Unraveling the physiological responses of morphologically distinct corals to low oxygen (#95392)

First submission

Guidance from your Editor

Please submit by 16 Feb 2024 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

- 9 Figure file(s)
- 1 Raw data file(s)
- 1 Other file(s)

Field study

- Have you checked the authors field study permits?
- Are the field study permits appropriate?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Unraveling the physiological responses of morphologically distinct corals to low oxygen

Ying Long 1, 2, Sutinee Sinutok 1, 3, Pimchanok Buapet 1, 4, Mathinee Yucharoen Corresp. 1, 2

Corresponding Author: Mathinee Yucharoen Email address: mathinee.y@psu.ac.th

Background. Low oxygen in marine environments, intensified by climate change and local pollution, poses a substantial threat to global marine ecosystems, especially impacting vulnerable coral reefs and causing metabolic crises and bleaching-induced mortality. Yet, our understanding of the potential impacts in tropical regions is incomplete. Furthermore, uncertainty surrounds the physiological responses of corals to hypoxia and anoxia conditions. **Methods.** We initially monitored in situ dissolved oxygen (DO) levels at Kham Island in the lower Gulf of Thailand. Subsequently, we conducted a 72-hour experimental exposure of corals with different morphologies—*Pocillopora acuta, Porites* lutea, and Turbinaria mesenterina—to low oxygen conditions, while following a 12/12-hour dark/light cycle. Three distinct dissolved oxygen (DO) conditions were employed: control (DO 6.0 ± 0.5 mg/L), hypoxia (DO 2.0 ± 0.5 mg/L), and anoxia (DO < 0.5 mg/L). We measured and compared photosynthetic efficiency, Symbiodiniaceae density, chlorophyll concentration, respiratory rates, primary production, and calcification across the various treatments. **Results.** Persistent hypoxia was observed at the study site. Subsequent experiments revealed that low oxygen levels led to a notable decrease in the maximum quantum yield over time in all the species tested, accompanied by declining rates of respiration and calcification. Our findings reveal the sensitivity of corals to both hypoxia and anoxia, particularly affecting processes crucial to energy balance and structural integrity. Notably, P. lutea and T. mesenterina exhibited no mortality over the 72-hour period, while P. acuta, exposed to anoxia, experienced mortality with tissue loss within 24 hours. This study underscores species-specific variations in susceptibility associated with different morphologies under low oxygen conditions. The results demonstrate the substantial impact of deoxygenation on coral growth and health, with the compounded challenges of climate change and coastal pollution exacerbating oxygen availability,

 $^{^{}m 1}$ Coastal Oceanography and Climate Change Research Center, Prince of Songkla University, Hatyai, Songkhla, Thailand

Marine and Coastal Resources Institute, Faculty of Environmental Management, Prince of Songkla University, Hatyai, Songkhla, Thailand

Faculty of Environmental Management, Prince of Songkla University, Hatyai, Songkhla, Thailand

⁴ Division of Biological Science, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, Thailand

leading to increasingly significant implications for coral ecosystems.

Unraveling the Physiological Responses of Morphologically Distinct Corals to Low Oxygen

3 Ying Long^{1,2}, Sutinee Sinutok^{2,3}, Pimchanok Buapet ^{2,4}, Mathinee Yucharoen^{1,2}

4

- 5 Marine and Coastal Resources Institute, Faculty of Environmental Management, Prince of
- 6 Songkla University, Hat Yai, Thailand
- 7 ² Coastal Oceanography and Climate Change Research Center, Prince of Songkla University, Hat
- 8 Yai, Thailand
- 9 ³ Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Thailand
- 10 ⁴ Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai,
- 11 Thailand

12

- 13 Corresponding Author:
- 14 Mathinee Yucharoen^{1,2}
- 15 Kanjanavanich, Hat Yai, Songkhla, 90110, Thailand
- 16 Email address: mathinee.y@psu.ac.th

17 18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Abstract

Background. Low oxygen in marine environments, intensified by climate change and local pollution, poses a substantial threat to global marine ecosystems, especially impacting vulnerable coral reefs and causing metabolic crises and bleaching-induced mortality. Yet, our understanding of the potential impacts in tropical regions is incomplete. Furthermore, uncertainty surrounds the physiological responses of corals to hypoxia and anoxia conditions.

Methods. We initially monitored *in situ* dissolved oxygen (DO) levels at Kham Island in the lower Gulf of Thailand. Subsequently, we conducted a 72-hour experimental exposure of corals with different morphologies—*Pocillopora acuta*, *Porites lutea*, and *Turbinaria mesenterina*—to low oxygen conditions, while following a 12/12-hour dark/light cycle. Three distinct dissolved oxygen (DO) conditions were employed: control (DO 6.0±0.5 mg/L), hypoxia (DO 2.0±0.5 mg/L), and anoxia (DO < 0.5 mg/L). We measured and compared photosynthetic efficiency, Symbiodiniaceae density, chlorophyll concentration, respiratory rates, primary production, and calcification across the various treatments.

Results. Persistent hypoxia was observed at the study site. Subsequent experiments revealed that low oxygen levels led to a notable decrease in the maximum quantum yield over time in all the species tested, accompanied by declining rates of respiration and calcification. Our findings reveal the sensitivity of corals to both hypoxia and anoxia, particularly affecting processes crucial to energy balance and structural integrity. Notably, *P. lutea* and *T. mesenterina* exhibited no mortality over the 72-hour period, while *P. acuta*, exposed to anoxia, experienced mortality with tissue loss within 24 hours. This study underscores species-specific variations in susceptibility associated with different morphologies under low oxygen conditions. The results demonstrate the substantial impact of deoxygenation on coral growth and health,

with the compounded challenges of climate change and coastal pollution exacerbating oxygen availability, leading to increasingly significant implications for coral ecosystems.

Introduction

Oceans worldwide are experiencing a decline in oxygen levels as the climate warms and coastal pollution accelerates, which could have adverse effects on the diversity and richness of marine organisms (Bopp et al., 2013; Breitburg et al., 2018; Camp et al., 2018; Sampaio et al., 2021). 'Hypoxia' is defined by oxygen levels of 2 to 3.5 mg O₂/L or less, and this is a condition that some studies have suggested may impose more severe impacts on marine life than ocean warming, ocean acidification, or their combined effects (Vaquer-Sunyer & Duarte, 2008; Bijma et al., 2013; Haas et al., 2014).

According to the Intergovernmental Panel on Climate Change (IPCC) and their representative concentration pathways (RCP 2.6-8.5), the dissolved oxygen content is projected to decrease by between 1.7% and 4% by 2100 due to climate change drivers (IPCC, 2022). Over the past 50 years, certain tropical areas, including the Central Pacific and the Indian Ocean, have experienced a significant decline, with up to a 40% reduction in their dissolved oxygen levels (Schmidtko, Stramma & Visbeck, 2017). This decrease is primarily attributed to the absorption of rising atmospheric CO₂ from human activities and the impact of consequent excessive heat (Levin & Bris, 2015; Henson, Beaulieu & Lampitt, 2016). As the oceans warm, the solubility of oxygen in seawater decreases, and simultaneously, the physiological oxygen requirements for many organism's increase. This scenario can lead to altered behavior, migrations, decreased growth rates, reduced fecundity, and higher mortality rates (Levin & Bris, 2015; Breitburg et al., 2018). In addition, coastal areas are experiencing hypoxic or anoxic conditions due to factors such as, eutrophication and restricted circulation (Nakamura, Yamasaki & Van Woesik, 2003; Ulstrup, Hill & Ralph, 2005; Keeling, Körtzinger & Gruber, 2009).

Hermatypic scleractinian corals are pivotal as the primary reef-building species, thriving in shallow, warm water environments with adequate light. They play a vital role in supporting a diverse array of marine species by providing food, shelter, and substrate (Liao, Xiao & Li, 2019; Raphael et al., 2020). Their metabolic needs, constituting up to 90% of metabolism, are fulfilled through a mutualistic interaction with endosymbiotic dinoflagellate algae known as Symbiodiniaceae (Muscatine, 1990). However, unfavorable environmental factors can lead to the disruption of this essential symbiosis (Zhu et al., 2004; Suggett & Smith, 2020), with hypoxia acknowledged as one of the primary drivers.

- 79 The extent and consequences of low oxygen are increasingly recognized (Hughes et al., 2020).
- 80 Previous findings underscore a growing concern as they highlight the widespread deaths of

81 corals and coral reef associated animals attributed to hypoxia and dead zones (Altieri & Gedan, 2015; Altieri et al., 2017). Notably, the consequences of coral mass mortality extend beyond 82 direct impacts, as many faunas associated with coral reef habitats are also affected (Alderdice et 83 al., 2020). It has been established that inadequate oxygen hampers cellular processes, 84 85 deteriorating coral health and rendering it susceptible to severe bleaching under hypoxia (Alderdice et al., 2020; Figuerola et al., 2021; Jain et al., 2023). Our recent study along the 86 Andaman coast of Thailand reveals that hypoxia significantly impacts various coral health 87 parameters, resulting in reduced photosynthetic efficiency, Symbiodiniaceae density, chlorophyll 88 concentration, and overall coral growth in certain species. The study further emphasizes distinct 89 90 susceptibility levels to hypoxia among the different tested coral species, underscoring the importance of identifying species-specific responses for effective management strategies (Jain et 91 92 al., 2023).

