Use Committee,
Prince of Songkla University (ref.46/2021). A total of 72 coral nubbins were placed into
individual chambers, subjected to three different treatments, each with 8 nubbins per species.
The treatments were as follows: 1) Ambient with dissolved oxygen (DO) levels ranging from 6.0
to 6.5 mg/L, 2) Hypoxia with DO levels ranging from 1.5 to 2.5 mg/L, and 3) Anoxia with DO
levels ranging from 0 to 0.5 mg/L (refer to Fig. 2 for graphical representation). Dissolved oxygen
(DO) levels were adjusted in 50 L stock seawater tanks using a nitrogen high-pre: =i e regulator
(IM-TCH, China) with an air compressor pressure regulator (Xcpc, China). Prepared seawater
was added to each chamber, and coral nubbins were gently placed inside. All chambers were
then sealed with parafilm (Bemis, USA).

The experiment ran for 72 hours in a 12:12 dark/light cycle, commencing in a dark condition.
Throughout the experiment, light, temperature, and salinity were controlled and maintained at
the same conditions as during the acclimation period. The seawater in each chamber underwent
renewal every 12 hours, synchronized with the light cycle, utilizing freshly prepared seawater
specific to the treatment. Dissolved oxygen (DO) and pH measurements were recorded before
and after each 12-hour incubation period, alongside simultaneous collection of water samples for
total alkalinity measurement. The maximum quantum yield of all nubbins was assessed at the
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onset of dark/light conditions. Coral nubbins were collected at the initiation and conclusion of
the experiment, subsequently stored in a -80°C liquid nitrogen tank for later analysis of
Symbiodiniaceae density and chlorophyll content. The experimental design is summarized in
Fig. 2.

Figure 2. Experimental design and sampling parameters

Measurement protocols

Chlorophyll fluorescence

The photosynthetic efficiency represented by the maximum quantum yield (MQY) was evaluated
at 9:30 and 22:30 following dark adaptation. Quantification of MQY for P. acuta, P. lutea, and
T. mesenterina in each treatment was conducted every 12 hours using a Diving-PAM
fluorometer (Walz GmbH, Germany) connected to a 6 mm diameter fiberoptic probe. The PAM
settings were held constant with a measuring light intensity (MEAS-INT) of 5, electronic signal
gain (GAIN) set to 2, saturation pulse intensity (SAT-INT) at 8, and the width of the saturating
light pulse (SATWIDTH) at 0.6 s.

Symbiodiniaceae density and chlorophyll content

The symbiotic relationship with Symbiodiniaceae was investigated by employing the density of
Symbiodiniaceae and chlorophyll content as proxies. Each frozen coral nubbin underwent air-
blasting to separate the coral tissue from the skeleton, followed by dissolution in 50 mL artificial
seawater (3.2% NaCl solution). The resulting tissue slurries were then centrifuged at 1,000 rpm
for 10 min, and 1 mL of each sample was extracted for Symbiodiniaceae cell counting using a
hemocytometer under a light microscope.

The remaining slurry was resuspended in 3 mL of 90% acetone and stored in darkness for 24 h at
4°C. Subsequently, it was centrifuged at 5,000 rpm for 5 min, and the photosynthetic pigments
(chlorophyll a and chlorophyll ¢;) were measured using a spectrophotometer (SP8001,
Metertech, Taiwan) by taking absorbance readings at 630, 664, and 750 nm. The standard
spectrophotometric method described by Ritchie (2006) was employed for chlorophyll analysis.
Symbiodiniaceae density and chlorophyll concentration were determined per the surface area of
the coral nubbin. The paraffin wax method was utilized to determine the coral's surface area
(Stimson & Kinzie, 1991).

Respiration and primary production

Dissolved oxygen (DO) levels in all chambers were monitored in both dark and light conditions
using a multiparameter benchtop meter (inoLab® Multi 9630 IDS, Xylem Analytics,
Oberbayern, Germany).
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Respiration rate (R) and net primary production (NPP) were subsequently calculated based on
the oxygen consumption in dark conditions and the oxygen release in light conditions,
respectively. The calculations followed the methodology by Cohen, Dubinsky, and Erez (2016).
The equation for R (or NPP) is as follows.

