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Abstract 21 
Background: The discussion surrounding biological diversity has reached a critical point 22 
with the introduction of Nigeria's first transgenic food crop, the pod borer-resistant (PBR) 23 
cowpea. Questions have been raised about the potential risks of the transgenic Maruca 24 
vitrata-resistant cowpea to human health and beneficial insects. Public apprehension, 25 
coupled with social activists' calling for the removal of this crop from the nation's food 26 
market, persists. However, there is a lack of data to counter the assertion that cultivating 27 
PBR cowpea may have adverse effects on biodiversity and the overall ecological system. 28 
This research, with its multifaceted objective of examining the environmental safety of PBR 29 
cowpea and assessing its impact on biodiversity compared to its non-transgenic counterpart, 30 
IT97KN, is of utmost importance in providing the necessary data to address these concerns. 31 
Methods: Seeds for both the transgenic PBR cowpea and its isoline were obtained from the 32 
Institute for Agricultural Research (IAR) Zaria before planting at various farm sites (Addae et 33 
al., 2020). Throughout the experiment, local cultural practices were strictly followed to 34 
cultivate both transgenic and non-transgenic cowpeas. Elaborate taxonomic keys were used 35 
to identify arthropods and other non-targeted organisms. Principal component analysis 36 
(PCA) was used to evaluate potential modifications in all ecological niches of the crops. The 37 
lmer function of the R package lme4 (Bates et al., 2015) was used to analyze diversity 38 
indices, including Shannon, Pielou, and Simpson. The Bray-Curtis index was used to 39 
analyzed potential modifications in the dissimilarities of non-targeted organisms' 40 
communities. 41 
Results: Examination of ecological species abundance per counting week (CW) revealed no 42 
disruption in the biological properties of non-targeted species due to the cultivation of 43 
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transgenic PBR cowpea. Analysis of species evenness and diversity indices indicated no 44 
significant difference between the fields of transgenic PBR cowpea and its isoline. Principal 45 
Component Analysis results demonstrated that planting PBR cowpea did not create an 46 
imbalance in the distribution of ecological species. All species and families observed during 47 
this study were more abundant in transgenic PBR cowpea fields than in non-transgenic 48 
cowpea fields, suggesting that the transformation of cowpea does not negatively impact non-49 
targeted organisms and their communities. Evolution dynamics of the species community 50 
between transgenic and non-transgenic cowpea fields showed a similar trend throughout the 51 
study period, with no significant divergence induced in the community structure because of 52 
PBR cowpea planting. This study concludes that planting transgenic PBR cowpea positively 53 
influences biodiversity and the environment. 54 
 55 
Introduction 56 
Researchers coined the term biodiversity from the word biological diversity to refer to the 57 
heterogeneity and variability of the total number of biological organisms found within a 58 
given habitat or ecosystem at any given time (Roe et al., 2019; Dickson et al., 2019; Meine, 59 
2018; Rawat and Agarwal, 2015). The concept of biodiversity is multidimensional, 60 
encompassing genetics, species, and ecology. Several studies, including Tilman et al. (2014) 61 
and Malhi et al. (2020), have revealed that the degree of variability of living organisms on 62 
earth plays a crucial role in sustaining the ecosystem and could serve as a major indicator 63 
for predicting the safety of any environment at any given time. The productivity and 64 
efficiency of any agricultural system around the world can be strongly influenced by its 65 
varietal and species diversity over an extensive scale of conditions (Pawlak and 66 
Kołodziejczak, 2020; Carpenter, 2011; Krishna et al., 2009). Biodiversity also plays a crucial 67 
role in enhancing an organism's resilience to stress and shocks, as well as its adaptability to 68 
new and challenging environmental conditions. Additionally, it is a vital factor in the 69 
sustainability of production systems and genetic improvement (Vasiliev, 2022; Ortiz et al., 70 
2021). With the negative impact of climate change, characterized by increased crop pest 71 
infestation and decreased agricultural soil fertility on a global scale (Malhi et al., 2021; 72 
Habib-ur-Rahman et al., 2022; Subedi et al., 2023), it is crucial to emphasize the importance 73 
of sustaining and enhancing the variability of crop and animal genetic resources. This 74 
variability is essential for ensuring the resilience and stability of living organisms over time.  75 
After about thirty years of the safe use of transgenic crops with more than 3 million 76 