93 94

95

96

97

98

99

100

101

102

The present study by Kham Island in the southern Gulf of Thailand was initiated by measuring *in situ* dissolved oxygen. Building upon these data, an experimental approach was employed to assess the susceptibility to low oxygen conditions among three morphologically distinct dominant coral species at Kham Island: *P. acuta*, *P. lutea*, and *T. mesenterina*. The investigation explored changes in the physiological performances and metabolism of these corals across a range of dissolved oxygen levels categorized as hypoxia and anoxia. As the first findings from the lower Gulf of Thailand and complementing our previous study, this research aims to offer guidance for prioritizing management initiatives to alleviate the adverse effects of low oxygen in tropical shallow-water coral reefs. Within the broader context of global climate change, the study provides essential baseline information to enhance ecological risk assessment.

103104105

Materials & Methods

- 106 Assessment of *in situ* environmental parameters:
- The study site is located at the northern part of Kham Island (6°58'24.3" N 100°51'24.8" E),
- situated in the lower Gulf of Thailand within Songkhla Province (Fig. 1). The depth in the study
- area ranges within 3-5 meters. According to the Department of Marine and Coastal Resources.
- 110 Thailand (DMCR) survey conducted in 2019, the primary reef areas in both the northern and
- southern regions of the island were reported to be in very good condition.

112

- 113 To establish baseline conditions for experimental simulations, we recorded environmental
- parameters at the study site. One HOBO® U26-001 data logger (Onset, USA) was strategically
- positioned at a depth of 5 meters in the northern part of the reef area of Kham Island. This logger
- was programmed to record DO values at hourly intervals from 22 June 2021 to 30 June 2022
- 117 (except for 20 Jan 2022- 4 Mar 2022), contributing to a detailed temporal profile of the DO
- dynamics within the specified aquatic environment. Additionally, we employed the AAQ-
- 119 RINKO 176 multiprobe (JFE Advantech Co. Ltd., Hyogo, Japan) to collect data on various

PeerJ

120 parameters, including temperature, salinity, chlorophyll a concentration, pH and irradiance. Detailed information is provided in Supplementary Table 1. 121 122 123 Figure 1. Sampling site location, southern Gulf of Thailand 124 125 Coral sampling and acclimation In June 2022, healthy colonies (n = 8) of each of the coral species *P. acuta, P. lutea* and *T.* 126 mesenterina were collected using stainless hammer and chisel. These are the dominant coral 127 species at Kham Island. The research permission in the Non-Hunting Area was approved by the 128 Department of National Parks, Wildlife and Plant Conservation (permission number: 21685). 129 Coral collection was permitted by the Department of Fisheries, Ministry of Agriculture and 130 Cooperatives (permission number: 409) under Wild Animal Conservation and Protection Act. 131 B.E. 2562 (A.D. 2019). The live samples were transferred to the aquarium facility of Coastal 132 133 Oceanography and Climate Change Research Center (COCC) at Prince of Songkla University (PSU) within 2 hours. Here, they were acclimated in a 600 L holding tank that simulated the 134 environmental conditions (light 120 µmol photons m⁻² s⁻¹, temperature 29°C, salinity 33 psu, and 135 pH 8.20) of the sampling area. Following a week of acclimation in the holding tank, each colony 136 was cut into 3–5 cm nubbins (totaling 72 nubbins, with 24 nubbins per species) and subjected to 137 an additional week of acclimation. 138 139 140 Experiment design The experiment of this study was conducted according to the Animals for Scientific Purposes 141 142 Act, B.E. 2558 (A.D. 2015) and approved by Institutional Animal Care and Use Committee, Prince of Songkla University (ref.46/2021). A total of 72 coral nubbins were placed into 143 individual chambers, subjected to three different treatments, each with 8 nubbins per species. 144 The treatments were as follows: 1) Ambient with dissolved oxygen (DO) levels ranging from 6.0 145 146 to 6.5 mg/L, 2) Hypoxia with DO levels ranging from 1.5 to 2.5 mg/L, and 3) Anoxia with DO levels ranging from 0 to 0.5 mg/L (refer to Fig. 2 for graphical representation). Dissolved oxygen 147 (DO) levels were adjusted in 50 L stock seawater tanks using a nitrogen high-pressure regulator 148 (IM-TCH, China) with an air compressor pressure regulator (Xcpc, China). Prepared seawater 149 150 was added to each chamber, and coral nubbins were gently placed inside. All chambers were then sealed with parafilm (Bemis, USA). 151 152 153 The experiment ran for 72 hours in a 12:12 dark/light cycle, commencing in a dark condition. Throughout the experiment, light, temperature, and salinity were controlled and maintained at 154 the same conditions as during the acclimation period. The seawater in each chamber underwent 155 renewal every 12 hours, synchronized with the light cycle, utilizing freshly prepared seawater 156 specific to the treatment. Dissolved oxygen (DO) and pH measurements were recorded before 157 and after each 12-hour incubation period, alongside simultaneous collection of water samples for 158 159 total alkalinity measurement. The maximum quantum yield of all nubbins was assessed at the

onset of dark/light conditions. Coral nubbins were collected at the initiation and conclusion of 160 the experiment, subsequently stored in a -80°C liquid nitrogen tank for later analysis of 161 Symbiodiniaceae density and chlorophyll content. The experimental design is summarized in 162 163 Fig. 2. 164 165 Figure 2. Experimental design and sampling parameters 166 167 Measurement protocols 168 Chlorophyll fluorescence The photosynthetic efficiency represented by the maximum quantum yield (MOY) was evaluated 169 at 9:30 and 22:30 following dark adaptation. Quantification of MOY for P. acuta, P. lutea, and 170 T. mesenterina in each treatment was conducted every 12 hours using a Diving-PAM 171 fluorometer (Walz GmbH, Germany) connected to a 6 mm diameter fiberoptic probe. The PAM 172 173 settings were held constant with a measuring light intensity (MEAS-INT) of 5, electronic signal gain (GAIN) set to 2, saturation pulse intensity (SAT-INT) at 8, and the width of the saturating 174 light pulse (SATWIDTH) at 0.6 s. 175 176 177 Symbiodiniaceae density and chlorophyll content The symbiotic relationship with Symbiodiniaceae was investigated by employing the density of 178 Symbiodiniaceae and chlorophyll content as proxies. Each frozen coral nubbin underwent air-179 blasting to separate the coral tissue from the skeleton, followed by dissolution in 50 mL artificial 180 seawater (3.2% NaCl solution). The resulting tissue slurries were then centrifuged at 1,000 rpm 181 182 for 10 min, and 1 mL of each sample was extracted for Symbiodiniaceae cell counting using a hemocytometer under a light microscope. 183 184 The remaining slurry was resuspended in 3 mL of 90% acetone and stored in darkness for 24 h at 185 186 4°C. Subsequently, it was centrifuged at 5,000 rpm for 5 min, and the photosynthetic pigments (chlorophyll a and chlorophyll c_2) were measured using a spectrophotometer (SP8001, 187 Metertech, Taiwan) by taking absorbance readings at 630, 664, and 750 nm. The standard 188 spectrophotometric method described by Ritchie (2006) was employed for chlorophyll analysis. 189 190 Symbiodiniaceae density and chlorophyll concentration were determined per the surface area of the coral nubbin. The paraffin wax method was utilized to determine the coral's surface area 191 (Stimson & Kinzie, 1991). 192 193 194 Respiration and primary production Dissolved oxygen (DO) levels in all chambers were monitored in both dark and light conditions 195 196 using a multiparameter benchtop meter (inoLab® Multi 9630 IDS, Xylem Analytics, Oberbayern, Germany). 197 198

Respiration rate (R) and net primary production (NPP) were subsequently calculated based on 199

the oxygen consumption in dark conditions and the oxygen release in light conditions, 200

201 respectively. The calculations followed the methodology by Cohen, Dubinsky, and Erez (2016).

The equation for R (or NPP) is as follows. 202

203 204

NPP or
$$R \text{ (mg O}_2 \text{ cm}^{-2} \text{ h}^{-1}) = \frac{(02 \text{ end } - 02 \text{ start}) * V}{Time * Surface \text{ area}}$$

205 206

207

Here, V represents the volume of the chamber, time is the duration of the measurement (12 h), and the surface area is the surface area of the coral nubbin. This approach allows for estimating the gross primary production as follows.