(02 end - 02 start) xV
Time * Surface area

NPP or R (mg O;cm?h') =

Here, V represents the volume of the chamber, time is the duration of the measurement (12 h),
and the surface area is the surface area of the coral nubbin. This approach allows for estimating
the gross primary production as follows.

Gross primary production (mg O, cm?h'') = Net primary production — Respiration rate

Calcification rate
The HI84502 mini titrator (HANNA Instruments, Woonsocket, RI, USA) was employed to
perform titrations on seawater for the determination of total alkalinity (TA). As coral
calcification is a light-enhanced process (Mallon et al., 2022), the change in total alkalinity
during light conditions was utilized to calculate the calcification rate, employing the equation
outlined by Cohen, Dubinsky, and Erez (2016). The equation is as follows:

2V £ 1000 * 1.028

Calcification rate (umol O, cm™?h™1) = ———— Face area

Here, ATA represents the difference between the initial (TA start) and the final (TA end) total
alkalinities, V is the chamber volume, 1.028 is the seawater density (1.028 L x Kg™), the
division by 1000 converts mmol to umol, time is the duration of the measurement (12 hours),
and Surface area is the surface area of each coral nubbin. This formula allows for the quantitative
assessment of calcification rate per unit surface area over the specified time period and chamber
conditions.

Statistical analysis

All parameters underwent a Shapiro-Wilk Test to assess normality, and in cases of non-normal
distribution, square root or log10 transformation was applied. Two-way ANOV A was employed
to identify significant differences in MQY, net primary production, gross primary production,
respiration rate, and calcification rate among treatments and days. For the specific species P.
acuta, which died within one day of anoxia, one-way ANOVA was utilized to detect significant
differences between treatments in parameters such as net primary production, gross primary
production, respiration rate, and calcification rate. To assess significant differences in
Symbiodiniaceae density and chlorophyll concentration among treatments, one-way ANOVA
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was applied. All statistical tests were conducted at a 95% confidence level threshold. Post hoc
comparisons were performed using the Tukey Honestly Significant Difference (HSD) test.

Results

In-situ dissolved oxygen

Between June 2021 and June 2022, DO loggers consistently monitored the dissolved oxygen
levels at 12:00 and 24:00 daily in the reef region to the north of Kham Island. The annual
average dissolved oxygen concentration, excluding February 2022, was found to be 4.84 mg/L.
Our data suggests the presence of recurring hypoxic events in the reef area of the northern part of
Kham Island, particularly between September and November 2021. Over this three-month
period, the dissolved oxygen in the reef area consistently fell below 4 mg/L, with numerous
instances of levels dropping even lower, reaching below 2 mg/L (refer to Fig. 3). Analyzing the
monthly trends, we observed a notable decline in DO levels almost every month from July 2021
through the middle of October 2021. This downward trend continued, with DO levels
plummeting to 1 mg/L in October 2021. Hypoxia was identified during 7 out of the 11 recorded
months.

Figure 3. DO record in coral reef at Kham Island throughout the period from June 2021 to June
2022.

Chlorophyll fluorescence

Significantly lower values of MQY were observed in the anoxia treatment compared to the
control treatment during nighttime, across all the studied species (Fig. 4). A significant
interaction between treatment and time was detected for all three species (p<0.001, see
Supplementary Table 1a). In the case of P. acuta subjected to anoxia scenario, there was a
notable decline in MQY after the initial 12 hours in dark condition, leading to a complete loss of
coral tissue within 24 h. Similarly, corals exposed to hypoxic conditions exhibited significantly
reduced photosynthetic efficiency compared to the control group after a 24 h treatment period
(Fig. 4a), with the effects being less pronounced than those observed under anoxia.

Significant variations between treatments were evident in P. lutea (p<0.001). In anoxic
conditions, corals exhibited significantly decreased photosynthetic efficiency when treated in the
dark compared to the control; however, the efficiency was notably recovered when the light was
on (Fig. 4b).

The performance of 7. mesenterina, particularly concerning the MQY, stood out among the three
species. Time exerted a substantial influence on MQY (p<0.001), as observed in both nighttime
and daytime measurements. Notably, during the dark treatment period, MQY was significantly
lower than during the light treatment condition (Fig. 4c¢).
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In the comparison of treatments, corals subjected to anoxia exhibited a significant reduction in
photosynthetic efficiency during the initial 12 hours of treatment. In contrast, corals under
hypoxic conditions displayed a slower response compared to the anoxia treatment. Notably, both
groups of corals ultimately recovered by the end of the experiment (72 h). These findings
underscore the unique temporal and treatment-specific dynamics influencing the photosynthetic
performance of 7. mesenterina.