hectares planted across Africa (Endale et al., 2022) and their recorded benefits (Gbadegesin 77 
et al., 2022; Smyth, 2022), debate and concerns about their environmental effects have 78 
continued to persist (Gbadegesin et al., 2022; Gbashi et al., 2021; Smyth et al., 2021). 79 
Critical among the issues discussed so far is its potential impact on biodiversity (Fernandes 80 
et al., 2022; Lucht, 2015). The quest to safeguard the orphan crop, cowpea, often referred 81 
to as "poor man's meat" for its vital role as an affordable protein source in third-world 82 
countries, from the devastating impact of the Maruca vitrata insect pest has led to its 83 
transformation using the Cry1Ab protein. Derived from the soil bacterium Bacillus 84 
thuringiensis, Cry1Ab selectively targets specific receptors in the digestive systems of 85 
susceptible pests, making it a widely utilized biopesticide in agricultural biotechnology, 86 



effectively conferring resistance against certain insect pests such as the pod borer Maruca 87 
vitrata and reducing reliance on chemical pesticides. Though some studies, including 88 
O'Callaghan et al. (2005) and Romeis et al. (2014), have suggested that the insecticidal 89 
property of the Cry1Ab protein may be toxic to non-target species, including herbivores, 90 
parasitoids, and predators, many of these studies examined the impact of this protein on 91 
species in non-natural systems without taking into account ecological interactions or the 92 
actual level of exposure of vulnerable stages in natural settings (Dale et al., 2002). 93 
Conducting additional studies that consider complex systems and exposure conditions akin 94 
to those encountered in the field could offer more realistic insights into the potential 95 
detrimental effects of Bacillus thuringiensis (Bt) crops on non-target organisms (Sears et al., 96 
2001). 97 
 98 
In the guidance documents of the European Food Safety Authority (EFSA) (2016), conserving 99 
biodiversity is emphasized as a major goal in environmental protection, highlighting its 100 
magnitude and significance. Quantifying biodiversity is a prerequisite for reaching set 101 
targets. Since Nigeria commercialized its first transgenic crop, insect-resistant (IR) cotton, in 102 
2018 and joined the league of biotech countries, it has triggered a general debate in Africa 103 
on the potential impact of transgenic crops on biodiversity (Endale et al., 2022). The 104 
introduction of her first transgenic food crop, pod borer resistant (PBR) cowpea, in 2019, 105 
has further exacerbated these concerns among Nigeria's stakeholders. A significant concern 106 
in Nigeria regarding the safety of introducing transgenic PBR cowpea revolves around its 107 
potential to negatively impact species and ecosystem diversity. Key stakeholders speculate 108 
that its toxicity to the targeted insect, Maruca vitrata, raises concerns about its impact on 109 
non-targeted organisms (NTOs), including those crucial for ecosystem functioning. 110 
Currently, there is a paucity of data to refute claims that this transgenic PBR cowpea 111 
supports biodiversity and is safe for our environment. This study, therefore, focuses on the 112 
biodiversity assessment of the single-line transgenic pod borer-resistant cowpea to evaluate 113 
its potential impacts on non-target organisms. 114 
 115 
 116 
Materials & Methods 117 
PBR Cowpea Seeds and its Isoline 118 
Seeds of both transgenic PBR cowpea (IT97KT) and its isoline, IT97KN, were provided by the 119 
Institute for Agricultural Research (IAR) Zaria before planting at various farm sites. The Cry1Ab 120 
event in the PBR cowpea was confirmed using the lateral flow strip kits obtained from Qiagen 121 
Inc. at the Mary Halaway Laboratory, Department of Biochemistry, Faculty of Life Sciences, 122 
Ahmadu Bello University: 5g, each of transgenic and non-transgenic seeds were mashed 123 
separately in two different mortars and pestles, after which the extraction buffer was added 124 
to each container. The flow strip was then inserted and allowed to stay for about 10 minutes, 125 
after which the lines were read (Fig. S1). 126 
 127 
Experimental Design and Sampling 128 
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The two cowpea lines, IT97KT and IT97KN were planted in three different farms of the 129 
National Biotechnology Research and Development Agency (NBRDA) from February to May, 130 
August to November 2022, and February to May 2023 using the irrigation farming method 131 
during the dry season with three replications on each farm site (Figure S2). Both cowpea lines 132 
were grown following local cultural practices throughout the experiment. The two crop 133 
varieties, transgenic (IT97KT) and non-transgenic isoline cowpea (ITN97KN) were planted in a 134 
randomized block design with 3 replications (Figure S2). The measurement of each plot was 135 
estimated at 10m by 15 m, encompassing eight 30cm interspaced rows with 25 cm of space 136 