208 209 210

Gross primary production (mg O_2 cm⁻² h⁻¹) = Net primary production – Respiration rate

211

- 212 Calcification rate
- 213 The HI84502 mini titrator (HANNA Instruments, Woonsocket, RI, USA) was employed to
- perform titrations on seawater for the determination of total alkalinity (TA). As coral 214
- calcification is a light-enhanced process (Mallon et al., 2022), the change in total alkalinity 215
- 216 during light conditions was utilized to calculate the calcification rate, employing the equation
- outlined by Cohen, Dubinsky, and Erez (2016). The equation is as follows: 217

218 Calcification rate (
$$\mu$$
mol O₂ cm⁻²h⁻¹) =
$$\frac{{}^{ATA}_2 * V * 1000 * 1.028}{Time * Surface area}$$

219 220

221

222 223

224

Here, ΔTA represents the difference between the initial (TA start) and the final (TA end) total alkalinities, V is the chamber volume, 1.028 is the seawater density $(1.028 \text{ L} \times \text{Kg}^{-1})$, the division by 1000 converts mmol to umol, time is the duration of the measurement (12 hours), and Surface area is the surface area of each coral nubbin. This formula allows for the quantitative assessment of calcification rate per unit surface area over the specified time period and chamber conditions.

225 226 227

Statistical analysis

228

229 All parameters underwent a Shapiro-Wilk Test to assess normality, and in cases of non-normal 230 distribution, square root or log10 transformation was applied. Two-way ANOVA was employed to identify significant differences in MQY, net primary production, gross primary production, 231 232 respiration rate, and calcification rate among treatments and days. For the specific species P. 233 acuta, which died within one day of anoxia, one-way ANOVA was utilized to detect significant 234 differences between treatments in parameters such as net primary production, gross primary production, respiration rate, and calcification rate. To assess significant differences in

235

236

Symbiodiniaceae density and chlorophyll concentration among treatments, one-way ANOVA

237238239	was applied. All statistical tests were conducted at a 95% confidence level threshold. <i>Post hoc</i> comparisons were performed using the Tukey Honestly Significant Difference (HSD) test.
240	
241	Results
242	In-situ dissolved oxygen
243	Between June 2021 and June 2022, DO loggers consistently monitored the dissolved oxygen
244	levels at 12:00 and 24:00 daily in the reef region to the north of Kham Island. The annual
245	average dissolved oxygen concentration, excluding February 2022, was found to be 4.84 mg/L.
246	Our data suggests the presence of recurring hypoxic events in the reef area of the northern part of
247	Kham Island, particularly between September and November 2021. Over this three-month
248	period, the dissolved oxygen in the reef area consistently fell below 4 mg/L, with numerous
249	instances of levels dropping even lower, reaching below 2 mg/L (refer to Fig. 3). Analyzing the
250	monthly trends, we observed a notable decline in DO levels almost every month from July 2021
251	through the middle of October 2021. This downward trend continued, with DO levels
252	plummeting to 1 mg/L in October 2021. Hypoxia was identified during 7 out of the 11 recorded
253	months.
254	
255	Figure 3. DO record in coral reef at Kham Island throughout the period from June 2021 to June
256	2022.
257	Chlorenhull fluorescence
258259	Chlorophyll fluorescence Significantly lower values of MQY were observed in the anoxia treatment compared to the
260	control treatment during nighttime, across all the studied species (Fig. 4). A significant
261	interaction between treatment and time was detected for all three species (p <0.001, see
262	Supplementary Table 1a). In the case of <i>P. acuta</i> subjected to anoxia scenario, there was a
263	notable decline in MQY after the initial 12 hours in dark condition, leading to a complete loss of
264	coral tissue within 24 h. Similarly, corals exposed to hypoxic conditions exhibited significantly
265	reduced photosynthetic efficiency compared to the control group after a 24 h treatment period
266	(Fig. 4a), with the effects being less pronounced than those observed under anoxia.
267	Significant variations between treatments were evident in <i>P. lutea</i> (p<0.001). In anoxic
268	conditions, corals exhibited significantly decreased photosynthetic efficiency when treated in the
269	dark compared to the control; however, the efficiency was notably recovered when the light was
270	on (Fig. 4b).
271	
272	The performance of <i>T. mesenterina</i> , particularly concerning the MQY, stood out among the three
273	species. Time exerted a substantial influence on MQY (p <0.001), as observed in both nighttime
274	and daytime measurements. Notably, during the dark treatment period, MQY was significantly
275	lower than during the light treatment condition (Fig. 4c).
276	

- 277 In the comparison of treatments, corals subjected to anoxia exhibited a significant reduction in
- 278 photosynthetic efficiency during the initial 12 hours of treatment. In contrast, corals under
- 279 hypoxic conditions displayed a slower response compared to the anoxia treatment. Notably, both
- 280 groups of corals ultimately recovered by the end of the experiment (72 h). These findings
- 281 underscore the unique temporal and treatment-specific dynamics influencing the photosynthetic
- 282 performance of *T. mesenterina*.

283

- Figure 4: Maximum quantum yield (MQY) of P. acuta (a), P. lutea (b), and T. mesenterina (c)
- 285 under hypoxia and anoxia during a 72-h experiment. The shaded area represents nighttime.
- 286 Capital letters indicate differences between times. Lowercase letters denote differences between
- treatments.

288

- 289 Symbiodiniaceae density and chlorophyll content
- 290 The photosynthetic symbiont and pigments exhibited a lesser impact under low oxygen
- 291 conditions (hypoxia and anoxia). In *P. acuta* corals, both hypoxia and anoxia treatments led to a
- 292 significantly lower density of Symbiodiniaceae compared to the initial group collected at the
- beginning of the experiment (p = 0.049), so there was tissue loss. However, no significant
- 294 difference in Symbiodiniaceae density was observed in *P. lutea* and *T. mesenterina*.
- 295 Additionally, anoxia treatment resulted in significantly lower concentrations of chlorophyll a and
- 296 chlorophyll c_2 , reflecting the impact of tissue loss. In T. mesenterina, hypoxia treatment led to a
- 297 significant decrease in chlorophyll a concentration (p = 0.014). Notably, P. lutea showed no
- 298 discernible effect from hypoxia and anoxia in these three parameters.

299

- Figure 5: Comparison of Symbiodiniaceae density (a), chlorophyll a concentration (b), and
- 301 chlorophyll c_2 concentration (c) in P. acuta, P. lutea, and T. mesenterina under hypoxia and
- anoxia before (initial) and after a 72 h experiment. Lowercase letters indicate differences
- 303 between treatments.

304

- 305 Respiration and primary production
- 306 Respiration
- 307 Hypoxia and anoxia conditions exerted significant impacts on respiration of all the species (Fig.
- 308 6, Supplementary Table). The effects of treatments were statistically significant (p < 0.001).
- 309 However, there were no significant differences observed between the days of sampling for P.
- 310 lutea and T. mesenterina (p = 0.796 and p = 0.860, respectively). Additionally, no interaction
- effects were identified for P. lutea (p = 0.896) and T. mesenterina (p = 0.595).

312

- Figure 6: Respiration rates of *P. acuta* (a), *P. lutea* (b), and *T. mesenterina* (c) from day 1 to day
- 314 3 under control, hypoxic, and anoxic conditions. Lowercase letters denote differences between
- 315 treatments, while uppercase letters indicate differences between days.

316

PeerJ

- 317 Primary production
- 318 While *P. acuta* exhibited no significant effect on net primary production rates under hypoxia and
- anoxia (p=0.053), P. lutea displayed variability in net primary production. Specifically, under
- 320 hypoxic conditions, *P. lutea* showed no difference in net primary production. However, under
- anoxic conditions, it exhibited a significantly higher net primary production rate compared to
- 322 other treatments across all three days (p < 0.001). Importantly, there was no discernible impact
- 323 from the days of incubation, and no interaction effects were observed (p=0.849 and p=0.876,
- 324 respectively). On the other hand, an interaction effect between treatment and day was observed
- in T. mesenterina (p=0.034). The net primary production rates of T. mesenterina were
- significantly affected by hypoxia and anoxia (p<0.001). Furthermore, under anoxic conditions, T.
- 327 *mesenterina* exhibited significantly higher net primary production rates from the first day.

328

- Figure 7: Net primary production from day 1 to day 3 of *P. acuta* (a), *P. lutea* (b), and *T.*
- 330 *mesenterina* (c) under control, hypoxia, and anoxia conditions. Lowercase letters denote
- differences between treatments, while uppercase letters indicate differences between days.

332

- 333 In terms of gross primary production, *P. acuta* exhibited a significant reduction in the gross
- primary production rates under both hypoxia and anoxia conditions (p=0.001). In contrast, P.
- 335 *lutea* only displayed a lower gross primary production rate on the first day of the experiment
- 336 (p=0.002). Unlike P. acuta and P. lutea, T. mesenterina showed significantly lower gross
- primary production rates specifically under anoxia (p=0.042) on the third day of the experiment
- 338 (p=0.016).

339

- Figure 8: Gross primary production from day 1 to day 3 for *P. acuta* (a), *P. lutea* (b), and *T.*
- 341 *mesenterina* (c) under control, hypoxia, and anoxia conditions. Lowercase letters denote
- 342 differences between treatments, while uppercase letters indicate differences between days.

343

- 344 *Calcification*
- The calcification rate of P. acuta was significantly affected by anoxia (p=0.020). In the case of
- 346 *P. lutea*, calcification rates were influenced by both hypoxia and anoxia (p<0.001). A
- 347 significantly lower calcification rate under hypoxia was observed on the second day, while under
- anoxia, the calcification rate of *P. lutea* exhibited an effect across all three days. Calcification
- rates of T. mesenterina were significantly influenced by treatment (p < 0.001), day (p < 0.01),
- and with an interaction between these factors (p < 0.001). Initially, on the first day of stress, the
- 351 calcification rate of *T. mesenterina* remained unaffected by hypoxia or anoxia. However, a
- notable reduction was observed on the second and third days under these conditions.