Figure 4: Maximum quantum yield (MQY) of P. acuta (a), P. lutea (b), and T. mesenterina (c)
under hypoxia and anoxia during a 72-h experiment. The shaded area represents nighttime.
Capital letters indicate differences between times. Lowercase letters denote differences between
treatments.

Symbiodiniaceae density and chlorophyll content

The photosynthetic symbiont and pigments exhibited a lesser impact under low oxygen
conditions (hypoxia and anoxia). In P. acuta corals, both hypoxia and anoxia treatments led to a
significantly lower density of Symbiodiniaceae compared to the initial group collected at the
beginning of the experiment (p = 0.049), so there was tissue loss. However, no significant
difference in Symbiodiniaceae density was observed in P. lutea and T. mesenterina.
Additionally, anoxia treatment resulted in significantly lower concentrations of chlorophyll a and
chlorophyll ¢, reflecting the impact of tissue loss. In 7. mesenterina, hypoxia treatment led to a
significant decrease in chlorophyll a concentration (p = 0.014). Notably, P. lutea showed no
discernible effect from hypoxia and anoxia in these three parameters.

Figure 5: Comparison of Symbiodiniaceae density (a), chlorophyll a concentration (b), and
chlorophyll ¢, concentration (c) in P. acuta, P. lutea, and T. mesenterina under hypoxia and
anoxia before (initial) and after a 72 h experiment. Lowercase letters indicate differences
between treatments.

Respiration and primary production

Respiration

Hypoxia and anoxia conditions exerted significant impacts on respiration of all the species (Fig.
6, Supplementary Table). The effects of treatments were statistically significant (p < 0.001).
However, there were no significant differences observed between the days of sampling for P.
lutea and T. mesenterina (p = 0.796 and p = 0.860, respectively). Additionally, no interaction
effects were identified for P. lutea (p = 0.896) and T. mesenterina (p = 0.595).

Figure 6: Respiration rates of P. acuta (a), P. lutea (b), and T. mesenterina (c) from day 1 to day

3 under control, hypoxic, and anoxic conditions. Lowercase letters denote differences between
treatments, while uppercase letters indicate differences between days.
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Primary production

While P. acuta exhibited no significant effect on net primary production rates under hypoxia and
anoxia (p=0.053), P. lutea displayed variability in net primary production. Specifically, under
hypoxic conditions, P. [utea showed no difference in net primary production. However, under
anoxic conditions, it exhibited a significantly higher net primary production rate compared to
other treatments across all three days (p<0.001). Importantly, there was no discernible impact
from the days of incubation, and no interaction effects were observed (p=0.849 and p=0.876,
respectively). On the other hand, an interaction effect between treatment and day was observed
in T. mesenterina (p=0.034). The net primary production rates of 7. mesenterina were
significantly affected by hypoxia and anoxia (p<0.001). Furthermore, under anoxic conditions, 7.
mesenterina exhibited significantly higher net primary production rates from the first day.

Figure 7: Net primary production from day 1 to day 3 of P. acuta (a), P. lutea (b), and T.
mesenterina (c) under control, hypoxia, and anoxia conditions. Lowercase letters denote
differences between treatments, while uppercase letters indicate differences between days.

In terms of gross primary production, P. acuta exhibited a significant reduction in the gross
primary production rates under both hypoxia and anoxia conditions (p=0.001). In contrast, P.
lutea only displayed a lower gross primary production rate on the first day of the experiment
(p=0.002). Unlike P. acuta and P. lutea, T. mesenterina showed significantly lower gross
primary production rates specifically under anoxia (p=0.042) on the third day of the experiment
(p=0.016).

Figure 8: Gross primary production from day 1 to day 3 for P. acuta (a), P. lutea (b), and T.
mesenterina (c) under control, hypoxia, and anoxia conditions. Lowercase letters denote
differences between treatments, while uppercase letters indicate differences between days.