between each plant. 3 m of plain boundaries were created to function as seclusion among 137 
plots (Figure S2). No crop was planted on the three research farms one year before the 138 
research. In addition, no herbicide or insecticide was used before or during the study period. 139 
 140 
Identification of species to family and to functional groups  141 
Arthropods and other non-targeted organisms were identified by using suitable and 142 
elaborated dichotomous taxonomic keys, according to Goulet and Huber (1993), Triplehorn 143 
et al. (2005), and Jenny et al. (2017). The taxonomic grouping was done using the family level 144 
as default, while in cases where classification based on family level was not obtainable, 145 
priority was given to the order and suborder to which the organism belongs (Jenny et al., 146 
2017). The individual organisms were further grouped into predator, parasitoid, and 147 
herbivore ecological functional groups. Throughout the study period, no organisms were 148 
recorded as unknown. The counting of individual organisms across all three sites commenced 149 
21 days after planting and was designated as the counting week (CW). 150 
 151 
Non-Target Organism Community Structure 152 
Possible moderations that may have accrued from planting the transgenic PBR cowpea were 153 
analyzed using a precise redundancy analysis (RDA) ordination method called the Principal 154 
Component Analysis (PCA) (Vanden-Brink et al., 2009), as recommended by Cuppen et al. 155 
(2000) and Moser et al. (2007) to be suitable for assessing the impacts of any plants or animals 156 
on the ecosystem. The PCA multivariate technique facilitates the understanding of the 157 
interaction between the organisms and their environment (Moser et al., 2007) by analyzing 158 
the possible effects of the transgenic PBR Cowpea on the community species and the resulting 159 
changes in the community structure throughout the study period. 160 
 161 
Structural Dissimilarity analysis 162 
The analysis for the potential modification in the dissimilarities of the non-targeted 163 
organisms' communities between the transgenic PBR cowpea (IT97KT) and its non-transgenic 164 
isoline (IT97KN) was done using the Bray-Curtis index. It evaluates the degree of dissimilarity 165 
or similarity between two or more samples using a range of zero (similar) to one (dissimilar) 166 
(Krebs, 1989; Bray and Curtis, 1957). The structural dissimilarity analysis was divided into two 167 
phases. In the first phase of the analysis, the Bray Curtis (BC) Index was computed using the 168 
data collected between all the pairs of the sample plots, IT97KT and IT97KN, on each sampling 169 
date. Bray-Curtis dissimilarity ranges between 0 and 1, where 0 indicates that the niches have 170 
no dissimilarity, while 1 indicates that the two niches have complete dissimilarity (Ricotta and 171 
Podani, 2017). Similar procedures were repeated for the second phase of the analysis, where 172 
data was collected within each cowpea plot (Collins et al., 2000) and then followed by a 173 
computation of the mean abundance for the respective taxonomic group in line IT97KT and 174 
IT97KN per sampling date.  175 



The Bray-Curtis Dissimilarity was calculated as: BCij = 1 – (2*Cij) / (Si + Sj) 176 
Where Cij = The sum of the lesser values for the species found in each site. 177 
Si: The total number of specimens counted at site i 178 
Sj: The total number of specimens counted at site j 179 
The values for the mean abundance were thereafter used to estimate the BC distance 180 
between the respective treatment sampling dates. A linear regression analysis of the data 181 
obtained from the BC distance estimation was conducted versus the time-lag data. 182 
 183 
Statistical Analysis 184 
The total number (N) of arthropods on each plot in the three different farm sites was taken 185 
per CW and over the entire period of the study and then divided by the total number of farm 186 
sites to get the average. All statistical analyses were performed using R version 4.2.0 (R Core 187 
Team, 2022) and an Excel spreadsheet. The analysis of the diversity indices, including Shannon 188 
(H), Pielou (J), and Simpson (D), facilitates a comparative assessment of the community 189 
structures between different treatments in the fields (Boyle et al., 1990; Magurran, 2004; 190 
Pielou, 1966; Oksanen, 2013) using the lmer function of R package lme4 (Bates et al., 2015) 191 
with cowpea variety (Bt or non-Bt) and time (date of sampling) as fixed factors (Guo et al., 192 
2014). A comparison of the mean values of all the scoring parameters, including H, D, J, and 193 
N, was done using a one-way analysis of variance (ANOVA). 194 
 195 
A covariance analysis was used to conduct a comparative study of the slopes of the regression 196 
lines of the two treatments. The parasitoid, herbivore, and predator nutritional relationships 197 