353

- Figure 9: Calcification rate from day 1 to day 3 of *P. acuta* (a), *P. lutea* (b), and *T. mesenterina*
- 355 (c) under control, hypoxia, and anoxia conditions. Lowercase letters denote differences between
- 356 treatments, while uppercase letters indicate differences between days.

Discussion

A comprehensive inquiry into the effects of oxygen limitation on coral ecosystems within the lower Gulf of Thailand is motivated by the urgent need to address the growing threat of deoxygenation events to coral health globally (Altieri et al., 2017; Hughes et al., 2020; Nelson & Altieri, 2019). Given the limited availability of dissolved oxygen data in Thailand, we initiated regular monitoring, revealing persistent hypoxic conditions in the study site (Fig. 3). Recorded data reveals a consistent decrease in seawater oxygen levels, reaching hypoxia (oxygen less than 2 mg/L), particularly during two periods: from the end of September to mid-October and in mid-May, aligning with elevated temperatures (Fig. S1). The solubility of oxygen and metabolic requirements in aquatic ectotherms is intricately linked to water temperature (Roman et al., 2019). Moreover, the proximity to mainland of Kham Island, situated just 2 km from the estuarine and close to the coastal area (Fig. 1), makes it susceptible to anthropogenic activities and freshwater runoff, contributing to the phenomenon of ocean deoxygenation (Laffoley & John, 2019; Mancini et al., 2023).

 Based on these data, our objective was to investigate the impact of hypoxia and anoxia conditions on the physiological performance of the predominant coral species, *P. acuta*, *P. lutea*, and *T. mesenterina*. Our findings reveal that diminished oxygen levels significantly influence various physiological processes, reducing the integrity of photosystem II, and decreasing respiration, primary production, and calcification rates. Importantly, the observed effects are contingent upon the specific oxygen levels (hypoxia or anoxia) and associated with the morphological variations among different coral species.

Our investigation highlights a significant impact of low oxygen conditions on the photosynthetic performance of the three coral species. The decline in photosynthetic efficiency is attributed to a structural alteration in photoschemical reaction centers and/or the donor and acceptor sides and a reduction in photosystem II density, affecting electron transport, as corroborated by previous studies (Gorbunov et al., 2001; Hill et al., 2004; Smith, Suggett & Baker, 2005; Duarte et al., 2017; Franzitta et al., 2020; Deleja et al., 2022; Smythers et al., 2023). However, the recent findings of Deleja et al. (2022) propose that although photochemical reaction centers remain unchanged during nighttime hypoxia, there is an observed modification in the connectivity between the PSII antennae. This alteration results in a reduced absorption of the photon flux by the pigment antenna, ultimately leading to an insufficient amount of transported energy to the reaction centers (Duarte et al., 2015; Strasser & Stirbet, 2001). Furthermore, this photoinhibition may arise from oxidative stress (Deleja et al., 2022), impeding repair of the photosystem and exacerbating damage. Our findings indicate that the effects on photosynthesis related parameters were primarily observed in the maximum quantum yield and, to a certain extent, in the gross photosynthesis rates. However, there was no significant impact on Symbiodiniaceae density or

397 chlorophyll content. From these observations, we propose that the influence of low oxygen conditions is predominantly on the functionality of the photosynthetic machinery rather than 398 causing a disruption in the symbiotic relationship between coral and Symbiodiniaceae or 399 triggering the onset of bleaching. This finding aligns with our earlier research (Jain et al., 2023) 400 401 and is consistent with findings from other studies (Alva García et al., 2022; Deleja et al., 2022). It suggests that chlorophyll fluorescence parameters may serve as effective biomarkers for 402 detecting hypoxic and anoxic stresses in P. acuta, P. lutea, and T. mesenterina. Moreover, it is 403 noteworthy that the impacts of hypoxia exhibited significant variations between periods with and 404 without light, corresponding to daytime and nighttime conditions. This pattern may be attributed 405 to the ongoing photosynthetic activity during the day, contributing to oxygen production and 406 alleviating tissue oxygen levels. In contrast, during nighttime, when photosynthetic activity 407 ceases and respiration consumes oxygen, the impact of oxygen deprivation intensifies. 408 409 410 Cellular respiration, a vital process for generating energy for cellular functions, was significantly impacted by low oxygen in our study. Under these conditions, P. acuta, P. lutea, and T. 411 mesenterina exhibited reduced respiration rates. The observed influence of oxygen limitation on 412 coral respiration aligns with findings from previous studies (Dodds et al., 2007; Nelson & 413 Altieri, 2019; Alva García et al., 2022; Gravinese et al., 2022). Certain cnidarians have 414 demonstrated the ability to tolerate acute hypoxic and anoxic conditions by transitioning from 415 aerobic respiration to the less efficient anaerobic respiration pathway, enabling them to survive 416 extended exposure periods (Martinez, Smith & Richmond, 2012; Murphy & Richmond, 2016; 417 Gravinese et al., 2022). Consequently, the decrease in respiratory oxygen consumption during 418 hypoxic and anoxic stress observed in our study may be linked to a gradual shift towards 419 anaerobic respiration (Nelson & Altieri, 2019; Gravinese et al., 2022). However, this metabolic 420 shift comes at the cost of energy production and may lead to an energy deficit stage (Murphy & 421 Richmond, 2016). While our measurements were conducted using the holobionts, it is crucial to 422 423 acknowledge the tight coupling of coral respiration with the photosynthesis of symbiotic algae. Previous studies have demonstrated that the carbon dioxide necessary for photosynthesis by 424 Symbiodiniaceae is derived from coral cellular respiration (Muscatine, Porter & Kaplan, 1989). 425 Consequently, low oxygen not only limits coral and Symbiodiniaceae respiration but also 426 427 indirectly inhibits symbiotic algal photosynthesis by restricting the supply of carbon dioxide from coral respiration (Harland & Davies, 1995; Gardella & Edmunds, 1999). Furthermore, we 428 propose that the decrease in respiratory rates serves as the primary contributor to a slight increase 429 in net primary production observed in some species in our study. It's important to note that, 430 considering the lower MOY and gross photosynthetic rates, any increase in net primary 431 432 production should not be interpreted as a positive impact for corals. 433 Calcification, an essential process for coral growth, exhibited high sensitivity to low oxygen 434 435 levels in our study. Under these conditions, P. acuta, P. lutea, and T. mesenterina displayed 436 reduced calcification rates. Coral calcification, a "photosynthesis-driven" process, relies on the

458 459

460

461

462 463

464

465

466 467

468

469

470

471

472

473

474 475

- 437 energy derived from the photosynthesis of Symbiodiniaceae (Colombo-Pallotta, Rodríguez-Román & Iglesias-Prieto, 2010). Additionally, the products of photosynthesis play a crucial role 438 in fueling corals' aerobic respiration and the deposition of calcium carbonate, which demands a 439 significant portion (13–30%) of the total metabolic energy budget from corals through aerobic 440 441 respiration (Cohen & Holcomb, 2009; Colombo-Pallotta, Rodríguez-Román & Iglesias-Prieto, 2010; Allemand et al., 2011). Hence, the availability of oxygen plays a vital role not only in 442 respiration and photosynthesis but also in restricting calcification by influencing both respiration 443 and photosynthesis (Colombo-Pallotta, Rodríguez-Román & Iglesias-Prieto, 2010; Wijgerde et 444 al., 2012). Previous studies consistently highlight the significant impact of oxygen on corals' 445 446 calcification in both dark and light conditions (Al-Horani, Tambutté & Allemand, 2007; Colombo-Pallotta, Rodríguez-Román & Iglesias-Prieto, 2010; Wijgerde et al., 2012, 2014; 447 Nakamura, Nadaoka & Watanabe, 2013; Zhang et al., 2023). These findings underscore the 448 sensitivity of coral calcification to oxygen levels, emphasizing potential implications for overall 449 450 coral health and growth. Notably, observations of *Pocillopora* species' growth rates showed a substantial 43.3% reduction at relatively lower oxygen levels, as reported by Castrillón-Cifuentes 451 et al. (2023). 452 453
- Considerable differences in responses among morphologically distinct corals have been documented, with branching and solitary coral colonies being more susceptible to severe hypoxic conditions compared to massive, sub-massive, and encrusting corals (Guzmán et al., 1990; Simpson, Cary & Masini, 1993; Adjeroud, Andréfouët & Payri, 2001).