Calcification

The calcification rate of P. acuta was significantly affected by anoxia (p=0.020). In the case of
P. lutea, calcification rates were influenced by both hypoxia and anoxia (p<0.001). A
significantly lower calcification rate under hypoxia was observed on the second day, while under
anoxia, the calcification rate of P. lutea exhibited an effect across all three days. Calcification
rates of 7. mesenterina were significantly influenced by treatment (p < 0.001), day (p < 0.01),
and with an interaction between these factors (p < 0.001). Initially, on the first day of stress, the
calcification rate of 7. mesenterina remained unaffected by hypoxia or anoxia. However, a
notable reduction was observed on the second and third days under these conditions.

Figure 9: Calcification rate from day 1 to day 3 of P. acuta (a), P. lutea (b), and T. mesenterina

(c) under control, hypoxia, and anoxia conditions. Lowercase letters denote differences between
treatments, while uppercase letters indicate differences between days.
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Discussion

A comprehensive inquiry into the effects of oxygen limitation on coral ecosystems within the
lower Gulf of Thailand is motivated by the urgent need to address the growing threat of
deoxygenation events to coral health globally (Altieri et al., 2017; Hughes et al., 2020; Nelson &
Altieri, 2019). Given the limited availability of dissolved oxygen data in Thailand, we initiated
regular monitoring, revealing persistent hypoxic conditions in the study site (Fig. 3). Recorded
data reveals a consistent decrease in seawater oxygen levels, reaching hypoxia (oxygen less than
2 mg/L), particularly during two periods: from the end of September to mid-October and in mid-
May, aligning with elevated temperatures (Fig. S1). The solubility of oxygen and metabolic
requirements in aquatic ectotherms is intricately linked to water temperature (Roman et al.,
2019). Moreover, the proximity to mainland of Kham Island, situated just 2 km from the
estuarine and close to the coastal area (Fig. 1), makes it susceptible to anthropogenic activities
and freshwater runoff, contributing to the phenomenon of ocean deoxygenation (Laffoley &
John, 2019; Mancini et al., 2023).

Based on these data, our objective was to investigate the impact of hypoxia and anoxia
conditions on the physiological performance of the predominant coral species, P. acuta, P. lutea,
and T. mesenterina. Our findings reveal that diminished oxygen levels significantly influence
various physiological processes, reducing the integrity of photosystem II, and decreasing
respiration, primary production, and calcification rates. Importantly, the observed effects are
contingent upon the specific oxygen levels (hypoxia or anoxia) and associated with the
morphological variations among different coral species.

Our investigation highlights a significant impact of low oxygen conditions on the photosynthetic
performance of the three coral species. The decline in photosynthetic efficiency is attributed to a
structural alteration in photochemical reaction centers and/or the donor and acceptor sides and a
reduction in photosystem II density, affecting electron transport, as corroborated by previous
studies (Gorbunov et al., 2001; Hill et al., 2004; Smith, Suggett & Baker, 2005; Duarte et al.,
2017; Franzitta et al., 2020; Deleja et al., 2022; Smythers et al., 2023). However, the recent
findings of Deleja et al. (2022) propose that although photochemical reaction centers remain
unchanged during nighttime hypoxia, there is an observed modification in the connectivity
between the PSII antennae. This alteration results in a reduced absorption of the photon flux by
the pigment antenna, ultimately leading to an insufficient amount of transported energy to the
reaction centers (Duarte et al., 2015; Strasser & Stirbet, 2001). Furthermore, this photoinhibition
may arise from oxidative stress (Deleja et al., 2022), impeding repair of the photosystem and
exacerbating damage. Our findings indicate that the effects on photosynthesis related parameters
were primarily observed in the maximum quantum yield and, to a certain extent, in the gross
photosynthesis rates. However, there was no significant impact on Symbiodiniaceae density or
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chlorophyll content. From these observations, we propose that the influence of low oxygen
conditions is predominantly on the functionality of the photosynthetic machinery rather than
causing a disruption in the symbiotic relationship between coral and Symbiodiniaceae or
triggering the onset of bleaching. This finding aligns with our earlier research (Jain et al., 2023)
and is consistent with findings from other studies (Alva Garcia et al., 2022; Deleja et al., 2022).
It suggests that chlorophyll fluorescence parameters may serve as effective biomarkers for
detecting hypoxic and anoxic stresses in P. acuta, P. lutea, and T. mesenterina. Moreover, it is
noteworthy that the impacts of hypoxia exhibited significant variations between periods with and
without light, corresponding to daytime and nighttime conditions. This pattern may be attributed
to the ongoing photosynthetic activity during the day, contributing to oxygen production and
alleviating tissue oxygen levels. In contrast, during nighttime, when photosynthetic activity
ceases and respiration consumes oxygen, the impact of oxygen deprivation intensifies.