were used to classify the whole organisms into three guilds according to Heong et al. (1991) 198 
and Zhang et al. (2011). The density of the three guilds was analyzed using One-way ANOVA 199 
for each cowpea variety and sampling date. The population of various treatments, herbivore, 200 
parasitoid, and predator nutritional guild was defined by using the formula Pi5Ni/N, where 201 
the population of the herbivore, parasitoid, and predator was connoted as Ni while the 202 
treatment's entire summed abundance was connoted as N. The species count for each 203 
community organism in the various guilds was defined by the formula Pi5Ni/N, where Ni was 204 
defined as the summed ith species and N was the guild count in the respective treatment. The 205 
rare, common, and dominant groups were denoted by Pi<1%, 1%≤Pi<10%, and Pi≥ 10%, 206 
respectively (Li and Liu, 2013).  207 
 208 
 209 
Results 210 
Transgene Status Confirmation of the Cowpea Samples 211 
The confirmation of the Cry1Ab event expressed in the PBR cowpea shows a positive result, 212 
as seen in Figure S1. Further tests for the presence of the Cry1Ab gene using the event-213 
specific flow strip in the isoline of the PBR cowpea showed negative results, meaning that the 214 
isoline is not transgenic (Figure S1). 215 
 216 
Ecological Pattern of the transgenic and Non-Transgenic Cowpea Field  217 
This study identified the following species in both fields of transgenic cowpea and non-218 
transgenic cowpea: Pirata piraticus Clerck, 1757 (pp), Conozoa hyaline Forbes, 1848 (GS); Graphoderus 219 
bilineatus De Geer, 1774 (GB); Sarcophaga crassipalpis Macquart, 1850 (SaC); Alydus eurinus Say, 1832 220 
(AE); Zonecerus variegatus Fabricius, 1775 (ZV); Romalea microptera Beauvois, 1817 (EL); Deudorix antalus 221 
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Hopffer, 1855 (DA); Musca domestica Linnaeus, 1758 (MD); Atta cephalotes Linnaeus, 1758 (AC); Apis 222 
dorsata Fabricius, 1793 (AD); Messor barbarus Linnaeus, 1767 (MB); Scarabaeus satyrus Fabricius, 1787 223 
(SS); Odontoponera transversa, Smith, 1858 (OT); Dysdercus cingulatus Fabricius, 1798 (DC); Junonia oenone 224 
Linnaeus, 1758 (JO); Bombus terrestris Linnaeus, 1758 (BT); Chrysomya megacephala Fabricius, 1794 (CM); 225 
Hypolycaena erylus Godart, 1824 (HE); Conozoa carinata Lamarck, 1816 (CC); Stenolophus lecontei Chaudoir, 226 
1869 (SL); Chorthippus biguttulus Linnaeus, 1758 (CB); Carausius morosus Sinéty, 1901 (Cam); Camponotus 227 
cruentatus Latreille, 1802 (CaC); Lilioceris merdigera Linnaeus, 1758 (LM); Chilocorus stigma Say, 1832 228 
(Cst); Euptoieta claudia Cramer, 1776 (vf). 229 
 230 
The examination of species disparities and distribution indicates no variations between both 231 
treatments during CW 1, which commenced 21 days after planting (Figure 1 and Table 1). 232 
However, from CW 2 to 12, a notable discrepancy was noted in species activities between 233 
the transgenic crop field and the non-transgenic cowpea field, with the former exhibiting 234 
notably higher species activities. 235 
 236 
Estimated Species Diversity 237 
From the results of the univariate analyses of the ecological niches of both line IT97KT and 238 
line IT97KN, the estimated biodiversity indices (H, J, and D) revealed no significant difference 239 
between the two treatments, except during the differentiated flowering time observed 240 
between the two cowpea lines (Table 1 and Figures 2a, b, and c). The habitat information 241 
provided from the Shannon diversity index analysis shows that both habitats dominated by 242 
the transgenic and non-transgenic cowpea have high species richness and evenness 243 
throughout the CWs. Results obtained from the analysis using the Shannon diversity index 244 
revealed a close-range value between the transgenic and non-transgenic cowpea habitats. A 245 
higher Shannon score was observed for transgenic cowpea fields within the counting weeks 246 
of 3 to 8, where flowering was peak. The diversity index score for IT97KN went slightly 247 
higher during the counting weeks when its flowering was also at its peak. Results from the 248 
analysis of variance show no significant difference at weeks 1, 2, 9, 10, 11, and 12 against 249 
the subsequent counting weeks of 4, 5, 6, and 7 (Figure 2a). Analysis of the Simpson diversity 250 
indices shows similar trends in both transgenic and non-transgenic cowpea fields, with both fields 251 
recording their lowest Simpson score at CW 1 and 2, respectively. Figure 2b shows that the 252 
highest Simpson scores were observed during CWs 11 and 12 in both transgenic and non-253 
transgenic cowpea fields. Analysis of the Pielou Evenness Index shows that the distribution 254 
of the individual species is even across the habitat of transgenic and non-transgenic cowpea 255 
(Figure 2c). Further analysis using the regression line plot between the ecological niches of 256 
transgenic and non-transgenic cowpea shows a strong positive correlation with a p and r 257 