In our study, *P. acuta* exhibited the highest sensitivity to anoxic conditions, resulting in tissue loss and mortality within 24 hours. This response mirrored the findings in the branching coral Acropora cervicornis, which also experienced tissue loss and mortality within a day of exposure to dissolved oxygen levels of 1.0 mg/L (Johnson et al., 2021). These observations underscore the vulnerability of branching corals to stress. Given the susceptibility of *P. acuta* and similar branching species, it is crucial that management efforts prioritize these corals when developing conservation plans and strategies. In contrast, P. lutea and T. mesenterina did not show any mortality over a 72-hour period, indicating a higher tolerance to hypoxia, consistent with previous records for massive corals such as P. lutea and Orbicella faveolata (Johnson et al., 2021; Alderdice et al., 2022). This difference in tolerance by morphology also aligns with our recent findings from the Andaman Coast (Jain et al., 2023). However, the variability in hypoxia thresholds is not only evident among genera but also among coral species. For example, within the same genus and morphology, Acropora selago and Acropora vongei exhibited bleaching under hypoxic conditions within 12 hours, while Acropora tenuis showed no bleaching under the same stress (Alderdice et al., 2020; Haas et al., 2014). Effective conservation efforts in the face of climate change should place importance on understanding the biology of corals, considering both the variation within and among species. Tailoring conservation strategies to specific coral

species, especially those with distinct sensitivities to environmental stressors like hypoxia, is critical for the long-term health and resilience of coral reef ecosystems. 477

478 479

476

Conclusions

480 In summary, our experiments highlight the sensitivity of corals to hypoxia and anoxia conditions, impacting essential processes related to energy balance and structural integrity. Variability in 481 482 resilience was evident among species, with *P. acuta* identified as the most susceptible. This study emphasizes species specific variations in vulnerability, linked to different morphologies, 483 484 under low oxygen conditions, corroborating the earlier suggestion that branching corals are more

sensitive to stress. 485

486 487

488

489

490

491

492

Our research gains particular relevance considering the persistent hypoxia in the natural environment of our study site. As challenges related to oxygen availability intensify due to climate change and coastal pollution, the implications for coral ecosystems become increasingly significant. A comprehensive understanding of these physiological processes is not only crucial for predicting the consequences of deoxygenation, as well as of climate change in general, but also for developing effective strategies to assess and mitigate the impacts of deoxygenated events on tropical corals.

493 494 495

Consent Statement

- The research permission in the Non-Hunting Area was approved by the Department of National 496
- 497 Parks, Wildlife and Plant Conservation (permission number: 21685). Coral collection was
- permitted by the Department of Fisheries, Ministry of Agriculture and Cooperatives (permission 498
- number: 409) under Wild Animal Conservation and Protection Act, B.E. 2562 (A.D. 2019). The 499
- experiment of this study was conducted according to the Animals for Scientific Purposes Act. 500
- B.E. 2558 (A.D. 2015) and approved by Institutional Animal Care and Use Committee, Prince of 501
- Songkla University (ref.46/2021). 502

503 504

Funding

505 This research was supported by Prince of Songkla University (Grant number: ENV6402039S) 506 and student grant was provided by PSU-TUYF Charitable Trust Fund under a project "Coral reef 507 biodiversity conservation and connectivity in southern Gulf of Thailand to support reef resilience and sustainable use". 508

509 510

Acknowledgements

- We would like to thank the staff of, and the instrument and material support by the Coastal 511
- 512 Oceanography and Climate Change Research Center (COCC) and the Marine and Coastal
- Resources Institute (MACORIN), Faculty of Environmental Management, Prince of Songkla 513
- 514 University; as well as Muhammad Arif Samshuri, Verdiana Vellani, Thanyapat Chamnina,
- Wilawan Hwan-air, Natchanon Kiatkajornphan, Rattanaporn Sengkhim, Natthaya Sotthiphan, 515

- 516 Jittapon Patcharat, Watchara Samsuvan for their helpful assistance in the field and the
- 517 laboratory.

518519

References

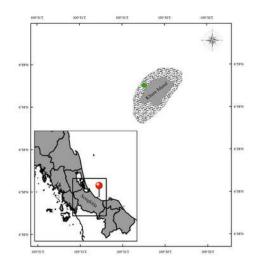
- 520 Adjeroud M, Andréfouët S, Payri C. 2001. Mass mortality of macrobenthic communities in the
- lagoon of Hikueru atoll (French Polynesia). Coral Reefs 19:287–291. DOI:
- 522 10.1007/PL00006962.
- Alderdice R, Hume BCC, Kühl M, Pernice M, Suggett DJ, Voolstra CR. 2022. Disparate
- 524 inventories of hypoxia gene sets across corals align with inferred environmental resilience.
- 525 Frontiers in Marine Science 9:834332. DOI:10.3389/fmars.2022.834332.
- 526 Alderdice R, Suggett DJ, Cárdenas A, Hughes DJ, Kühl M, Pernice M, Voolstra CR. 2020.
- 527 Divergent expression of hypoxia response systems under deoxygenation in reef-forming corals
- aligns with bleaching susceptibility. *Global Change Biology* 27:312–326. DOI:
- 529 10.1111/GCB.15436.
- 530 Al-Horani FA, Al-Moghrabi SM, De Beer D. 2003. The mechanism of calcification and its
- relation to photosynthesis and respiration in the scleractinian coral *Galaxea fascicularis*. *Marine*
- 532 *Biology* 142:419–426. DOI: 10.1007/s00227-002-0981-8
- 533 Al-Horani FA, Tambutté É, Allemand D. 2007. Dark calcification and the daily rhythm of
- calcification in the scleractinian coral, *Galaxea fascicularis*. Coral Reefs 26:531–538. DOI:
- 535 10.1007/s00338-007-0250-x
- Allemand D, Tambutté E, Zoccola D, Tambutté S. 2011. Coral calcification, cells to reefs. In:
- Dubinsky Z, Stambler N, eds. Coral reefs: an ecosystem in transition. New York: Springer
- 538 Press. 119-150.
- Altieri AH, Gedan KB. 2015. Climate change and dead zones. Global Change Biology 21:1395–
- 540 1406. DOI: 10.1111/GCB.12754.
- Altieri AH, Harrison SB, Seemann J, Collin R, Diaz RJ, Knowlton N. 2017. Tropical dead zones
- and mass mortalities on coral reefs. Proceedings of the National Academy of Sciences of the
- 543 *United States of America* 114:3660–3665. DOI: 10.1073/PNAS.1621517114.
- 544 Alva García J V., Klein SG, Alamoudi T, Arossa S, Parry AJ, Steckbauer A, Duarte CM. 2022.
- 545 Thresholds of hypoxia of two Red Sea coral species (*Porites* sp. and *Galaxea fascicularis*).
- 546 Frontiers in Marine Science 9:945293. DOI: 10.3389/FMARS.2022.945293.
- Beer S, Björk M, Beardall J. 2014. *Photosynthesis in the Marine Environment*. Hoboken: John
- 548 Wiley and Sons.
- 549 Bijma J, Pörtner HO, Yesson C, Rogers AD. 2013. Climate change and the oceans What does
- the future hold? *Marine Pollution Bulletin* 74:495–505. DOI:
- 551 10.1016/J.MARPOLBUL.2013.07.022.
- Bopp L, Resplandy L, Orr JC, Doney SC, Dunne JP, Gehlen M, Halloran P, Heinze C, Ilyina T,
- 553 Séférian R, Tjiputra J, Vichi M. 2013. Multiple stressors of ocean ecosystems in the 21st century:
- Projections with CMIP5 models. *Biogeosciences* 10:6225–6245. DOI: 10.5194/BG-10-6225-
- 555 2013.