Cellular respiration, a vital process for generating energy for cellular functions, was significantly
impacted by low oxygen in our study. Under these conditions, P. acuta, P. lutea, and T.
mesenterina exhibited reduced respiration rates. The observed influence of oxygen limitation on
coral respiration aligns with findings from previous studies (Dodds et al., 2007; Nelson &
Altieri, 2019; Alva Garcia et al., 2022; Gravinese et al., 2022). Certain cnidarians have
demonstrated the ability to tolerate acute hypoxic and anoxic conditions by transitioning from
aerobic respiration to the less efficient anaerobic respiration pathway, enabling them to survive
extended exposure periods (Martinez, Smith & Richmond, 2012; Murphy & Richmond, 2016;
Gravinese et al., 2022). Consequently, the decrease in respiratory oxygen consumption during
hypoxic and anoxic stress observed in our study may be linked to a gradual shift towards
anaerobic respiration (Nelson & Altieri, 2019; Gravinese et al., 2022). However, this metabolic
shift comes at the cost of energy production and may lead to an energy deficit stage (Murphy &
Richmond, 2016). While our measurements were conducted using the holobionts, it is crucial to
acknowledge the tight coupling of coral respiration with the photosynthesis of symbiotic algae.
Previous studies have demonstrated that the carbon dioxide necessary for photosynthesis by
Symbiodiniaceae is derived from coral cellular respiration (Muscatine, Porter & Kaplan, 1989).
Consequently, low oxygen not only limits coral and Symbiodiniaceae respiration but also
indirectly inhibits symbiotic algal photosynthesis by restricting the supply of carbon dioxide
from coral respiration (Harland & Davies, 1995; Gardella & Edmunds, 1999). Furthermore, we
propose that the decrease in respiratory rates serves as the primary contributor to a slight increase
in net primary production observed in some species in our study. It's important to note that,
considering the lower MQY and gross photosynthetic rates, any increase in net primary
production should not be interpreted as a positive impact for corals.

Calcification, an essential process for coral growth, exhibited high sensitivity to low oxygen

levels in our study. Under these conditions, P. acuta, P. lutea, and T. mesenterina displayed
reduced calcification rates. Coral calcification, a "photosynthesis-driven" process, relies on the
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energy derived from the photosynthesis of Symbiodiniaceae (Colombo-Pallotta, Rodriguez-
Romaén & Iglesias-Prieto, 2010). Additionally, the products of photosynthesis play a crucial role
in fueling corals' aerobic respiration and the deposition of calcium carbonate, which demands a
significant portion (13-30%) of the total metabolic energy budget from corals through aerobic
respiration (Cohen & Holcomb, 2009; Colombo-Pallotta, Rodriguez-Romén & Iglesias-Prieto,
2010; Allemand et al., 2011). Hence, the availability of oxygen plays a vital role not only in
respiration and photosynthesis but also in restricting calcification by influencing both respiration
and photosynthesis (Colombo-Pallotta, Rodriguez-Roman & Iglesias-Prieto, 2010; Wijgerde et
al., 2012). Previous studies consistently highlight the significant impact of oxygen on corals'
calcification in both dark and light conditions (Al-Horani, Tambutté & Allemand, 2007;
Colombo-Pallotta, Rodriguez-Roman & Iglesias-Prieto, 2010; Wijgerde et al., 2012, 2014;
Nakamura, Nadaoka & Watanabe, 2013; Zhang et al., 2023). These findings underscore the
sensitivity of coral calcification to oxygen levels, emphasizing potential implications for overall
coral health and growth. Notably, observations of Pocillopora species’ growth rates showed a
substantial 43.3% reduction at relatively lower oxygen levels, as reported by Castrillon-Cifuentes
et al. (2023).

Considerable differences in responses among morphologically distinct corals have been
documented, with branching and solitary coral colonies being more susceptible to severe hypoxic
conditions compared to massive, sub-massive, and encrusting corals (Guzman et al., 1990;
Simpson, Cary & Masini, 1993; Adjeroud, Andréfouét & Payri, 2001).