value of 1.810599e-06 and 0.9522146, respectively (Figure 3a). As the number of species in 258 
the ecological niches of PBR cowpea increases, the number of species in its non-transgenic 259 
isoline, IT97KN, also increases (Figure 3a). 260 
Similar results were observed when the ecological niches of transgenic cowpea (IT97KT) and 261 
its non-transgenic isoline (IT97KN) were correlated with time (Figure 3b). The p and r values 262 
of 3.42862e-09 and 0.9865187, respectively, were observed for transgenic cowpea vs time, 263 



while p and r values of 1.535e-07 and 0.9522146 respectively, were observed for non-264 
transgenic cowpea vs time (Table 2). 265 
 266 
Analysis of the Evolution Dynamics of the Transgenic and Non-Transgenic Cowpea 267 
i. Component Analysis 268 
Analysis using the multivariate principal component technique reveals no significant 269 
differences in the ecological composition of the entire study fields throughout the counting 270 
weeks (Figures 4a and 4b). The essence of the principal component analysis (PCA) output is 271 
to give a clear interpretation of the species points with similar composition—the species 272 
scores, which are represented by arrows, point in the direction of increasing abundance. 273 
The angle size between a species arrow and another species arrow is inversely correlated, 274 
meaning that the smaller the angle size between two species arrows, the stronger the 275 
correlation, and the reverse means a weaker correlation within the space. The result output 276 
shows a strong positive correlation between EI and DC in both transgenic and non-277 
transgenic cowpea fields. The formation of a right angle between two species arrows means 278 
no correlation, while the formation of an opposite angle means a strong negative 279 
correlation (BioTuring, 2018). The PCA output also attributes significant value to the 280 
direction of the species arrow regarding its angle with the principal component axes within 281 
the space. The PC analysis from this study shows that AC and Cs strongly influence PC1, 282 
while PP and Zv strongly influence PC2, having a heavier weight in the transgenic cowpea 283 
field. Md and SaC are the most heavily weighted in PC1, strongly influencing the PC1 of the 284 
non-transgenic cowpea, while GB and PP are the most heavily weighted species of PC2 in 285 
the non-transgenic cowpea field. 286 
The estimation of the number of statistically significant principal components for the 287 
ecological niches of both transgenic and non-transgenic cowpea is presented in Figure 5 288 
below. The number of breakpoints (10) distribution is similar for both ecological niches.  289 
 290 
 291 
Composition of Organism Community of both the Transgenic and Non-Transgenic Species 292 
As shown in the figure below, three major guilds, herbivores, parasitoids, and predators 293 
were identified throughout the study period (Figures 6a, 6b, and 6c). The guild analysis for 294 
both the transgenic (IT97KT) and non-transgenic (IT97KN) fields reveals the identification of 295 
12, 8, and 7 different species in the herbivore, parasitoid, and predator guild. Most species 296 
in both fields are herbivores, while the predatory guild has the least number of organisms. 297 
SC represents the most abundant species in the parasitoid guild of IT97KT and IT97KN 298 
ecological niches, while MB and AC are the most abundant species in the herbivore guild. 299 
CaC is the most abundant species in the predator guild. SL, LM, and vf represent the least 300 
abundant species in the predator, parasitoid, and herbivore guild of both ecological niches, 301 
as shown in Figure 6. A uniform composition of the organisms in all the ecological niches 302 
was observed throughout the study period (Figures 6a, 6b, and 6c). 303 
 304 
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Dissimilarity Index 306 
The result of the Bray Curtis dissimilarity Index is presented in Table 3. The dissimilarity index 307 
between the ecological niches of PBR Cowpea and non-transgenic isoline is 0.2, which 308 
indicates that all the niches had similar evolutionary trends with no divergence in the 309 
community structure of the non-targeted organisms. 310 
 311 
Discussion 312 
In this study, the potential impact of Nigeria's transgenic Pod Borer Resistant (PBR) Cowpea, 313 
which is the first transgenic cowpea to be commercialized in the world, was assessed to 314 
evaluate the possible threats and harm that the crop may pose to the environment and the 315 
ecological niches of the diverse useful soil and plant organisms. 316 
The current study observed a greater abundance of species and families across various 317 
ecological niches in transgenic PBR Cowpea fields than in non-transgenic cowpea fields. This 318 
disparity may be attributed to the higher evenness and intensity of flowers in the IT97KT 319 