- Breitburg D, Levin LA, Oschlies A, Grégoire M, Chavez FP, Conley DJ, Garçon V, Gilbert D,
- 557 Gutiérrez D, Isensee K, Jacinto GS, Limburg KE, Montes I, Naqvi SWA, Pitcher GC, Rabalais
- 558 NN, Roman MR, Rose KA, Seibel BA, Telszewski M, Yasuhara M, Zhang J. 2018. Declining
- oxygen in the global ocean and coastal waters. *Science* 359. DOI: 10.1126/SCIENCE.AAM7240.
- 560 Camp EF, Schoepf V, Mumby PJ, Hardtke LA, Rodolfo-Metalpa R, Smith DJ, Suggett DJ. 2018.
- The future of coral reefs subject to rapid climate change: Lessons from natural extreme
- environments. Frontiers in Marine Science 5:307197. DOI:
- 563 10.3389/FMARS.2018.00004/BIBTEX.
- 564 Castrillón-Cifuentes AL, Zapata FA, Wild C. 2023. Physiological responses of *Pocillopora*
- corals to upwelling events in the Eastern Tropical Pacific. Frontiers in Marine Science 10. DOI:
- 566 10.3389/FMARS.2023.1212717.
- 567 Cohen AL, Holcomb M. 2009. Why corals care about ocean acidification uncovering the
- 568 mechanism. *Oceanography* 22:118–127. DOI: 10.5670/oceanog.2009.102
- Cohen I, Dubinsky Z, Erez J. 2016. Light enhanced calcification in hermatypic corals: New
- insights from light spectral responses. Frontiers in Marine Science 2:122. DOI:
- 571 10.3389/fmars.2015.00122.
- 572 Colombo-Pallotta MF, Rodríguez-Román A, Iglesias-Prieto R. 2010. Calcification in bleached
- and unbleached *Montastraea faveolata*: Evaluating the role of oxygen and glycerol. *Coral Reefs*
- 574 29:899–907. DOI: 10.1007/s00338-010-0638-x
- 575 Deleja M, Paula JR, Repolho T, Franzitta M, Baptista M, Lopes V, Simão S, Fonseca VF, Duarte
- B, Rosa R. 2022. Effects of hypoxia on coral photobiology and oxidative stress. *Biology* 11.
- 577 DOI: 10.3390/BIOLOGY11071068.
- 578 Department of Marine and Coastal Resources (2019). Report on survey and assessment of the
- 579 status of marine and coastal resources: Corals and seagrass, fiscal year 2018. Technical Report.
- 580 306 pp. (in Thai).
- Dodds LA, Roberts JM, Taylor AC, Marubini F. 2007. Metabolic tolerance of the cold-water
- 582 coral *Lophelia pertusa* (Scleractinia) to temperature and dissolved oxygen change. *Journal of*
- 583 Experimental Marine Biology and Ecology 349:205–214. DOI: 10.1016/J.JEMBE.2007.05.013.
- 584 Duarte B, Cabrita MT, Gameiro C, Matos AR, Godinho R, Marques JC, Cacador I. 2017.
- Disentangling the photochemical salinity tolerance in *Aster tripolium* L.: connecting biophysical
- traits with changes in fatty acid composition. *Plant Biology* 19:239–248. DOI:
- 587 10.1111/PLB.12517.
- Duarte B, Goessling JW, Marques JC, Caçador I. 2015. Ecophysiological constraints of *Aster*
- 589 *tripolium* under extreme thermal events impacts: Merging biophysical, biochemical and genetic
- insights. *Plant Physiology and Biochemistry* 97:217–228. DOI:
- 591 10.1016/J.PLAPHY.2015.10.015.
- Figuerola B, Grossman EL, Lucey N, Leonard ND, O'Dea A. 2021. Millennial-scale change on a
- 593 Caribbean reef system that experiences hypoxia. *Ecography* 44:1270–1282. DOI:
- 594 10.1111/ECOG.05606.

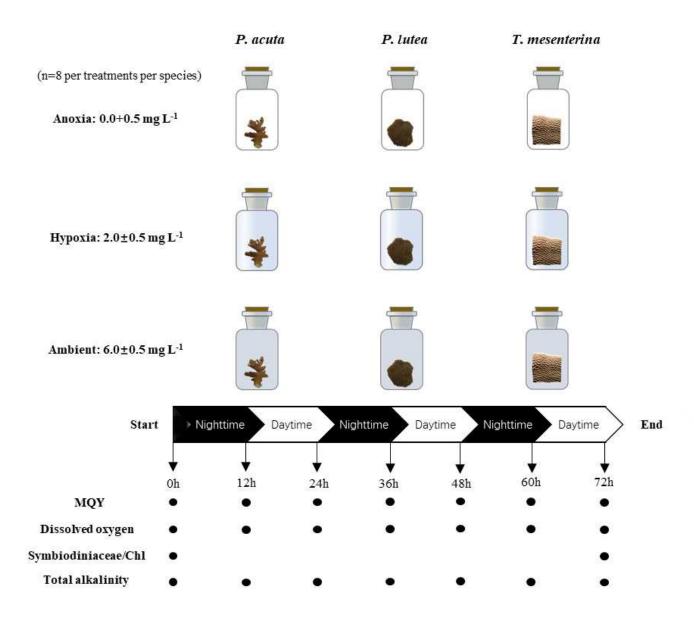
- 595 Franzitta M, Feijão E, Cabrita MT, Gameiro C, Matos AR, Marques JC, Goessling JW, Reis-
- 596 Santos P, Fonseca VF, Pretti C, Caçador I, Duarte B. 2020. Toxicity going nano: Ionic versus
- 597 engineered Cu nanoparticles impacts on the physiological fitness of the model diatom
- 598 Phaeodactylum tricornutum. Frontiers in Marine Science 7:539827. DOI:
- 599 10.3389/fmars.2020.539827.
- 600 Gardella DJ, Edmunds PJ. 1999. The oxygen microenvironment adjacent to the tissue of the
- 601 scleractinian Dichocoenia stokesii and its effects on symbiont metabolism. Marine Biology
- 602 135:289–295. DOI: 10.1007/s002270050626.
- 603 Gorbunov MY, Kolber ZS, Lesser MP, Falkowski PG. 2001. Photosynthesis and photoprotection
- 604 in symbiotic corals. *Limnology and Oceanography* 46:75–85. DOI: 10.4319/LO.2001.46.1.0075.
- 605 Gravinese PM, Douwes A, Eaton KR, Muller EM. 2022. Ephemeral hypoxia reduces oxygen
- 606 consumption in the Caribbean coral *Orbicella faveolata*. *Coral Reefs* 41:13–18. DOI:
- 607 10.1007/s00338-021-02197-5.
- 608 Guzmán H, Cortés J, Glynn P, Richmond R. 1990. Coral mortality associated with dino-
- flagellate blooms in the eastern Pacific (Costa Rica and Panama). Marine Ecology Progress
- 610 Series 60:299–303. DOI: 10.3354/MEPS060299.
- Haas AF, Smith JE, Thompson M, Deheyn DD. 2014. Effects of reduced dissolved oxygen
- 612 concentrations on physiology and fluorescence of hermatypic corals and benthic algae. *PeerJ*
- 613 2014: e235. DOI: 10.7717/peerj.235.
- Harland AD, Davies PS. 1995. Symbiont photosynthesis increases both respiration and
- photosynthesis in the symbiotic sea anemone *Anemonia viridis*. *Marine Biology* 123:715–722.
- 616 DOI: 10.1007/BF00349114.
- Henson SA, Beaulieu C, Lampitt R. 2016. Observing climate change trends in ocean
- 618 biogeochemistry: when and where. *Global Change Biology* 22:1561–1571. DOI:
- 619 10.1111/GCB.13152.
- 620 Hill R, Larkum AWD, Frankart C, Kühl M, Ralph PJ. 2004. Loss of functional photosystem II
- reaction centres in Symbiodiniaceae of corals exposed to bleaching conditions: Using
- fluorescence rise kinetics. *Photosynthesis Research* 82:59–72. DOI:
- 623 10.1023/B:PRES.0000040444.41179.09.
- Hughes DJ, Alderdice R, Cooney C, Kühl M, Pernice M, Voolstra CR, Suggett DJ. 2020. Coral
- reef survival under accelerating ocean deoxygenation. Nature Climate Change 2020 10:4
- 626 10:296–307. DOI: 10.1038/s41558-020-0737-9.
- 627 IPCC. 2022: Summary for Policymakers [H.-O. Pörtner, D.C. Roberts, E.S. Poloczanska, K.
- 628 Mintenbeck, M. Tignor, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem
- 629 (eds.)]. In: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of
- 630 Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate
- 631 Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría,
- 632 M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge
- University Press, Cambridge, UK and New York, NY, USA, pp. 3-33,
- 634 doi:10.1017/9781009325844.001.

- Jain T, Buapet P, Ying L, Yucharoen M. 2023. Differing responses of three scleractinian corals
- 636 from Phuket Coast in the Andaman Sea to experimental warming and hypoxia. Journal of
- 637 *Marine Science and Engineering* 11:403. DOI: 10.3390/JMSE11020403/S1.
- Johnson MD, Swaminathan SD, Nixon EN, Paul VJ, Altieri AH. 2021. Differential susceptibility
- of reef-building corals to deoxygenation reveals remarkable hypoxia tolerance. Scientific Reports
- 640 11:1–12. DOI: 10.1038/s41598-021-01078-9.
- Keeling RF, Körtzinger A, Gruber N. 2009. Ocean deoxygenation in a warming world. *Annual*
- 642 Review of Marine Science 2:199–229. DOI: 10.1146/ANNUREV.MARINE.010908.163855.
- 643 Laffoley D, John M. Baxter. 2019. Ocean deoxygenation: everyone's problem. Causes, impacts,
- 644 consequences and solutions. IUCN, International Union for Conservation of Nature. DOI:
- 645 10.2305/IUCN.CH.2019.13.en.
- Levin LA, Bris NL. 2015. The deep ocean under climate change. *Science* 350:766–768. DOI:
- 647 10.1126/SCIENCE.AAD0126.
- 648 Liao B, Xiao B, Li Z. 2019. Coral Reef Ecosystem. Symbiotic Microbiomes of Coral Reefs
- 649 *Sponges and Corals*:1–15. DOI: 10.1007/978-94-024-1612-1 1.
- 650 Mallon J, Cyronak T, Hall ER, Banaszak AT, Exton DA, Bass AM. 2022. Light-driven dynamics
- between calcification and production in functionally diverse coral reef calcifiers. *Limnology and*
- 652 *Oceanography* 67:434–449. DOI: 10.1002/LNO.12002.
- 653 Mancini AM, Bocci G, Morigi C, Gennari R, Lozar F, Negri A. 2023. Past analogues of
- deoxygenation events in the Mediterranean Sea: A tool to constrain future impacts. *Journal of*
- 655 *Marine Science and Engineering* 11:562. DOI: 10.3390/JMSE11030562.
- 656 Martinez JA, Smith CM, Richmond RH. 2012. Invasive algal mats degrade coral reef physical
- habitat quality. Estuarine, Coastal and Shelf Science 99:42–49. DOI:
- 658 10.1016/J.ECSS.2011.12.022.
- 659 Murphy JWA, Richmond RH. 2016. Changes to coral health and metabolic activity under
- oxygen deprivation. *PeerJ* 4:e. DOI: 10.7717/PEERJ.1956.
- Muscatine L. 1990. The role of symbiotic algae in carbon and energy flux in reef corals. *Coral*
- 662 Reefs 25, 75–87.
- 663 Muscatine L. Porter JW, Kaplan IR. 1989. Resource partitioning by reef corals as determined
- from stable isotope composition. *Marine Biology* 100:185–193. DOI: 10.1007/BF00391957.
- Nakamura T, Nadaoka K, Watanabe A. 2013. A coral polyp model of photosynthesis, respiration
- and calcification incorporating a transcellular ion transport mechanism. Coral Reefs 32:779–794.
- 667 DOI: 10.1007/s00338-013-1032-2.
- Nakamura T, Yamasaki H, Van Woesik R. 2003. Water flow facilitates recovery from bleaching
- in the coral *Stylophora pistillata*. *Marine Ecology Progress Series* 256:287–291. DOI:
- 670 10.3354/MEPS256287.
- Nelson HR, Altieri AH. 2019. Oxygen: the universal currency on coral reefs. *Coral Reefs 2019*
- 672 38:2 38:177–198. DOI: 10.1007/S00338-019-01765-0.
- Raphael A, Dubinsky Z, Iluz D, Netanyahu NS. 2020. Neural network recognition of marine
- 674 benthos and corals. *Diversity* 12:29. DOI: 10.3390/D12010029.