In our study, P. acuta exhibited the highest sensitivity to anoxic conditions, resulting in tissue
loss and mortality within 24 hours. This response mirrored the findings in the branching coral
Acropora cervicornis, which also experienced tissue loss and mortality within a day of exposure
to dissolved oxygen levels of 1.0 mg/L (Johnson et al., 2021). These observations underscore the
vulnerability of branching corals to stress. Given the susceptibility of P. acuta and similar
branching species, it is crucial that management efforts prioritize these corals when developing
conservation plans and strategies. In contrast, P. lutea and T. mesenterina did not show any
mortality over a 72-hour period, indicating a higher tolerance to hypoxia, consistent with
previous records for massive corals such as P. lutea and Orbicella faveolata (Johnson et al.,
2021; Alderdice et al., 2022). This difference in tolerance by morphology also aligns with our
recent findings from the Andaman Coast (Jain et al., 2023). However, the variability in hypoxia
thresholds is not only evident among genera but also among coral species. For example, within
the same genus and morphology, Acropora selago and Acropora yongei exhibited bleaching
under hypoxic conditions within 12 hours, while Acropora tenuis showed no bleaching under the
same stress (Alderdice et al., 2020; Haas et al., 2014). Effective conservation efforts in the face
of climate change should place importance on understanding the biology of corals, considering
both the variation within and among species. Tailoring conservation strategies to specific coral
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species, especially those with distinct sensitivities to environmental stressors like hypoxia, is
critical for the long-term health and resilience of coral reef ecosystems.

Conclusions

In summary, our experiments highlight the sensitivity of corals to hypoxia and anoxia conditions,
impacting essential processes related to energy balance and structural integrity. Variability in
resilience was evident among species, with P. acuta identified as the most susceptible. This
study emphasizes species specific variations in vulnerability, linked to different morphologies,
under low oxygen conditions, corroborating the earlier suggestion that branching corals are more
sensitive to stress.

Our research gains particular relevance considering the persistent hypoxia in the natural
environment of our study site. As challenges related to oxygen availability intensify due to
climate change and coastal pollution, the implications for coral ecosystems become increasingly
significant. A comprehensive understanding of these physiological processes is not only crucial
for predicting the consequences of deoxygenation, as well as of climate change in general, but
also for developing effective strategies to assess and mitigate the impacts of deoxygenated events
on tropical corals.
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Figure 1

Sampling site location, southern Gulf of Thailand
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Figure 2

Experimental design and sampling parameters
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Figure 3

DO record in coral reef at Kham Island throughout the period from June 2021 to June
2022.
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Figure 4

Maximum quantum yield (MQY) of P. acuta (a), P. lutea (b), and T. mesenterina (c)
under hypoxia and anoxia during a 72-h experiment.

The shaded area represents nighttime. Capital letters indicate differences between times.

Lowercase letters denote differences between treatments.
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Figure 5

Comparison of Symbiodiniaceae density (a), chlorophyll a concentration (b), and
chlorophyll ¢, concentration (c) in P. acuta, P. lutea, and T. mesenterina.

Lowercase letters indicate differences between treatments.
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Figure 6

Respiration rates of P. acuta (a), P. lutea (b), and T. mesenterina (c) from day 1 to day 3
under control, hypoxic, and anoxic conditions.

Lowercase letters denote differences between treatments, while uppercase letters indicate

differences between days.
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Figure 7

Net primary production from day 1 to day 3 of P. acuta (a), P. lutea (b), and T.
mesenterina (c) under control, hypoxia, and anoxia conditions.

Lowercase letters denote differences between treatments, while uppercase letters indicate

differences between days.
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Figure 8

Gross primary production from day 1 to day 3 for P. acuta (a), P. lutea (b), and T.
mesenterina (c) under control, hypoxia, and anoxia conditions.

Lowercase letters denote differences between treatments, while uppercase letters indicate

differences between days.
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Figure 9

Calcification rate from day 1 to day 3 of P. acuta (a), P. lutea (b), and T. mesenterina (c)
under control, hypoxia, and anoxia conditions.

Lowercase letters denote differences between treatments, while uppercase letters indicate

differences between days.
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