transgenic cowpea variety, leading to increased pod, leaf, and overall yield production. This 320 
speculation aligns with findings from several studies, including those by Fragkiadaki et al. 321 
(2023), Carolin et al. (2023), Bonelliet al. (2022), Otiobo et al., Braatz et al. (2021), and 322 
Adedoja et al. (2018), all of which have linked flowering and podding to insect population 323 
dynamics. 324 
 325 
According to Guo et al. (2014), the various functional ecological indices of the surrounding 326 
species to any newly introduced crop such as the PBR cowpea would be significantly altered 327 
if disruption of any biological property occurs because of planting such crop. However, the 328 
findings from this research show that the total species count throughout the study period is 329 
similar in value. Analysis of the various ecological indices, including Shannon Diversity index, 330 
Brays Curtis Dissimilarity Index, Pielou evenness index, Principal Component Analysis (PCA), 331 
and Renyi Diversity silhouettes, all showed a close range of values between the ecological 332 
niches of the transgenic cowpea and its non-transgenic Isoline.  A similar study conducted at 333 
Germany's Oderbruch European Corn Borer infestation area by Schorling and Freier (2006) 334 
on a Six-year assessment of the impact of transgenic maize expressing Cry1Ab gene on non-335 
target organisms reported the same results. In contrast to Fernandes et al. (2022), who 336 
postulated that genetic modification of crops has the tendency to reduce crop biodiversity, 337 
findings by Abdul et al. (2022) and Anderson (2019) indicated that the transformation of 338 
crops for insect resistance is beneficial because it can enable plant species that are near 339 
extinction because of the heavy burden of insect infestation to be revived by improving 340 
their adaptation to diverse environmental conditions. The findings from the current study  341 
demonstrate that the incorporation of the Cry1Abgene into PBR cowpea does not adversely 342 
affect biodiversity. 343 
The PCA of both the transgenic and non-transgenic cowpea fields reveals that the 344 
distribution of the NTOs was not significantly different throughout the study period. This 345 
finding is consistent with the report of Guo et al. (2014) and Candolfi et al. (2004), who 346 
reported that the Cry1Ab event expressed in the transgenic Corn does not affect the 347 
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community structure of the NTOs. Higgins et al. (2009)  also showed that the community 349 
structure of the organisms remained intact during a three-year field monitoring of the 350 
potential impacts of Cry1F events expressed in a maize hybrid on NTOs.  351 
Though previous research only centred on the comparative NTO abundance between 352 
transgenic and non-transgenic plots, the present study further analyzed the possible 353 
evolutionary dynamics of the transgenic PBR cowpea by carrying out a dissimilarity index 354 
analysis. The results show that there was a gradual change in the species composition of 355 
both transgenic fields and non-transgenic fields, and this change increased with time. For 356 
instance, the number of species present during CW 2 of the study increased compared to 357 
CW 1. A similar occurrence was also observed when CW 3 was compared with CW 2.  358 
The Bray Curtis Dissimilarity Index analysis showed an index of 0.2, suggesting that the 359 
evolutionary dynamic for transgenic and non-transgenic crops was significantly similar. 360 
Similar studies conducted by Guo et al. (2014) also recorded a similar evolutionary dynamic 361 
between non-transgenic and transgenic maize expressing CryIAc event. The potential 362 
toxicity of PBR cowpea can also be assessed by monitoring and evaluating the exposure of 363 
the various species' different life stages to cowpea in the ecosystem (Devos et al., 2012).  364 
The assessment of the different nutritional guilds of organisms identified in this study shows 365 
a rich representation of the herbivores, parasitoids, and predators in all the ecological 366 
niches. Despite the high tendency of herbivores to have direct exposure to Cry proteins 367 
expressed in PBR cowpea when feeding on its crop residue and pollen (Devos et al., 2012; 368 
Romeis et al., 2008), a high population density was still recorded in the ecological niches of 369 
PBR cowpea compared to non-transgenic cowpea. The number of herbivore species present 370 
in the ecological niches of transgenic cowpea is higher than in the non-transgenic cowpea 371 
ecological niches but the same species type including Messor barbarus (Linnaeus, 1767), 372 
Alydus eurinus (Say, 1832); Romalea microptera (Beauvois, 1817), Euptoieta claudia 373 
(Cramer, 1775), Deudorix antalus (Hopffer, 1855), Scarabaeus satyrus (Fabricius, 1787), Atta 374 
cephalotes (Linnaeus, 1758), Dysdercus cingulatus (Fabricius, 1798), Junonia oenone 375 