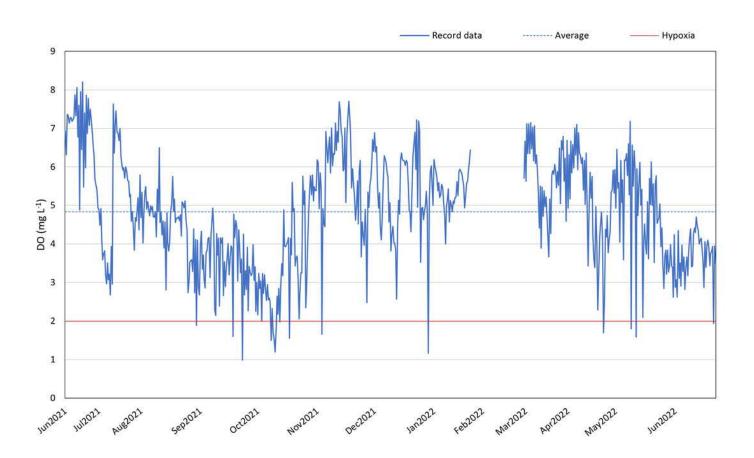
- Richier S, Furla P, Plantivaux A, Merle PL, Allemand D. 2005. Symbiosis-induced adaptation to
- 676 oxidative stress. *Journal of Experimental Biology* 208:277–285. DOI: 10.1242/JEB.01368.
- Richier S, Merle PL, Furla P, Pigozzi D, Sola F, Allemand D. 2003. Characterization of
- 678 superoxide dismutases in anoxia- and hyperoxia-tolerant symbiotic cnidarians. *Biochimica et*
- 679 *Biophysica Acta (BBA) General Subjects* 1621:84–91. DOI: 10.1016/S0304-4165(03)00049-7.
- Ritchie RJ. 2006. Consistent sets of spectrophotometric chlorophyll equations for acetone,
- methanol and ethanol solvents. *Photosynthesis Research* 89:27–41. DOI: 10.1007/S11120-006-
- 682 9065-9/METRICS.
- Roman MR, Brandt SB, Houde ED, Pierson JJ. 2019. Interactive effects of hypoxia and
- temperature on coastal pelagic zooplankton and fish. Frontiers in Marine Science 6:404311.
- 685 DOI: 10.3389/FMARS.2019.00139.
- 686 Sampaio E, Santos C, Rosa IC, Ferreira V, Pörtner HO, Duarte CM, Levin LA, Rosa R. 2021.
- 687 Impacts of hypoxic events surpass those of future ocean warming and acidification. *Nature*
- 688 *Ecology & Evolution* 5:311–321. DOI: 10.1038/s41559-020-01370-3.
- 689 Schmidtko S, Stramma L, Visbeck M. 2017. Decline in global oceanic oxygen content during the
- 690 past five decades. *Nature* 542:335–339. DOI: 10.1038/nature21399.
- 691 Simpson CJ, Cary JL, Masini RJ. 1993. Destruction of corals and other reef animals by coral
- 692 spawn slicks on Ningaloo Reef, Western Australia. Coral Reefs 12:185–191. DOI:
- 693 10.1007/BF00334478.
- 694 Smith DJ, Suggett DJ, Baker NR. 2005. Is photoinhibition of Symbiodiniaceae photosynthesis
- 695 the primary cause of thermal bleaching in corals? *Global Change Biology* 11:1–11. DOI:
- 696 10.1111/j.1529-8817.2003.00895.x.
- 697 Smythers AL, Crislip JR, Slone DR, Flinn BB, Chaffins JE, Camp KA, McFeeley EW, Kolling
- 698 DRJ. 2023. Excess manganese increases photosynthetic activity via enhanced reducing center
- and antenna plasticity in *Chlorella vulgaris*. Scientific Reports 2023 13:1 13:1–14. DOI:
- 700 10.1038/s41598-023-35895-x.
- 701 Stimson J, Kinzie RA. 1991. The temporal pattern and rate of release of Symbiodiniaceae from
- 702 the reef coral *Pocillopora damicornis* (Linnaeus) under nitrogen-enrichment and control
- 703 conditions. *Journal of Experimental Marine Biology and Ecology* 153:63–74. DOI:
- 704 10.1016/S0022-0981(05)80006-1.
- 705 Strasser RJ, Stirbet AD. 2001. Estimation of the energetic connectivity of PS II centres in plants
- using the fluorescence rise O–J–I–P: Fitting of experimental data to three different PS II models.
- 707 *Mathematics and Computers in Simulation* 56:451–462. DOI: 10.1016/S0378-4754(01)00314-7.
- 708 Suggett DJ, Smith DJ. 2020. Coral bleaching patterns are the outcome of complex biological and
- 709 environmental networking. Global Change Biology 26:68–79. DOI: 10.1111/GCB.14871.
- 710 Ulstrup KE, Hill R, Ralph PJ. 2005. Photosynthetic impact of hypoxia on in hospite
- 711 Symbiodiniaceae in the scleractinian coral *Pocillopora damicornis*. *Marine Ecology Progress*
- 712 *Series* 286:125–132. DOI: 10.3354/MEPS286125.



- 713 Vaquer-Sunyer R, Duarte CM. 2008. Thresholds of hypoxia for marine biodiversity.
- 714 Proceedings of the National Academy of Sciences of the United States of America 105:15452–
- 715 15457. DOI: 10.1073/pnas.0803833105
- 716 Wijgerde T, Jurriaans S, Hoofd M, Verreth JAJ, Osinga R. 2012. Oxygen and heterotrophy
- 717 Affect calcification of the scleractinian coral *Galaxea fascicularis*. *PLoS ONE* 7:e52702. DOI:
- 718 10.1371/JOURNAL.PONE.0052702.
- 719 Wijgerde T, Silva CIF, Scherders V, Van Bleijswijk J, Osinga R. 2014. Coral calcification under
- daily oxygen saturation and pH dynamics reveals the important role of oxygen. Biology Open
- 721 3:489–493. DOI: 10.1242/BIO.20147922.
- 722 Zhang K, Wu Z, Liu Z, Tang J, Cai W, An M, Zhou Z. 2023. Acute hypoxia induces reduction of
- 723 algal symbiont density and suppression of energy metabolism in the scleractinian coral
- *Pocillopora damicornis. Marine Pollution Bulletin* 191:114897. DOI:
- 725 10.1016/J.MARPOLBUL.2023.114897.
- 726 Zhu B, Wang G, Huang B, Tseng CK. 2004. Effects of temperature, hypoxia, ammonia and
- 727 nitrate on the bleaching among three coral species. *Chinese Science Bulletin* 49:1923–1928.
- 728 DOI: 10.1007/BF03184283.