(Linnaeus, 1758), Chorthippus biguttulus (Linnaeus, 1758) and Carausius morosus (Sinéty, 376 
1901) were observed for all the ecological niches. This result is in line with findings from 377 
Wolfenbarger et al. (2008) who carried out a study on the potential impacts of transgenic 378 
crops on the functional guild of NTOs. 379 
A further critical analysis of the population density of the predator guild in both transgenic 380 
and non-transgenic fields revealed no significant difference. Assessing the population 381 
density of the predator guild can provide valid assertions on the extent of biological, as well 382 
as environmental safety of the transgenic crop since predators have multiple ways by which 383 
they come in contact with the Cry1Ab gene, including direct feeding on the pollen of the 384 
PBR cowpea, herbivores that have feed on PBR cowpea or via the surrounding soil in which 385 
the PBR Cowpea is planted.  386 
The number of predator species present in the ecological niches of transgenic cowpea is 387 
higher than in the non-transgenic cowpea ecological niches though both had the same 388 
species type, including Chilocorus stigma (Say, 1832), Odontoponera transversa (Smith, 389 
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1858),Conozoa hyaline (Forbes, 1848), Camponotus cruentatus (Latreille, 1802), Pirata 398 
piraticus (Clerck,1757), Graphoderus bilineatus (De Geer, 1774) and Stenolophus lecontei 399 
(Chaudoir, 1869).   400 
Analysis of the parasitoid population can provide some very useful ecological indices 401 
because they possess the unique characteristics of having the ability to complete their life 402 
cycle by feeding on a particular host (Salama and Zaki, 1983) or a range of herbivores in a 403 
particular ecological niche (Romeis et al., 2008). They are, therefore, most likely to ingest 404 
the Cry protein in the host herbivore where they are found or directly from the PBR cowpea 405 
plant (Lit et al., 2012). The analysis shows that the population density of the parasitoids in 406 
the PBR cowpea ecological niches was not significantly different from the non-transgenic 407 
cowpea ecological niches throughout the study period. Research conducted by Comas et al. 408 
(2014) and Albajes et al. (2013), who conducted a meta-analysis on the ecological impact of 409 
Bt Maize on non-target organisms (NTOs), similarly concluded that the transgenic maize did 410 
not exert a significant impact on the population density of predator, herbivore, and 411 
parasitoid guilds throughout the study. 412 
The Principal Component Analysis (PCA) result shows similar evolutionary dynamics in both 413 
the ecological niches of the transgenic and non-transgenic Cowpea. The broken stick 414 
distribution, which models the number of variances by adopting a stick of unit length, which 415 
is thereafter randomly broken into n pieces, reveals no statistically significant difference 416 
between both ecological niches. This finding aligns with the result obtained by Guo et al. 417 
(2014), whose research study revealed that the BtCry1Ac event expressed in the insect-418 
resistant corn caused no alteration in the community distribution of both transgenic and 419 
non-transgenic corn. 420 
The strong positive correlation between both transgenic and non-transgenic cowpea vs time 421 
shows that the increase in the species in both niches is a result of an increase in agronomic 422 
factors as the growth of both cowpea progresses. Such factors may include the onset of 423 
flowers and the steady increase, the onset of pods that followed thereafter, and its steady 424 
increase, in addition to the continuous increase in the number of leaves over time. It also 425 
means that the Cry1Ab gene expressed in the PBR cowpea had no negative impact on any of 426 
the ecological components, including the non-targeted organisms. Other factors that may 427 
have played significant roles include temperature, rainfall, sunshine, the nature of the soil, 428 
and other surrounding elements and plants (Desneux and Bernal, 2010). 429 
The higher prevalence of species in transgenic PBR cowpea fields can be linked to multiple 430 
correlated factors, encompassing enhanced plant health and resource availability, specific 431 
interactions between the transgenic plants and their environment, disparities in nutritional 432 
content, and modified ecological interactions (Yizhu et al., 2024; Bijay et al., 2023; Pandey et 433 
al., 2021; Zhe et al., 2010): Transgenic PBR Cowpea is engineered to withstand attacks 434 
from pod borers, a significant pest in cowpea farming. With less harm inflicted by these 435 
pests, the transgenic plants could allocate more resources towards development and 436 
propagation, resulting in a potential rise in flower yield and enhanced nutritional value. This 437 
enhanced plant health might offer a more prosperous and superior supply of resources for 438 
various species, such as pollinators and herbivores. Yizhu et al. (2024) showed that healthy 439 