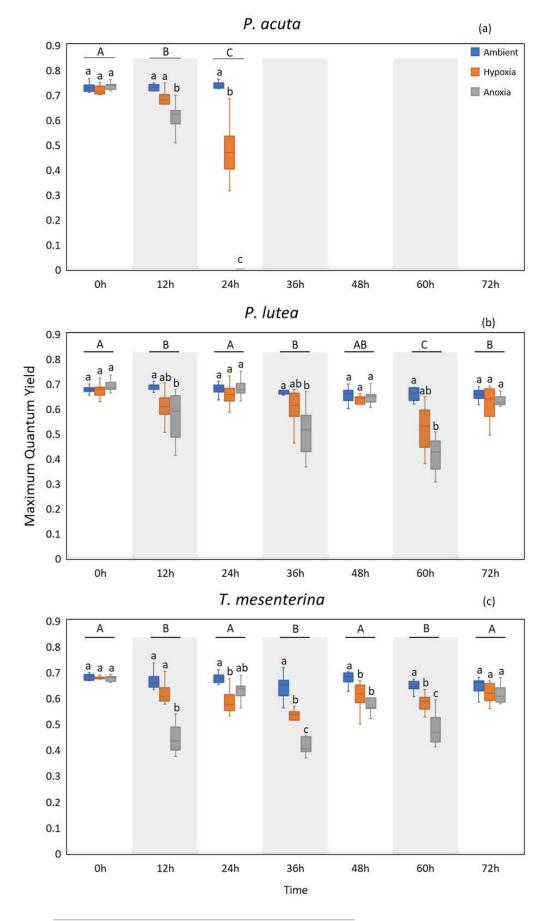

729

Sampling site location, southern Gulf of Thailand



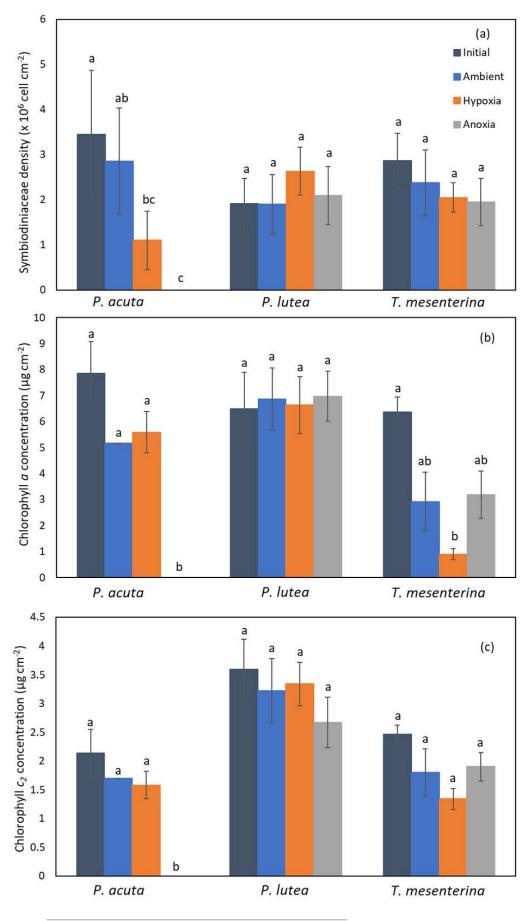
Experimental design and sampling parameters

DO record in coral reef at Kham Island throughout the period from June 2021 to June 2022.



Maximum quantum yield (MQY) of *P. acuta* (a), *P. lutea* (b), and *T. mesenterina* (c) under hypoxia and anoxia during a 72-h experiment.

The shaded area represents nighttime. Capital letters indicate differences between times. Lowercase letters denote differences between treatments.

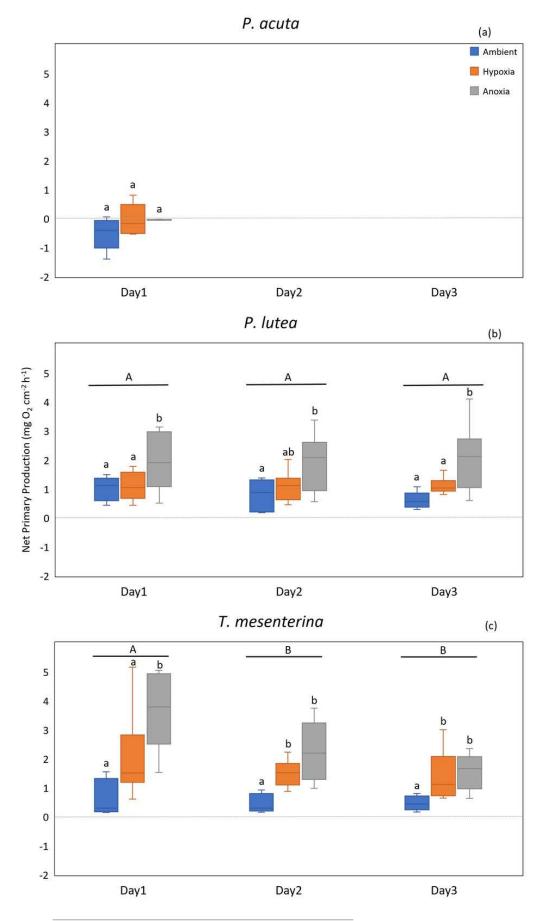


Comparison of Symbiodiniaceae density (a), chlorophyll a concentration (b), and chlorophyll c_2 concentration (c) in P. acuta, P. lutea, and T. mesenterina.

Lowercase letters indicate differences between treatments.

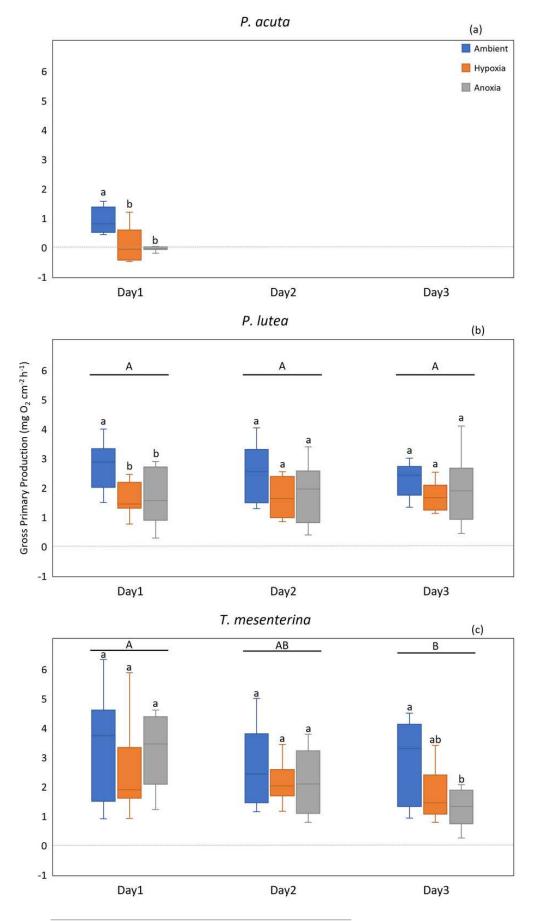
PeerJ reviewing PDF | (2024:01:95392:0:1:NEW 18 Jan 2024)

Respiration rates of *P. acuta* (a), *P. lutea* (b), and *T. mesenterina* (c) from day 1 to day 3 under control, hypoxic, and anoxic conditions.



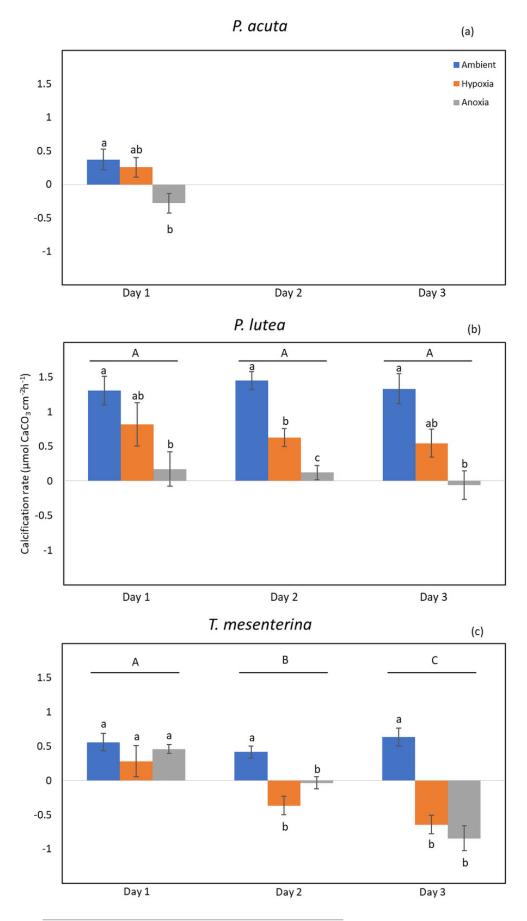
PeerJ reviewing PDF | (2024:01:95392:0:1:NEW 18 Jan 2024)

Net primary production from day 1 to day 3 of *P. acuta* (a), *P. lutea* (b), and *T. mesenterina* (c) under control, hypoxia, and anoxia conditions.



PeerJ reviewing PDF | (2024:01:95392:0:1:NEW 18 Jan 2024)

Gross primary production from day 1 to day 3 for *P. acuta* (a), *P. lutea* (b), and *T. mesenterina* (c) under control, hypoxia, and anoxia conditions.



PeerJ reviewing PDF | (2024:01:95392:0:1:NEW 18 Jan 2024)

Calcification rate from day 1 to day 3 of *P. acuta* (a), *P. lutea* (b), and *T. mesenterina* (c) under control, hypoxia, and anoxia conditions.

PeerJ reviewing PDF | (2024:01:95392:0:1:NEW 18 Jan 2024)