soil reduces the plant disease index and increases biomass by improving the stability and 440 
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complexity of the network; positive cohesion, reflecting the degree of cooperation, was also 447 
negatively correlated with the plant disease index. 448 
The presence of the Cry1Ab protein in transgenic PBR cowpea could directly or indirectly 449 
affect insect populations. Cry1Ab protein targets specific Lepidopteran pests, reducing their 450 
numbers and thus lessening the herbivory pressure on the plants. According to Bijay et al. 451 
(2023), reducing pest pressure could lead to a more favourable environment for non-target 452 
insect species, as there would be less competition for resources and fewer damaged plants. 453 
The lower pest pressure might also reduce the need for chemical insecticides, further 454 
promoting a healthier ecosystem for a broader range of species. 455 
Differences in the nutritional content of transgenic and non-transgenic cowpea plants could 456 
also play a role in the observed differences in species abundance (Zhe et al., 2010). Healthier, 457 
less stressed plants might produce higher levels of certain nutrients, attracting a more diverse 458 
array of herbivores and their predators (Pandey et al., 2021). This could create a cascading 459 
effect, supporting greater biodiversity in the transgenic PBR Cowpea fields. Moreover, these 460 
interactions could extend beyond herbivores to include pollinators and other beneficial insects, 461 
enhancing the overall ecological balance of the fields. 462 
Introducing transgenic PBR cowpea could also alter the ecological interactions within the 463 
fields. For example, reducing pod borer populations might allow other species to thrive without 464 
the pressure of competition or predation from these pests. This could result in a more complex 465 
and diverse ecosystem where different species can exploit various niches. Additionally, the 466 
healthier plants might provide better habitat and resources for various organisms, from soil 467 
microbes to larger vertebrates, contributing to the observed increase in biodiversity. 468 
A more in-depth study and analysis would contribute to substantiating the possible 469 
reasons for the observed differences in species counts. Some of these assessments 470 
may comprise detailed evaluations of insect populations, soil analyses, plant 471 
biochemical profiling, and the continuous monitoring of biodiversity throughout 472 
various growing seasons. Collaborating with ecologists, entomologists, and plant 473 
biologists can provide valuable insights and help elucidate the underlying 474 
mechanisms driving the observed patterns. 475 
 476 
Limitation of the Current Study 477 
The current study does not consider the impact of PBR Cowpea on the oviposition ability of 478 
non-targeted arthropods. Furthermore, the collection of data on the effect of PBR Cowpea 479 
on soil invertebrates over longer periods of time and the potential transfer of the Cry1Ab 480 
gene to conventional cowpea still need to be assessed. 481 
 482 
Conclusions 483 
The current study revealed no significant differences in the responses of non-targeted 484 
organisms between the ecological niches of the transgenic (IT97KT) and non-transgenic 485 
(IT97KN) cowpea. The findings show that the introduction of the Cry1Ab transgene in the 486 
PBR cowpea did not negatively impact biodiversity and the environment. The comparative 487 
assessment of the evolutionary dynamics of the non-targeted species community of the 488 
transgenic cowpea and that of the non-transgenic cowpea recorded no significant 489 
divergence throughout the study period. The data from the analysis of the species evenness 490 
and diversity indices also did not show any significant difference between the fields of 491 
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transgenic PBR cowpea and its isoline. However, it is imperative to note that these findings 498 
are context-dependent and may vary across different agroecosystems and geographical 499 
regions. Therefore, continuous monitoring and adaptive management strategies are 500 
essential to mitigate potential unforeseen consequences on biodiversity. This study found 501 
that the single-line transgenic cowpea (IT97KT) could thrive without or with reduced 502 
chemical pesticide usage, which, in turn, could lead to improved climate conditions and 503 
human health. However, it is important to take a cautious approach to minimize the risk of 504 
unintended ecological consequences, such as secondary pest outbreaks or disruption of 505 
natural enemy populations. The findings from this research provide valuable insights that 506 
will help shape decision-making for regulating the crop across all cowpea growing areas in 507 
the country. 508 
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